Nothing Special   »   [go: up one dir, main page]

JPH04348019A - Focus position detecting device - Google Patents

Focus position detecting device

Info

Publication number
JPH04348019A
JPH04348019A JP3031343A JP3134391A JPH04348019A JP H04348019 A JPH04348019 A JP H04348019A JP 3031343 A JP3031343 A JP 3031343A JP 3134391 A JP3134391 A JP 3134391A JP H04348019 A JPH04348019 A JP H04348019A
Authority
JP
Japan
Prior art keywords
pattern
optical system
light
stage
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3031343A
Other languages
Japanese (ja)
Other versions
JP3013463B2 (en
Inventor
Hideo Mizutani
英夫 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3031343A priority Critical patent/JP3013463B2/en
Publication of JPH04348019A publication Critical patent/JPH04348019A/en
Priority to US07/993,460 priority patent/US5241188A/en
Application granted granted Critical
Publication of JP3013463B2 publication Critical patent/JP3013463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Automatic Focus Adjustment (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To easily determine a focus respectively and to improve its reliability by detecting reflection light of a projection image of an aperture pattern formed in a mask pattern surface by a projection optical system through the projection optical system and the aperture pattern and by detecting change of light amount of the projection image passed through the aperture pattern. CONSTITUTION:A mask 3 with a mask pattern in a lower side is opposite to a stage 12 through a projection optical system 2 and is illuminated by an exposure illumination system 4 during projection exposure. A reference surface on a stage 12 wherein an aperture pattern 1a of a specified shape and illumination light of the aperture pattern 1a are introduced. Reflection light of a projection image of the aperture pattern 1a formed in a master pattern surface by the projection optical system 2 under the illumination light is detected through the projection optical system 2 and the aperture pattern 1a. Then, change of light amount of the projection image passed through the aperture pattern 1a again is detected by a detector 7. A position wherein maximum or minimum change of light amount of the projection image is a focus.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体投影露光装置に
おけるマスクパタ−ンとウェハの合焦点(ピント)を自
動補正する合焦点機構、いわゆるオ−トフォ−カス機構
に採用されて好適な焦点位置検出装置に関する。
[Industrial Application Field] The present invention is applicable to a so-called autofocus mechanism, which automatically corrects the focus of a mask pattern and a wafer in a semiconductor projection exposure apparatus. This invention relates to a detection device.

【0002】0002

【従来の技術】投影光学系を挟んでマスクパタ−ンとス
テ−ジとを配置し、紫外線等の露光光を用いてステ−ジ
上の試料にマスクパタ−ンを転写する投影露光技術は、
半導体デバイスの製造を始めとする種々の精密加工の分
野で実用化されており、各分野でのそれぞれの用途に応
じた多種多様な投影露光装置が販売されている。これら
の投影露光装置では、実際の露光光下で、試料の露光面
をマスクパタ−ンの投影光学系に関する共役位置(高さ
)に一致させる、すなわち露光面にマスクパタ−ンのピ
ントを合せることが重大要件である。従って、通常の生
産目的の投影露光装置では、このピント合せを自動的に
行う合焦点機構、いわゆるオ−トフォ−カス機構を搭載
して投影露光の能率と信頼性を両立させるようにしてい
る。
[Prior Art] Projection exposure technology involves arranging a mask pattern and a stage with a projection optical system in between, and transferring the mask pattern onto a sample on the stage using exposure light such as ultraviolet light.
BACKGROUND ART Projection exposure apparatuses have been put to practical use in various precision processing fields including the manufacture of semiconductor devices, and a wide variety of projection exposure apparatuses are on sale according to their respective uses in each field. In these projection exposure devices, it is possible to align the exposed surface of the sample with the conjugate position (height) of the mask pattern with respect to the projection optical system under actual exposure light, that is, to focus the mask pattern on the exposed surface. This is an important requirement. Therefore, a projection exposure apparatus for normal production purposes is equipped with a focusing mechanism that automatically performs this focusing, a so-called autofocus mechanism, in order to achieve both efficiency and reliability of projection exposure.

【0003】このような合焦点機構として、例えば、特
開昭57−212406号公報に示されるように、マス
クパタ−ン面に形成した特殊なマ−クを直接試料の露光
面に投影し、該投影像を投影光学系およびマ−クを介し
て検出して直接的に合焦点を判別する方式も報告されて
いるが、一般的には、■ステ−ジ上に設けた基準面にお
けるマスクパタ−ン面の合焦点を露光光を用いて直接に
検出する手段と、■該手段を用いて合焦点高さに原点調
整した、投影光学系下のステ−ジ側高さの計測手段とを
組合せ、該計測手段を用いて露光面の高さを間接的に検
出して合焦点高さにまで誘導する方式が採用される。こ
こで、■の露光光を用いる手段として、例えば、特開平
1−286418号公報には、マスクパタ−ン面に形成
した特殊なマ−クを基準面上に投影する方法が示されて
いる。該方法では、基準面に形成されたマ−クの投影像
を投影光学系およびマ−クを介して観察し、マ−クによ
り絞られた投影像の光量ピ−クを検出して合焦点が判別
される。また、■のステ−ジ側高さの計測手段の例とし
て、例えば、特開平1−41962号には、投影光学系
の外側に斜めに固定された光学系を用いて投影光学系直
下の露光面の高さを計測する方法が示されている。
[0003] As such a focusing mechanism, for example, as shown in Japanese Patent Laid-Open No. 57-212406, a special mark formed on the mask pattern surface is projected directly onto the exposure surface of the sample, and the There have also been reports of a method in which the projected image is detected via a projection optical system and a mark to directly determine the focused point, but in general, A combination of a means for directly detecting the focal point of the image plane using exposure light, and a means for measuring the height on the stage side under the projection optical system, using the means to adjust the origin to the height of the focal point. , a method is adopted in which the height of the exposure surface is indirectly detected using the measuring means and guided to the focal point height. Here, as a means for using the exposure light (2), for example, Japanese Patent Laid-Open No. 1-286418 discloses a method of projecting special marks formed on a mask pattern surface onto a reference surface. In this method, the projected image of the mark formed on the reference plane is observed through the projection optical system and the mark, and the peak of the light intensity of the projected image focused by the mark is detected to determine the focused point. is determined. In addition, as an example of means for measuring the height on the stage side in (2), for example, Japanese Patent Application Laid-Open No. 1-41962 discloses that an optical system fixed obliquely to the outside of the projection optical system is used to expose the area directly below the projection optical system. A method for measuring the height of a surface is shown.

【0004】0004

【発明が解決しようとする課題】現在、加工精度が特に
高い半導体メモリデバイスの場合、波長365nmのi
線を用いて焦点深度1μm 程度の投影が行われており
、合焦点の位置決め精度として通常でも0.1μm 以
下、特公昭62−50811号公報に示される露光光の
干渉現象を利用した特殊な投影露光では0.05μm 
以下の極めて高い精度が求められる。このような高い精
度を満たすには、マスク自体の微小なたわみや傾きもも
はや無視できず、マスクパタ−ンの一隅に設けたマ−ク
の合焦点を検出してマスクパタ−ン全体の合焦点とする
ような従来の方法では対応ができず、マスクパタ−ンの
転写領域内の各部分に対して試料側の露光領域の各部分
をそれぞれ1対1に合焦点高さまで調整することが要求
されている。そこで、マスクパタ−ンの転写領域内の各
部分において合焦点高さを個別に求め、該高さのばらつ
きをステ−ジを傾斜させて最大限に吸収する方法が考え
られた。
[Problems to be Solved by the Invention] Currently, in the case of semiconductor memory devices with particularly high processing precision,
Projection with a depth of focus of about 1 μm is performed using a line, and the positioning accuracy of the focal point is usually less than 0.1 μm.Special projection using the interference phenomenon of exposure light shown in Japanese Patent Publication No. 62-50811 0.05μm for exposure
The following extremely high precision is required. In order to achieve such high accuracy, minute deflections and inclinations of the mask itself cannot be ignored anymore, and the in-focus point of a mark placed in one corner of the mask pattern must be detected to match the in-focus point of the entire mask pattern. Conventional methods such as There is. Therefore, a method has been devised in which the height of the focal point is determined individually for each portion within the transfer area of the mask pattern, and the variation in the height is absorbed to the maximum extent by tilting the stage.

【0005】該方法では、当然、露光転写直前の実際の
マスクパタ−ンの各部分について合焦点高さを個別に求
めることとなるが、これは、従来の露光光を用いて直接
に合焦点を検出する方法では実施不可能である。例えば
、上述の特開平1−286418号公報の方法を実施す
るためには、マスクパタ−ンの転写領域内の各部分にそ
れぞれ合焦点検出用のマ−クを配置する必要があるが、
これは、マスクパタ−ンの集積度に悪影響を与えるので
非現実的である。
[0005] In this method, the height of the focal point is naturally determined individually for each part of the actual mask pattern immediately before exposure transfer, but this is difficult to do by directly determining the focal point using conventional exposure light. It is not possible to implement the detection method. For example, in order to implement the method disclosed in Japanese Unexamined Patent Application Publication No. 1-286418, it is necessary to place marks for in-focus point detection in each part of the transfer area of the mask pattern.
This is unrealistic because it adversely affects the degree of integration of the mask pattern.

【0006】また、上述の特開昭57−212406号
公報、特開平1−286418号公報の方法では、露光
面の投影像からの光情報は露光光の光路を部分的にさか
のぼって検出器にまで到達するから、該光路部分での露
光光の反射光、例えば投影光学系の各レンズ面、マスク
パタ−ン裏面、マスク両面で反射された露光光が折り返
しそのまま検出器にまで到達してしまい、検出器ではこ
の露光光の反射光による膨大なバックグラウンドを差引
いて投影像からの光情報のピ−クを検出する必要がある
。従って、■露光光の照野(マスクパタ−ン)に占める
マ−クの面積が小さい、■マスクパタ−ンに占める遮光
面積が大きい(マスクパタ−ン裏面の反射量が大きい)
、■光源の出力が変動して露光光強度が刻々変化する、
ような場合にはピ−ク検出が困難となり、合焦点の判別
が正常に機能しなくなる可能性がある。
[0006] Furthermore, in the methods disclosed in Japanese Unexamined Patent Publications Nos. 57-212406 and 1-286418, the optical information from the projected image of the exposed surface is partially traced back along the optical path of the exposure light to the detector. Therefore, the reflected light of the exposure light in the optical path portion, for example, the exposure light reflected from each lens surface of the projection optical system, the back surface of the mask pattern, and both surfaces of the mask, is turned back and reaches the detector as it is. The detector needs to detect the peak of optical information from the projected image by subtracting a huge background caused by the reflected light of the exposure light. Therefore, ■the area of the mark that occupies the illumination field of the exposure light (mask pattern) is small, and ■the light-shielding area that occupies the mask pattern is large (the amount of reflection on the back surface of the mask pattern is large).
,■The output of the light source fluctuates and the intensity of the exposure light changes moment by moment.
In such a case, peak detection becomes difficult, and there is a possibility that the in-focus point determination may not function properly.

【0007】[0007]

【課題を解決するための手段】本発明は、露光転写直前
の実際のマスクパタ−ンの各部分について合焦点高さを
個別に求めることが容易で、マスクパタ−ンの転写領域
内に特別なマ−クを配置する必要がなく、しかも、マス
クパタ−ンに占める遮光面積が大きい場合や露光光強度
が刻々変化する場合でも、信頼性高く合焦点の判別がで
きる焦点位置検出装置を提供することを目的としている
[Means for Solving the Problems] The present invention makes it easy to individually determine the focal point height for each part of the actual mask pattern immediately before exposure transfer, and it is possible to create a special mark within the transfer area of the mask pattern. - To provide a focus position detection device that does not require the placement of a mask and can determine the focused point with high reliability even when the light-shielding area occupied by the mask pattern is large or when the exposure light intensity changes moment by moment. The purpose is

【0008】本発明の請求項第1項の焦点位置検出装置
は、マスクパタ−ン面の投影光学系に関するステ−ジ側
共役位置を検出する焦点位置検出装置において、所定形
状の開口パタ−ンを形成したステ−ジ上の基準面と、該
開口パタ−ンに照明光を導く照明手段と、該照明光下で
投影光学系によりマスクパタ−ン面に形成された前記開
口パタ−ンの投影像の反射光を投影光学系および前記開
口パタ−ンを再び介して検出し、前記開口パタ−ンを通
過した投影像の光量変化を検出する検出手段と、を有す
るものである。
The focus position detection device according to claim 1 of the present invention is a focus position detection device for detecting a stage-side conjugate position of a mask pattern surface with respect to a projection optical system. A reference surface formed on the stage, an illumination means for guiding illumination light to the aperture pattern, and a projected image of the aperture pattern formed on the mask pattern surface by a projection optical system under the illumination light. and detecting means for detecting the reflected light through the projection optical system and the aperture pattern again, and detecting a change in the amount of light of the projected image that has passed through the aperture pattern.

【0009】本発明の請求項第2項の焦点位置検出装置
は、請求項第1項の焦点位置検出装置において、前記検
出手段の出力に基いて前記光量変化の極大又は極小が得
られる位置までステ−ジを移動する位置調整手段と、該
位置における前記基準面の位置を基準として、ステ−ジ
上の任意の場所における位置ずれ方向を計測する計測手
段と、を有するものである。
The focus position detection device according to claim 2 of the present invention is the focus position detection device according to claim 1, in which the focus position detection device according to claim 1 is configured such that the focus position detection device according to claim 1 moves up to a position where the maximum or minimum of the light amount change is obtained based on the output of the detection means. The apparatus includes a position adjusting means for moving the stage, and a measuring means for measuring the direction of positional deviation at an arbitrary location on the stage with reference to the position of the reference plane at the position.

【0010】本発明の請求項第3項の焦点位置検出装置
は、請求項第2項の焦点位置検出装置において、ステ−
ジ上の任意の場所を投影光学系の視野下に走査する走査
機構と、投影光学系に固定された光路で投影光学系に対
するステ−ジ側の位置を計測する測定器と、からなる前
記計測手段を有するものである。
The focus position detection device according to claim 3 of the present invention is the focus position detection device according to claim 2, wherein
The measurement device comprises a scanning mechanism that scans an arbitrary location on the stage under the field of view of the projection optical system, and a measuring device that measures the position on the stage side with respect to the projection optical system using an optical path fixed to the projection optical system. It is something that has the means.

【0011】本発明の請求項第4項の焦点位置検出装置
は、請求項第1項〜第3項のいずれかの焦点位置検出装
置において、マスクパタ−ンに対して斜めに配置した複
数の平行線状又は市松格子模様に前記開口パタ−ンを形
成したものである。
The focus position detection device according to claim 4 of the present invention is the focus position detection device according to any one of claims 1 to 3, in which a plurality of parallel The opening pattern is formed in a linear or checkered pattern.

【0012】0012

【作用】本発明の請求項第1項の焦点位置検出装置は、
ステ−ジ上の基準面に形成した開口パタ−ンを露光光と
は逆方向に投影光学系を介してマスクパタ−ン面に投影
し、該投影像のマスクパタ−ン面からの反射像を再び前
記パタ−ンを通過させてその光量変化を検出することに
より合焦点位置を判別する。すなわち、マスクパタ−ン
面を投影面とみなして投影光学系による開口パタ−ンの
投影像を形成し、投影像のぼけが最小となって開口パタ
−ンにより投影像からの光情報が最大限に捕捉できる基
準面の位置(高さ)を求める。このとき、露光光が直接
に開口パタ−ンに入射しないように、露光光源のシャッ
タ−を閉じる等してマスクパタ−ン面が露光光により照
明されないようにしておくと、光量変化検出のバックグ
ラウンドが小さくなって都合が良い。また、開口パタ−
ンに導かれる照明光としては、露光光源から露光光を分
岐して開口パタ−ンまで導くようにしても良いが、露光
光と出力波長のほぼ等しい専用光源を設けても良い。
[Operation] The focal position detection device according to claim 1 of the present invention has the following features:
The aperture pattern formed on the reference surface on the stage is projected onto the mask pattern surface through a projection optical system in the opposite direction to the exposure light, and the reflected image of the projected image from the mask pattern surface is regenerated. The in-focus position is determined by passing through the pattern and detecting changes in the amount of light. In other words, the mask pattern surface is regarded as a projection surface and a projected image of the aperture pattern is formed by the projection optical system, so that the blur of the projected image is minimized and the aperture pattern maximizes the optical information from the projected image. Find the position (height) of the reference plane that can be captured. At this time, if you close the shutter of the exposure light source so that the exposure light does not directly enter the aperture pattern so that the mask pattern surface is not illuminated by the exposure light, the background light for detecting changes in light intensity will be reduced. It's convenient because it's smaller. Also, the opening pattern
The illumination light guided to the pattern may be branched from an exposure light source and guided to the aperture pattern, or a dedicated light source whose output wavelength is approximately the same as that of the exposure light may be provided.

【0013】ここで、照明光を開口パタ−ンまで導く手
段としては、ミラ−の組合せやグラスファイバ−束を採
用することができるが、投影像からの光情報は照明光の
光路の一部をさかのぼって検出手段にまで到達するから
、該部分における照明光の不要な反射光も検出手段に到
達して光量変化検出の際のバックグラウンドとなり、投
影像の光量変化の検出の障害となる。ただし、障害の程
度は、従来のマスクパタ−ン面全体が露光光に曝される
場合よりも照明面積が少ない分はるかに軽微なものであ
る。従って、投影像の光量変化の検出をより信頼性高く
行うには、■光学素子の表面処理や光路配置の工夫によ
り該部分における照明光の反射割合を小さくする、■照
明光の反射が検出手段に到達しないようにする、等の対
策を講じると都合が良い。これらの対策を組合せれば、
開口パタ−ンの面積が小さくても検出のバックグラウン
ドを小さく押えて、十分に信頼性の高いピ−ク検出を行
うことができる。
Here, as means for guiding the illumination light to the aperture pattern, a combination of mirrors or a glass fiber bundle can be employed, but the optical information from the projected image is only a part of the optical path of the illumination light. Since the illumination light traces back to reach the detection means, unnecessary reflected light of the illumination light from that part also reaches the detection means and becomes a background when detecting a change in light amount, and becomes an obstacle to detecting a change in light amount of a projected image. However, the degree of damage is much smaller than in the conventional case where the entire mask pattern surface is exposed to exposure light because the illuminated area is smaller. Therefore, in order to more reliably detect changes in the amount of light in a projected image, it is necessary to (1) reduce the reflection rate of illumination light at the relevant portion by devising the surface treatment of the optical element and the arrangement of the optical path; It would be convenient to take measures to prevent this from reaching . By combining these measures,
Even if the area of the aperture pattern is small, the detection background can be kept small and peak detection can be performed with high reliability.

【0014】一方、ステ−ジには、ステ−ジ上の任意の
場所を投影光学系の直下に移動できる機構を備えて、投
影光学系の視野内でステ−ジを走査してマスクパタ−ン
上の任意の場所に開口パタ−ンの投影像を移動できるよ
うにしておく。これによりマスクパタ−ン上の多数の場
所で合焦点の位置(高さ)を検出して、マスクパタ−ン
全面に対して最も都合の良い試料の露光面の位置および
姿勢を知ることができる。
On the other hand, the stage is equipped with a mechanism that can move any location on the stage directly below the projection optical system, and scans the stage within the field of view of the projection optical system to form a mask pattern. The projected image of the aperture pattern can be moved to any location on the screen. This makes it possible to detect the position (height) of the focal point at many locations on the mask pattern, and to know the most convenient position and orientation of the exposure surface of the sample with respect to the entire mask pattern.

【0015】本発明の請求項第2項の焦点位置検出装置
は、■ステ−ジ上の基準面においてマスクパタ−ンの投
影光学系に関する共役面を照明光を用いて直接に判別す
る手段に加えて、■該手段により原点補正された露光面
位置(高さ)を測定する手段を備えたもので、位置調整
手段がマスクパタ−ンの共役面にまで誘導した基準面に
おいて計測手段の目盛調整(原点合せ)を行い、該計測
手段によりステ−ジ上の任意の場所において該原点と比
較した位置ずれ方向(正負)の判別を行う。
The focal position detection device according to claim 2 of the present invention includes: (1) means for directly determining the conjugate plane of the mask pattern with respect to the projection optical system on the reference plane on the stage using illumination light; (2) A means for measuring the position (height) of the exposed surface whose origin has been corrected by the means, and the scale adjustment of the measuring means ( The measuring means determines the positional deviation direction (positive or negative) at any location on the stage compared to the origin.

【0016】本発明の請求項第3項の焦点位置検出装置
は、投影光学系に固定された光学測定器とステ−ジの走
査機構との組合せでステ−ジ上の任意の場所における合
焦点の判別を行うものである。該光学測定器は、例えば
、投影光学系の視野のほぼ中央に反射点を定めて光路を
配置した投光器とフォトセンサアレイとの組合せで構成
され、該アレイ上の反射光スポット位置で投影光学系直
下の位置(高さ)を計測する。
The focal position detection device according to claim 3 of the present invention uses a combination of an optical measuring device fixed to a projection optical system and a stage scanning mechanism to detect a focal point at any location on the stage. This is to make a determination. The optical measuring device is, for example, composed of a combination of a light projector and a photosensor array in which an optical path is arranged with a reflection point set approximately in the center of the field of view of the projection optical system, and the projection optical system is connected to the position of the reflected light spot on the array. Measure the position (height) directly below.

【0017】本発明の請求項第4項の焦点位置検出装置
は、ここまで一律な投影面として説明してきたマスクパ
タ−ン面において、マスクパタ−ンが開口パタ−ンの投
影像と相互作用を起して光量変化の極大又は極小の検出
を妨げる可能性について考慮したものである。すなわち
、マスクパタ−ンの有無によってマスクパタ−ン面の局
所的な反射率が異なるため、開口パタ−ンの投影像がマ
スクパタ−ンにぴったり重なるような場合、光量変化の
極大又は極小が得られる位置が必ずしも合焦点とは限ら
なくなる。従って、開口パタ−ンの形状としては、その
投影像の反射光がマスクパタ−ンにぴったり重ならない
ものを選択する必要がある。半導体集積回路のマスクパ
タ−ンは、通常、多数の縦横の平行線と少数の特定角度
の斜め線とで構成されるから、開口パタ−ン形状として
はいずれの線とも平行とならないような複数の平行線状
とするのが都合が良い。ここで、平行線の形状を選択す
る理由は、合焦点による光量変化が急峻だからである。 また、投影光学系の非点収差の影響を避ける意味でも平
行線を直交させる。また、市松格子にすることでも同様
の効果が得られる。
The focal position detection device according to claim 4 of the present invention is such that the mask pattern interacts with the projected image of the aperture pattern on the mask pattern plane, which has been described as a uniform projection plane. This takes into consideration the possibility that the detection of the maximum or minimum of the change in light intensity may be hindered. In other words, since the local reflectance of the mask pattern surface differs depending on the presence or absence of the mask pattern, if the projected image of the aperture pattern exactly overlaps the mask pattern, the position where the maximum or minimum change in light intensity is obtained is no longer necessarily the focal point. Therefore, it is necessary to select the shape of the aperture pattern so that the reflected light of the projected image does not exactly overlap the mask pattern. Mask patterns for semiconductor integrated circuits are usually composed of a large number of horizontal and vertical parallel lines and a small number of diagonal lines at specific angles. It is convenient to form them in parallel lines. Here, the reason why the parallel line shape is selected is that the amount of light changes sharply depending on the focal point. Furthermore, the parallel lines are made orthogonal to avoid the influence of astigmatism of the projection optical system. A similar effect can also be obtained by using a checkered grid.

【0018】[0018]

【実施例】本発明の実施例を図面を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings.

【0019】図1は、本発明の実施例の自動合焦点装置
の模式図である。これは、半導体集積回路用の投影露光
装置に搭載された自動合焦点装置であって、投影露光に
先立って、マスクパタ−ン全体にわたって共役面の高さ
を検出し、XYステ−ジ上に載置されたウェハ上の露光
面の高さおよび傾きを調整して、露光面を共役面に一致
させる。
FIG. 1 is a schematic diagram of an automatic focusing device according to an embodiment of the present invention. This is an automatic focusing device installed in a projection exposure system for semiconductor integrated circuits. Prior to projection exposure, this device detects the height of the conjugate plane over the entire mask pattern and places the mask on an XY stage. The height and inclination of the exposed surface on the placed wafer are adjusted so that the exposed surface coincides with the conjugate plane.

【0020】図1において、マスクパタ−ンを下面に有
するマスク3は、投影レンズ2を介してステ−ジ12と
対向しており、投影露光時には露光照明系4により照明
される。ウェハ11を載置するステ−ジ12は、XY駆
動系15によってステ−ジ12上の任意の場所を投影光
学系2の直下に移動でき、Zθ駆動系9によってステ−
ジ12全体を任意の高さおよび傾きに調整できる。ステ
−ジ12上には、所定の開口パタ−ン1aを形成したフ
ィデュ−シャル面1が設けられ、開口パタ−ン1aには
、照明光源8、グラスファイバ−ケ−ブル13等を含む
照明光学系と、グラスファイバ−ケ−ブル13、光量検
出器7、ハ−フミラ−14等を含む検出光学系とが接続
される。投影光学系2にはウェハ面検出用の射入射フォ
−カスセンサ5、6が固定される。センサ6および検出
器7の出力は制御系10に入力され、駆動系9は制御系
10により制御される。
In FIG. 1, a mask 3 having a mask pattern on its lower surface faces a stage 12 through a projection lens 2, and is illuminated by an exposure illumination system 4 during projection exposure. The stage 12 on which the wafer 11 is placed can be moved to any position on the stage 12 directly below the projection optical system 2 by an XY drive system 15, and can be moved directly below the projection optical system 2 by a Zθ drive system 9.
The entire table 12 can be adjusted to any desired height and inclination. A fiducial surface 1 having a predetermined aperture pattern 1a is provided on the stage 12, and the aperture pattern 1a includes an illumination light source 8, a glass fiber cable 13, etc. The optical system is connected to a detection optical system including a glass fiber cable 13, a light amount detector 7, a half mirror 14, and the like. Input focus sensors 5 and 6 for detecting the wafer surface are fixed to the projection optical system 2. The outputs of the sensor 6 and the detector 7 are input to a control system 10, and the drive system 9 is controlled by the control system 10.

【0021】このように構成された自動合焦点装置にお
いては、照明光源8から出力された照明光がケ−ブル1
3を経て開口パタ−ン1aにまで導かれて上方に射出し
、投影光学系2を介してマスクパタ−ン面に開口パタ−
ン1aの投影像を形成する。該投影像は、駆動系15を
用いて投影光学系2の視野の範囲内でフィデュ−シャル
面1を走査することにより、マスクパタ−ン上の任意の
場所に移動でき、それぞれの場所で個別に合焦点を判別
することができる。
In the automatic focusing device configured as described above, the illumination light output from the illumination light source 8 is connected to the cable 1.
3, the aperture pattern 1a is emitted upward, and the aperture pattern is formed on the mask pattern surface via the projection optical system 2.
A projected image of the tube 1a is formed. The projected image can be moved to any location on the mask pattern by scanning the fiducial surface 1 within the field of view of the projection optical system 2 using the drive system 15, and can be individually projected at each location. The in-focus point can be determined.

【0022】また、マスクパタ−ン面の投影像からの光
情報は照明光の光路をさかのぼってマスクパタ−ンの投
影光学系2に関する共役面に結像する。このとき、基準
面の高さがマスクパタ−ン面と投影光学系2に関して共
役な位置関係にあればマスクパタ−ン面の投影像はピン
トが合った境界の明らかなものとなり、該投影像の反射
光による基準面上の第2の投影像もまたピントが合った
境界の明らかなものとなる。ここで、第2の投影像は、
当然、開口パタ−ン1aと同一形状、同一寸法、同一姿
勢であるから、マスクパタ−ン面の投影像からの光情報
は最大限に開口パタ−ン1aに入射して検出光学系を進
み、検出器7に達して受光量のピ−クを与える。一方、
基準面の高さがマスクパタ−ン面の共役面からずれてい
る場合、マスクパタ−ン面の投影像および基準面上の第
2の投影像はピントがずれて境界のぼけたものとなる。 従って、第2の投影像が開口パタ−ン1aからはみだし
た分だけ光情報が損なわれて開口パタ−ンに入射するこ
ととなり、検出器7に達する受光量を低下させる。
Further, the optical information from the projected image of the mask pattern surface travels back along the optical path of the illumination light and forms an image on the conjugate surface of the mask pattern with respect to the projection optical system 2. At this time, if the height of the reference plane is in a conjugate positional relationship with respect to the mask pattern surface and the projection optical system 2, the projected image of the mask pattern surface will have a clear focused boundary, and the reflection of the projected image will be The second projected image of the light on the reference surface also reveals the in-focus boundary. Here, the second projected image is
Naturally, since it has the same shape, size, and attitude as the aperture pattern 1a, the maximum amount of light information from the projected image of the mask pattern surface enters the aperture pattern 1a and proceeds through the detection optical system. The light reaches the detector 7 and gives a peak in the amount of light received. on the other hand,
If the height of the reference plane deviates from the conjugate plane of the mask pattern plane, the projected image of the mask pattern plane and the second projected image on the reference plane will be out of focus and have blurred boundaries. Therefore, the optical information is impaired to the extent that the second projected image protrudes from the aperture pattern 1a and enters the aperture pattern, reducing the amount of light received reaching the detector 7.

【0023】従って、駆動系15によりステ−ジ12を
移動して、投影像をマスクパタ−ン面上に定めた複数の
場所に順番に位置決めし、それぞれの場所で制御系10
は駆動系9により、検出器7が光量変化を検出する高さ
までステ−ジの高さを調整して、該高さ情報を次々に蓄
積する。こうして得られた高さの分布情報からステ−ジ
の最適な傾斜角度が算出されて、該角度まで駆動系9に
よりステ−ジ12の傾斜が修正される。
Therefore, the stage 12 is moved by the drive system 15 to sequentially position the projected image at a plurality of locations determined on the mask pattern surface, and the control system 10 is moved at each location.
The height of the stage is adjusted by the drive system 9 to a height at which the detector 7 detects a change in the amount of light, and the height information is accumulated one after another. The optimum inclination angle of the stage is calculated from the height distribution information thus obtained, and the inclination of the stage 12 is corrected by the drive system 9 up to the calculated angle.

【0024】一方、傾斜が調整された後、投影像は再度
マスクパタ−ンのほぼ中央に移動され、再度、フィデュ
−シャル面1が合焦点の高さになるまで駆動系9により
ステ−ジ高さを調整する。その後、合焦点高さに調整さ
れたフィデュ−シャル面1を用いて射入射フォ−カスセ
ンサ5、6の原点調整が実行される。すなわち、フィデ
ュ−シャル面1における反射ビ−ム・スポット高さが原
点として記憶され、以後、ステ−ジ上の任意の場所に投
影光学系の視野を走査した際には、射入射フォ−カスセ
ンサ5、6における反射ビ−ム・スポット高さにより試
料の露光面高さが計測され、該高さが原点高さとなるよ
うに制御系10は制御系9によりステ−ジ高さを調整す
る。
On the other hand, after the inclination has been adjusted, the projected image is again moved to approximately the center of the mask pattern, and the stage height is increased by the drive system 9 until the fiducial surface 1 is again at the height of the focal point. Adjust the brightness. Thereafter, the origin of the incident focus sensors 5 and 6 is adjusted using the fiducial surface 1 adjusted to the focal point height. That is, the reflected beam spot height on the fiducial surface 1 is memorized as the origin, and from then on, when the field of view of the projection optical system is scanned to any location on the stage, the incident focus sensor The height of the exposed surface of the sample is measured from the reflected beam spot heights at 5 and 6, and the control system 10 adjusts the stage height by the control system 9 so that the height becomes the origin height.

【0025】次に、本実施例の合焦点面の検出を各種の
場合について、さらに詳しく説明する。
Next, the detection of the in-focus plane in this embodiment will be explained in more detail in various cases.

【0026】図2は、合焦点面の上下における検出光量
の線図で、図1において、開口パタ−ン1aから発した
光が再結像して再び開口パタ−ン1aを通過した光量と
焦点位置の関係を示している。本実施例では、後述の特
殊な導光手段を併用すれば検出ピ−ク/バックグラウン
ド比を50%に近づけることができ、より信頼性の高い
検出が可能となる。
FIG. 2 is a diagram of the amount of detected light above and below the in-focus plane. It shows the relationship between focal positions. In this embodiment, if a special light guiding means, which will be described later, is also used, the detection peak/background ratio can be brought close to 50%, and more reliable detection can be achieved.

【0027】図2において、横軸はステ−ジ12の高さ
で、合焦点高さZ0 を中心にして投影光学系2に近い
ほうをZ− 、遠いほうをZ+ とする。縦軸は検出さ
れた光量である。ステ−ジ12を上下させると光量が最
大となる高さがあるが、これが合焦点高さZ0 である
。これを見つけるために、射入射フォ−カスセンサ5、
6の信号に基いてステ−ジ12を投影光学系2の光軸に
沿って上下させる。これと同時に検出器7の光量をモニ
タすれば図2の線図が得られる。これを基にオ−トフォ
−カスの制御手段10により合焦点高さZ0 を算出し
、以後射入射フォ−カスセンサ5、6の検出位置をそれ
と合致させておく。そして、XY駆動系15によりステ
−ジ12を移動させてウェハ11を投影光学系2の下に
移動させた場合にも射入射フォ−カスセンサ5、6によ
り投影光学系2の合焦点面にウェハ11を位置づけるこ
とが可能である。ところで、図2に示したような信号は
出来るだけ傾きが大きいほうがよい。そのためにはフィ
デュ−シャル板1で投影する開口パタ−ン1aのパタ−
ンを適当な線幅にする必要がある。例えば、投影パタ−
ンとして図3に示すようなラインアンドスペ−スを考え
る。フィデュ−シャル板1のパタ−ン部分を1aとし、
ピッチをP、開口部の幅をa、デュ−ティ比(a/p)
を50%とすると、図2における検出光のフォ−カス位
置に対する変化は大体次のようになる。
In FIG. 2, the horizontal axis is the height of the stage 12, with the focal point height Z0 as the center, the one closer to the projection optical system 2 is Z-, and the one farther away is Z+. The vertical axis is the detected amount of light. When the stage 12 is moved up and down, there is a height at which the amount of light reaches a maximum, and this is the focal point height Z0. In order to find this, the incident focus sensor 5,
Based on the signal 6, the stage 12 is moved up and down along the optical axis of the projection optical system 2. If the amount of light from the detector 7 is monitored at the same time, the diagram shown in FIG. 2 can be obtained. Based on this, the in-focus height Z0 is calculated by the autofocus control means 10, and thereafter the detection positions of the incident focus sensors 5 and 6 are made to coincide with it. Even when the stage 12 is moved by the XY drive system 15 and the wafer 11 is moved below the projection optical system 2, the incident focus sensors 5 and 6 bring the wafer to the focal plane of the projection optical system 2. It is possible to locate 11. By the way, it is better for the signal shown in FIG. 2 to have as large a slope as possible. For this purpose, the pattern of the aperture pattern 1a projected by the fiducial plate 1 must be
It is necessary to set the lines to an appropriate line width. For example, the projection pattern
Consider a line and space as shown in Figure 3. Let the pattern part of the fiducial plate 1 be 1a,
Pitch is P, opening width is a, duty ratio (a/p)
Assuming that 50%, the change in the focus position of the detection light in FIG. 2 is approximately as follows.

【0028】           |Z0 −Z− |=|Z+ −
Z0 |=a/2tanθ        …(1) 
|Z0 −Z− |=|Z+ −
Z0 |=a/2tanθ...(1)

【0029】ただし、θは光線の傾き角で、回折を無視
した場合の見積りである。例えば、NA=0.5、σ=
0.5、a=2μm の場合、θ=14.5度となり、
|Z0−Z− |は3.9μm となる。
[0029] However, θ is the inclination angle of the light beam, and is an estimate when diffraction is ignored. For example, NA=0.5, σ=
0.5, when a=2μm, θ=14.5 degrees,
|Z0−Z−| becomes 3.9 μm.

【0030】ところで、マスクパタ−ンが無い透明なマ
スク3の場合にはマスク3の下面のガラス面が反射面と
なり、その反射率は4%程度であるが、バックグラウン
ドが小さいために、検出感度を上げれば十分に検出可能
である。また、マスクパタ−ンがある通常の場合にはク
ロム面の反射率10〜70%が確保されて、十分に検出
可能である。クロム面に低反射のARコ−トが施してあ
る場合でも数%の反射率があり問題はない。
By the way, in the case of a transparent mask 3 without a mask pattern, the lower glass surface of the mask 3 becomes a reflective surface, and its reflectance is about 4%, but since the background is small, the detection sensitivity is It is sufficiently detectable if the value is increased. Further, in the normal case where there is a mask pattern, a reflectance of 10 to 70% on the chrome surface is ensured, and sufficient detection is possible. Even if the chrome surface is coated with a low-reflection AR coating, the reflectance is only a few percent and there is no problem.

【0031】ところで、クロムパタ−ンとガラス面の境
界には段差ができ、マスクパタ−ン面の共役面も2段階
あることになるが、クロムパタ−ンの厚さは100nm
以下であるため、投影光学系2が縮小倍率の場合には実
際上問題とならない。例えば、クロムパタ−ンの厚さを
100nm、縮小投影倍率を1/5倍とするとクロムの
段差による共役面の誤差は8nmとなり無視できるレベ
ルである。
By the way, there is a step at the boundary between the chrome pattern and the glass surface, and there are also two conjugate planes on the mask pattern surface, but the thickness of the chrome pattern is 100 nm.
Since the following is true, there is no problem in practice when the projection optical system 2 has a reduced magnification. For example, if the thickness of the chrome pattern is 100 nm and the reduction projection magnification is 1/5, the error in the conjugate plane due to the step of the chrome is 8 nm, which is negligible.

【0032】次に、本願と同一出願人による特公昭62
−50811号公報に開示されるいわゆる位相シフト膜
が形成されている場合について考える。位相シフト膜の
厚さはd=λ/2(n−1)、ただし、n:屈折率、λ
:波長、に選択されており、位相シフト膜の表面におけ
る反射光は位相シフト膜の厚さの2倍、すなわち2d=
λ/(n−1)だけ、マスクのガラス面における反射光
よりも短い光路長を持つことになる。しかし、nが1.
5程度に選択されているためにこの値は2λ(波長の整
数倍)となり、見掛け上、反射光としては位相シフト膜
が無い場合と同じで、その影響は少ない。
[0032] Next, Japanese Patent Publication No. 1983, filed by the same applicant as the present application,
Consider a case where a so-called phase shift film disclosed in Japanese Patent No. 50811 is formed. The thickness of the phase shift film is d=λ/2(n-1), where n: refractive index, λ
: wavelength, and the reflected light on the surface of the phase shift film is twice the thickness of the phase shift film, that is, 2d=
It has an optical path length shorter than the reflected light on the glass surface of the mask by λ/(n-1). However, n is 1.
Since the value is selected to be about 5, this value is 2λ (an integral multiple of the wavelength), and the reflected light is apparently the same as when there is no phase shift film, so its influence is small.

【0033】以上のように、マスクパタ−ン面がいかな
る場合にも普通の反射面と見なすことができるので精度
の高い検出が可能である。
As described above, since the mask pattern surface can be regarded as an ordinary reflective surface in any case, highly accurate detection is possible.

【0034】ところで、マスク3のクロムパタ−ンによ
る影響をさらに低減させたり、投影光学系2の視野の周
囲で合焦点位置を検出する際の非点収差等の影響を受け
なくするために、図4に示すような投影パタ−ン(開口
パタ−ン1a形状)を考えることができる。図4(a)
 は縦、横、斜めの各パタ−ンを組合せたもの、図4(
b)はチェッカ−フラッグ(市松格子)状のパタ−ンで
ある。 これらは、フィデュ−シャル面1上、一辺100μm 
〜500μmの方形領域に形成される。また、図3に示
すようなパタ−ンでも、その辺を、マスクパタ−ンの辺
と10〜45度程度傾けるだけでも効果がある。これは
、半導体製造に用いられるマスクパタ−ンは直交する縦
・横のパタ−ン(0度、90度)が多いからである。
By the way, in order to further reduce the influence of the chrome pattern of the mask 3 and to eliminate the influence of astigmatism, etc. when detecting the focal point position around the field of view of the projection optical system 2, as shown in FIG. A projection pattern (aperture pattern 1a shape) as shown in FIG. 4 can be considered. Figure 4(a)
is a combination of vertical, horizontal, and diagonal patterns, as shown in Figure 4 (
b) is a checkered flag (checkered lattice) pattern. These are on the fiducial surface 1, 100 μm on each side.
It is formed in a rectangular area of ~500 μm. Furthermore, even in the case of a pattern as shown in FIG. 3, it is effective to tilt the sides of the pattern by 10 to 45 degrees with respect to the sides of the mask pattern. This is because mask patterns used in semiconductor manufacturing often have orthogonal vertical and horizontal patterns (0 degrees, 90 degrees).

【0035】図5は、照明8を含む照明光学系の各素子
における反射光が検出器7に入射して検出のバックグラ
ウンドとなる現象を起さないようにするための特殊な導
光手段の例を示す。図5において、2分岐型ファイバ−
ケ−ブル13bは、端面13dを構成するファイバ−と
端面13cを構成するファイバ−とを端面13eにラン
ダムに配置したもので、照明光路と検出光路が相互に完
全に分離され、端面13c、13eにおける照明光の反
射光は端面13dに達しない。従って、端面13dを検
出器7に、端面cを光源8に、端面13eを開口パタ−
ン1aにそれぞれ接続すれば、図1のようにハ−フミラ
−14を用いて送/受光系を分離する場合よりも検出の
バックグラウンドが小さくて済む。
FIG. 5 shows a special light guiding means for preventing the reflected light from each element of the illumination optical system including the illumination 8 from entering the detector 7 and causing a phenomenon that becomes a detection background. Give an example. In FIG. 5, the bifurcated fiber
The cable 13b has fibers forming the end face 13d and fibers forming the end face 13c arranged randomly on the end face 13e, so that the illumination optical path and the detection optical path are completely separated from each other, and the fibers forming the end face 13d and the fibers forming the end face 13c are arranged randomly on the end face 13e. The reflected light of the illumination light at does not reach the end surface 13d. Therefore, the end surface 13d is used as the detector 7, the end surface c is used as the light source 8, and the end surface 13e is used as the aperture pattern.
If they are connected to the respective channels 1a, the detection background will be smaller than when the transmitting/receiving system is separated using a half mirror 14 as shown in FIG.

【0036】以上のように本実施例によれば、ステ−ジ
12上に設けたフィデュ−シャル面1の開口パタ−ン1
aを投影光学系2を介してマスクパタ−ン面に投影し、
再びフィデュ−シャル面1の開口パタ−ン1aから観察
するので、投影光学系2を介して直接に行うTTLフォ
−カスをマスクパタ−ン面に任意の場所で実行でき、こ
れまで困難であった画面中央部分でのフォ−カス検出も
容易である。また、ファイバ−ケ−ブル13の端面を投
影光学系2の射出瞳と共役に配置するとともに、該端面
の大きさを投影光学系の光源の大きさと等しくすれば、
実際に露光転写が行われる場合と同等のσ値による投影
像の反射光の合焦点状態を検出することが可能となり、
高い焦点合せ精度が期待できる。
As described above, according to this embodiment, the opening pattern 1 of the fiducial surface 1 provided on the stage 12
a onto the mask pattern surface via the projection optical system 2,
Since the observation is performed again from the aperture pattern 1a on the fiducial surface 1, TTL focusing can be performed directly on the mask pattern surface at any location via the projection optical system 2, which was previously difficult. Focus detection at the center of the screen is also easy. Furthermore, if the end face of the fiber cable 13 is placed conjugate with the exit pupil of the projection optical system 2, and the size of the end face is made equal to the size of the light source of the projection optical system,
It is now possible to detect the focused state of the reflected light of the projected image using the same σ value as when actual exposure transfer is performed.
High focusing accuracy can be expected.

【0037】ところで、フィデュ−シャル面1の設置場
所をウェハ11のロ−ディングをする際に投影光学系2
の真下になるようにしておくと、ロ−ディングと並行し
て焦点合せを行うことができ、時間ロスがなくなって好
都合である。この場合、ウェハ交換ごとに約1分間程度
TTLフォ−カスが可能となり、投影光学系2の合焦点
位置の経時変化にも容易に対応できる。
By the way, when loading the wafer 11, the installation location of the fiducial surface 1 is determined by the projection optical system 2.
By placing the lens directly under the lens, focusing can be performed in parallel with loading, which is advantageous because there is no time loss. In this case, TTL focusing for about one minute is possible every time a wafer is replaced, and it is possible to easily cope with changes in the focal point position of the projection optical system 2 over time.

【0038】また、フィデュ−シャル面1の投影パタ−
ン(開口パタ−ン1a)を射入射フォ−カスセンサ5、
6で検出することが望ましいが、射入射フォ−カスセン
サ5、6の検出範囲が小さい場合、フィデュ−シャル面
1における開口パタ−ン1a以外の場所を射入射フォ−
カスセンサ5、6で検出することによっても合焦点高さ
の検出が可能である。この場合、フィデュ−シャル面1
の平面度や傾きは十分良くなくてはならないが、多少の
誤差はオフセット値として後から補正することが可能で
ある。
Furthermore, the projection pattern of the fiducial surface 1
(aperture pattern 1a) is incident on the incident focus sensor 5,
However, if the detection range of the incident focus sensors 5 and 6 is small, the incident focus may be detected at a location other than the aperture pattern 1a on the fiducial surface 1.
It is also possible to detect the focal point height by detecting it with the dust sensors 5 and 6. In this case, fiducial surface 1
The flatness and inclination must be sufficiently good, but some errors can be corrected later as offset values.

【0039】また、図6に示すようにマスク3が傾いて
取付けられた場合、ウェハ側の共役面20はアオリの関
係になるが、上記のようにマスク全面の合焦点検出を行
い、その値からウェハ面の傾きを算出して、レベリング
制御系22を通じてステ−ジ上のレベリング装置21を
駆動してマスクと共役面にウェハを位置付けることが可
能である。
Furthermore, when the mask 3 is mounted at an angle as shown in FIG. It is possible to calculate the inclination of the wafer surface from the above and drive the leveling device 21 on the stage through the leveling control system 22 to position the wafer on a plane conjugate to the mask.

【0040】また、マスク3の回路パタ−ンの外側に高
反射面を設けておくと、マスクパタン面の投影像の反射
光から検出器7側に戻る光量を多くすることができ、高
精度の検出が期待できる。
Furthermore, by providing a highly reflective surface on the outside of the circuit pattern of the mask 3, the amount of light returned to the detector 7 from the reflected light of the projected image of the mask pattern surface can be increased, resulting in high precision. can be expected to be detected.

【0041】ところで、フィデュ−シャル板1の開口パ
タ−ン1aとしては、上述の如きスリット状開口からな
る格子のみならず、図7の平面図に示す如き位相格子か
らなるフィデュ−シャル板101とすることも可能であ
る。すなわち、パタ−ン部101aにおいて、101b
及び101cは共に透明領域であるが両者の厚さが異な
りこれらを通過する光に対して位相差を有するように形
成されている。具体的には、ガラス板上にてエッチング
や透明材料の蒸着によって、位相差が設けられている。 このような位相格子を用いる場合には、図3に示したフ
ィデュ−シャル板1に比べて光を遮光することがないた
め検出光量を増すことができ、また開口パタ−ンでの裏
面反射を無くすことができるので検出精度を向上させる
ことができ、有利である。この位相格子の位相差を適当
に選ぶことにより、図2とは異なり、図8に示す如き出
力信号を得ることができる。この場合は、信号強度が極
小になる位置が合焦点位置として検出され、その他の処
理は前述の実施例と同様である。
By the way, the opening pattern 1a of the fiducial plate 1 is not limited to the grating made of slit-shaped openings as described above, but also the fiducial plate 101 made of a phase grating as shown in the plan view of FIG. It is also possible to do so. That is, in the pattern section 101a, 101b
101c and 101c are both transparent regions, but have different thicknesses and are formed to have a phase difference with respect to light passing through them. Specifically, a retardation is provided on a glass plate by etching or vapor deposition of a transparent material. When using such a phase grating, the amount of detected light can be increased because it does not block light compared to the fiducial plate 1 shown in FIG. Since it can be eliminated, detection accuracy can be improved, which is advantageous. By appropriately selecting the phase difference of this phase grating, an output signal as shown in FIG. 8 can be obtained, unlike FIG. 2. In this case, the position where the signal intensity is minimum is detected as the in-focus position, and other processing is the same as in the previous embodiment.

【0042】[0042]

【発明の効果】本発明の焦点位置検出装置は、露光転写
直前の実際のマスクパタ−ンの各部分について合焦点を
個別に判別することが容易で、マスクパタ−ンの転写領
域内に特別なマ−クを配置する必要がなく、しかも、マ
スクパタ−ンに占める遮光面積が大きい場合や露光光強
度が刻々変化する場合でも、信頼性高く合焦点の判別が
できる。
Effects of the Invention The focus position detection device of the present invention can easily determine the in-focus point for each part of the actual mask pattern immediately before exposure transfer, and can detect a special mark within the transfer area of the mask pattern. In addition, even when the mask pattern occupies a large light-shielding area or when the exposure light intensity changes moment by moment, the in-focus point can be determined with high reliability.

【0043】本発明の請求項第2項の焦点位置検出装置
は、計測手段を用いてステ−ジ上の任意の場所で露光面
を合焦点位置に一致させる調整が可能である。
The focus position detection device according to claim 2 of the present invention is capable of adjusting the exposure surface to coincide with the in-focus position at any location on the stage using a measuring means.

【0044】本発明の請求項第3項の焦点位置検出装置
は、測定器を用いてステ−ジ上の任意の場所で露光面を
合焦点位置に一致させる調整が可能である。
The focus position detection device according to claim 3 of the present invention is capable of adjusting the exposure surface to coincide with the in-focus position at any location on the stage using a measuring instrument.

【0045】本発明の請求項第4項の焦点位置検出装置
は、マスクパタ−ンの影響を受けることなく合焦点の判
別を行うことができる。
The focal position detection device according to claim 4 of the present invention can determine the focal point without being influenced by the mask pattern.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の合焦点調整機構の模式図であ
る。
FIG. 1 is a schematic diagram of a focusing point adjustment mechanism according to an embodiment of the present invention.

【図2】本発明の実施例における光量変化検出を説明す
るための線図である。
FIG. 2 is a diagram for explaining light amount change detection in the embodiment of the present invention.

【図3】本発明の実施例におけるフィデュ−シャル板の
平面図である。
FIG. 3 is a plan view of a fiducial plate in an embodiment of the present invention.

【図4】(a) 、(b) は開口パタ−ン形状の別の
例の平面図である。
FIGS. 4(a) and 4(b) are plan views of other examples of opening pattern shapes.

【図5】導光手段の別の例の模式図である。FIG. 5 is a schematic diagram of another example of a light guiding means.

【図6】レベリング機構の例の模式図である。FIG. 6 is a schematic diagram of an example of a leveling mechanism.

【図7】本発明の他の実施例におけるフィデュ−シャル
板の平面図である。
FIG. 7 is a plan view of a fiducial plate in another embodiment of the present invention.

【図8】図7に示したフィデュ−シャル板による光量変
化検出を説明するための線図である。
8 is a diagram for explaining detection of a change in light amount by the fiducial plate shown in FIG. 7; FIG.

【符号の説明】[Explanation of symbols]

1  フィデュ−シャル板 2  投影光学系 3  マスク 4  露光光源系 5  射入射フォ−カスセンサ 6  射入射フォ−カスセンサ 7  検出器 8  光源 9  Zθ駆動系 10  制御系 11  ウェハ 12  ステ−ジ 13  ファイバ−ケ−ブル 14  ハ−フミラ− 15  XY駆動系 1a  開口パタ−ン 1 Fiducial board 2 Projection optical system 3. Mask 4 Exposure light source system 5 Incidence focus sensor 6 Incidence focus sensor 7 Detector 8 Light source 9 Zθ drive system 10 Control system 11 Wafer 12 Stage 13 Fiber cable 14 Half mirror 15 XY drive system 1a Opening pattern

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  マスクパタ−ン面の投影光学系に関す
るステ−ジ側共役位置を検出する焦点位置検出装置にお
いて、所定形状の開口パタ−ンを形成したステ−ジ上の
基準面と、該開口パタ−ンに照明光を導く照明手段と、
該照明光下で投影光学系によりマスクパタ−ン面に形成
された前記開口パタ−ンの投影像の反射光を投影光学系
および前記開口パタ−ンを介して検出し、前記開口パタ
−ンを通過した投影像の光量変化を検出する検出手段と
、を有することを特徴とする焦点位置検出装置。
1. A focal position detection device for detecting a stage-side conjugate position of a mask pattern surface with respect to a projection optical system, which includes: a reference plane on a stage on which an aperture pattern of a predetermined shape is formed; illumination means for guiding illumination light into the pattern;
The reflected light of the projected image of the aperture pattern formed on the mask pattern surface by the projection optical system under the illumination light is detected via the projection optical system and the aperture pattern, and the aperture pattern is detected. 1. A focal position detection device comprising: detection means for detecting a change in the amount of light of a projected image that has passed through the projection image.
【請求項2】  請求項第1項の焦点位置検出装置にお
いて、前記検出手段の出力に基いて前記光量変化の極大
又は極小が得られる位置までステ−ジを移動する位置調
整手段と、該位置における前記基準面の位置を基準とし
て、ステ−ジ上の任意の場所における位置ずれ方向を計
測する計測手段と、を有することを特徴とする焦点位置
検出装置。
2. The focal position detection device according to claim 1, further comprising: position adjustment means for moving the stage to a position where the maximum or minimum change in light quantity is obtained based on the output of the detection means; 1. A focal position detection device comprising: measuring means for measuring a positional shift direction at an arbitrary location on a stage with reference to the position of the reference plane in .
【請求項3】  請求項第2項の焦点位置検出装置にお
いて、ステ−ジ上の任意の場所を投影光学系の視野下に
走査する走査機構と、投影光学系に固定された光路で投
影光学系に対するステ−ジ側の位置を計測する測定器と
、からなる前記計測手段を有することを特徴とする焦点
位置検出装置。
3. The focal position detection device according to claim 2, further comprising: a scanning mechanism that scans an arbitrary location on the stage under the field of view of the projection optical system; A focal position detection device comprising: a measuring device for measuring a position on the stage side with respect to the system; and the measuring means.
【請求項4】  請求項第1項〜第3項のいずれかの焦
点位置検出装置において、マスクパタ−ンに対して斜め
に配置した複数の平行線状又は市松模様に前記開口パタ
−ンを形成したことを特徴とする焦点位置検出装置。
4. The focal position detection device according to claim 1, wherein the aperture pattern is formed in a plurality of parallel lines or checkerboard patterns arranged diagonally with respect to the mask pattern. A focal position detection device characterized by:
JP3031343A 1991-02-01 1991-02-01 Focus position detecting device and projection exposure device Expired - Fee Related JP3013463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3031343A JP3013463B2 (en) 1991-02-01 1991-02-01 Focus position detecting device and projection exposure device
US07/993,460 US5241188A (en) 1991-02-01 1992-12-15 Apparatus for detecting a focussing position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031343A JP3013463B2 (en) 1991-02-01 1991-02-01 Focus position detecting device and projection exposure device

Publications (2)

Publication Number Publication Date
JPH04348019A true JPH04348019A (en) 1992-12-03
JP3013463B2 JP3013463B2 (en) 2000-02-28

Family

ID=12328587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031343A Expired - Fee Related JP3013463B2 (en) 1991-02-01 1991-02-01 Focus position detecting device and projection exposure device

Country Status (1)

Country Link
JP (1) JP3013463B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661546A (en) * 1993-09-21 1997-08-26 Nikon Corporation Projection exposure apparatus and method with changing imaging characteristics and illumination conditions
CN103324036A (en) * 2013-07-04 2013-09-25 中国科学院光电技术研究所 Detection device and method for magnification and distortion of projection objective
US8625074B2 (en) 2008-10-14 2014-01-07 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method
US9910371B2 (en) 2015-07-16 2018-03-06 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and device manufacturing method
US11181825B2 (en) 2019-05-22 2021-11-23 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing article
US11531276B2 (en) 2020-11-05 2022-12-20 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and article manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661546A (en) * 1993-09-21 1997-08-26 Nikon Corporation Projection exposure apparatus and method with changing imaging characteristics and illumination conditions
US8625074B2 (en) 2008-10-14 2014-01-07 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method
CN103324036A (en) * 2013-07-04 2013-09-25 中国科学院光电技术研究所 Detection device and method for magnification and distortion of projection objective
US9910371B2 (en) 2015-07-16 2018-03-06 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and device manufacturing method
TWI638240B (en) * 2015-07-16 2018-10-11 日商佳能股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
US11181825B2 (en) 2019-05-22 2021-11-23 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing article
US11531276B2 (en) 2020-11-05 2022-12-20 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and article manufacturing method

Also Published As

Publication number Publication date
JP3013463B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US5241188A (en) Apparatus for detecting a focussing position
US6376329B1 (en) Semiconductor wafer alignment using backside illumination
KR100471524B1 (en) Exposure method
US5510892A (en) Inclination detecting apparatus and method
US4855792A (en) Optical alignment system for use in photolithography and having reduced reflectance errors
US4829193A (en) Projection optical apparatus with focusing and alignment of reticle and wafer marks
US5483348A (en) Apparatus for optically detecting a position of a mark
US6108089A (en) Position detecting apparatus and method for projection exposure apparatus
US5942357A (en) Method of measuring baseline amount in a projection exposure apparatus
US5475490A (en) Method of measuring a leveling plane
JPS61111402A (en) Position detector
JPH04348019A (en) Focus position detecting device
KR100303057B1 (en) Focussing method and system of exposure apparatus
US6539326B1 (en) Position detecting system for projection exposure apparatus
JPH07106243A (en) Horizontal position detector
JPH09236425A (en) Face position detector
JP3203676B2 (en) Projection exposure equipment
JP2000012452A (en) Aligner
JP4258378B2 (en) Position detection apparatus, exposure apparatus, and exposure method
JP3211246B2 (en) Projection exposure apparatus and element manufacturing method
JPH10209029A (en) Exposure device provided with alignment system
JP2897085B2 (en) Horizontal position detecting apparatus and exposure apparatus having the same
KR100414575B1 (en) Projection exposure equipment
JP4258035B2 (en) Exposure apparatus and device manufacturing method
JPH09115822A (en) Projection exposure apparatus and semiconductor device manufacturing method using projection exposure apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991116

LAPS Cancellation because of no payment of annual fees