JPH0433392B2 - - Google Patents
Info
- Publication number
- JPH0433392B2 JPH0433392B2 JP61044106A JP4410686A JPH0433392B2 JP H0433392 B2 JPH0433392 B2 JP H0433392B2 JP 61044106 A JP61044106 A JP 61044106A JP 4410686 A JP4410686 A JP 4410686A JP H0433392 B2 JPH0433392 B2 JP H0433392B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- heat
- resistant gas
- gas
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims 2
- 239000007789 gas Substances 0.000 description 33
- 238000010586 diagram Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 2
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004297 night vision Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- GZXOHHPYODFEGO-UHFFFAOYSA-N triglycine sulfate Chemical compound NCC(O)=O.NCC(O)=O.NCC(O)=O.OS(O)(=O)=O GZXOHHPYODFEGO-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高温な環境にあつて焔や煙を通して
物体を認識する赤外センサ装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared sensor device for recognizing objects through flames or smoke in a high-temperature environment.
従来の技術
人間の眼に感じる光は、紫色から赤色の可視光
と称せられる領域であり、波長で表わすと個人差
はあるが、およそ350〜700nmの範囲である。BACKGROUND TECHNOLOGY The light that the human eye perceives is in a range called visible light ranging from violet to red, and when expressed in terms of wavelength, it ranges from approximately 350 to 700 nm, although there are individual differences.
波長350nm以下は紫外線領域であり、また波長
700nm以上は赤外線と分類されいずれも人間の眼
には感じない領域である。赤外線も更に長波長領
域では熱線として放射される。赤外線は波長が長
くなれば透過性がよくなり例えば、霧や煙の雰囲
気中でも比較的減衰されずに遠距離まで到達する
ことが知られている。 Wavelengths below 350nm are in the ultraviolet region, and
Anything above 700nm is classified as infrared radiation, which is invisible to the human eye. Infrared rays are also emitted as heat rays in longer wavelength ranges. It is known that the longer the wavelength of infrared rays, the better their permeability, and for example, they can reach long distances without being attenuated, even in foggy or smoky atmospheres.
この赤外線の特性を利用して暗視下や霧等の環
境下の像を可視化できる撮像方式がいくつか提案
され、一部実用化されている。赤外線の検出器と
しては、受光する赤外線がもつ熱エネルギによつ
て生じる検出器の温度変化を、抵抗変化あるいは
電荷量変化などの物理量として検知する「熱型検
出器」と、赤外光を光量子として検知する「量子
型検出器」がある。熱型検出器には、素子の冷却
不要な焦電型検出器があり、代表的なものには、
弗化ビニリデン(PVF2)フイルム、硫酸グリシ
ン(TGS)単結晶薄板、弗化ベリリウム酸グリ
シン(TGFB)、重水素硫酸グリシン(DTGS)、
重水素弗化ベリリウム酸グリシン(DTGFB)、
チタン酸鉛(PbTiO3)焼結体などがある。量子
型検出器には、Si、InSb、HgCdTeなどの半導
体素子がある。 Several imaging methods have been proposed that utilize the characteristics of infrared rays to visualize images in environments such as night vision or fog, and some have been put into practical use. There are two types of infrared detectors: "thermal detectors," which detect the temperature change of the detector caused by the thermal energy of the received infrared light as a physical quantity such as a change in resistance or a change in charge; There is a "quantum detector" that detects Thermal detectors include pyroelectric detectors that do not require cooling of the element, and typical ones include:
Vinylidene fluoride (PVF 2 ) film, glycine sulfate (TGS) single crystal thin plate, glycine fluoroberylate (TGFB), deuterium glycine sulfate (DTGS),
Deuterofluoroberyllium glycine (DTGFB),
Examples include lead titanate (PbTiO 3 ) sintered bodies. Quantum detectors include semiconductor elements such as Si, InSb, and HgCdTe.
これらの赤外線検出を用いて像センサ装置とし
て応用する場合走査方式によつて、機械走査型、
固体走査型、電子ビーム走査型の3種に分類で
き、それぞれサーモグラフイ、赤外検出器を
CCDにオンチツプしたモノリシツク型、焦電型
撮像等が代表的なものである。いずれのセンサ装
置も対象とする被写体からの赤外像を検出器の上
に結像して電気信号に変換するパツシブ型(受動
型)である。パツシブ型の場合、被写体からの赤
外線の放射がなければ像として検出できない欠点
がある。一方、被写体に積極的に赤外線を照射
し、その反射光を検出する方式のアクテイブ型
(能動型)のセンサ装置もある。 When applying these infrared detection as an image sensor device, depending on the scanning method, mechanical scanning type,
It can be classified into three types: solid-state scanning type and electron beam scanning type, each of which uses thermography and infrared detectors.
Typical examples include monolithic CCD-based on-chip and pyroelectric imaging. Both sensor devices are passive types that form an infrared image from a target object onto a detector and convert it into an electrical signal. The passive type has the disadvantage that it cannot be detected as an image unless there is infrared radiation from the subject. On the other hand, there is also an active type sensor device that actively irradiates an object with infrared rays and detects the reflected light.
第3図は、アクテイブ型赤外センサ装置の一例
であり、赤外レーザ光を走査しながら被写体に照
射し、被写体からの反射光を赤外線検出器で受け
て電気信号に変換して像として可視化するもので
ある。赤外線放射素子1からの赤外線を偏向器1
2で二次元に偏向し、対象物4に照射する。対象
物4からの反射光は、レンズ等の集光器16で集
光され、赤外線検出器2に導かれ、電気信号に変
換後、信号処理装置18で信号処理されTVモニ
タ19で映像化される。 Figure 3 shows an example of an active type infrared sensor device, in which an infrared laser beam is scanned and irradiated onto a subject, and the reflected light from the subject is received by an infrared detector and converted into an electrical signal, which is visualized as an image. It is something to do. Deflector 1 for infrared rays from infrared radiation element 1
2, the beam is deflected two-dimensionally and irradiated onto the object 4. The reflected light from the object 4 is collected by a condenser 16 such as a lens, guided to an infrared detector 2, converted into an electrical signal, processed by a signal processing device 18, and visualized on a TV monitor 19. Ru.
最近、暗視下の物体の可視像化や各種災害下で
の情況把握の必要性が高まつて来ている。特に火
災現場における火点の検知、焔で覆われた中の物
体や設備の破損情況、人命救助のための周辺情況
把握などに赤外センサ装置の活用が検討されてい
る。しかしながら、千数百度の焔に近づけても適
確に動作する赤外センサ装置は、まだ存在しな
い。 Recently, there has been an increasing need to visualize objects under night vision and to understand situations during various disasters. In particular, the use of infrared sensor devices is being considered to detect the point of fire at a fire scene, to assess the damage to objects and equipment covered by flames, and to understand the surrounding situation in order to save lives. However, there is still no infrared sensor device that can operate properly even when exposed to flames at temperatures of over 1,000 degrees Celsius.
一般に黒体の表面から放射されるエネルギの波
長分布、最大放射量の波長、全放射エネルギ量
は、黒体の温度で決まり、それぞれプランクの法
則、ウイーンの変位則、ステフアン、ボルツマン
の法則で示される。 In general, the wavelength distribution of energy radiated from the surface of a black body, the wavelength of the maximum amount of radiation, and the total amount of radiated energy are determined by the temperature of the black body, and are expressed by Planck's law, Wien's displacement law, Stephan's law, and Boltzmann's law, respectively. It will be done.
(1) プランクの法則(放射エネルギの波長分布)
Wλ=2πhc2/λ5・1/ehc/〓kT-1 (1)
Wλ:単位面積、単位波長当り放射されるエネ
ルギ(W/cm2・μm)
λ:波長、 T:絶対温度
h:プランクの定数、 c:光速
k:ボルツマンの定数
(2) ウイーン変位則(最大放射量)
λmT=2897.8μm・K (2)
λm:ある温度の黒体の放射する最大の波長
(3) ステフアン・ボルツマンの法則
W=σ・T4 (3)
W:黒体の単位表面積から放射されるエネルギ
(W/cm2)
σ:ステフアン・ボルツマン定数
(5.67×10-12W/cm2・K4)
これらの関係をまとめたものが第4図で示され
る黒体放射エネルギーの波長分布図である。この
図から例えば火災現場等を想定すると相当幅広い
波長分布の赤外光が放射されており、しかもその
周辺においても輻射熱により非常に高温な環境と
なつていることが推定される。ところが前記のパ
ツシブ型およびアクテイブ型の赤外センサ装置
は、安定に動作する通常の温度上限は70℃程度で
あるのでそのままでは熱のため破損してしまうこ
とが容易に理解される。(1) Planck's law (wavelength distribution of radiant energy) Wλ=2πhc 2 /λ 5・1/e hc/ 〓 kT-1 (1) Wλ: Energy radiated per unit area and unit wavelength (W/cm 2・μm) λ: Wavelength, T: Absolute temperature h: Planck's constant, c: Speed of light k: Boltzmann's constant (2) Vienna displacement law (maximum radiation amount) λmT=2897.8μm・K (2) λm: At a certain temperature Maximum wavelength emitted by a black body (3) Stefan-Boltzmann law W = σ・T 4 (3) W: Energy radiated from unit surface area of a black body (W/cm 2 ) σ: Stefan-Boltzmann constant ( 5.67×10 -12 W/cm 2 ·K 4 ) These relationships are summarized in the wavelength distribution diagram of blackbody radiant energy shown in Figure 4. From this figure, it can be inferred that, for example, assuming a fire scene, infrared light with a fairly wide wavelength distribution is emitted, and the surrounding area is also extremely hot due to radiant heat. However, since the normal upper temperature limit for stable operation of the above-mentioned passive and active type infrared sensor devices is about 70° C., it is easily understood that if left as is, they will be damaged due to heat.
そこで、赤外センサ装置を常温に近い温度環境
に保持しながら、火焔等の環境で使用するには、
装置全体を耐熱構造の容器に収納して外部環境か
らしや断すると共に、赤外センサ装置の放射口お
よび受光口を赤外線のみが透過できる例えばGe、
Si、GaAs NaCl、Kcl、ZnSe等の単結晶による
固体の窓材でシールすることが考えられる。 Therefore, in order to maintain the infrared sensor device in a temperature environment close to room temperature while using it in environments such as flames, it is necessary to
The entire device is housed in a heat-resistant container to isolate it from the external environment, and the infrared sensor device is made of Ge, for example, which allows only infrared light to pass through the radiation and light receiving ports.
It is conceivable to seal with a solid window material made of single crystals such as Si, GaAs NaCl, Kcl, ZnSe, etc.
発明が解決しようとする問題点
しかし、以上のような固体の窓材を使用した赤
外センサ装置においては、窓材の材料が高価であ
り、また単結晶であるため大口径化が困難であ
り、しかも温度変化に対する機械的強度が弱い等
多くの問題点があつた。本発明は、従来技術の以
上のような問題点を解決するもので、低価格で大
口径化が可能であり、かつ温度変化に対する機械
的強度にすぐれた窓材を耐熱装置に使用したのと
同等の効果を得られる赤外センサ装置を提供する
ことを目的とするものである。Problems to be Solved by the Invention However, in the infrared sensor device using a solid window material as described above, the window material is expensive and is single crystal, so it is difficult to increase the diameter. Moreover, there were many problems such as poor mechanical strength against temperature changes. The present invention solves the above-mentioned problems of the prior art by using a window material in a heat-resistant device that can be made large in diameter at a low cost and has excellent mechanical strength against temperature changes. It is an object of the present invention to provide an infrared sensor device that can obtain similar effects.
問題点を解決するための手段
上記目的を達成するために、本発明は赤外セン
サ装置を構成する赤外線放射素子とと赤外線検出
素子と断熱壁で囲み、この断熱壁に赤外線放射の
ための第1の貫通穴および赤外線受光のための第
2の貫通穴を設け、この第1、第2の貫通穴に対
し耐熱性ガスを循環させて流すようにしたもので
ある。Means for Solving the Problems In order to achieve the above object, the present invention surrounds an infrared radiation element and an infrared detection element constituting an infrared sensor device with a heat insulating wall, and provides a heat insulating wall for infrared radiation. A first through hole and a second through hole for receiving infrared light are provided, and a heat-resistant gas is circulated through the first and second through holes.
作 用
上記の構成において、赤外線放射素子および受
光素子は断熱壁で囲まれ、それに形成された赤外
線放射口および受光口は耐熱性ガスが流されてお
り、この耐熱性ガスは特定の波長の赤外線のみを
透過させ、熱線を含むその他の波長の赤外線をし
や断するので、赤外線放射素子および赤外線受光
素子は高温外気から熱的にしやへいされ赤外セン
サ装置が高温環境から保護される。耐熱性ガスは
循環させ冷却後放射口および受光口に流されるの
で常に冷却された新鮮な耐熱性ガスにより熱しや
へい窓を形成することができる。Function In the above configuration, the infrared ray emitting element and the light receiving element are surrounded by a heat insulating wall, and a heat resistant gas is flowed through the infrared ray emitting port and the light receiving port formed in the wall. The infrared radiation element and the infrared reception element are thermally insulated from high-temperature outside air, and the infrared sensor device is protected from the high-temperature environment. Since the heat-resistant gas is circulated and cooled, it is flowed to the radiation port and the light-receiving port, so that a heat-resistant window can be formed with constantly cooled fresh heat-resistant gas.
実施例
以下、図面を参照しながら本発明の実施例につ
いて説明する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は、本発明の実施例による赤外線センサ
装置の原理構成図である。赤外線放射素子1から
放射された赤外線は、放射口3から対象物4に照
射され、その反射光が受光口6から赤外線検出素
子2に導入され電気信号に変換される。赤外線放
射素子1および赤外線検出素子2は、高温環境5
から保護するため、放射口3および受光口6を耐
熱ガス7で覆うように構成される。耐熱ガス7と
しては炭酸ガスもしくは水蒸気、またはこれらの
混合ガスが用いられる。11は、耐熱ガス発生装
置である。9は放射口3および受口光6を除いて
赤外線放射素子1および赤外線検出素子2を囲み
熱的にしやへいするための断熱壁である。 FIG. 1 is a diagram showing the principle configuration of an infrared sensor device according to an embodiment of the present invention. Infrared rays emitted from the infrared radiation element 1 are irradiated onto the object 4 through the radiation opening 3, and the reflected light is introduced into the infrared detection element 2 through the light receiving opening 6 and converted into an electrical signal. The infrared radiation element 1 and the infrared detection element 2 are placed in a high temperature environment 5.
The radiation port 3 and the light receiving port 6 are covered with a heat-resistant gas 7 in order to protect them from the heat. As the heat-resistant gas 7, carbon dioxide gas, water vapor, or a mixed gas thereof is used. 11 is a heat-resistant gas generator. Reference numeral 9 denotes a heat insulating wall that surrounds the infrared radiation element 1 and the infrared detection element 2, excluding the radiation port 3 and the reception light 6, for thermal insulation.
耐熱ガス発生装置11からの耐熱ガスは冷却装
置10で冷却された後フアン8により受光口6、
放射口3へ送られ、循環路20を循環させ再び耐
熱ガス発生装置11へもどす。18は赤外線検出
素子2からの出力を信号処理する信号処理回路、
19はTVモニタである。 The heat-resistant gas from the heat-resistant gas generator 11 is cooled by the cooling device 10 and then sent to the light receiving port 6 by the fan 8.
The gas is sent to the radiation port 3, circulated through the circulation path 20, and returned to the heat-resistant gas generator 11 again. 18 is a signal processing circuit that processes the output from the infrared detection element 2;
19 is a TV monitor.
赤外線検出素子2の出力は信号処理装置18に
接続され、TVモニタ19に供給される。 The output of the infrared detection element 2 is connected to a signal processing device 18 and supplied to a TV monitor 19.
つぎに上記構成の動作を説明する。 Next, the operation of the above configuration will be explained.
地球の大気は、窒素ガス、酸素ガス、炭酸ガ
ス、水蒸気をはじめ種々のガスから構成されてお
り、その構成比もほぼ一定であることは知られて
いる。第2図は、大気の光の波長に対する透過率
について、波長1μmから14μmまでの特性を示し
たものである。この図より、大気の窓と称される
波長領域がいくつかあることがわかる。その代表
的なものは、波長3.5〜4.2μm、8.3〜13.3μmの領
域である。これとは逆に、光が大気に吸収され
て、ほとんど透過しない領域もあり、例えば波長
2.5〜3.2μm 5.2〜7.6μmの赤外光は、大気中の水
(水蒸気)により吸収され、また波長4.2〜4.5μm
13.5〜14.0μmの赤外光は大気中の炭酸ガスにより
吸収される。 It is known that the earth's atmosphere is composed of various gases, including nitrogen gas, oxygen gas, carbon dioxide gas, and water vapor, and that the composition ratio of these gases is almost constant. Figure 2 shows the characteristics of the transmittance of atmospheric light for wavelengths from 1 μm to 14 μm. This figure shows that there are several wavelength regions called atmospheric windows. Typical wavelengths are 3.5 to 4.2 μm and 8.3 to 13.3 μm. Conversely, there are regions where light is absorbed by the atmosphere and hardly transmits through, e.g.
2.5-3.2μm Infrared light of 5.2-7.6μm is absorbed by water (water vapor) in the atmosphere, and also has a wavelength of 4.2-4.5μm
Infrared light of 13.5-14.0 μm is absorbed by carbon dioxide gas in the atmosphere.
本発明は、これらのガスの赤外に対する吸収特
性を利用して、特定の波長の赤外光透過し、その
他の波長の赤外光をガスに吸収させることによ
り、赤外光の透過率を構成し、赤外線センサ装置
を外部環境の熱から保護するものである。 The present invention makes use of the infrared absorption characteristics of these gases to transmit infrared light of a specific wavelength and absorb infrared light of other wavelengths, thereby increasing the transmittance of infrared light. The infrared sensor device is configured to protect the infrared sensor device from the heat of the external environment.
すなわち、第1図に示すように、波長10.6μm
のCO2レーザを赤外線放射素子1とし、HgCdTe
化合物半導体による赤外線検出器を赤外線検出素
子2として、これらを断熱壁9で囲み、断熱壁9
の一部に形成された放射口3より赤外線放射素子
1からの赤外光を対象物4に照射し、対象物4か
ら反射光を断熱壁9の一部に形成された受光口6
より受光して赤外線検出素子2で検出する。この
とき、耐熱ガス発生装置11からの耐熱ガスが冷
却装置10で冷却されフアン8により受光口6お
よび放射口3に導入され、高温環境5から受けた
熱エネルギーを吸収後、循環路20通つて耐熱ガ
ス発生装置11に回収され再利用される。一方対
象物4へ照射され、受光される赤外光は波長が
10.6μmであるから耐熱ガス7でさえぎられるこ
とはない。 That is, as shown in Figure 1, the wavelength is 10.6 μm.
The CO 2 laser is used as the infrared radiation element 1, and the HgCdTe
An infrared detector made of a compound semiconductor is used as an infrared detection element 2, and these are surrounded by a heat insulating wall 9.
The infrared light from the infrared radiation element 1 is irradiated onto the object 4 through the radiation opening 3 formed in a part of the heat insulating wall 9, and the reflected light is reflected from the object 4 through the light receiving opening 6 formed in a part of the heat insulating wall 9.
The received light is detected by the infrared detection element 2. At this time, the heat-resistant gas from the heat-resistant gas generator 11 is cooled by the cooling device 10, introduced into the light receiving port 6 and the radiation port 3 by the fan 8, absorbs the thermal energy received from the high temperature environment 5, and then passes through the circulation path 20. The gas is collected by the heat-resistant gas generator 11 and reused. On the other hand, the wavelength of the infrared light irradiated to and received by the object 4 is
Since it is 10.6 μm, it will not be blocked by the heat-resistant gas 7.
赤外線検出素子2で検出された赤外光は、対象
物までの距離や形状など予め定められた対象物認
識のための所定の信号処理を信号処理装置18で
行ない、モニタテレビ19にその信号処理結果を
映像や文字などにより表示する。 The infrared light detected by the infrared detection element 2 is subjected to predetermined signal processing in order to recognize a predetermined object, such as the distance and shape of the object, in a signal processing device 18, and the signal processing device 18 sends the signal processing to a monitor television 19. The results are displayed as images or text.
放射口3および受光口6には常に新しい冷却さ
れた耐熱ガスが補給されて耐熱ガスで覆われてい
るので、高温環境5から断熱壁9内に輻射熱が侵
入することなく、赤外線放射素子1および赤外線
検出素子2は高温環境5から完全に熱的に保護さ
れている。 Since the radiation port 3 and the light receiving port 6 are always replenished with new cooled heat-resistant gas and covered with heat-resistant gas, the infrared radiation elements 1 and The infrared detection element 2 is completely thermally protected from the high temperature environment 5.
以上のように本実施例によれば、特定のガスが
特定の波長のみを透過し、その他の波長の光を吸
収する特性を用いて、ガスにより光の透過率を構
成することにより、高温の環境から装置を保護す
ることができる。 As described above, according to this embodiment, by using the characteristic that a specific gas transmits only a specific wavelength and absorbs light of other wavelengths, the light transmittance is configured by the gas, and thereby high-temperature The device can be protected from the environment.
なお、上記実施例では、赤外線放射素子1と赤
外線検出素子2のみを断熱壁9で覆つた構成につ
いて述べたが、信号処理装置18や耐熱ガス発生
装置8なども断熱壁9内に入れて熱的にしやへい
してもよい。また、第1図では赤外光も照射ある
いは走査するための光学系を省略しているが、こ
れらは必要に応じて第3図の場合と同様に、偏向
器や集光器などを挿入できることはもちろんであ
る。 In the above embodiment, only the infrared emitting element 1 and the infrared detecting element 2 are covered with the heat insulating wall 9, but the signal processing device 18, the heat-resistant gas generator 8, etc. are also placed inside the heat insulating wall 9 to prevent heat. You can aim for it. In addition, although the optical system for irradiating or scanning infrared light is omitted in Figure 1, it is possible to insert a deflector, condenser, etc. as needed in the case of Figure 3. Of course.
発明の効果
以上のように、本発明は赤外線放射素子と赤外
線検出素子とを断熱壁で囲み、この断熱壁に赤外
線放射のための第1の貫通穴および赤外線受光の
ための第2の貫通穴を設け、この第1、第2の貫
通穴を耐熱性ガスで覆うことにより、従来の単結
晶による構成よりも赤外線の放射口および受光口
を大口径にすることが可能(単純な貫通穴である
ため)になり、また高温環境と各赤外光素子を分
離するための窓材が実質的に耐熱性ガスで実現さ
れることにより安価(当該耐熱性ガスはCO2ガス
と水蒸気の混合ガス等の安価なガスで実現できる
ため)であり、循環させるのでランニングコスト
も安く、かつ温度変化に対する機械的強度にもす
ぐれている。Effects of the Invention As described above, the present invention surrounds an infrared radiation element and an infrared detection element with a heat insulating wall, and in this heat insulating wall, a first through hole for infrared radiation and a second through hole for infrared light reception are provided. By providing a In addition, the window material used to separate each infrared light element from the high-temperature environment is made of heat-resistant gas, making it cheaper (the heat-resistant gas is a mixture of CO 2 gas and water vapor). Since it is circulated, running costs are low, and it has excellent mechanical strength against temperature changes.
第1図は本発明による赤外線検出装置の全体構
成を示すブロツク図、第2図は本発明の動作を説
明するための大気の光透過特性図、第3図は従来
の赤外線検出装置の構成の一例を示すブロツク
図、第4図は黒体放射エネルギの波長分布特性図
である。
1……赤外線放射素子、2……赤外線検出器、
3……放射口、6……受光口、7……耐熱ガス、
8……フアン、9……耐熱壁、10……冷却装
置、11……耐熱ガス発生装置。
FIG. 1 is a block diagram showing the overall configuration of an infrared detection device according to the present invention, FIG. 2 is an atmospheric light transmission characteristic diagram for explaining the operation of the present invention, and FIG. 3 is a diagram showing the configuration of a conventional infrared detection device. FIG. 4, a block diagram showing an example, is a wavelength distribution characteristic diagram of blackbody radiant energy. 1... Infrared radiation element, 2... Infrared detector,
3... Radiation port, 6... Light receiving port, 7... Heat resistant gas,
8...Fan, 9...Heat-resistant wall, 10...Cooling device, 11...Heat-resistant gas generator.
Claims (1)
を放射する赤外線放射素子と、 前記高温環境空間を介して、前記赤外線放射素
子から放射された赤外光が当該被測定物体に照射
され、その被測定物体からの反射光を、再度、前
記高温環境空間を介して受光する赤外線検出素子
と、 前記高温環境空間に耐え得る材料により、前記
赤外線放射素子と前記赤外線検出素子とを覆うこ
とにより、当該赤外線放射素子と赤外線検出素子
とを内部に密閉する断熱壁と、 前記高温環境空間に対向する前記断熱壁の前面
に、前記赤外線放射素子から被測定物体に放射す
る赤外光を通過させる第1の貫通穴と、 前記高温環境空間に対向する前記断熱壁の前面
に、前記被測定物体から反射してくる反射光を通
過させ、前記赤外線検出素子に受光させる第2の
貫通穴とが設けられた赤外センサ装置において、 赤外線放射素子が放射する赤外線、及び赤外線
検出素子が受光する赤外線の双方を、光学的に透
過させる特性を有した耐熱ガスを発生して送出す
る耐熱ガス発生手段と、 前記高温環境空間の高温が、密閉された当該断
熱壁の内部に流入することを阻止する如く、前記
赤外線放射素子と前記第1の貫通穴とで形成され
る第1の断熱壁内部空間、及び前記赤外線検出素
子と前記第2の貫通穴とで形成される第2の耐熱
壁内部空間の双方に、前記耐熱ガス発生手段が発
生した耐熱ガスを当該断熱壁に沿つて継続して供
給する循環路と、 前記第1、第2の断熱壁内部空間を通過するこ
とにより前記高温環境空間の高温を吸収した前記
耐熱ガスを、前記循環路を介して収集し、当該耐
熱ガスを冷却する冷却手段とを設けたことを特徴
とする赤外センサ装置。 2 赤外線放射素子より放射される赤外線の波長
が8μmから14μmの間であつて、赤外線検出素子
が8μmから14μmの間の波長の赤外線にのみ感度
を有し、耐熱ガスがCO2ガスであることを特徴と
する特許請求の範囲第1項記載の赤外センサ装
置。 3 赤外線放射素子より放射される赤外線の波長
が8μmから14μmの間であつて、赤外線検出素子
が8μmから14μmの間の波長の赤外線にのみ感度
を有し、耐熱ガスがCO2ガスと水蒸気の混合ガス
であることを特徴とする特許請求の範囲第1項記
載の赤外センサ装置。[Scope of Claims] 1. An infrared radiation element that emits infrared light to an object to be measured through a high-temperature environmental space; an infrared detection element that receives the light irradiated onto the object to be measured and reflected from the object again through the high-temperature environment space; an insulating wall that seals the infrared ray emitting element and the infrared detecting element inside by covering the infrared ray emitting element and the infrared detecting element; a first through-hole through which infrared light is transmitted; and reflected light reflected from the object to be measured is transmitted through a front surface of the heat insulating wall facing the high-temperature environmental space, and is received by the infrared detection element. In the infrared sensor device provided with the second through hole, a heat-resistant gas is generated that has a property of optically transmitting both the infrared rays emitted by the infrared radiation element and the infrared rays received by the infrared detection element. a heat-resistant gas generating means for sending out heat-resistant gas; and a heat-resistant gas generating means formed by the infrared ray radiating element and the first through hole so as to prevent the high temperature of the high-temperature environment space from flowing into the sealed insulating wall. The heat-resistant gas generated by the heat-resistant gas generating means is applied to both the first heat-insulating wall inner space and the second heat-resistant wall inner space formed by the infrared detecting element and the second through hole. a circulation path for continuously supplying the heat-resistant gas along the inner space of the first and second heat-insulating walls, and collecting the heat-resistant gas that has absorbed the high temperature of the high-temperature environment space through the circulation path; An infrared sensor device comprising: a cooling means for cooling the heat-resistant gas. 2 The wavelength of the infrared rays emitted by the infrared radiation element is between 8 μm and 14 μm, the infrared detection element is sensitive only to infrared rays with wavelengths between 8 μm and 14 μm, and the heat-resistant gas is CO 2 gas. An infrared sensor device according to claim 1, characterized in that: 3 The wavelength of the infrared rays emitted by the infrared radiation element is between 8 μm and 14 μm, the infrared detection element is sensitive only to infrared rays with a wavelength between 8 μm and 14 μm, and the heat-resistant gas is a mixture of CO 2 gas and water vapor. The infrared sensor device according to claim 1, wherein the infrared sensor device is a mixed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61044106A JPS62203072A (en) | 1986-03-03 | 1986-03-03 | Infrared sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61044106A JPS62203072A (en) | 1986-03-03 | 1986-03-03 | Infrared sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62203072A JPS62203072A (en) | 1987-09-07 |
JPH0433392B2 true JPH0433392B2 (en) | 1992-06-02 |
Family
ID=12682356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61044106A Granted JPS62203072A (en) | 1986-03-03 | 1986-03-03 | Infrared sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62203072A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007052778A1 (en) * | 2005-11-02 | 2007-05-10 | Buhei Kono | Method of promoting reaction of organic substance or inorganic substance |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007071829A (en) * | 2005-09-09 | 2007-03-22 | Optex Co Ltd | Crime prevention sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5621112A (en) * | 1979-07-28 | 1981-02-27 | Asahi Optical Co Ltd | Focusing system of zoom lens |
JPS5746011A (en) * | 1980-09-01 | 1982-03-16 | Toyota Motor Corp | Exhaust pipe for automobile |
-
1986
- 1986-03-03 JP JP61044106A patent/JPS62203072A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5621112A (en) * | 1979-07-28 | 1981-02-27 | Asahi Optical Co Ltd | Focusing system of zoom lens |
JPS5746011A (en) * | 1980-09-01 | 1982-03-16 | Toyota Motor Corp | Exhaust pipe for automobile |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007052778A1 (en) * | 2005-11-02 | 2007-05-10 | Buhei Kono | Method of promoting reaction of organic substance or inorganic substance |
Also Published As
Publication number | Publication date |
---|---|
JPS62203072A (en) | 1987-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7422365B2 (en) | Thermal imaging system and method | |
US8466964B2 (en) | Multispectral uncooled thermal infrared camera system | |
Caniou | Passive infrared detection: theory and applications | |
US7495220B2 (en) | Uncooled infrared sensor | |
Kruse | A comparison of the limits to the performance of thermal and photon detector imaging arrays | |
PL324754A1 (en) | Thermal detection system having a rapid-response calibration device | |
CN102865922B (en) | Flame detectors and methods of detecting flames | |
JPH0433391B2 (en) | ||
JPH0433392B2 (en) | ||
US6892030B2 (en) | System and method for effecting temperature control in a camera | |
KR20180043639A (en) | Camouflage system | |
US4929834A (en) | Thermal mask for cryogenic detectors in a thermal imaging device | |
JPH0445118B2 (en) | ||
GB2096427A (en) | Infrared imaging and tracking means | |
CA2072857A1 (en) | Disaster preventing detection apparatus with thermal image detecting means | |
Ring | Beyond human vision: the development and applications of infrared thermal imaging | |
Conklin et al. | Applications of the pyroelectric vidicon | |
Brice III | Infrared detection of hot spots in energized transmission and distribution equipment | |
Shi et al. | Research on high-temperature protection technology for uncooled IR imager | |
Kiyota | New applications of the infrared CCD camera | |
JPH0467896B2 (en) | ||
Wallace | Instrumentation for CM 2021 lecture slides | |
Pinson et al. | The Pyroelectric Vidicon and its Use in Forest-Fire Mapping | |
Wurden | A radiation-hard, steady state, digital imaging bolometer system | |
Razeghi | Photodetectors-General Concepts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |