Nothing Special   »   [go: up one dir, main page]

JPH04348325A - Molecule oriented organic vapor deposition film - Google Patents

Molecule oriented organic vapor deposition film

Info

Publication number
JPH04348325A
JPH04348325A JP12091791A JP12091791A JPH04348325A JP H04348325 A JPH04348325 A JP H04348325A JP 12091791 A JP12091791 A JP 12091791A JP 12091791 A JP12091791 A JP 12091791A JP H04348325 A JPH04348325 A JP H04348325A
Authority
JP
Japan
Prior art keywords
substrate
polymer
film
buffer layer
organic vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12091791A
Other languages
Japanese (ja)
Inventor
Tatsuro Kanetake
金武 達郎
Masaaki Okunaka
正昭 奥中
Shuji Imazeki
周治 今関
Yasushi Tomioka
安 冨岡
Morio Taniguchi
彬雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12091791A priority Critical patent/JPH04348325A/en
Publication of JPH04348325A publication Critical patent/JPH04348325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain highly oriented molecules including the direction along the substrate plane with little optical loss by vapor depositing a specified org. compd. on a specified buffer layer. CONSTITUTION:On a substrate, there is provided a polymer buffer layer comprising a polyester polymer such as polyethylene terephthalate, etc., or polyimide polymer expressed by formula I which has no optical absorption max. in the visible and near infrared region. This layer is rubbed in one direction with a nylon cloth and the like to obtain the base substrate. Then a diacethylene compd. expressed by formula II is vapor deposited thereon and photopholymerized. By providing the polymer thin film which is almost transparent in visible and near infrared region on the substrate and treating the substrate by rubbing to give the orientation regulating force, the org. molecules vapor deposited on the substrate can be highly oriented including in the direction along the substrate plane when the org. molecule is deposited. Moreover, the base polymer thin film for orientation controlling has no strong absorption in the visible and near infrared region, which means little optical loss.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、オプトエレクトロニク
スの分野に於いて、記憶素子、光導波路構造を有する非
線形光学素子等に用いられる分子配向性有機蒸着膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecularly oriented organic vapor deposited film used in storage elements, nonlinear optical elements having an optical waveguide structure, etc. in the field of optoelectronics.

【0002】0002

【従来の技術】今日、非線形光学効果を始めとする機能
性の上で、無機材料を凌駕する特性を持った有機材料が
見出されている。これらは、有機分子特有の非極在化し
た電子系(π電子系)に起因するものである。このよう
な有機材料をデバイスとして有効に活用するためには、
薄膜化することが強く望まれる。これは、有機結晶の多
くが成形性に乏しい分子性結晶であることによる。更に
、一般に有機分子は対称性が低い為に得られる特性テン
ソルにも異方性が大きく、これらの特性を最大限に発現
させるためには、薄膜内の分子の配向を制御することが
望ましい。また、薄膜内の分子配向を制御することによ
り、光導波路化した際の散乱損失を低減することもでき
る。
BACKGROUND OF THE INVENTION Today, organic materials have been discovered that have properties superior to inorganic materials in terms of functionality, including nonlinear optical effects. These are caused by a non-localized electron system (π electron system) unique to organic molecules. In order to effectively utilize such organic materials as devices,
It is strongly desired to make the film thinner. This is because most organic crystals are molecular crystals with poor formability. Furthermore, since organic molecules generally have low symmetry, the obtained property tensor also has large anisotropy, and in order to maximize these properties, it is desirable to control the orientation of molecules within the thin film. Furthermore, by controlling the molecular orientation within the thin film, it is also possible to reduce scattering loss when formed into an optical waveguide.

【0003】分子配向を制御した有機蒸着膜の製造法と
しては、適当な基板上にポリジアセチレン層を設け、こ
れをラビングした上にジアセチレン化合物を蒸着、光重
合した例(特開昭64−18470)がある。しかし、
この方法の適用で得られるポリジアセチレン蒸着膜では
、偏光二色比で定義される配向度が高々20程度に過ぎ
ないという問題点があった。またラビング処理後のポリ
ジアセチレン層は可視光領域の540nm付近に吸収帯
を持ち、この波長が蒸着膜の吸収帯のそれと異なるため
に、減衰の少ない光導波路を形成する上で問題があった
[0003] As a method for producing an organic vapor-deposited film with controlled molecular orientation, a polydiacetylene layer is provided on a suitable substrate, and a diacetylene compound is vapor-deposited and photopolymerized on this layer by rubbing. 18470). but,
The polydiacetylene vapor-deposited film obtained by applying this method has a problem in that the degree of orientation defined by the polarization dichroic ratio is only about 20 at most. Furthermore, the polydiacetylene layer after the rubbing treatment has an absorption band around 540 nm in the visible light region, and since this wavelength is different from that of the absorption band of the vapor-deposited film, there is a problem in forming an optical waveguide with low attenuation.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、記憶
素子、光導波路構造を有する非線形光学素子等に好適な
分子配向性有機蒸着膜を提供することである。具体的に
は、偏光二色比が50を超えるポリジアセチレン蒸着膜
で、下地の高分子バッファ層による光損失の少ない膜を
容易に形成する方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a molecularly oriented organic vapor deposited film suitable for memory elements, nonlinear optical elements having an optical waveguide structure, and the like. Specifically, the present invention provides a method for easily forming a vapor-deposited polydiacetylene film having a polarization dichroic ratio of more than 50 and with little light loss due to the underlying polymeric buffer layer.

【0005】[0005]

【課題を解決するための手段】上記目的は、蒸着に先だ
って下地基板上に施される処理方法において、高分子バ
ッファ層に使用される高分子の材質、および高分子バッ
ファ層の構造を最適化することにより達成される。
[Means for solving the problem] The above object is to optimize the material of the polymer used for the polymer buffer layer and the structure of the polymer buffer layer in the treatment method applied to the base substrate prior to vapor deposition. This is achieved by

【0006】なお、本発明における基板とは以下に述べ
る下地基板処理を施す対象であって、具体的には、石英
ガラス、ソ−ダ石灰ガラス、ホウケイ酸ガラス、鉛ガラ
ス等のガラスや、ポリメチルメタクリレ−ト、ポリカ−
ボネ−ト等の光学用プラスチックや、酸化マグネシウム
、二フッ化バリウム、二フッ化カルシウム、二フッ化マ
グネシウム、二酸化チタン等の単結晶が用いられる。 中でも、屈折率が制御可能なガラス類が望ましい。
[0006] The substrate in the present invention is a target to which the base substrate treatment described below is applied, and specifically, glass such as quartz glass, soda lime glass, borosilicate glass, lead glass, and polyester Methyl methacrylate, polycarbonate
Optical plastics such as carbonate, and single crystals such as magnesium oxide, barium difluoride, calcium difluoride, magnesium difluoride, and titanium dioxide are used. Among these, glasses whose refractive index can be controlled are desirable.

【0007】これらの基板に対して、基板上での高分子
バッファ層の形成とそのラビングとからなる下地基板処
理を行い、分子配向性有機蒸着膜作製に好適な下地基板
を形成する。ここで、下地基板において高分子バッファ
層を基板上に設けることにより、ラビング効果によって
付与される分子配向規制力を著しく増強することができ
る。
[0007] These substrates are subjected to a base substrate treatment consisting of forming a polymeric buffer layer on the substrate and rubbing it to form a base substrate suitable for producing a molecularly oriented organic vapor deposited film. Here, by providing a polymer buffer layer on the base substrate, the molecular orientation regulating force imparted by the rubbing effect can be significantly enhanced.

【0008】また、光波長が400から1200nmの
可視・近赤外光領域外に光吸収極大を持ち、これらの波
長領域で透明に近い高分子をバッファ層に使用するのは
、これらの波長で使用される光導波路を本方法で形成し
た際の高分子バッファ層部分での光損失を低減するため
である。このような光波長が400から1200nmの
可視・近赤外光領域外に光吸収極大を持つ高分子には、
ポリエチレン等のポリオレフィン、あるいは、ポリビニ
ルアルコ−ル、あるいは、ナイロン12、ナイロン66
、ナイロン69、ナイロン6TPA等のポリアミド、あ
るいは、ポリオキシカルボニル−1−エチレン、ポリエ
チレンテレフタレ−ト、ポリブチレンテレフタレ−ト等
のポリエステル、あるいは、一般式、化3で記述される
ポリイミド等が用いられる。
[0008] Furthermore, the reason why a polymer having a light absorption maximum outside the visible/near-infrared light region with a light wavelength of 400 to 1200 nm and which is nearly transparent in these wavelength regions is used for the buffer layer is because of the wavelength range of 400 to 1200 nm. This is to reduce optical loss in the polymer buffer layer portion when the optical waveguide used is formed by this method. Polymers that have a light absorption maximum outside the visible and near-infrared light wavelength range of 400 to 1200 nm include
Polyolefin such as polyethylene, polyvinyl alcohol, nylon 12, nylon 66
, polyamides such as nylon 69 and nylon 6TPA, polyesters such as polyoxycarbonyl-1-ethylene, polyethylene terephthalate, and polybutylene terephthalate, or polyimides described by the general formula, chemical formula 3, etc. used.

【0009】[0009]

【化3】[Chemical formula 3]

【0010】中でも、ポリエチレンテレフタレ−ト等の
ポリエステル成分が80モル%以上を占める高分子、又
は一般式、化3で記述されるようなポリイミド成分が8
0モル%以上を占める高分子は、大きな配向規制力増強
効果をも兼ね備えているために、好適である。
Among them, polymers such as polyethylene terephthalate in which the polyester component accounts for 80 mol% or more, or polyimide components as described by the general formula, chemical formula 3,
A polymer that accounts for 0 mol % or more is suitable because it also has a large effect of enhancing orientation regulating force.

【0011】これらの高分子バッファ層の下地基板上で
の形成は、ポリエステル系高分子の溶液を回転塗布又は
ロ−リング塗布した後に、加熱により残留溶媒を蒸発さ
せる方法、又は、ポリイミド系高分子の原料であるモノ
マ−の溶液を回転塗布又はロ−リング塗布した後に、加
熱により残留溶媒を蒸発させ、かつ重合させる方法によ
って行うことができる。高分子溶液を塗布する際の溶媒
、濃度、塗布条件を制御することにより、高分子バッフ
ァ層の膜厚を適当な値に制御することができる。中でも
、特に、可視光波長よりも短い400nm以下の膜厚に
することが望ましい。これは、配向規制力増強の為に設
けられる高分子バッファ層が形成される光導波路に及ぼ
す影響を最小限に留めるためで、このことによって、導
波路設計を簡略化し、かつ高分子バッファ層内の屈折率
分布による光損失を低減することができる。
These polymeric buffer layers can be formed on the underlying substrate by spinning or rolling coating a solution of a polyester polymer and then evaporating the residual solvent by heating, or by applying a solution of a polyester polymer by heating to evaporate the residual solvent, or This can be carried out by spin-coating or rolling-coating a monomer solution, which is a raw material, and then heating to evaporate the residual solvent and polymerize. By controlling the solvent, concentration, and coating conditions when applying the polymer solution, the thickness of the polymer buffer layer can be controlled to an appropriate value. Among these, it is particularly desirable to have a film thickness of 400 nm or less, which is shorter than the wavelength of visible light. This is to minimize the influence on the optical waveguide in which the polymer buffer layer provided to enhance the alignment regulating force is formed. This simplifies the waveguide design and Optical loss due to the refractive index distribution can be reduced.

【0012】ラビング処理とは、上記のようにして処理
された下地基板の表面を布で一方向に摩擦することであ
る。用いられる布は、バフ布、ポリエステル布、ナイロ
ン布等が使用できるが、ポリエステル系高分子バッファ
層に対してはナイロン布が、ポリイミド系高分子バッフ
ァ層に対してはバフ布が望ましい。これらの布を用いて
、一方向に摩擦処理を行う。
[0012] The rubbing process refers to rubbing the surface of the base substrate treated as described above in one direction with a cloth. The cloth used may be buff cloth, polyester cloth, nylon cloth, etc., but nylon cloth is preferable for the polyester polymer buffer layer, and buff cloth is preferable for the polyimide polymer buffer layer. Using these cloths, friction treatment is performed in one direction.

【0013】以上のような処理を行った下地基板上に有
機化合物の真空蒸着を行う。本発明で使用される有機化
合物は、一般式、化4で記述される有機化合物である。
[0013] An organic compound is vacuum-deposited on the base substrate that has been treated as described above. The organic compound used in the present invention is represented by the general formula (4).

【0014】[0014]

【化4】[C4]

【0015】真空蒸着は、上記の基板を真空度が10の
−4乗Pa程度の真空槽内に入れ、抵抗線加熱されたる
つぼ内の上記化合物を蒸発させて、上記の処理を行った
面に積層させることにより行う。蒸着速度は、るつぼの
温度及び、基板、るつぼ間の距離により制御されるが、
0.1nm/sから10nm/sの範囲に有ることが望
ましい。また、るつぼの温度は、化合物の分解を避ける
ために200℃以下に保つことが必要である。基板温度
は10℃から40℃の範囲にあることが望ましい。また
蒸着される分子によっては下地基板との接着性を向上さ
せるために基板を冷却しても良い。真空蒸着して積層す
る厚みは、100nmから10μmの範囲にあることが
望ましい。
Vacuum deposition is carried out by placing the above-mentioned substrate in a vacuum chamber with a degree of vacuum of about 10 to the -4 power Pa, and evaporating the above-mentioned compound in a crucible heated by a resistance wire. This is done by laminating layers. The deposition rate is controlled by the temperature of the crucible and the distance between the substrate and the crucible.
It is desirable that the speed is in the range of 0.1 nm/s to 10 nm/s. Further, the temperature of the crucible needs to be kept at 200° C. or lower to avoid decomposition of the compound. It is desirable that the substrate temperature is in the range of 10°C to 40°C. Depending on the molecules to be deposited, the substrate may be cooled to improve adhesion to the base substrate. The thickness of the vacuum-deposited layer is preferably in the range of 100 nm to 10 μm.

【0016】一般式、化4で記述されるジアセチレンモ
ノマ−化合物を蒸着した膜については、真空蒸着中又は
真空蒸着後に光波長250nm付近の紫外線を膜に照射
することにより、高分子膜にすることができる。
[0016] A film in which the diacetylene monomer compound described by the general formula (Chemical formula 4) is vapor-deposited can be made into a polymer film by irradiating the film with ultraviolet light with a light wavelength of around 250 nm during or after vacuum vapor deposition. be able to.

【0017】[0017]

【作用】本発明は上述したように、可視・近赤外域でほ
ぼ透明な高分子薄膜を基板上に設け、これをラビング処
理して配向規制力を基板に付与しているので、真空蒸着
された有機分子が基板表面に付着する際に、基板面内方
向も含めた高次の配向制御が可能となり、有機分子の特
性を最大限に発現させることが可能となる。しかも、配
向制御のための下地高分子薄膜には、可視・近赤外域の
強い光吸収がないので、非線形光学デバイスに好適な光
損失の少ない有機蒸着膜が得られる。
[Operation] As described above, the present invention provides a thin polymer film that is almost transparent in the visible and near-infrared regions on a substrate, and then rubs it to impart an orientation regulating force to the substrate. When the organic molecules adhere to the substrate surface, high-order orientation control including the in-plane direction of the substrate becomes possible, making it possible to maximize the characteristics of the organic molecules. Moreover, since the base polymer thin film for orientation control does not have strong light absorption in the visible and near-infrared regions, an organic vapor deposited film with low optical loss suitable for nonlinear optical devices can be obtained.

【0018】[0018]

【実施例】次に実施例に基づいて本発明を更に具体的に
説明する。
EXAMPLES Next, the present invention will be explained in more detail based on examples.

【0019】実施例1 膜厚40nmのポリエチレンテレフタレ−ト薄膜を回転
塗布法によりガラス基板上に設けた。これを空気中で8
0℃に1時間の間保って残留溶媒を取り除いた。その後
、80℃の温度を保ったまま、このポリエチレンテレフ
タレ−ト薄膜表面をナイロン布を用いて一方向に数回摩
擦することで、ラビング処理を行った。このような表面
処理を行った基板の上に、化4で記述されるジアセチレ
ンモノマ−化合物で、m=4、n=2のもの(以下ET
CDと略す。)を真空蒸着により積層して、膜厚100
nm及び400nmのモノマ−膜を得た。このモノマ−
膜に、可視光カットフィルタ−内臓の紫外線ランプ(2
5W)からの紫外線を照射することで、固相重合させて
ETCD高分子膜を得た。得られた分子配向性有機蒸着
膜の面積は、10平方センチメ−トルであった。
Example 1 A polyethylene terephthalate thin film having a thickness of 40 nm was provided on a glass substrate by spin coating. 8 in the air
Residual solvent was removed by keeping at 0°C for 1 hour. Thereafter, while maintaining the temperature at 80 DEG C., the surface of the polyethylene terephthalate thin film was rubbed several times in one direction using a nylon cloth to perform a rubbing treatment. A diacetylene monomer compound described by chemical formula 4 with m=4 and n=2 (hereinafter ET
It is abbreviated as CD. ) were laminated by vacuum evaporation to a film thickness of 100 mm.
Monomer films of nm and 400 nm were obtained. This monomer
The membrane has a visible light cut filter and a built-in ultraviolet lamp (2
By irradiating ultraviolet rays from 5W), solid phase polymerization was performed to obtain an ETCD polymer film. The area of the obtained molecularly oriented organic vapor deposited film was 10 square centimeters.

【0020】図1に得られたポリマ−膜の垂直入射によ
る直線偏光スペクトルを示す。測定は、(株)日立製作
所 340型分光高度計の光路内にグランテイラ−プリ
ズム(消光比10の−5乗)を挿入することにより行っ
た。図中の平行、垂直は、直線偏光の電場方向がラビン
グ方向にたいしてそれぞれ平行、垂直であることを示す
。また、垂直の場合のスペクトルの縦軸は平行の場合の
5倍に拡大されている。この図から、ポリジアセチレン
主鎖固有の励起子に伴う光吸収が、ポリエチレンテレフ
タレ−ト薄膜をラビングした方向に強く認められことが
分かる。即ち、ポリジアセチレン主鎖がラビング方向と
平行になるように、膜内のポリジアセチレン分子が配向
していることが分かる。また、数1で定義される偏光二
色比は、励起子による光吸収の極大位置(1.9eV)
において105であった。
FIG. 1 shows the linearly polarized light spectrum of the obtained polymer film at normal incidence. The measurement was performed by inserting a Glan-Taylor prism (extinction ratio: 10 to the -5 power) in the optical path of a 340-type spectroscopic altimeter manufactured by Hitachi, Ltd. Parallel and perpendicular in the figure indicate that the electric field direction of the linearly polarized light is parallel and perpendicular to the rubbing direction, respectively. Further, the vertical axis of the spectrum in the perpendicular case is expanded five times as much as in the parallel case. From this figure, it can be seen that light absorption associated with excitons specific to the polydiacetylene main chain is strongly observed in the direction in which the polyethylene terephthalate thin film is rubbed. That is, it can be seen that the polydiacetylene molecules within the film are oriented such that the polydiacetylene main chain is parallel to the rubbing direction. In addition, the polarization dichroic ratio defined by equation 1 is the maximum position of light absorption by excitons (1.9 eV)
It was 105 in Japan.

【0021】[0021]

【数1】[Math 1]

【0022】実施例2 膜厚100nmのポリイミド((株)日立化成  ポリ
イミド−イソインドロキナゾリンジオン)薄膜を回転塗
布法によりガラス基板上に設けた。これを空気中で20
0℃に1時間の間保って残留溶媒を取り除き、かつ重合
させた。その後、200℃の温度を保ったまま、このポ
リイミド薄膜表面をバフ布を用いて一方向に数回摩擦す
ることで、ラビング処理を行った。このような表面処理
を行った基板の上に、ジアセチレンモノマ−ETCDを
真空蒸着により積層して、膜厚100nm及び400n
mのモノマ−膜を得た。このモノマ−膜を実施例1と同
様にして重合させ、偏光二色比を求めた。その結果は1
01であった。
Example 2 A polyimide (Hitachi Chemical Co., Ltd. polyimide-isoindoquinazolinedione) thin film having a thickness of 100 nm was provided on a glass substrate by spin coating. 20 minutes in the air
It was kept at 0° C. for 1 hour to remove residual solvent and allow polymerization. Thereafter, while maintaining the temperature at 200° C., the surface of this polyimide thin film was rubbed several times in one direction using a buff cloth to perform a rubbing treatment. On the substrate subjected to such surface treatment, diacetylene monomer ETCD was laminated by vacuum evaporation to a film thickness of 100 nm and 400 nm.
A monomer film of m was obtained. This monomer film was polymerized in the same manner as in Example 1, and the polarization dichroic ratio was determined. The result is 1
It was 01.

【0023】実施例3 実施例1と同様にして屈折率1.52のガラス基板上に
膜厚400nmのポリエチレンテレフタレ−ト・ラビン
グ膜を設け、この上に膜厚1.03μmのポリジアセチ
レンETCD膜を形成した。プリズム結合器を用いて、
この膜に波長1.064μmの光を入射したところ、光
の導波現象が観察された。
Example 3 A polyethylene terephthalate rubbing film with a film thickness of 400 nm was provided on a glass substrate with a refractive index of 1.52 in the same manner as in Example 1, and a polydiacetylene ETCD film with a film thickness of 1.03 μm was deposited on this. A film was formed. Using a prism coupler,
When light with a wavelength of 1.064 μm was incident on this film, a light waveguide phenomenon was observed.

【0024】比較例1 近赤外域に光吸収極大を有するビス(カルコゲンピロロ
)メチン系の有機色素をド−プしたポリエチレンテレフ
タレ−トを用いて、実施例3と同様にして、屈折率1.
52のガラス基板上に膜厚1000nmのポリエチレン
テレフタレ−ト・ラビング膜を設け、この上に膜厚1.
03μmのポリジアセチレンETCD膜を形成した。プ
リズム結合器を用いて、この膜に波長1.064μmの
光を入射したところ、光の導波現象が観察されたが、そ
の光損失は実施例3の膜と比べると大きなものとなった
Comparative Example 1 Using polyethylene terephthalate doped with a bis(chalcogenpyrrolo)methine organic dye having a light absorption maximum in the near-infrared region, a refractive index of 1 was obtained in the same manner as in Example 3. ..
A polyethylene terephthalate rubbing film with a thickness of 1000 nm is provided on a glass substrate of No. 52, and a polyethylene terephthalate rubbing film with a thickness of 1.
A polydiacetylene ETCD film with a thickness of 0.03 μm was formed. When light with a wavelength of 1.064 μm was incident on this film using a prism coupler, a light waveguide phenomenon was observed, but the optical loss was greater than that of the film of Example 3.

【0025】[0025]

【発明の効果】実施例1、2も明らかなように、本発明
を用いることにより、高度に分子配向したポリジアセチ
レン化合物の蒸着膜を効果的に得られる。
As is clear from Examples 1 and 2, by using the present invention, it is possible to effectively obtain a deposited film of a polydiacetylene compound with highly molecular orientation.

【0026】また実施例3と比較例3との比較からも明
らかなように、本発明を用いることにより、光損失の少
ない有機物光導波路を形成できる。
Furthermore, as is clear from the comparison between Example 3 and Comparative Example 3, by using the present invention, an organic optical waveguide with low optical loss can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】ポリエチレンテレフタレ−ト・ラビング膜上に
積層させたポリジアセチレンETCDの直線偏光吸収ス
ペクトル。
FIG. 1: Linearly polarized absorption spectrum of polydiacetylene ETCD laminated on a polyethylene terephthalate rubbed film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光波長が400から1200nmの可視・
近赤外光領域外に光吸収極大を持つ高分子のバッファ層
を基板上に設け、これを一方向にラビングすることで得
られる下地基板に有機化合物を蒸着して得られることを
特徴とする分子配向性有機蒸着膜。
Claim 1: Visible light with a wavelength of 400 to 1200 nm.
It is characterized in that it is obtained by depositing an organic compound on a base substrate obtained by providing a polymeric buffer layer with a light absorption maximum outside the near-infrared light region on a substrate and rubbing this in one direction. Molecularly oriented organic vapor deposited film.
【請求項2】請求項1記載の下地基板処理において、基
板上に設けられる高分子バッファ層の膜厚が400nm
以下であることを特徴とする分子配向性有機蒸着膜。
2. In the base substrate treatment according to claim 1, the film thickness of the polymer buffer layer provided on the substrate is 400 nm.
A molecularly oriented organic vapor deposited film characterized by the following:
【請求項3】請求項1、又は2記載の高分子バッファ層
がポリエステル系高分子、あるいは一般式、化1で記述
されるポリイミド系高分子を含むことを特徴とする分子
配向性有機蒸着膜。 【化1】
3. A molecularly oriented organic vapor deposited film characterized in that the polymer buffer layer according to claim 1 or 2 contains a polyester polymer or a polyimide polymer represented by the general formula (1). . [Chemical formula 1]
【請求項4】請求項1、又は2、3記載の方法により処
理された基板上に、一般式、化2で記述されるジアセチ
レン化合物を蒸着し、これを光重合して得られることを
特徴とする分子配向性有機蒸着膜。 【化2】
4. A diacetylene compound represented by the general formula, chemical formula 2, is deposited on a substrate treated by the method according to claim 1, or 2, or 3, and the diacetylene compound is photopolymerized. Features a molecularly oriented organic vapor deposited film. [Case 2]
【請求項5】請求項4記載の分子配向性有機蒸着膜を用
いた光導波路。
5. An optical waveguide using the molecularly oriented organic vapor deposited film according to claim 4.
JP12091791A 1991-05-27 1991-05-27 Molecule oriented organic vapor deposition film Pending JPH04348325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12091791A JPH04348325A (en) 1991-05-27 1991-05-27 Molecule oriented organic vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12091791A JPH04348325A (en) 1991-05-27 1991-05-27 Molecule oriented organic vapor deposition film

Publications (1)

Publication Number Publication Date
JPH04348325A true JPH04348325A (en) 1992-12-03

Family

ID=14798192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12091791A Pending JPH04348325A (en) 1991-05-27 1991-05-27 Molecule oriented organic vapor deposition film

Country Status (1)

Country Link
JP (1) JPH04348325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006890A3 (en) * 2000-07-18 2002-06-20 Reveo Inc Method for producing non-linear optical organic crystal film
KR100450538B1 (en) * 2001-11-22 2004-10-01 하야시 텔렘프 가부시끼가이샤 Rubbing Cloth for Orientation Treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006890A3 (en) * 2000-07-18 2002-06-20 Reveo Inc Method for producing non-linear optical organic crystal film
US6577798B2 (en) 2000-07-18 2003-06-10 Reveo, Inc. Method for producing non-linear optical organic crystal film
KR100450538B1 (en) * 2001-11-22 2004-10-01 하야시 텔렘프 가부시끼가이샤 Rubbing Cloth for Orientation Treatment

Similar Documents

Publication Publication Date Title
US7626661B2 (en) Polarization controlling elements
JP2007156464A (en) Method of manufacturing optical article and article thus obtained
WO2016051663A1 (en) Liquid crystal composition, polarized light emission film, frequency converting member and production method for same, backlight unit, liquid crystal display device
KR101350248B1 (en) Optical device, method of fabricating the same, and liquid crystal device
JPH01139255A (en) Molecularly oriented thin film
US5936691A (en) Method of preparing alignment layer for use in liquid crystal devices using in-situ ultraviolet exposure
US6337111B1 (en) Optically anisotropic thin film and process for producing the same
CN109891279A (en) The manufacturing method and optical article of optical article
KR100394204B1 (en) Thermostable Polarizers
JPH07261024A (en) Polarizing element, polarizing plate and production of these
JPH04348325A (en) Molecule oriented organic vapor deposition film
WO2021051258A1 (en) Method for preparing thin film polarizer using azo dye
Chaplanova et al. Multi-layered anisotropic films based on the azo dye brilliant yellow and organic polymers
TW200405029A (en) Optical anisotropic film
JPH08313702A (en) Antireflection body and its production
JP3428295B2 (en) Polarizing plate protective film and polarizing plate
JP2003195050A (en) Method for manufacturing optically anisotropic polymer molding
JP2000226415A (en) Process for expressing optical anisotropy of polymer membrane, process for orientating lyotropic liquid crystal, orientated pigment membrane and preparation of orientated pigment membrane
KR20150143568A (en) Method for producing optically anisotropic film
US11346989B2 (en) Mesogen polarizer
JP7506754B2 (en) Optical films, circular polarizing plates, organic electroluminescence displays
KR20230091606A (en) Phase difference film and method for manufacturing the same
US20230145287A1 (en) Linear polarizers and methods of forming a linear polarizer
JP5010837B2 (en) Polarizing filter and polarized light irradiation device
JPH0926514A (en) Thin film material for three-dimensional optical waveguide and its production