JPH044374B2 - - Google Patents
Info
- Publication number
- JPH044374B2 JPH044374B2 JP13730083A JP13730083A JPH044374B2 JP H044374 B2 JPH044374 B2 JP H044374B2 JP 13730083 A JP13730083 A JP 13730083A JP 13730083 A JP13730083 A JP 13730083A JP H044374 B2 JPH044374 B2 JP H044374B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- outer layer
- ferrite
- temperature
- inner layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 10
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 229910001562 pearlite Inorganic materials 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 229910001018 Cast iron Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 14
- 238000005266 casting Methods 0.000 description 10
- 238000011081 inoculation Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910001141 Ductile iron Inorganic materials 0.000 description 5
- 229910001567 cementite Inorganic materials 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005087 graphitization Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910004709 CaSi Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007531 graphite casting Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/04—Phosphor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は強靭シリンダーライナーの製法に関す
る。
内燃機関に使用されているシリンダーライナー
は、ピストンリングと同時摺動し気密性を保持し
なければならないことから、基本的に耐摩耗性と
耐熱付性が必要とされる。この目的のため、従来
シリンダーライナーの用途には、A型黒鉛を有し
Cr、B、P、V、Mo、Nb等の耐摩耗性向上元
素を含有する特殊鉄鋳物が専ら用いられてきてい
る。
しかし乍ら、最近の内燃機関の大型化、またそ
の軽量化、低燃費化の要求に伴い、上記従来材質
では強度的に不足を来たしており、強度面での向
上が切望されている。
強度の向上の目的のためには、ライナー材質に
より高強度のものを選ぶことも考えられるが、シ
リンダーライナー本来の必要特性である耐摩耗
性、耐焼付性を損うおそれがあり、実際上限界が
ある。またライナー肉厚を厚肉化することも有効
であるが、この場合には軽量化という目的には逆
行する。
ところで、シリンダーライナーの使用状況と破
損原因について分析すると、
() 耐摩耗性、耐焼付性を必要とする部分は、
ピストンリングとの接触部、即ちライナー内表
面のみである。
() シリンダーライナーの破損は、その外表面
を起点とする。
ことが知られる。
本発明はかかる点に着目して、シリンダーライ
ナーに従来例をみない複合化技術を適用するとと
もに、従来にない特定の熱処理を施すことによつ
て、特に外層材質の強靭性向上を計るものであ
る。
ここで、複合化による強靭化については、本出
願は先に特願昭57−134050で提案した通りであ
り、該発明に対し、本発明は更に新規な熱処理技
術を適用した的に特徴があり、本発明の要旨とす
るところは、
C 2.8〜4.0%、Ni 2.5%以下
Si 1.5〜3.5%、Cr 0.8%以下
Mn 0.2〜1.0%、Mo 0.6%以下
P 0.3%以下、Mg 0.03〜0.1%
を各重量%を含み、残部Feおよび通常の不純物
からなる外層と、
耐摩耗性、耐焼付性に優れる特殊鋳鉄材質の内
層と溶着接合させて複合シリンダーライナーを作
成し、これを昇温して800〜860℃の温度に0.2〜
20Hr保持した後100〜1000℃/Hrの冷却速度で
冷却し、次いで500〜630℃の温度で2〜30Hr保
持する一連の熱処理を行なうことにより、前記外
層を球状黒鉛とフエライト・パーライト2相混合
基地を主体とする組織とする点にあり、これによ
つて全体として必要な耐摩耗性、耐焼付性の使用
特性を損わず、特願昭57−134050に比し更に強度
の向上を計ることに成功したものである。
以下本発明について詳述する。
本発明方法により得られる複合シリンダーライ
ナーは、第6図に示すような構造を具備してな
る。すなわち、その外層aは後に詳述される強靭
性に優れる球状黒鉛鋳鉄材質からなり、一方その
内層bは耐焼付性、耐摩耗性に優れる従来通りの
特殊鋳鉄材質からなり、かつ両者を溶着一体化し
て構成されている。
なお外層aと内層bとの溶着一体化によつて、
外層aと内層bとの間には両者の中間的な組成の
溶着層(中間層)a+bを不可避に生じることに
なる。すなわち、内層bを外層aに溶着せしめる
ことによつて、外層材質の内層bへのある程度の
溶け込みは避けられない。
このさい、もしその溶層a+bに使用目的によ
つては問題を生ずる場合では、第7図に示すよう
に、予め別途中間層材質を用意しておき、外層a
と内層bとの間に中間層cを介在させて対応する
こともできる。すなわち、必要に応じては、ライ
ナー構造を三層以上のものに形成することもでき
る。
このような多層構造を有する複合シリンダーラ
イナーは遠心力鋳造法により容易に製造できる。
すなわち、まず外層を鋳込んだ後、適宜タイミン
グで内層材質を鋳込み、両者を溶着一体化する。
三層以上のものについても、同様に外層から順に
適宜タイミングで各層を鋳込めばよい。
なお遠心力鋳造法には、横型、傾斜型、竪型の
いずれも適用可能である。
次に本発明の複合シリンダーライナーの外層を
形成する球状黒鉛鋳鉄材質について説明する。
本発明では強靭性に優れるライナー外層材とし
て、次のような成分組成のものを使用することを
特徴とする。すなわち、外層はC2.8〜4.0、Si1.5
〜3.5、Mn0.2〜1.0、P0.3以下、S0.04以下、
Ni2.5以下、Cr0.8以下、Mo0.6以下、Mg0.03〜
0.1を重量%含み、残部Feおよび通常の不純物か
らなり、本発明の熱処理後の組織は、球状黒鉛と
フエライト・パーライト2相混合基地を主体とす
る球状黒鉛鋳熱となる。
そこで、上記特定材質の化学成分、熱処理後の
顕微鏡組織等について、下記に詳述する。
() 化学成分
C:2.8〜4.0%
外層の球状黒鉛鋳鉄材質は、球状黒鉛と基
地からなり(ただし少量のセメンタイトの晶
出は問題ない)、特に強靭性を重要視するも
のである。しかしてC2.8%未満では、鋳造性
が悪くなると共にセメンタイトの晶出量が増
加し、材質が脆くなり、一方4.0%を越える
と鋳造欠陥を発生し易くなるためである。
Si:1.5〜3.5%
Siは黒鉛化を促進する作用があり、黒鉛球
状化剤としてMgを添加する本材質の場合、
1.5%未満ではセメンタイトの晶出量が多く
なり、脆くなるためである。しかし3.5%を
越えると、基地がフエライト化し耐力が劣化
すると共に、フエライト中に溶け込んだSiが
フエライトを脆くする。
Mn:0.2〜1.0%
Mnは、通常Sと結合してSの悪影響を除
去すると共に、基地のパーライトの安定化し
強度を増す。Mn0.2%未満では、この効果は
期待できず、一方1.0%を越えるとかえつて
脆くなる。
P:0.3%以下
Pは溶湯の流動性を高めるが、材質中にリ
ン共晶物を生成し材質を脆くする。この作用
はP含有量の増加につれて大きくなるが、実
害のない範囲として0.3%を上限とする。な
おP含有量は低い程強靭性の面で有利である
が、実際面ではP0.01%以下にすることはコ
スト上困難である。
S:0.04以下
SはPと同様に、一般に不純物元素として
理解されており、機械的材質を劣化させる。
また黒鉛の球状化を阻害する作用があるた
め、0.04%以下とする。
Ni:2.5%以下
Niは黒鉛化と基地の強化に有効に作用す
るが、2.5%を超えると、経済性の面で不利
とるばかりでなく、焼入れ組織(ベーナイ
ト、マルテンサイト)、未変態組織を発生し
易くなり、外層材質の目的に合致しなくなる
ためである。
Cr:0.8%以下
Crbは基地の強化作用と共に、セメンタイ
トの安定作用が大きい。すなわち、Cr0.8%
を超えると、C、Siの調整によつてもセメン
タイトが晶出して脆くなり、外層材質の目的
に合致しなくなるためである。
Mo:0.6以下
Moは基地の強化に有効であるが、余りそ
の含有量を増加しても効果が飽和し経済的で
なく、また材質を硬く、脆くする作用も現わ
れるため0.6%以下とする。
Mg:0.03〜0.1%
Mgは勿論黒鉛の球状化のために含有させ
るものであるが、0.03%未満ではその効果が
不足し、一方0.1%を超えると、Mgのチル化
作用およびドロス等の鋳造欠陥を発生し易く
なる点から好ましくないためである。
シリンダーナイナーの外層を形成する球状
黒鉛鋳鉄材質は、以上の各成分を含み、基本
的には残部Feおよび通常の不純物からなる。
なお外層の球状黒鉛鋳鉄材質には、更にそ
の材質特性を向上するためFeに代えて、次
の希土類元素、Sn及びCuを必要に応じ添加
することができる。
稀土類元素:0.05%以下
希土類元素をMgと併用添加すれば、黒鉛
の球状代がより良好なものとなる。このさ
い、その添加量はその作用効果が飽和する
0.05重量%を上限とする。
Sn:0.3%以下
上記外層材質はその外層材質はその鋳造条
件によつては、基地中にフエライトが過多と
なつて、耐力、疲労強度の低下を招来するこ
とがある。その場合、パーライト安定作用の
あるSnをその効果が飽和する0.3重量%の範
囲内で添加するのが有効である。
Cu:1.0%以下
上記Snと同様の見地より、Cu1.0重量%以
下の範囲で添加することも有効である。
() 外装材質の接種
次に外層材質の接種について述べる。一般
に、接種は鋳造組織の微細化、黒鉛化の助長の
ために有効である。そして上記外層材質につい
ても、接種技術を応用すれば、より微細かつ均
一に黒鉛の分布した材質が得られる。このさ
い、接種量はSi分として0.05〜1.0%が適当であ
る。すなわち、0.05%未満では接種効果が期待
できず、一方1.0%を超えても相応の効果が得
られないためである。接種剤としては、CaSi、
FeSiが好適である。なお、接種後におけるSi
含有量は、やはり上記1.5〜3.5%の範囲に調整
される。
以上外層材質について詳述したが、一方耐摩耗
性、耐焼付性が必要とされるライナー内層材質に
ついては、従来通り特殊鋳鉄材質を用いればよ
く、別段特色はない。
次に本発明で実施する熱処理方法について説明
する。
第1図は本発明に係る熱処理の熱曲線を示した
ものである。同図においてAは800〜860℃の温度
である。この温度域では、高Siの外層材質ではフ
エライト・オーステナイトが共存し、その後の冷
却によつて、フエライト・パーライト2相混合組
織が得られる。このフエライト・パーライト2相
混合組織は強靭性に優れており、後述の実施例に
示す通りである。本発明ではこの温度に限定した
のは800℃未満ではフエライト量が多くなり過ぎ
て靭性面は良好であるが、強度面では低下する。
一方860℃を超えると、フエライト・オーステナ
イト共存域を越え、均一なオーステナイトとなる
ため靭性面が低下する。なおAの保持時間は、温
度にもよるが(低温の場合、長時間が良好)、通
常の製造作業面から0.2〜20Hrが適当である。
次に同図Bの冷却速度は重要であり、オーステ
ナイト部分の変態状況を変化させる。このさい冷
却速度が遅いと、析出するパーライトが粗くな
り、強度面が劣化する。また耐摩耗性の必要な内
層材質の硬度低下を招く。一方冷却速度は早い程
良好ではあるが、実際の作業上限界がある。以上
の理由から100〜1000℃/Hrが適切である。な
お、Bは材質の靭性面には大きな影響を与えな
い。
同図のCは次に説明するD温度に移行する前に
復熱を抑える意味だけであり、Dの温度以下で良
い。同図のDの組織安定化および歪取りを目的と
するものであり、500〜630℃が適切であり、その
保持時間も2〜30Hrが適切である。
次に実施例を揚げて説明する。
<実施例>
次のような鋳造条件で、下記表1のA、B、C
の複合シリンダーライナーを製造した。
鋳造金型内径:720φ
外層鋳込厚:90mm
内層鋳込厚:60mm
熱処理:840゜×4Hr(昇温保持)
400℃/Hr(冷却)
500℃×10Hr(歪取り、加熱保持)
〔次葉〕
FIELD OF THE INVENTION The present invention relates to a method of manufacturing a tough cylinder liner. Cylinder liners used in internal combustion engines must have wear resistance and heat resistance because they must slide together with piston rings and maintain airtightness. For this purpose, conventional cylinder liners use A-type graphite.
Special iron castings containing wear-resistance-enhancing elements such as Cr, B, P, V, Mo, and Nb have been exclusively used. However, with the recent increase in the size of internal combustion engines and the demand for lighter weight and lower fuel consumption, the above-mentioned conventional materials are insufficient in terms of strength, and there is a strong desire for improvements in strength. In order to improve the strength, it is possible to select a liner material with high strength, but there is a risk that the abrasion resistance and seizure resistance, which are originally necessary characteristics of cylinder liners, may be impaired, so there is a practical limit. There is. It is also effective to increase the thickness of the liner, but this goes against the goal of reducing weight. By the way, when we analyze the usage conditions and causes of damage to cylinder liners, we find that () parts that require wear resistance and seizure resistance are:
Only the contact portion with the piston ring, that is, the inner surface of the liner. () Damage to the cylinder liner starts from its outer surface. It is known that Focusing on this point, the present invention aims to particularly improve the toughness of the outer layer material by applying an unprecedented composite technology to the cylinder liner and subjecting it to a specific heat treatment that has never been seen before. be. Here, regarding toughening by compounding, this application has previously proposed in Japanese Patent Application No. 134050/1982, and the present invention is characterized by applying a new heat treatment technology to that invention. , the gist of the present invention is as follows: C 2.8-4.0%, Ni 2.5% or less, Si 1.5-3.5%, Cr 0.8% or less Mn 0.2-1.0%, Mo 0.6% or less, P 0.3% or less, Mg 0.03-0.1%. A composite cylinder liner is created by welding and bonding the outer layer, which contains each weight percent with the balance Fe and normal impurities, to the inner layer, which is made of a special cast iron material that has excellent wear resistance and seizure resistance. 0.2 to 800 to 860℃ temperature
After holding for 20 hours, the outer layer is cooled at a cooling rate of 100 to 1000°C/hour, and then held at a temperature of 500 to 630°C for 2 to 30 hours to form a two-phase mixture of spherical graphite and ferrite/pearlite. The structure is based on bases, and as a result, the overall strength is further improved compared to the patent application No. 134050 of 1983 without compromising the wear resistance and anti-seizure properties necessary for use. It was extremely successful. The present invention will be explained in detail below. The composite cylinder liner obtained by the method of the present invention has a structure as shown in FIG. That is, the outer layer a is made of a spheroidal graphite cast iron material with excellent toughness, which will be detailed later, while the inner layer b is made of a conventional special cast iron material with excellent seizure resistance and wear resistance, and both are welded together. It is structured as follows. Furthermore, by welding and integrating the outer layer a and the inner layer b,
A welded layer (intermediate layer) a+b having a composition intermediate between the outer layer a and the inner layer b is inevitably formed. That is, by welding the inner layer b to the outer layer a, it is inevitable that the material of the outer layer will melt into the inner layer b to some extent. At this time, if the molten layer a+b causes a problem depending on the purpose of use, prepare a separate intermediate layer material in advance as shown in FIG.
This can also be achieved by interposing an intermediate layer c between the inner layer b and the inner layer b. That is, if necessary, the liner structure can be formed into three or more layers. A composite cylinder liner having such a multilayer structure can be easily manufactured by centrifugal casting.
That is, first, after the outer layer is cast, the inner layer material is cast at an appropriate timing, and the two are welded and integrated.
For products with three or more layers, each layer may be similarly cast in order from the outer layer at appropriate timing. Note that the centrifugal force casting method can be applied to any of the horizontal type, inclined type, and vertical type. Next, the spheroidal graphite cast iron material forming the outer layer of the composite cylinder liner of the present invention will be explained. The present invention is characterized by using a material having the following component composition as a liner outer layer material having excellent toughness. That is, the outer layer is C2.8~4.0, Si1.5
~3.5, Mn0.2~1.0, P0.3 or less, S0.04 or less,
Ni2.5 or less, Cr0.8 or less, Mo0.6 or less, Mg0.03~
The structure after the heat treatment of the present invention becomes a spheroidal graphite casting heat mainly composed of spheroidal graphite and a ferrite-pearlite two-phase mixed base. Therefore, the chemical composition of the above-mentioned specific material, the microscopic structure after heat treatment, etc. will be explained in detail below. () Chemical composition C: 2.8 to 4.0% The spheroidal graphite cast iron material of the outer layer consists of spheroidal graphite and a matrix (however, a small amount of cementite crystallization is not a problem), and toughness is particularly important. However, if C is less than 2.8%, castability deteriorates and the amount of cementite crystallized increases, making the material brittle. On the other hand, if C exceeds 4.0%, casting defects are likely to occur. Si: 1.5-3.5% Si has the effect of promoting graphitization, and in the case of this material in which Mg is added as a graphite nodularizing agent,
This is because if it is less than 1.5%, the amount of cementite crystallized increases and becomes brittle. However, if it exceeds 3.5%, the base becomes ferrite and the proof strength deteriorates, and the Si dissolved in the ferrite makes the ferrite brittle. Mn: 0.2 to 1.0% Mn usually combines with S to eliminate the adverse effects of S, and also stabilizes the base pearlite and increases its strength. If Mn is less than 0.2%, this effect cannot be expected, while if it exceeds 1.0%, it will become brittle. P: 0.3% or less P increases the fluidity of the molten metal, but it also creates phosphorus eutectic in the material, making it brittle. This effect increases as the P content increases, but the upper limit is set at 0.3% without causing any actual damage. Note that a lower P content is advantageous in terms of toughness, but in practice it is difficult to reduce the P content to 0.01% or less due to cost considerations. S: 0.04 or less Like P, S is generally understood as an impurity element, and deteriorates the mechanical properties of the material.
Also, since it has the effect of inhibiting the spheroidization of graphite, it should be kept at 0.04% or less. Ni: 2.5% or less Ni has an effective effect on graphitization and strengthening of the matrix, but if it exceeds 2.5%, it is not only disadvantageous in terms of economy, but also damages the quenched structure (bainite, martensite) and untransformed structure. This is because it becomes more likely to occur and does not meet the purpose of the outer layer material. Cr: 0.8% or less Crb not only strengthens the base but also has a large stabilizing effect on cementite. i.e. Cr0.8%
This is because if it exceeds this, cementite will crystallize and become brittle even if C and Si are adjusted, and the purpose of the outer layer material will not be met. Mo: 0.6% or less Mo is effective in strengthening the base, but if the content is increased too much, the effect will become saturated and it is not economical, and it will also have the effect of making the material hard and brittle, so it should be kept at 0.6% or less. Mg: 0.03-0.1% Mg is of course included to make graphite spheroidized, but if it is less than 0.03%, its effect is insufficient, while if it exceeds 0.1%, it may cause the chilling effect of Mg and the casting of dross etc. This is because it is undesirable because defects are likely to occur. The spheroidal graphite cast iron material forming the outer layer of the cylinder niner contains each of the above components, with the balance basically consisting of Fe and normal impurities. Note that the following rare earth elements, Sn and Cu can be added to the spheroidal graphite cast iron material of the outer layer, if necessary, in place of Fe in order to further improve the material properties. Rare earth elements: 0.05% or less If rare earth elements are added in combination with Mg, the sphericity of graphite becomes better. At this point, the added amount saturates its action and effect.
The upper limit is 0.05% by weight. Sn: 0.3% or less Depending on the casting conditions, the above outer layer material may contain too much ferrite in the base, leading to a decrease in yield strength and fatigue strength. In that case, it is effective to add Sn, which has a pearlite stabilizing effect, within a range of 0.3% by weight at which its effect is saturated. Cu: 1.0% or less From the same standpoint as Sn above, it is also effective to add Cu in a range of 1.0% by weight or less. () Inoculation of exterior material Next, we will discuss inoculation of the outer layer material. In general, inoculation is effective for refining the casting structure and promoting graphitization. If the inoculation technique is applied to the outer layer material, a material in which graphite is more finely and uniformly distributed can be obtained. At this time, the appropriate amount of inoculation is 0.05 to 1.0% as Si content. That is, if it is less than 0.05%, no inoculation effect can be expected, and on the other hand, if it exceeds 1.0%, a corresponding effect cannot be obtained. As an inoculant, CaSi,
FeSi is preferred. In addition, Si after inoculation
The content is also adjusted to the above range of 1.5 to 3.5%. Although the material of the outer layer has been described in detail above, the material of the inner layer of the liner, which requires wear resistance and seizure resistance, may be made of a special cast iron material as before, and there is no special feature. Next, the heat treatment method carried out in the present invention will be explained. FIG. 1 shows a thermal curve of heat treatment according to the present invention. In the figure, A is a temperature of 800 to 860°C. In this temperature range, ferrite and austenite coexist in the high-Si outer layer material, and a ferrite-pearlite two-phase mixed structure is obtained by subsequent cooling. This ferrite-pearlite two-phase mixed structure has excellent toughness, as shown in the examples below. In the present invention, the temperature is limited to this because if it is less than 800°C, the amount of ferrite becomes too large and the toughness is good, but the strength is reduced.
On the other hand, when the temperature exceeds 860°C, the ferrite-austenite coexistence region is exceeded and the material becomes uniform austenite, resulting in a decrease in toughness. Note that the holding time of A depends on the temperature (longer times are better at lower temperatures), but from the standpoint of normal manufacturing operations, 0.2 to 20 hours is appropriate. Next, the cooling rate shown in Figure B is important and changes the transformation state of the austenite portion. If the cooling rate is slow at this time, the precipitated pearlite will become rough and the strength will deteriorate. In addition, this results in a decrease in the hardness of the inner layer material, which requires wear resistance. On the other hand, although a faster cooling rate is better, there is a limit in practical work. For the above reasons, 100 to 1000°C/Hr is appropriate. Note that B does not have a large effect on the toughness of the material. C in the figure only serves to suppress recuperation before moving to temperature D, which will be described next, and the temperature may be lower than temperature D. This is for the purpose of stabilizing the structure and eliminating strain in D in the same figure, and the appropriate temperature is 500 to 630°C, and the appropriate holding time is 2 to 30 hours. Next, examples will be explained. <Example> A, B, and C in Table 1 below were cast under the following casting conditions.
A composite cylinder liner was manufactured. Casting mold inner diameter: 720φ Outer layer casting thickness: 90mm Inner layer casting thickness: 60mm Heat treatment: 840゜×4Hr (temperature raising and holding) 400℃/Hr (cooling) 500℃×10Hr (strain relief, heating and holding) [Next page] ]
【表】
No.Aのシリンダーライナーの顕微鏡組織を第2
〜5図に示す。すなわち、第2図と第3図はその
外層材質の顕微鏡写真(倍率100と400)であり、
第4図と第5図はその内層材質の顕微鏡写真(倍
100と400)である。
前記第2図と第3図の写真で観察されるよう
に、基地組織が、フエライト・パーライト2相混
合組織となつていることが判る。なお、フエライ
ト・ベーナイト2相混合、フエライト・マルテン
サイト2相混合も可能であるが、合金含有量の増
大や、冷却速度の増に結びつき、コスト面で不利
となる。
下記に本発明の熱処理を行なつた複合シリンダ
ーライナーと、熱処理を行なつていないもの(本
発明の実施例と同一のもの、特願昭57−134050と
同一)とを比較した機械的性質を示す。
〔次葉〕[Table] The microscopic structure of No. A cylinder liner is shown in the second table.
- Shown in Figure 5. That is, Figures 2 and 3 are micrographs (magnifications of 100 and 400) of the outer layer material,
Figures 4 and 5 are micrographs (magnified) of the inner layer material.
100 and 400). As observed in the photographs of FIGS. 2 and 3, it can be seen that the matrix structure is a two-phase mixed structure of ferrite and pearlite. Note that a two-phase mixture of ferrite and bainite and a two-phase mixture of ferrite and martensite are also possible, but this leads to an increase in the alloy content and an increase in the cooling rate, which is disadvantageous in terms of cost. The mechanical properties of a composite cylinder liner subjected to the heat treatment of the present invention are compared with those not subjected to heat treatment (same as the example of the present invention, same as that of Japanese Patent Application No. 57-134050). show. [Next leaf]
【表】
上記の表2から、外層の化学成分が同一組成で
あつても、本発明の熱処理を行なつたものは、行
なわないものに比し、その機械的強度が著しく向
上したことが明らかであり、しかも本発明の熱処
理を施すことにより、内層も同様に向上している
ことが判る。
以上のように本発明は特定の外層材を使用し、
内層はその使用特性に適合する耐焼付性、耐摩耗
性に優れた従来通りの特殊鋳鉄材質を使用して複
合シリンダーライナーを作成し、これに特定の熱
処理を行なうことにより、先に提案した特願昭57
−134050のものに比し、一段と高強度化、強靭化
を達成できたものである。[Table] From Table 2 above, it is clear that even if the chemical components of the outer layer are the same, those that were subjected to the heat treatment of the present invention had significantly improved mechanical strength compared to those that were not subjected to the heat treatment. Moreover, it can be seen that the inner layer is similarly improved by applying the heat treatment of the present invention. As described above, the present invention uses a specific outer layer material,
For the inner layer, we created a composite cylinder liner using a conventional special cast iron material with excellent seizure resistance and wear resistance that matches the usage characteristics, and by applying a specific heat treatment to this material, we achieved the characteristics proposed earlier. Gansho 57
-134050, it has achieved even higher strength and toughness.
第1図は本発明に係る熱処理の熱曲線、第2図
は本発明ライナー外層材質No.A顕微鏡組織
(X100)、第3図は同(X400)組織、第4図は同
内層材質の同組織(X100)、第5図は同(X400)
組織、第6図と第7図は本発明ライナーの構造断
面図である。
a:外層、b:内層。
Fig. 1 shows the thermal curve of heat treatment according to the present invention, Fig. 2 shows the microscopic structure of No. A of the outer layer material of the liner of the present invention (X100), Fig. 3 shows the microscopic structure of the same (X400), and Fig. 4 shows the same structure of the inner layer material of the same. Organization (X100), Figure 5 is the same (X400)
FIGS. 6 and 7 are structural sectional views of the liner of the present invention. a: outer layer, b: inner layer.
Claims (1)
からなる外層と、 耐摩耗性、耐焼付性に優れる特殊鋳鉄材質の内
層とを溶着接合させて複合シリンダーライナーを
作成し、これを昇温して800〜860℃の温度に0.2
〜20Hr保持した後100〜1000℃/Hrの冷却速度
で冷却し、次いで500〜630℃の温度で2〜30Hr
保持する一連の熱処理を行なうことにより、前記
外層を球状黒鉛とフエライト・パーライト2相混
合基地を主体とする組織とすることを特徴とする
強靭性に富む複合シリンダーライナーの製法。[Claims] 1 C 2.8-4.0% Si 1.5-3.5% Mn 0.2-1.0% P 0.3% or less S 0.04% or less Ni 2.5% or less Cr 0.8% or less Mo 0.6% or less Mg 0.03-0.1% Each weight A composite cylinder liner is created by welding and bonding an outer layer consisting of Fe and normal impurities with the balance being Fe and an inner layer made of a special cast iron material with excellent wear resistance and seizure resistance. 0.2 to 860℃ temperature
After holding for ~20Hr, cool at a cooling rate of 100~1000℃/Hr, then at a temperature of 500~630℃ for 2~30Hr.
A method for manufacturing a composite cylinder liner with high toughness, characterized in that the outer layer has a structure mainly composed of spherical graphite and a ferrite/pearlite two-phase mixed base by performing a series of heat treatments to maintain the structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13730083A JPS6029420A (en) | 1983-07-26 | 1983-07-26 | Manufacture of composite cylinder liner having high strength and toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13730083A JPS6029420A (en) | 1983-07-26 | 1983-07-26 | Manufacture of composite cylinder liner having high strength and toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6029420A JPS6029420A (en) | 1985-02-14 |
JPH044374B2 true JPH044374B2 (en) | 1992-01-28 |
Family
ID=15195461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13730083A Granted JPS6029420A (en) | 1983-07-26 | 1983-07-26 | Manufacture of composite cylinder liner having high strength and toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6029420A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6483641A (en) * | 1987-09-24 | 1989-03-29 | Nippon Steel Corp | Expander cone made of spheroidal graphite cast iron |
CN1317923C (en) * | 2003-09-29 | 2007-05-23 | 财团法人工业技术研究院 | A base plate structure having built-in capacitor |
KR101082352B1 (en) | 2003-12-29 | 2011-11-10 | 두산인프라코어 주식회사 | Cylinder block of internal combustion engine |
JP5319871B2 (en) * | 2004-12-17 | 2013-10-16 | ゼネラル・エレクトリック・カンパニイ | Ductile iron alloy |
ITVR20060111A1 (en) * | 2006-07-03 | 2008-01-04 | Zanardi Fonderie S P A | PROCEDURE FOR THE PRODUCTION OF MECHANICAL COMPONENTS IN SFEROID CAST IRON |
CN105369116B (en) * | 2014-08-29 | 2017-03-08 | 中原内配集团股份有限公司 | A kind of piebald cylinder jacket of centrifugal casting production and its production technology |
-
1983
- 1983-07-26 JP JP13730083A patent/JPS6029420A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6029420A (en) | 1985-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4435226A (en) | Wear resistant cast iron alloy with spheroidal graphite separation and manufacturing method therefor | |
US8333923B2 (en) | High strength gray cast iron | |
JPS60247036A (en) | Cv-cast iron cylinder liner | |
JPS6036644A (en) | Composite cylinder liner | |
JPS6126754A (en) | Double-layered cylinder liner having superior wear resistance | |
US5478523A (en) | Graphitic steel compositions | |
CN112553521A (en) | Ductile iron bearing seat and preparation method thereof | |
JPS61174358A (en) | Spheroidal graphite cast steel of high strength | |
JPS6036757A (en) | Composite cylinder liner | |
JPH044374B2 (en) | ||
JPS60121254A (en) | Composite cylinder liner | |
JPH0235021B2 (en) | FUKUGOSHIRINDAARAINAA | |
JPS6036645A (en) | Composite cylinder liner | |
JPS5923844A (en) | Composite cylinder liner | |
US4124413A (en) | Wear and pitting resistant cast iron | |
KR0138010B1 (en) | Cast iron slide member | |
US3998664A (en) | Cast iron | |
JPS6036755A (en) | Composite cylinder liner | |
JPS6036754A (en) | Composite cylinder liner | |
JPS6029445A (en) | Composite cylinder liner having excellent resistance to corrosion | |
JP2857568B2 (en) | Composite cylinder liner | |
JPH0140900B2 (en) | ||
JP2981899B2 (en) | Piston ring material | |
US12018343B2 (en) | Martensitic wear resistant alloy strengthened through aluminum nitrides | |
JPH08170144A (en) | Combined cylinder liner |