JPH04340599A - Noise canceller device - Google Patents
Noise canceller deviceInfo
- Publication number
- JPH04340599A JPH04340599A JP3141091A JP14109191A JPH04340599A JP H04340599 A JPH04340599 A JP H04340599A JP 3141091 A JP3141091 A JP 3141091A JP 14109191 A JP14109191 A JP 14109191A JP H04340599 A JPH04340599 A JP H04340599A
- Authority
- JP
- Japan
- Prior art keywords
- noise
- frequency spectrum
- section
- stationarity
- input signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 48
- 238000001514 detection method Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000011410 subtraction method Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 230000005534 acoustic noise Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Abstract
Description
【0001】0001
【技術分野】本発明は、雑音除去装置に関し、より詳細
には、音声認識技術における雑音除去装置に関する。例
えば、雑音下での音声認識技術に適用されるものである
。TECHNICAL FIELD The present invention relates to a noise removal device, and more particularly to a noise removal device in speech recognition technology. For example, it is applied to speech recognition technology under noise.
【0002】0002
【従来技術】音声認識装置の騒音に関する対策として一
般的に行われている方法には、スペクトルサブトラクシ
ョン法(S.F.Boll,“Suppression
of Acoustic Noise in Spe
ech Using Spectral Subtra
ction”,IEEE Trans.ASSP Vo
l.27−2, Apr.1979)やアダプティブノ
イズキャンセング(B.Widraw,“Adapti
ve noise canceling:Princi
ples and applications”,Pr
oc.IEEE,Vol.63,Dec.1975)な
どの雑音除去技術を用いる方法などがある。しかし、ア
ダプティブノイズキャンセリングは、複数の入力部、特
徴抽出部が必要になるので、コストが高くなるという欠
点がある。一方、スペクトルサブトラクション法は、音
声入力前の入力信号から推定した雑音の周波数スペクト
ルを音声の周波数スペクトルから減算するものなので、
非定常雑音の場合、雑音推定時の雑音のスペクトルと音
声入力時の雑音のスペクトルが大きく異なるために、ス
ペクトルサブトラクションすることにより、かえって、
音声の周波数スペクトルを崩してしまい、認識率が低下
するという欠点がある。2. Description of the Related Art A method commonly used as a countermeasure against noise in speech recognition devices is the spectral subtraction method (S.F. Boll, "Suppression").
of Acoustic Noise in Spe
ech Using Spectral Subtra
ction”, IEEE Trans. ASSP Vo
l. 27-2, April. 1979) and adaptive noise canceling (B. Widraw, “Adapti
ve noise canceling: Princi
ples and applications”, Pr.
oc. IEEE, Vol. 63, Dec. There are methods using noise removal techniques such as 1975). However, adaptive noise canceling requires a plurality of input units and feature extraction units, so it has the disadvantage of increasing cost. On the other hand, the spectral subtraction method subtracts the noise frequency spectrum estimated from the input signal before voice input from the voice frequency spectrum.
In the case of non-stationary noise, since the noise spectrum during noise estimation and the noise spectrum during voice input are significantly different, spectral subtraction can actually
This method has the disadvantage that it destroys the frequency spectrum of the voice, reducing the recognition rate.
【0003】なお、図3(a)〜(e)は、雑音除去が
適切に行なえなかった場合の一例を示したもので、図の
ように、音声入力時(a)と雑音入力時(b)の雑音ス
ペクトルが大きく異なる場合、スペクトルサブトラクシ
ョンすると、(d)のようになり、スペクトルサブトラ
クションする前のスペクトル(c)の方が(d)よりも
入力音声のスペクトル(e)に似ているという結果にな
る。Note that FIGS. 3(a) to 3(e) show examples of cases in which noise removal cannot be performed appropriately. ) are significantly different, then spectrum subtraction results in a signal like (d), which means that the spectrum (c) before spectrum subtraction is more similar to the input speech spectrum (e) than (d). result.
【0004】0004
【目的】本発明は、上述のごとき実情に鑑みてなされた
もので、非定常雑音下において、スペクトルサブトラク
ションを行うことによる音声の周波数スペクトルの崩れ
を無くすようにした雑音除去装置を提供することを目的
としてなされたものである。[Objective] The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a noise removal device that eliminates distortion of the frequency spectrum of speech by performing spectral subtraction under non-stationary noise. It was done for a purpose.
【0005】[0005]
【構成】本発明は、上記目的を達成するために、(1)
音声入力信号の周波数スペクトルを求める検出手段と、
音声入力前の入力信号から雑音の周波数スペクトルを求
める検出手段と、音声入力時の入力信号の周波数スペク
トルから上記雑音の周波数スペクトルを減算することに
より雑音除去を行う雑音除去手段とを有する雑音除去装
置において、雑音の周波数スペクトルから、周囲の雑音
の定常性を求める計算手段と、該計算手段により求めら
れた定常性に応じて、雑音を除去する割合を変化させる
雑音補正手段とから成ること、更には、(2)周囲の雑
音の定常性を求める計算手段は、雑音入力時の入力信号
の周波数スペクトルの時間変化分から求め、時間変化分
が小さいほど、定常性が高くなるようにすることを特徴
としたものである。以下、本発明の実施例に基づいて説
明する。[Structure] In order to achieve the above objects, the present invention provides (1)
detection means for determining the frequency spectrum of the audio input signal;
A noise removal device having a detection means for determining the frequency spectrum of noise from an input signal before voice input, and a noise removal means for removing noise by subtracting the frequency spectrum of the noise from the frequency spectrum of the input signal at the time of voice input. comprising a calculation means for determining the stationarity of surrounding noise from the frequency spectrum of the noise, and a noise correction means for changing the noise removal rate according to the stationarity determined by the calculation means, and further (2) The calculation means for determining the stationarity of the surrounding noise calculates the stationarity from the time change of the frequency spectrum of the input signal when the noise is input, and the smaller the time change, the higher the stationarity. That is. Hereinafter, the present invention will be explained based on examples.
【0006】図1は、本発明による雑音除去装置の一実
施例を説明するための構成図で、図中、1は音響入力部
、2は周波数スペクトル検出部、3は区間検出部、4は
雑音定常性計算部、5は雑音除去係数計算部、6は雑音
スペクトル推定部、7は雑音補正部、8は音声認識部で
ある。音響入力部1では、マイクロフォンのような音響
・電気信号変換器を用いて、音を電気信号x(t)に変
換する。周波数スペクトル検出部2は、バンドパスフィ
ルタ群、或いは、FFTなどを用いて、音響入力部1で
得られた電気信号x(t)の10msec程度の時間周
波数スペクトルX(t,f)を検出する。FIG. 1 is a block diagram for explaining an embodiment of a noise removal device according to the present invention. In the figure, 1 is an acoustic input section, 2 is a frequency spectrum detection section, 3 is an interval detection section, and 4 is an acoustic input section. A noise stationarity calculation section, 5 a noise removal coefficient calculation section, 6 a noise spectrum estimation section, 7 a noise correction section, and 8 a speech recognition section. The acoustic input section 1 converts sound into an electrical signal x(t) using an acoustic/electrical signal converter such as a microphone. The frequency spectrum detection unit 2 detects a time-frequency spectrum X(t,f) of about 10 msec of the electrical signal x(t) obtained by the acoustic input unit 1 using a group of band-pass filters, FFT, etc. .
【0007】区間検出部3は、音声入力中であるかどう
かを検出するもので、例えば、前記x(t)が予め定め
ておいた閾値以上の区間を音声入力中であるとする方法
を用いる。また、その他の方法としては、音声入力スイ
ッチを設けておき、スイッチをオンさせている区間を音
声入力中とする方法を用いるが、他の方法を用いても実
現可能である。定常/非定常判定部4は、区間検出部3
で検出された音声入力中でない区間の入力信号を用いて
、周囲の雑音の定常性を求めるもので、例えば、周波数
スペクトル検出部2で検出された短時間周波数スペクト
ルX(t,f)を用いて、
D(t,f)=X(t,f)−X(
t−Δ,f) (Δ:10msec)で、各帯域毎の
変化分を求めてから、[0007] The section detecting section 3 detects whether or not voice input is in progress, and uses, for example, a method in which a section in which the x(t) is greater than or equal to a predetermined threshold is determined to be voice input. . Further, as another method, a method is used in which an audio input switch is provided and the period in which the switch is turned on is set as audio input, but it is also possible to implement it using other methods. The steady/unsteady determination section 4 includes the section detection section 3
The stationarity of surrounding noise is determined using the input signal detected in the interval not during voice input. For example, using the short-time frequency spectrum X (t, f) detected by the frequency spectrum detection unit 2 Then, D(t,f)=X(t,f)−X(
t-Δ,f) (Δ: 10msec) After finding the change for each band,
【0008】[0008]
【数1】[Math 1]
【0009】で、全帯域の変化分の絶対値の総和E(t
)を求め、このE(t)の時間Tの間の平均値ZThe sum E(t
), and calculate the average value Z of this E(t) during time T
【00
10】00
10]
【数2】[Math 2]
【0011】を雑音の定常性を示す値として求める。雑
音除去係数計算部5は、雑音定常性計算部4で求められ
た雑音定常性を示す値Zから雑音除去係数αを求める。
なお、雑音除去係数αはZが大きいほど、言い替えれば
、雑音が定常なほど大きくなるようにする(0≦α≦1
)。雑音スペクトル推定部6は、区間検出部3で検出さ
れた音声入力中でない区間の短時間周波数スペクトルX
(t,f)を用いて、周囲の雑音の周波数スペクトルを
推定するもので、##EQU1## is determined as a value indicating the stationarity of the noise. The noise removal coefficient calculation unit 5 calculates the noise removal coefficient α from the value Z indicating the noise stationarity determined by the noise stationarity calculation unit 4. The noise removal coefficient α is set so that the larger Z is, in other words, the more stationary the noise is, the larger it becomes (0≦α≦1
). The noise spectrum estimator 6 calculates the short-time frequency spectrum
(t, f) to estimate the frequency spectrum of surrounding noise,
【0012】0012
【数3】[Math 3]
【0013】として、時間Tの間の平均をとる方法を用
いる。雑音補正部7は、雑音除去係数計算部5で求めら
れた雑音除去係数αを用いて、入力信号から雑音成分を
除去するもので、
Y(t,f)=X(t,f)−α・N(f)のように、
各帯域毎に、入力音声の周波数スペクトルX(t,f)
から、雑音スペクトル推定部6で推定された雑音スペク
トルN(f)に雑音除去係数αを乗算した値を減算して
、入力信号を補正する。音声認識部8は、雑音補正部7
の出力信号Y(t,f)を用いて音声認識を行なうもの
で、「2値のTSPを用いた単語音声認識システムの開
発」(安田 他、電気学会論文誌C108巻、昭和6
3年10月号p.858〜865)記載の音声認識シス
テムを用いるが、他の音声認識システムを用いても実現
可能である。A method of taking the average over time T is used. The noise correction unit 7 removes noise components from the input signal using the noise removal coefficient α calculated by the noise removal coefficient calculation unit 5, and Y(t,f)=X(t,f)−α・Like N(f),
Frequency spectrum of input audio X(t,f) for each band
The input signal is corrected by subtracting the value obtained by multiplying the noise spectrum N(f) estimated by the noise spectrum estimator 6 by the noise removal coefficient α from the noise spectrum estimator 6. The speech recognition section 8 includes a noise correction section 7
Speech recognition is performed using the output signal Y(t,f) of ``Development of a word speech recognition system using binary TSP'' (Yasuda et al., IEEJ Transactions Vol. C108, 1932).
October 3rd issue p. Although the speech recognition system described in 858-865) is used, other speech recognition systems can also be used.
【0014】図2は、本発明による雑音除去装置の動作
を説明するためのフローチャートである。以下、各ステ
ップに従って順に説明する。
step1;まず、音響信号X(t)を入力する。
step2;周波数スペクトルX(t,f)を検出する
。
step3;音声区間中かどうかを判断する。
step4;前記step3において音声区間中であれ
ば、雑音補正を行う。計算式は以下のとおりである。
Y(t,f)=X(t,f)−α・N(f)step5
;音声認識処理を行う。
step6;前記;step3において音声区間中でな
ければ、雑音スペクトルN(f)を推定する。
step7;雑音除去係数αを計算する。FIG. 2 is a flowchart for explaining the operation of the noise removal apparatus according to the present invention. Below, each step will be explained in order. Step 1: First, input the acoustic signal X(t). Step 2: Detect the frequency spectrum X(t,f). Step 3: Determine whether it is in the voice section. Step 4: If it is during the voice section in step 3, noise correction is performed. The calculation formula is as follows. Y (t, f) = X (t, f) - α・N (f) step 5
; Performs voice recognition processing. Step 6: If it is not a voice section in step 3, the noise spectrum N(f) is estimated. Step 7: Calculate the noise removal coefficient α.
【0015】[0015]
【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。すなわち、周囲の雑音が
非常の場合に、スペクトルサブトラクション法を用いて
、雑音除去を行なうと、雑音推定時の雑音のスペクトル
と音声入力時の雑音のスペクトルが大きく異なるために
、適切な雑音除去が行なえずに、スヘクトルサブトラク
ションすることにより、かえって、音声の周波数スペク
トルを崩してしまい、認識率が低下するという欠点があ
ったが、本発明では、周囲の雑音の定常性に応じて、ス
ペクトルサブトラクションする割合を変えているので、
従来の方法よりも誤認識する可能性が少なくなる。[Effects] As is clear from the above description, the present invention has the following effects. In other words, if the spectral subtraction method is used to remove noise when there is a lot of ambient noise, the noise spectrum during noise estimation and the noise spectrum during speech input will be significantly different, making it difficult to perform appropriate noise removal. However, in the present invention, spectral subtraction is performed according to the stationarity of the surrounding noise. Since we are changing the proportion of
There is less possibility of misrecognition than with conventional methods.
【図1】 本発明による雑音除去装置の一実施例を説
明するための構成図である。FIG. 1 is a configuration diagram for explaining an embodiment of a noise removal device according to the present invention.
【図2】 本発明による雑音除去装置の動作を説明す
るためのフローチャートである。FIG. 2 is a flowchart for explaining the operation of the noise removal device according to the present invention.
【図3】 雑音除去が適切に行なわれなかった場合の
例を示す図である。FIG. 3 is a diagram illustrating an example where noise removal is not performed appropriately.
1…音響入力部、2…周波数スペクトル検出部、3…区
間検出部、4…雑音定常性計算部、5…雑音除去係数計
算部、6…雑音スペクトル推定部、7…雑音補正部、8
…音声認識部。1... Acoustic input section, 2... Frequency spectrum detection section, 3... Section detection section, 4... Noise stationarity calculation section, 5... Noise removal coefficient calculation section, 6... Noise spectrum estimation section, 7... Noise correction section, 8
...Speech recognition section.
Claims (2)
める検出手段と、音声入力前の入力信号から雑音の周波
数スペクトルを求める検出手段と、音声入力時の入力信
号の周波数スペクトルから上記雑音の周波数スペクトル
を減算することにより雑音除去を行う雑音除去手段とを
有する雑音除去装置において、雑音の周波数スペクトル
から、周囲の雑音の定常性を求める計算手段と、該計算
手段により求められた定常性に応じて、雑音を除去する
割合を変化させる雑音補正手段とから成ることを特徴と
する雑音除去装置。1. Detection means for determining the frequency spectrum of a voice input signal; detection means for determining the frequency spectrum of noise from an input signal before voice input; and detection means for determining the frequency spectrum of the noise from the frequency spectrum of the input signal at the time of voice input. In a noise removal device having a noise removal means that performs noise removal by subtraction, a calculation means for determining the stationarity of surrounding noise from the frequency spectrum of the noise, and according to the stationarity determined by the calculation means, 1. A noise removal device comprising: noise correction means for changing the rate at which noise is removed.
は、雑音入力時の入力信号の周波数スペクトルの時間変
化分から求め、時間変化分が小さいほど、定常性が高く
なるようにすることを特徴とする請求項1記載の雑音除
去装置。2. The calculation means for determining the stationarity of the surrounding noise is characterized in that the calculation means calculates the stationarity from the time change of the frequency spectrum of the input signal when the noise is input, and the smaller the time change is, the higher the stationarity is. 2. The noise removal device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03141091A JP3135937B2 (en) | 1991-05-16 | 1991-05-16 | Noise removal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03141091A JP3135937B2 (en) | 1991-05-16 | 1991-05-16 | Noise removal device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04340599A true JPH04340599A (en) | 1992-11-26 |
JP3135937B2 JP3135937B2 (en) | 2001-02-19 |
Family
ID=15283992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03141091A Expired - Fee Related JP3135937B2 (en) | 1991-05-16 | 1991-05-16 | Noise removal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3135937B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005057551A1 (en) * | 2003-12-09 | 2005-06-23 | National Institute Of Advanced Industrial Science And Technology | Acoustic signal removal device, acoustic signal removal method, and acoustic signal removal program |
JP2005165021A (en) * | 2003-12-03 | 2005-06-23 | Fujitsu Ltd | Device and method for noise reduction |
WO2005057552A1 (en) * | 2003-12-09 | 2005-06-23 | National Institute Of Advanced Industrial Science And Technology | Acoustic signal removal device, acoustic signal removal method, and acoustic signal removal program |
WO2005112007A1 (en) * | 2004-05-13 | 2005-11-24 | Fuji Television Network, Inc. | Acoustic signal removal device, acoustic signal removal method, and acoustic signal removal program |
US7203326B2 (en) | 1999-09-30 | 2007-04-10 | Fujitsu Limited | Noise suppressing apparatus |
JP2009535997A (en) * | 2006-05-04 | 2009-10-01 | 株式会社ソニー・コンピュータエンタテインメント | Noise reduction in electronic devices with farfield microphones on the console |
JP2012113173A (en) * | 2010-11-25 | 2012-06-14 | Fujitsu Ltd | Noise suppressing device, noise suppressing method and program |
-
1991
- 1991-05-16 JP JP03141091A patent/JP3135937B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7203326B2 (en) | 1999-09-30 | 2007-04-10 | Fujitsu Limited | Noise suppressing apparatus |
JP2005165021A (en) * | 2003-12-03 | 2005-06-23 | Fujitsu Ltd | Device and method for noise reduction |
JP4520732B2 (en) * | 2003-12-03 | 2010-08-11 | 富士通株式会社 | Noise reduction apparatus and reduction method |
US7783481B2 (en) | 2003-12-03 | 2010-08-24 | Fujitsu Limited | Noise reduction apparatus and noise reducing method |
WO2005057551A1 (en) * | 2003-12-09 | 2005-06-23 | National Institute Of Advanced Industrial Science And Technology | Acoustic signal removal device, acoustic signal removal method, and acoustic signal removal program |
WO2005057552A1 (en) * | 2003-12-09 | 2005-06-23 | National Institute Of Advanced Industrial Science And Technology | Acoustic signal removal device, acoustic signal removal method, and acoustic signal removal program |
WO2005112007A1 (en) * | 2004-05-13 | 2005-11-24 | Fuji Television Network, Inc. | Acoustic signal removal device, acoustic signal removal method, and acoustic signal removal program |
JP2009535997A (en) * | 2006-05-04 | 2009-10-01 | 株式会社ソニー・コンピュータエンタテインメント | Noise reduction in electronic devices with farfield microphones on the console |
JP4866958B2 (en) * | 2006-05-04 | 2012-02-01 | 株式会社ソニー・コンピュータエンタテインメント | Noise reduction in electronic devices with farfield microphones on the console |
JP2012113173A (en) * | 2010-11-25 | 2012-06-14 | Fujitsu Ltd | Noise suppressing device, noise suppressing method and program |
Also Published As
Publication number | Publication date |
---|---|
JP3135937B2 (en) | 2001-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2034354C (en) | Signal processing device | |
Woo et al. | Robust voice activity detection algorithm for estimating noise spectrum | |
JPH09212196A (en) | Noise suppressor | |
JP3451146B2 (en) | Denoising system and method using spectral subtraction | |
US10438606B2 (en) | Pop noise control | |
JPH04340599A (en) | Noise canceller device | |
JP2836271B2 (en) | Noise removal device | |
JP2007293059A (en) | Signal processing apparatus and its method | |
JPH04238399A (en) | Voice recognition device | |
JP3110201B2 (en) | Noise removal device | |
JP3279254B2 (en) | Spectral noise removal device | |
JP2001215992A (en) | Voice recognition device | |
Xu et al. | Noise-robust speech recognition based on difference of power spectrum | |
JP3761497B2 (en) | Speech recognition apparatus, speech recognition method, and speech recognition program | |
JPH056193A (en) | Voice section detecting system and voice recognizing device | |
JPH04163497A (en) | Voice section detecting method | |
JP2859634B2 (en) | Noise removal device | |
JPH03122699A (en) | Noise removing device and voice recognition device using same device | |
KR101357381B1 (en) | Apparatus and method for robust detecting speech end point | |
Farahani et al. | Robust features for noisy speech recognition based on filtering and spectral peaks in autocorrelation domain | |
JPH03269498A (en) | Noise removal system | |
JPH06332491A (en) | Voiced section detecting device and noise suppressing device | |
JP2959792B2 (en) | Audio signal processing device | |
JPH08313659A (en) | Signal time difference detector | |
JPH09198079A (en) | Voice recognition device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |