Nothing Special   »   [go: up one dir, main page]

JPH04351935A - Beam path test monitoring system - Google Patents

Beam path test monitoring system

Info

Publication number
JPH04351935A
JPH04351935A JP12726391A JP12726391A JPH04351935A JP H04351935 A JPH04351935 A JP H04351935A JP 12726391 A JP12726391 A JP 12726391A JP 12726391 A JP12726391 A JP 12726391A JP H04351935 A JPH04351935 A JP H04351935A
Authority
JP
Japan
Prior art keywords
optical
light
wavelength
test
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12726391A
Other languages
Japanese (ja)
Inventor
Izumi Mikawa
泉 三川
Shinichi Furukawa
眞一 古川
Yahei Oyamada
弥平 小山田
Chikashi Izumida
史 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12726391A priority Critical patent/JPH04351935A/en
Publication of JPH04351935A publication Critical patent/JPH04351935A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To sensitively test and monitor connection loss due to shaft shift and bending loss separately without the deterioration of transfer quality by using both longer and shorter tesing wavelength than signal wavelength and using a light band path filter. CONSTITUTION:Light pulse testers 31, 32 have both longer and shorter wavelength testing light than signal light, and a light band path filter 21 is provided to transmit the signal light between an optical fiber 1 and a light coupler 2 and shield the testing light. With the longer wavelength testing light than the signal light, the backward scattering waveform of the optical fiber 1 is obtained to sensitively test and monitor the bending loss of the optical fiber 1. With the shorter wavelength testing light than the signal light, the backward scattering waveform of the optical fiber 1 is obtained to sensitively test and monitor the connection loss of the optical fiber 1. In this case, both longer and shorter wavelength testing light is shielded by the light band path filter 2 to prevent the deterioration of transfer quality.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光通信システム、特に光
ファイバにより構成された光線路を利用した光通信シス
テムにおける試験監視の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in testing and monitoring of optical communication systems, particularly optical communication systems that utilize optical lines constructed of optical fibers.

【0002】0002

【従来の技術】図5に、従来技術に係る光線路の試験監
視システムの構成例を2つ示す。(参考文献:富田他「
光線路の自動故障切分け法」B890、1990年電子
情報通信学会春季全国大会予稿集、4−69)
2. Description of the Related Art FIG. 5 shows two configuration examples of optical line test and monitoring systems according to the prior art. (Reference: Tomita et al.
"Automatic Fault Isolation Method for Optical Lines" B890, Proceedings of the 1990 Spring National Conference of the Institute of Electronics, Information and Communication Engineers, 4-69)

【000
3】図5(a)は局と加入者とを結ぶ加入者系の概略構
成を示しており、2つの光伝送装置4,4を結ぶ光ファ
イバ1の途中の局側近くに光カプラ2を設け、光カプラ
2から引出された光ファイバ13に光スイッチ11を介
して光パルス試験器(OTDR)12を設け、また、光
カプラ2の両側で各光伝送装置4,4近くの光ファイバ
1途中に長波長遮断光フィルタ(SWPF)3,3を設
けてある。光パルス試験器12が有する試験光の波長(
以後、試験波長と称する)λt は、光伝送装置4で使
用する信号光の波長(以後、信号波長と称する)λs 
より長い。即ち、λs <λt の関係にある。
000
3] FIG. 5(a) shows a schematic configuration of a subscriber system that connects a station and a subscriber. An optical coupler 2 is installed near the station side in the middle of an optical fiber 1 that connects two optical transmission devices 4, 4. An optical pulse tester (OTDR) 12 is provided on the optical fiber 13 drawn out from the optical coupler 2 via an optical switch 11, and an optical fiber 1 near each optical transmission device 4 is provided on both sides of the optical coupler 2. Long wavelength cutoff optical filters (SWPF) 3, 3 are provided in the middle. The wavelength of the test light possessed by the optical pulse tester 12 (
λt (hereinafter referred to as the test wavelength) is the wavelength of the signal light used in the optical transmission device 4 (hereinafter referred to as the signal wavelength) λs
longer. That is, there is a relationship of λs < λt.

【0004】図5(a)における光線路試験監視システ
ムの作用を説明する。光パルス試験器12から試験光を
光ファイバ13の片端に入射すると、試験光は光スイッ
チ11と光カプラ2で設定された任意の光ファイバ1を
伝送し、加入者側の長波長遮断光フィルタ3で反射し、
光ファイバ1,光カプラ2,光ファイバ13を通って光
パルス試験器12に戻る。光パルス試験器12では、戻
ってきた試験光の強度を測定して、光線路である光ファ
イバ1の破断等の故障状態を監視する。
The operation of the optical line test monitoring system shown in FIG. 5(a) will be explained. When the test light is input from the optical pulse tester 12 to one end of the optical fiber 13, the test light is transmitted through any optical fiber 1 set by the optical switch 11 and the optical coupler 2, and is passed through the long wavelength cutoff optical filter on the subscriber side. reflected at 3,
It passes through the optical fiber 1, optical coupler 2, and optical fiber 13 and returns to the optical pulse tester 12. The optical pulse tester 12 measures the intensity of the returned test light to monitor failure conditions such as breakage of the optical fiber 1 serving as the optical path.

【0005】図5(b)は局と局と結ぶ中継系の概略構
成を示しており、2つの光伝送装置4,4を結ぶ光ファ
イバ1の途中の各局側近くにそれぞれ光カプラ2を設け
、各光カプラ2,2から引出された光ファイバ13に光
スイッチ11を介して光パルス試験器(OTDR)12
を設け、また、各光カプラ2,2とその近くの光伝送装
置4,4の間の光ファイバ1途中に長波長遮断光フィル
タ(SWPF)3,3を設けてある。この場合も、λs
 <λt である。なお、作用は図5(a)の加入者系
と同様であり、説明を省略する。
FIG. 5(b) shows a schematic configuration of a relay system connecting stations, in which an optical coupler 2 is installed near each station in the middle of an optical fiber 1 connecting two optical transmission devices 4, 4. , an optical pulse tester (OTDR) 12 is connected to the optical fiber 13 drawn out from each optical coupler 2, 2 via an optical switch 11.
Further, long wavelength cutoff optical filters (SWPF) 3, 3 are provided in the middle of the optical fiber 1 between each optical coupler 2, 2 and the optical transmission device 4, 4 nearby. In this case as well, λs
<λt. Note that the operation is similar to that of the subscriber system shown in FIG. 5(a), and a description thereof will be omitted.

【0006】ここで、試験波長λt と信号波長λs 
との関係がλs <λt であった主な理由は、光ファ
イバ破断の主要因である曲げの状態を試験監視するため
であった。即ち、一般に光ファイバの曲げ半径と曲げ損
失との間には、波長をパラメータとして図6に示すよう
な関係がある。この図6から明らかなように、波長が長
いほど曲げ損失が大きいことから、試験波長を信号波長
より長く設定することにより、信号波長に比べて曲げの
状態をより敏感に試験監視することができる。
Here, the test wavelength λt and the signal wavelength λs
The main reason why the relationship was λs < λt was to test and monitor the state of bending, which is the main cause of optical fiber breakage. That is, in general, there is a relationship between the bending radius and bending loss of an optical fiber as shown in FIG. 6, using wavelength as a parameter. As is clear from FIG. 6, the longer the wavelength, the greater the bending loss, so by setting the test wavelength longer than the signal wavelength, the bending state can be tested and monitored more sensitively than the signal wavelength. .

【0007】[0007]

【発明が解決しようとする課題】一方、光ファイバ1の
接続点における軸ずれによる接続損失も重要な試験監視
項目であるが、試験波長が長いと効果的な試験監視を行
うことができないという問題点がある、その理由は次の
通りである。
[Problem to be Solved by the Invention] On the other hand, splice loss due to axis misalignment at the connection point of the optical fiber 1 is also an important test monitoring item, but there is a problem that effective test monitoring cannot be performed if the test wavelength is long. The reason is as follows.

【0008】軸ずれと接続損失との間には、波長をパラ
メータとして図7に示すような関係がある。この図7か
ら明らかなように、軸ずれによる接続損失は長波長ほど
小さくなることから、λs <λt の条件では信号波
長λs での損失が大きく、試験波長λt で接続状態
を高感度に試験監視することは困難である。例えば、試
験波長をλt =1.65μm、信号波長をλs =1
.31μmとした場合、試験波長での接続損失は信号波
長での値のたかだか半分程度しか現われない。従って、
図5に示した従来システムでは、接続損失をも含む光線
路の状態を効果的に試験監視できるものとは言えない。
[0008] There is a relationship between axis misalignment and connection loss as shown in FIG. 7 using wavelength as a parameter. As is clear from Fig. 7, the connection loss due to axis misalignment decreases as the wavelength becomes longer. Therefore, under the condition of λs < λt, the loss at the signal wavelength λs is large, and the connection state can be monitored with high sensitivity at the test wavelength λt. It is difficult to do so. For example, the test wavelength is λt = 1.65 μm, and the signal wavelength is λs = 1
.. In the case of 31 μm, the splice loss at the test wavelength is at most half of the value at the signal wavelength. Therefore,
The conventional system shown in FIG. 5 cannot be said to be capable of effectively testing and monitoring the state of the optical line, including connection loss.

【0009】なお、光パルス試験器12に置き換えて信
号波長より短い例えば1.2μmの試験波長を有する光
パルス試験器を使用することが考えられるが、この場合
、光ファイバ1からの後方散乱光や光パルス試験器の出
射光を、長波長遮断光フィルタ3が遮断できないため、
これらの光が光フィルタ3を透過して光伝送装置4に入
射して伝送品質を低下させるという問題点がある。
It is possible to replace the optical pulse tester 12 with an optical pulse tester having a test wavelength shorter than the signal wavelength, for example 1.2 μm, but in this case, the backscattered light from the optical fiber 1 Since the long wavelength cutoff optical filter 3 cannot block the output light from the optical pulse tester or the optical pulse tester,
There is a problem in that these lights pass through the optical filter 3 and enter the optical transmission device 4, degrading the transmission quality.

【0010】本発明は上記従来技術の問題点に鑑み、伝
送品質を低下させずに、接続損失と曲げ損失を個別に感
度良く試験監視することができる、実用的な光線路試験
監視システムを提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention provides a practical optical line test and monitoring system that can individually test and monitor connection loss and bending loss with high sensitivity without degrading transmission quality. The purpose is to

【0011】[0011]

【課題を解決するための手段】上記目的を達する本発明
の光線路試験監視システムの構成は、光ファイバと、こ
の光ファイバに信号光及び試験光を入出力する光カプラ
と、この光カプラに試験光を入出力する光パルス試験器
とを具備する光線路試験監視システムにおいて、
[Means for Solving the Problems] The configuration of the optical line test monitoring system of the present invention that achieves the above object includes an optical fiber, an optical coupler for inputting and outputting signal light and test light to and from this optical fiber, and an optical coupler for inputting and outputting signal light and test light to and from this optical fiber. In an optical line test monitoring system equipped with an optical pulse tester that inputs and outputs test light,

【00
12】前記光パルス試験器は信号光に比べて波長の短い
試験光と波長の長い試験光の両方を有するものであり、
更に、前記光ファイバと光カプラとの間に設けられた信
号光を透過し試験光を遮断する光バンドパスフィルタを
具備することを特徴とするものである。
00
12. The optical pulse tester has both a test light with a shorter wavelength and a test light with a longer wavelength than the signal light,
Furthermore, the present invention is characterized by comprising an optical bandpass filter provided between the optical fiber and the optical coupler, which transmits the signal light and blocks the test light.

【0013】この場合、光バンドパスフィルタは特に限
定しないが、例えばツリウムを添加した光ファイバを用
いると良い。
In this case, the optical bandpass filter is not particularly limited, but it is preferable to use, for example, an optical fiber doped with thulium.

【0014】[0014]

【作用】信号光より長波長の試験光により光ファイバの
後方散乱波形を得て光ファイバの曲げ損失を敏感に試験
監視し、また、信号光より短波長の試験光により光ファ
イバの後方散乱波形を得て光ファイバの接続損失を敏感
に試験監視する。この場合、長短いずれの波長の試験光
も光バンドパスフィルタが遮断し、伝送品質の低下を防
止する。
[Function] The backscattered waveform of the optical fiber is obtained using a test light with a longer wavelength than the signal light to sensitively test and monitor the bending loss of the optical fiber, and the backscattered waveform of the optical fiber is obtained using the test light with a shorter wavelength than the signal light. This enables sensitive testing and monitoring of optical fiber splice loss. In this case, the optical bandpass filter blocks test light of both long and short wavelengths to prevent deterioration in transmission quality.

【0015】ツリウムを添加した光ファイバは、1.3
μm付近から1.55μm付近までの波長の光に対して
透過損失が極めて小さく、1.2μm付近及び1.65
μm付近の波長の光に対して透過損失が極めて大きいの
で、光バンドパスフィルタとして良好に動作する。
[0015] The optical fiber doped with thulium is 1.3
Transmission loss is extremely small for light with wavelengths from around 1.55 μm to around 1.2 μm and 1.65 μm.
Since the transmission loss is extremely large for light with a wavelength around μm, it works well as an optical bandpass filter.

【0016】[0016]

【実施例】以下、本発明の実施例を図1〜図4に基づき
詳細に説明する。なお、図面中で従来技術と同一部分に
は同一記号を付して重複説明を省略する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4. In the drawings, parts that are the same as those in the prior art are given the same symbols and redundant explanation will be omitted.

【0017】〔実施例1〕図1は本発明の第1実施例の
構成を示す図である。図1中、21は光バンドパスフィ
ルタ(光BPF)、31は信号波長λs より短い試験
波長λt1を有する光パルス試験器、32は信号波長λ
s より長い試験波長λt2を有する光パルス試験器で
あり、光ファイバ1と光カプラ2の間に光バンドパスフ
ィルタ21を設け、光カプラ2に光スイッチ11を介し
て両光パルス試験器31,32を接続してある。なお、
図1中で光ファイバ1の右端側の図示を省略してあるが
、加入者系の光線路の場合は、図5(a)に準じて光バ
ンドパスフィルタを介して加入者側の光伝送装置が接続
される。 また中継系の光線路の場合は、図5(b)に準じて光カ
プラと光バンドパスフィルタを介して別の局側の光伝送
装置が接続され、更に、この光カプラに図1と同様光ス
イッチ11を介して短試験波長の光パルス試験器31と
長試験波長の光パルス試験器32とが接続される。
[Embodiment 1] FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention. In FIG. 1, 21 is an optical band pass filter (optical BPF), 31 is an optical pulse tester having a test wavelength λt1 shorter than the signal wavelength λs, and 32 is a signal wavelength λ
This is an optical pulse tester having a test wavelength λt2 longer than s, and an optical bandpass filter 21 is provided between the optical fiber 1 and the optical coupler 2, and both optical pulse testers 31, 32 are connected. In addition,
Although the illustration of the right end side of the optical fiber 1 is omitted in FIG. 1, in the case of an optical line for a subscriber system, optical transmission to the subscriber side is performed via an optical bandpass filter as shown in FIG. 5(a). The device is connected. In addition, in the case of a repeating optical line, an optical transmission device on another station side is connected via an optical coupler and an optical bandpass filter as shown in Figure 5(b), and the optical transmission equipment of another station is connected to this optical coupler as in Figure 1. An optical pulse tester 31 for a short test wavelength and an optical pulse tester 32 for a long test wavelength are connected via an optical switch 11.

【0018】図1の実施例の作用を説明する。光パルス
試験器31と32は、光線路の多数の光ファイバのうち
光スイッチ11及び光カプラ2により設定された任意の
光ファイバ1に試験光を入射し、当該光ファイバ1から
の後方散乱光を受光する。
The operation of the embodiment shown in FIG. 1 will be explained. The optical pulse testers 31 and 32 input test light into an arbitrary optical fiber 1 set by an optical switch 11 and an optical coupler 2 among a large number of optical fibers in an optical line, and detect backscattered light from the optical fiber 1. receives light.

【0019】両光パルス試験器31,32での後方散乱
波形の例を、図2に示す。図2において、実線の波形A
は波長の短い試験波長を有する光パルス試験器31での
後方散乱波形例であり、破線の波形Bは波長の長い試験
波長を有する光パルス試験器32での後方散乱波形例で
ある。この図2の場合、或る接続点1では波長の短い試
験波長で損失が大きく、別の接続点2では逆に、波長の
長い試験波長で損失が大きい。このことから、接続点1
では接続損失が大きく、接続点2では曲げ損失が大きい
ことが判かり、従って、光線路における特性劣化の原因
を推定することが可能となる。
FIG. 2 shows an example of backscattered waveforms in both optical pulse testers 31 and 32. In FIG. 2, the solid line waveform A
is an example of a backscattered waveform in the optical pulse tester 31 with a short test wavelength, and the broken line waveform B is an example of a backscattered waveform in the optical pulse tester 32 with a long test wavelength. In the case of FIG. 2, at a certain connection point 1, the loss is large at a short test wavelength, and at another connection point 2, conversely, the loss is large at a long test wavelength. From this, connection point 1
It is found that the connection loss is large at connection point 2, and the bending loss is large at connection point 2. Therefore, it is possible to estimate the cause of characteristic deterioration in the optical path.

【0020】この場合、光伝送装置4の直後に設けた光
バンドパスフィルタ21が、光伝送装置4方向に漏話し
た試験光を遮断し、伝送品質の低下を防ぐ。従って、信
号光の伝送中に、即ちインラインで光線路を試験監視す
ることができる。
In this case, the optical bandpass filter 21 provided immediately after the optical transmission device 4 blocks the test light crosstalked in the direction of the optical transmission device 4, thereby preventing deterioration in transmission quality. Therefore, the optical line can be tested and monitored while the signal light is being transmitted, that is, in-line.

【0021】〔実験〕以上述べた作用効果を確認するた
め、以下の波長条件と光バンドパスフィルタ21で実験
を行った。光ファイバ1としてはカットオフ波長1.1
5μmの単一モード光ファイバを用い、ファイバ長は約
10kmである。 (1)  信号光:信号波長1.31μmと1.55μ
mの波長多重伝送 (2)  試験光:試験波長1.21μm(短波長)と
1.65μm(長波長) (3)  なお、光バンドパスフィルタ21にはツリウ
ム添加光ファイバを使用した。このツリウム添加光ファ
イバの損失波長特性を図3に示す。図3より、試験波長
である1.21μmと1.65μmでは透過損失が20
dB/m以上であり、信号波長である1.31μmと1
.55μmでは透過損失が1dB/m以下であるから、
試験光を十分遮断できる光バンドパスフィルタとして動
作することが判かる。
[Experiment] In order to confirm the effects described above, an experiment was conducted using the following wavelength conditions and the optical bandpass filter 21. The cutoff wavelength for optical fiber 1 is 1.1
A 5 μm single mode optical fiber is used, and the fiber length is approximately 10 km. (1) Signal light: Signal wavelengths 1.31μm and 1.55μm
Wavelength multiplex transmission of m (2) Test light: test wavelengths of 1.21 μm (short wavelength) and 1.65 μm (long wavelength) (3) Note that a thulium-doped optical fiber was used as the optical bandpass filter 21. The loss wavelength characteristics of this thulium-doped optical fiber are shown in FIG. From Figure 3, the transmission loss is 20 at the test wavelengths of 1.21 μm and 1.65 μm.
dB/m or more, and the signal wavelength is 1.31 μm and 1
.. Since the transmission loss is less than 1 dB/m at 55 μm,
It can be seen that it operates as an optical bandpass filter that can sufficiently block the test light.

【0022】実験の結果、光パルス試験器動作中でも両
信号波長における符号誤り率に変化は認められず、また
、両試験波長での後方散乱波形から損失増加の原因を推
定することができた。
As a result of the experiment, no change was observed in the bit error rate at both signal wavelengths even when the optical pulse tester was in operation, and the cause of the increase in loss could be estimated from the backscattered waveforms at both test wavelengths.

【0023】更に、前記ツリウム添加光ファイバの代り
に、誘電体多層膜フィルタを光バンドパスフィルタ21
に使用した場合についても実験を行って効果を確認した
。この実験の結果、誘電体多層膜フィルタ分の損失が増
加したものの、試験に関してはツリウム添加光ファイバ
の場合と同様であり、光パルス試験器動作中でも両信号
波長における符号誤り率に変化は認められず、また、両
試験波長での後方散乱波形から損失増加の原因を推定す
ることができた。
Furthermore, instead of the thulium-doped optical fiber, a dielectric multilayer filter is used as the optical bandpass filter 21.
We also conducted experiments to confirm the effectiveness when used in As a result of this experiment, although the loss due to the dielectric multilayer filter increased, the test was similar to that of the thulium-doped optical fiber, and no change was observed in the bit error rate at both signal wavelengths even when the optical pulse tester was operating. Furthermore, we were able to infer the cause of the increased loss from the backscattered waveforms at both test wavelengths.

【0024】〔実施例2〕図4は本発明の第2実施例の
構成を示す図であり、図1の例とは両光パルス試験器3
1,32の周辺が異なっている。即ち、光スイッチ11
と両光パルス試験器31,32との間に合分波カプラ2
2を設けてある。この合分波カプラ22は試験波長1.
21μm及び1.65μmのものであり、各波長の試験
光をそれぞれ対応する短波長の光パルス試験器31(1
.21μm)と長波長の光パルス試験器32(1.65
μm)に導く機能を有する。図4の構成により、光スイ
ッチ11で選択した光ファイバ1について、短波長試験
光と長波長試験光同時に光パルス試験を実施することが
できる。これにより、全光ファイバの試験監視に要する
時間を短縮することができる。
[Embodiment 2] FIG. 4 is a diagram showing the configuration of a second embodiment of the present invention, which differs from the example in FIG.
The surroundings of numbers 1 and 32 are different. That is, the optical switch 11
A multiplexing/demultiplexing coupler 2 is installed between the optical pulse testers 31 and 32.
2 is provided. This multiplexing/demultiplexing coupler 22 is connected to the test wavelength 1.
21 μm and 1.65 μm, and the test light of each wavelength is connected to the corresponding short wavelength optical pulse tester 31 (1
.. 21μm) and long wavelength optical pulse tester 32 (1.65μm)
μm). With the configuration shown in FIG. 4, it is possible to simultaneously perform an optical pulse test on the optical fiber 1 selected by the optical switch 11 using short wavelength test light and long wavelength test light. This makes it possible to shorten the time required to test and monitor all optical fibers.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
信号波長に対して短い波長と長い波長を共に試験波長に
使用し、また光バンドパスフィルタ使用して、伝送品質
を低下させるこなく、軸ずれによる接続損失と、曲げ損
失を個別に感度良く試験監視する。従って、従来に比べ
て光線路の損失変化の原因の分離と推定が容易になるた
め、本発明を導入することにより、光線路の故障状態の
把握や保守運用の効率化が見込まれ、ひいては、光通信
サービスの品質を向上することができる。
[Effects of the Invention] As explained above, according to the present invention,
By using both shorter and longer wavelengths than the signal wavelength as test wavelengths and using an optical bandpass filter, connection loss due to axis misalignment and bending loss can be tested individually and sensitively without degrading transmission quality. Monitor. Therefore, it is easier to separate and estimate the cause of loss change in an optical line than in the past, and by introducing the present invention, it is expected that the failure state of the optical line can be understood and maintenance operations will be made more efficient. The quality of optical communication services can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1実施例の構成を示す図。FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention.

【図2】光パルス試験器での後方散乱波形の例を示す図
FIG. 2 is a diagram showing an example of a backscattered waveform in an optical pulse tester.

【図3】ツリウム添加光ファイバの損失波長特性を示す
図。
FIG. 3 is a diagram showing loss wavelength characteristics of a thulium-doped optical fiber.

【図4】本発明の第2実施例の構成を示す図。FIG. 4 is a diagram showing the configuration of a second embodiment of the present invention.

【図5】従来例の構成を示す図。FIG. 5 is a diagram showing the configuration of a conventional example.

【図6】光ファイバの曲げ半径と曲げ損失の関係の波長
依存性を示す図。
FIG. 6 is a diagram showing the wavelength dependence of the relationship between the bending radius and bending loss of an optical fiber.

【図7】軸ずれによる接続損失の波長依存性を示す図。FIG. 7 is a diagram showing the wavelength dependence of splice loss due to axis misalignment.

【符号の説明】[Explanation of symbols]

1  光ファイバ 2  光カプラ 4  光伝送装置 11  光スイッチ 21  光バンドパスフィルタ 22  試験波長1.21μm及び1.65μmの合分
波カプラ 31  信号波長λs より短い試験波長λt1を有す
る光パルス試験器 32  信号波長λs より長い試験波長λt2を有す
る光パルス試験器
1 Optical fiber 2 Optical coupler 4 Optical transmission device 11 Optical switch 21 Optical bandpass filter 22 Multiplexing/demultiplexing coupler 31 with test wavelengths of 1.21 μm and 1.65 μm Optical pulse tester 32 with test wavelength λt1 shorter than signal wavelength λs Signal Optical pulse tester with test wavelength λt2 longer than wavelength λs

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光ファイバと、この光ファイバに信号
光及び試験光を入出力する光カプラと、この光カプラに
試験光を入出力する光パルス試験器とを具備する光線路
試験監視システムにおいて、前記光パルス試験器は信号
光に比べて波長の短い試験光と波長の長い試験光の両方
を有するものであり、更に、前記光ファイバと光カプラ
との間に設けられた信号光を透過し試験光を遮断する光
バンドパスフィルタを具備することを特徴とする光線路
試験監視システム。
Claim 1: An optical line test monitoring system comprising an optical fiber, an optical coupler that inputs and outputs signal light and test light to and from the optical fiber, and an optical pulse tester that inputs and outputs test light to and from the optical coupler. , the optical pulse tester has both a test light with a shorter wavelength and a test light with a longer wavelength than the signal light, and furthermore, the optical pulse tester has a test light with a shorter wavelength and a test light with a longer wavelength than the signal light, and further, the optical pulse tester transmits the signal light provided between the optical fiber and the optical coupler. An optical line test monitoring system characterized by comprising an optical bandpass filter that blocks test light.
【請求項2】  光バンドパスフィルタとして、ツリウ
ムを添加した光ファイバを具備することを特徴とする請
求項1記載の光線路試験監視システム。
2. The optical line test and monitoring system according to claim 1, further comprising an optical fiber doped with thulium as the optical bandpass filter.
JP12726391A 1991-05-30 1991-05-30 Beam path test monitoring system Withdrawn JPH04351935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12726391A JPH04351935A (en) 1991-05-30 1991-05-30 Beam path test monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12726391A JPH04351935A (en) 1991-05-30 1991-05-30 Beam path test monitoring system

Publications (1)

Publication Number Publication Date
JPH04351935A true JPH04351935A (en) 1992-12-07

Family

ID=14955706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12726391A Withdrawn JPH04351935A (en) 1991-05-30 1991-05-30 Beam path test monitoring system

Country Status (1)

Country Link
JP (1) JPH04351935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018520A1 (en) * 1999-09-06 2001-03-15 Anritsu Corporation Optical time domain reflectormeter
WO2011138807A1 (en) 2010-05-07 2011-11-10 Prysmian S.P.A. Method for checking the correct installation of a. bend-insensitive optical cable and optical cable suitable for the method thereof
JP2013148561A (en) * 2012-01-23 2013-08-01 Fujikura Ltd Optical line monitoring system, testing device, optical line monitoring method and program
JP2019174256A (en) * 2018-03-28 2019-10-10 古河電気工業株式会社 Optical fiber break detection system and optical fiber break detection method
WO2023084679A1 (en) * 2021-11-11 2023-05-19 日本電信電話株式会社 Optical transmission path testing device and testing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018520A1 (en) * 1999-09-06 2001-03-15 Anritsu Corporation Optical time domain reflectormeter
US6611322B1 (en) 1999-09-06 2003-08-26 Anritsu Corporation Optical time domain reflectometer which measures an optical fiber with different wavelengths according to an order and collectively displays waveform data and a list of events for each waveform in the same screen
WO2011138807A1 (en) 2010-05-07 2011-11-10 Prysmian S.P.A. Method for checking the correct installation of a. bend-insensitive optical cable and optical cable suitable for the method thereof
US9097868B2 (en) 2010-05-07 2015-08-04 Prysmian S.P.A Method for checking the correct installation of a bend-insensitive optical cable and optical cable suitable for the method thereof
JP2013148561A (en) * 2012-01-23 2013-08-01 Fujikura Ltd Optical line monitoring system, testing device, optical line monitoring method and program
JP2019174256A (en) * 2018-03-28 2019-10-10 古河電気工業株式会社 Optical fiber break detection system and optical fiber break detection method
WO2023084679A1 (en) * 2021-11-11 2023-05-19 日本電信電話株式会社 Optical transmission path testing device and testing method

Similar Documents

Publication Publication Date Title
JP5508411B2 (en) High attenuation loopback for long repeater spans
EP1023587B1 (en) Side-tone otdr for in-service optical cable monitoring
KR100945305B1 (en) System for testing an optical network using optical time-domain reflectometryOTDR
US8135274B2 (en) System and method for fault identification in optical communication systems
US5077729A (en) Testing optical fiber links
EP2763330B1 (en) System and method for fault identification in optical communication systems
US6708004B1 (en) Method and apparatus for reducing crosstalk between a monitoring channel and a data channel in a WDM optical communication system
EP2432142B1 (en) Method, repeater and submarine cable system for monitoring fiber line status
JPH11511620A (en) System, method and apparatus for monitoring fiber optic cables
JPH04351935A (en) Beam path test monitoring system
US6842236B1 (en) Method and device for continuously monitoring an optical transmission path
JPH0451620A (en) Optical communication system
JP3392310B2 (en) Optical line test method and optical line test system
JPH022228A (en) Monitor system and apparatus for long range optical communication system
JPH07240718A (en) Optical amplifying repeater
JPS63160436A (en) Maintenance method for optical signal line
JPH09116502A (en) High output optical amplifier repeater with monitoring loopback circuit
JPH03249828A (en) Method for isolating fault position of optical transmission line and fault position isolating device
JP3039995B2 (en) Characteristic detection method of optical fiber communication line
JP2682944B2 (en) Optical line monitoring test system
JP4209309B2 (en) Optical line test system
JPH11287735A (en) Optical element and method and system for localizing defect at optical fiber system
JPH10229366A (en) Method for monitoring in-service of optical amplification relay transmission line
JPH05126673A (en) Failure detecting device for optical line
JPH0246031A (en) Fault point searching system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806