JPH044248B2 - - Google Patents
Info
- Publication number
- JPH044248B2 JPH044248B2 JP14319083A JP14319083A JPH044248B2 JP H044248 B2 JPH044248 B2 JP H044248B2 JP 14319083 A JP14319083 A JP 14319083A JP 14319083 A JP14319083 A JP 14319083A JP H044248 B2 JPH044248 B2 JP H044248B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- zinc sulfide
- thiourea
- salt
- sulfide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005083 Zinc sulfide Substances 0.000 claims description 35
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 35
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 35
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 35
- 239000000843 powder Substances 0.000 claims description 34
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 14
- 150000003751 zinc Chemical class 0.000 claims description 13
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 10
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 claims description 10
- 239000011592 zinc chloride Substances 0.000 claims description 6
- 235000005074 zinc chloride Nutrition 0.000 claims description 6
- 229940102001 zinc bromide Drugs 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Led Devices (AREA)
- Luminescent Compositions (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は硫化亜鉛粉末の製造方法に関するもの
であり、比較的低い温度の溶融塩から短時間に、
不純物が少なくしかも粒度の均一な硫化亜鉛の微
粉末が得られる方法を提供するものである。本発
明の方法によつて得られる硫化亜鉛粉末は陰極線
管用蛍光体、エレクトロルミネツセンス用蛍光体
などの材料として用いることができる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing zinc sulfide powder.
The present invention provides a method for obtaining fine zinc sulfide powder containing few impurities and having a uniform particle size. The zinc sulfide powder obtained by the method of the present invention can be used as a material for phosphors for cathode ray tubes, phosphors for electroluminescence, and the like.
従来例の構成とその問題点
硫化亜鉛は一般に次の方法で得られている。た
とえば、(1)緩衝液を用いて酸性に保つた硫酸亜鉛
水溶液に硫化水素を導入して飽和させ、硫化亜鉛
を沈澱させる方法や、(2)亜鉛イオンを含むアルカ
リ水溶液中でチオ尿素などを加えて反応させる方
法、あるいは(3)チオ尿素と亜鉛塩の溶融塩に
KOHやNaOHなどの水酸化アルカリを加えて硫
化亜鉛を得る方法がある。しかし、(1)と(2)の方法
で得られる硫化亜鉛粉末の粒度は広い範囲に分布
しており、均一な粒度を得るには、製造過程でPH
コントロールなどの種々の操作を行なわなければ
ならず、困難なものである。また、水溶液中での
結晶析出によることから得られた硫化亜鉛には各
種のイオンが含まれている。これらのイオンが結
晶成長に与える影響も考慮しなければならず、製
造過程の複雑さを増す原因の一つとなつている。
また、これらの方法で得られた硫化亜鉛は熱処理
により異常粒成長をおこしやすく、熱処理した場
合、均一な粒度の硫化亜鉛粉末が得られにくいと
いう欠点を持つている。一方、(3)の方法で得られ
る硫化亜鉛は均一な粒度のものであるが、製造過
程で水酸化アルカリを使用するため、使用するア
ルカリに応じてKまたはNaなどの混入する欠点
があり高純度の硫化亜鉛粉末は得にくい。Structure of conventional examples and their problems Zinc sulfide is generally obtained by the following method. For example, (1) a method in which hydrogen sulfide is introduced into a zinc sulfate aqueous solution kept acidic using a buffer solution to saturate it, and zinc sulfide is precipitated; and (2) thiourea etc. is added in an alkaline aqueous solution containing zinc ions. or (3) in a molten salt of thiourea and zinc salt.
There is a method to obtain zinc sulfide by adding alkali hydroxide such as KOH or NaOH. However, the particle size of zinc sulfide powder obtained by methods (1) and (2) is distributed over a wide range, and in order to obtain a uniform particle size, it is necessary to
Various operations such as controls must be performed, which is difficult. Furthermore, zinc sulfide obtained by crystallization in an aqueous solution contains various ions. The influence of these ions on crystal growth must also be taken into consideration, which is one of the causes of increased complexity in the manufacturing process.
Furthermore, zinc sulfide obtained by these methods tends to undergo abnormal grain growth upon heat treatment, and has the disadvantage that it is difficult to obtain zinc sulfide powder with a uniform particle size when heat treated. On the other hand, zinc sulfide obtained by method (3) has a uniform particle size, but since alkali hydroxide is used in the manufacturing process, it has the disadvantage of being contaminated with K or Na depending on the alkali used, and is highly expensive. Pure zinc sulfide powder is difficult to obtain.
発明の目的
本発明は、上記のような欠点を除去し、粒度の
そろつた、高純度の硫化亜鉛粉末を製造する方法
提供するものである。OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned drawbacks and provides a method for producing highly pure zinc sulfide powder with uniform particle size.
発明の構成
本発明はチオ尿素と亜鉛塩の溶融塩およびアン
モニアから生成することを特徴とする硫化亜鉛粉
末の製造方法を提供するものである。具体的には
チオ尿素と亜鉛塩の溶融塩を作り、これにアンモ
ニアガスを通じて、融液中に硫化亜鉛を析出させ
ることを特徴とする硫化亜鉛粉末の製造方法を提
供するものである。さらに具体的な一例としては
上記の製造方法でチオ尿素と亜鉛塩とのモル比を
1対1よりもチオ尿素を過剰としたことを特徴と
する硫化亜鉛粉末の製造方法を提供する。また、
具体的な一例としては上記の製造方法で溶融塩の
温度を140〜160℃の範囲に保持して、硫化亜鉛を
析出させることを特徴とする硫化亜鉛粉末の製造
方法を提供するものである。また、さらに具体的
には、上記の製造方法において、亜鉛塩として塩
化亜鉛または臭化亜鉛を使用することを特徴とす
る硫化亜鉛粉末の製造方法を提供するものであ
る。Structure of the Invention The present invention provides a method for producing zinc sulfide powder, which is characterized in that it is produced from thiourea, a molten salt of zinc salt, and ammonia. Specifically, the present invention provides a method for producing zinc sulfide powder, which is characterized by preparing a molten salt of thiourea and zinc salt, and passing ammonia gas through the molten salt to precipitate zinc sulfide in the molten solution. As a more specific example, there is provided a method for producing zinc sulfide powder, which is characterized in that the molar ratio of thiourea and zinc salt is 1:1, with thiourea in excess. Also,
As a specific example, the present invention provides a method for producing zinc sulfide powder, which is characterized by maintaining the temperature of the molten salt in the range of 140 to 160° C. to precipitate zinc sulfide. More specifically, the present invention provides a method for producing zinc sulfide powder, characterized in that in the above production method, zinc chloride or zinc bromide is used as the zinc salt.
実施例の説明
実施例 1
チオ尿素CS(NH2)2と塩化亜鉛ZnCl2の粉末を
0.5モルずつ300mlのフラスコ内に入れ、フラスコ
内を撹拌しながら140〜150℃にオイルバスで加熱
した。チオ尿素と塩化亜鉛が溶融塩になつたとこ
ろで、溶融塩を撹拌しながら、フラスコ内にアン
モニアガスNH3を2/分で30分間流した。冷
却後、純水で洗浄したのち150℃程度で乾燥した。
このようにして得た粉末を走査型電子顕微鏡によ
り粒度分布を測定したところ、その分布範囲は
0.2〜0.4μmであつた。この粉末を窒素雰囲気中
において500℃で1時間熱処理したところ、その
粒度分布は0.4〜1.0μmであつた。また、同様に
900℃で1時間熱処理をしたところ、0.9〜3μmで
あつた。Description of Examples Example 1 Thiourea CS(NH 2 ) 2 and zinc chloride ZnCl 2 powders
Each 0.5 mol was placed in a 300 ml flask, and the flask was heated to 140 to 150°C in an oil bath while stirring. When thiourea and zinc chloride had become a molten salt, ammonia gas NH 3 was flowed into the flask at 2/min for 30 minutes while stirring the molten salt. After cooling, it was washed with pure water and dried at about 150°C.
When the particle size distribution of the powder thus obtained was measured using a scanning electron microscope, the distribution range was
It was 0.2 to 0.4 μm. When this powder was heat treated at 500° C. for 1 hour in a nitrogen atmosphere, its particle size distribution was 0.4 to 1.0 μm. Also, similarly
When heat treated at 900°C for 1 hour, the thickness was 0.9 to 3 μm.
実施例 2
チオ尿素CS(NH2)2と臭化亜鉛ZnBr2の粉末を
0.5モルずつ300mlのフラスコ内に入れ、フラスコ
内を撹拌しながら150〜160℃にオイルバスで加熱
した。チオ尿素と臭化亜鉛が溶融塩になつたとこ
ろで、溶融塩を撹拌しながら、フラスコ内にアン
モニアガスNH3を1/分で60分間流した。冷
却後、純水で洗浄したのち、150℃程度で乾燥し
た。このようにして得た粉末を走査型電子顕微鏡
により粒度分布を測定したところ、その分布範囲
は0.1〜0.3μmであつた。この粉末を酵素雰囲気
中において500℃で1時間熱処理したところ、そ
の粒度分布は0.4〜0.8μmであつた。また、同様
に900℃で1時間熱処理をしたところ、1.0〜3.2μ
mであつた。Example 2 Thiourea CS(NH 2 ) 2 and zinc bromide ZnBr 2 powder
Each 0.5 mol was placed in a 300 ml flask, and the flask was heated to 150 to 160°C in an oil bath while stirring. When thiourea and zinc bromide became a molten salt, ammonia gas NH 3 was flowed into the flask at 1/min for 60 minutes while stirring the molten salt. After cooling, it was washed with pure water and then dried at about 150°C. When the particle size distribution of the thus obtained powder was measured using a scanning electron microscope, the distribution range was 0.1 to 0.3 μm. When this powder was heat-treated at 500° C. for 1 hour in an enzyme atmosphere, its particle size distribution was 0.4 to 0.8 μm. In addition, when similarly heat treated at 900℃ for 1 hour, 1.0 to 3.2μ
It was m.
実施例 3
チオ尿素1モルと塩化亜鉛0.5モルから実施例
1と同じ方法で硫化亜鉛粉末を合成した。得られ
た粉末の粒度分布は0.2〜0.4μmであつた。この
粉末を窒素雰囲気中において、500℃で1時間熱
処理したところ、その粒度分布は0.5〜0.1μmで
あつた。また、同様に900℃で1時間熱処理した
ものでは1〜3μmであつた。Example 3 Zinc sulfide powder was synthesized from 1 mol of thiourea and 0.5 mol of zinc chloride in the same manner as in Example 1. The particle size distribution of the obtained powder was 0.2 to 0.4 μm. When this powder was heat treated at 500° C. for 1 hour in a nitrogen atmosphere, its particle size distribution was 0.5 to 0.1 μm. Moreover, the thickness was 1 to 3 μm when similarly heat treated at 900° C. for 1 hour.
比較のため、従来一般に行なわれているよう
に、酸性の硫酸亜鉛水溶液に硫化水素を導入し、
飽和させて硫化亜鉛の粉末を得た。その粒度分布
は0.1〜1.8μmであつた。これを、窒素雰囲気中
において、500℃で1時間熱処理したところその
粒度分布は2〜8μmであつた。また、同様に900
℃で1時間熱処理したものでは4〜20μmであつ
た。 For comparison, hydrogen sulfide was introduced into an acidic zinc sulfate aqueous solution, as is conventionally done.
Zinc sulfide powder was obtained by saturation. Its particle size distribution was 0.1-1.8 μm. When this was heat treated at 500° C. for 1 hour in a nitrogen atmosphere, the particle size distribution was 2 to 8 μm. Also, similarly 900
The thickness was 4 to 20 μm when heat treated at ℃ for 1 hour.
上記の実施例から明らかなように、本発明の方
法によつて得られる硫化亜鉛粉末は、従来の方法
で得られる硫化亜鉛粉末に比べて、粒径が小さい
とともに、粒径が非常に均一化されている。ま
た、本発明の方法による粉末は加熱しても粒成長
が小さく、従来例のような異常粒成長は認められ
なかつた。 As is clear from the above examples, the zinc sulfide powder obtained by the method of the present invention has a smaller particle size and is extremely uniform in particle size than the zinc sulfide powder obtained by the conventional method. has been done. Further, the powder obtained by the method of the present invention showed small grain growth even when heated, and no abnormal grain growth was observed as in the conventional example.
なお、実施例では、亜鉛塩として塩化亜鉛と臭
化亜鉛を使用したが、他の亜鉛塩でも同等の効果
が得られることは言うまでもない。また、チオ尿
素と亜鉛塩の比率は等モルよりチオ尿素が過剰の
場合に反応が促進される傾向がある。一方、溶融
塩の温度は140〜160℃付近が望ましく、これ以上
では、成分の蒸発が大きくなる。また、これ以下
では、溶けにくくなる。 In the examples, zinc chloride and zinc bromide were used as zinc salts, but it goes without saying that other zinc salts can also provide similar effects. Furthermore, when the ratio of thiourea and zinc salt is equimolar, the reaction tends to be accelerated when thiourea is in excess. On the other hand, the temperature of the molten salt is preferably around 140 to 160°C; if it exceeds this temperature, the components will evaporate to a large extent. Moreover, below this range, it becomes difficult to dissolve.
発明の効果
本発明の方法によつて得られる硫化亜鉛粉末は
従来のものに比べて、粒径が小さく、かつ均一で
ある。また、本発明の製造方法はチオ尿素と亜鉛
塩およびアンモニアを原料としているため、得ら
れる硫化亜鉛粉末に、アルカリ金属などの不純物
の混入がなく、高純度の硫化亜鉛が得られる。本
発明の方法によつて得られる硫化亜鉛粉末は上記
の特長をもつため、陰極線管用蛍光体、エレクト
ロルミネツセンス用蛍光体などの材料として用い
ることができる。Effects of the Invention The zinc sulfide powder obtained by the method of the present invention has a smaller and more uniform particle size than conventional powders. Furthermore, since the production method of the present invention uses thiourea, zinc salt, and ammonia as raw materials, the resulting zinc sulfide powder is free from contamination with impurities such as alkali metals, and highly pure zinc sulfide can be obtained. Since the zinc sulfide powder obtained by the method of the present invention has the above-mentioned characteristics, it can be used as a material for phosphors for cathode ray tubes, phosphors for electroluminescence, and the like.
Claims (1)
から生成することを特徴とする硫化亜鉛粉末の製
造方法。 2 チオ尿素と亜鉛塩の溶融塩を作り、これにア
ンモニアガスを通じて、融液中に硫化亜鉛を析出
させることを特徴とする特許請求の範囲第1項記
載の硫化亜鉛粉末の製造方法。 3 チオ尿素と亜鉛塩とのモル比を、1対1より
もチオ尿素を過剰としたことを特徴とする特許請
求の範囲第1項または第2項記載の硫化亜鉛粉末
の製造方法。 4 溶融塩の温度を140〜160℃の範囲に保持し
て、硫化亜鉛を析出させることを特徴とする特許
請求の範囲第1項または第2項記載の硫化亜鉛粉
末の製造方法。 5 亜鉛塩として塩化亜鉛または臭化亜鉛を使用
することを特徴とする特許請求の範囲第1項、第
2項または第3項記載の硫化亜鉛粉末の製造方
法。[Claims] 1. A method for producing zinc sulfide powder, characterized in that it is produced from thiourea, a molten salt of zinc salt, and ammonia. 2. The method for producing zinc sulfide powder according to claim 1, characterized in that a molten salt of thiourea and zinc salt is prepared, and ammonia gas is passed through the molten salt to precipitate zinc sulfide in the molten solution. 3. The method for producing zinc sulfide powder according to claim 1 or 2, characterized in that the molar ratio of thiourea to zinc salt is 1:1, with thiourea in excess. 4. The method for producing zinc sulfide powder according to claim 1 or 2, characterized in that the temperature of the molten salt is maintained in the range of 140 to 160°C to precipitate zinc sulfide. 5. The method for producing zinc sulfide powder according to claim 1, 2 or 3, characterized in that zinc chloride or zinc bromide is used as the zinc salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58143190A JPS6033215A (en) | 1983-08-04 | 1983-08-04 | Manufacture of powdered zinc sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58143190A JPS6033215A (en) | 1983-08-04 | 1983-08-04 | Manufacture of powdered zinc sulfide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6033215A JPS6033215A (en) | 1985-02-20 |
JPH044248B2 true JPH044248B2 (en) | 1992-01-27 |
Family
ID=15332964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58143190A Granted JPS6033215A (en) | 1983-08-04 | 1983-08-04 | Manufacture of powdered zinc sulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033215A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005053735A (en) * | 2003-08-04 | 2005-03-03 | Fuji Photo Film Co Ltd | Process for producing zinc sulfide particle |
CN103466688B (en) * | 2013-09-17 | 2018-02-16 | 中国科学院福建物质结构研究所 | A kind of method for preparing ZnS nanosheet |
-
1983
- 1983-08-04 JP JP58143190A patent/JPS6033215A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6033215A (en) | 1985-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2108783A (en) | Process of separating inorganic salts from solutions | |
US3793443A (en) | Method of preparing ferrites | |
US4158074A (en) | Process for preparing colored aluminum powder | |
JPH044248B2 (en) | ||
JPH0459904A (en) | Manufacture of silver fine powder | |
JPS62202080A (en) | Hydrazine bath for chemical deposition of nickel and/or cobalt and preparation thereof | |
JPH0647446B2 (en) | Boron Nitride Manufacturing Method | |
JPS62100404A (en) | Production of pulverous hexagonal boron nitride having high purity | |
JPH0130766B2 (en) | ||
US4900587A (en) | Method for producing aluminum oxide coated iron-aluminum alloy powder | |
JP3585603B2 (en) | Method for producing high-purity strontium carbonate | |
KR940006540B1 (en) | Manufacturing method of high purity metal sulfide for phosphor | |
US3752882A (en) | Flux for galvanizing tin plating and lead coating | |
JPH03109218A (en) | Platy nickel hydroxide and its manufacturing method | |
JPS60210801A (en) | Manufacture of magnetic fine particle | |
US4898749A (en) | Method for producing aluminum oxide coated cobalt powder | |
JP2706883B2 (en) | Manufacturing method of aluminum borate whisker | |
JPH025692B2 (en) | ||
JPS59155106A (en) | Manufacture of magnetic metal powder | |
CN109537044B (en) | Preparation method of calcium pyrophosphate whisker, tricalcium phosphate whisker and preparation method and application thereof | |
JPH11147703A (en) | Production of high-purity tellurilim dioxide | |
JPH1025296A (en) | Fibrous compound and its production | |
SU565947A1 (en) | Solution for chemical deposition of a nickelphosphorus-titanium alloy | |
JPH05294624A (en) | Oriented sulfuric acid-containing zinc hydroxide powder and method for producing the same | |
JP3249589B2 (en) | Method for producing high purity zinc sulfide powder |