JPH043388Y2 - - Google Patents
Info
- Publication number
- JPH043388Y2 JPH043388Y2 JP17534284U JP17534284U JPH043388Y2 JP H043388 Y2 JPH043388 Y2 JP H043388Y2 JP 17534284 U JP17534284 U JP 17534284U JP 17534284 U JP17534284 U JP 17534284U JP H043388 Y2 JPH043388 Y2 JP H043388Y2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- tip
- impregnated
- discharge
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 10
- 239000000941 radioactive substance Substances 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 7
- 229910052741 iridium Inorganic materials 0.000 claims description 5
- 229910052762 osmium Inorganic materials 0.000 claims description 5
- 229910052702 rhenium Inorganic materials 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Discharge Lamp (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は例えばキセノンランプなど希ガスを封
入したガス入り放電管に関し、特に放電管の電極
の改良に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a gas-filled discharge tube filled with a rare gas, such as a xenon lamp, and particularly relates to improvements in the electrodes of the discharge tube.
(従来の技術)
ガス入り放電管は例えば第2図に概略断面図を
示すように、先端を尖鋭にしたタングステン棒の
電極1を二本対向させ、ガラス管2で封止し内部
にキセノンガスなどの希ガス3を封入して構成
し、両電極1間に直流電圧4を印加すると陰極側
電極から電子を放射し内部に封入した希ガス3に
衝突し放電を起して希ガス3に応じた色の発光を
し、照明用や測定光源など種々の用途に応じて用
いられている。(Prior art) A gas-filled discharge tube, for example, as shown in a schematic cross-sectional view in FIG. When a DC voltage 4 is applied between both electrodes 1, electrons are emitted from the cathode side and collide with the rare gas 3 sealed inside, causing an electric discharge and forming the rare gas 3. They emit light in different colors and are used for various purposes such as illumination and measurement light sources.
このようなガス入り放電管に使用される電極1
は、第2図に示すように、先端を尖鋭にしたタン
グステン棒やモリブデン棒が一般に使用されてい
るが、これら材料は仕事函数が高いため2000℃以
上の高温にならないと電子が放射され難く、放電
開始時のスパークおよび放電時の電子逆衝撃など
により放電中は常に2200℃位の高温にさらされて
いる。そのため第3図に電極1の先端部の拡大断
面図を示すように電極1先端の尖鋭部が損傷し丸
くなり、ますます電子が放射し難くなり放電を安
定に持続できなくなる。Electrode 1 used in such a gas-filled discharge tube
As shown in Figure 2, tungsten rods and molybdenum rods with sharp tips are generally used, but these materials have a high work function, so electrons are difficult to emit unless the temperature reaches 2000℃ or higher. During discharge, it is constantly exposed to high temperatures of around 2200°C due to sparks at the start of discharge and electron reverse shock during discharge. As a result, as shown in FIG. 3, which is an enlarged cross-sectional view of the tip of the electrode 1, the sharp tip of the electrode 1 becomes damaged and rounded, making it increasingly difficult for electrons to be emitted, making it impossible to sustain stable discharge.
上述のような欠点を解消するため第4図に電極
1の先端部の拡大断面図を示すように、タングス
テン棒6の先端部に高融点金属粉末の多孔質体の
間隙部に電子放射性物質を含浸した含浸型電極と
呼ばれるものを例えばモリブニツケルロウ材など
によりロウ付けし、その先端部を尖鋭にしたもの
が考えられている。 In order to eliminate the above-mentioned drawbacks, as shown in FIG. 4, which is an enlarged sectional view of the tip of the electrode 1, an electron radioactive substance is added to the tip of the tungsten rod 6 in the gap between the porous body of the high-melting point metal powder. It has been considered that an impregnated electrode is brazed with, for example, molybdenum wax material, and the tip thereof is made sharp.
この構造ではバリウムなど仕事函数の低い金属
が電子放射性物質として含浸されているため1000
℃位の温度になれば容易に電子放射が得られ、ま
たこれら電子放射性物質は高融点金属粉末の間隙
にあるため、電子の逆衝撃等に対しては保護さ
れ、余り高温にする必要もないので高融点金属粉
末自体の損傷もほとんど生じない。しかし比較的
電子放射が容易になるため、先端部51以外にも
テーパを付けた角部52や、タングステン棒6と
のロウ付け部53などの角部からも電子放射が行
なわれ易く放電が不安定となり易い。 In this structure, a metal with a low work function such as barium is impregnated as an electron radioactive substance, so
Electron radiation can be easily obtained at temperatures around ℃, and since these electron-radioactive substances are located in the gaps between high-melting point metal powders, they are protected from reverse impact of electrons, and there is no need to raise the temperature too high. Therefore, there is almost no damage to the high melting point metal powder itself. However, since electron emission is relatively easy, electron emission is likely to occur not only from the tip 51 but also from corners such as the tapered corner 52 and the brazed part 53 with the tungsten rod 6, preventing discharge. Easily stable.
(考案が解決しようとする問題点)
上述の如く従来の放電管の電極は高温でなけれ
ば動作せず電極先端が消耗し易かつたり、あるい
は電子放射性物質を多孔質高融点金属体に含浸さ
せたものでは安定した放電が得られないという欠
点がある。(Problems to be solved by the invention) As mentioned above, the electrodes of conventional discharge tubes do not work unless the temperature is high, and the electrode tips are easily worn out. However, the disadvantage is that stable discharge cannot be obtained.
(問題点を解決するための手段)
本考案は上述のような欠点に鑑みなされたもの
で、少なくとも電子放射側の電極の先端部を電子
放射性物質を含浸した多孔質高融点金属体を使用
し、その先端部を尖鋭にすると共に尖鋭にした先
端部に仕事函数を低下して電子放射を容易にする
Ir,Ru,Re,Osのうちいずれか1種の金属被膜
を被着することにある。(Means for solving the problem) The present invention was devised in view of the above-mentioned drawbacks, and uses a porous high melting point metal body impregnated with an electron radioactive substance at least at the tip of the electrode on the electron emission side. , the tip is made sharp, and the sharpened tip reduces the work function and facilitates electron emission.
The purpose is to deposit a metal coating of one of Ir, Ru, Re, and Os.
(作用)
本考案による放電管によれば、多孔質高融点金
属体に電子放射性物質を含浸した含浸型電極を使
用しているため、非常に低い温度で電子放射が得
られ、更に先端部のみに一層電子放射を容易にす
る金属被膜を被着しているため、先端部のみの電
子放射が行なわれ易く、他の部分からの電子放射
が行われ難く、安定した放電を得ることができ
る。(Function) The discharge tube according to the present invention uses an impregnated electrode in which a porous high-melting point metal body is impregnated with an electron radioactive substance, so electron emission can be obtained at a very low temperature, and furthermore, only the tip part Since a metal coating is applied to the electrode to facilitate electron emission, it is easy to emit electrons only from the tip, and it is difficult to emit electrons from other parts, so that a stable discharge can be obtained.
(実施例)
第1図aは本考案の一実施例である放電管の断
面図で、第1図bは電子放射する側の電極7先端
部の拡大断面図である。本実施例では電子放射側
電極7として、第4図の従来例と同様に高融点金
属棒71の先端部に多孔質高融点金属粉末焼結体
の間隙部分に電子放射性物質を含浸した含浸型電
極72をロウ材で固着し、含浸型電極72の先端
部を尖鋭化し、その先端部にIr,Ru,Re,Osな
どの仕事函数が低く電子放射を容易にする金属被
膜73を被着したものである。(Example) FIG. 1a is a cross-sectional view of a discharge tube that is an example of the present invention, and FIG. 1b is an enlarged cross-sectional view of the tip of the electrode 7 on the side that emits electrons. In this embodiment, the electron emitting side electrode 7 is of an impregnated type in which the tip of a high melting point metal rod 71 is impregnated with an electron radioactive substance in the gap between the porous high melting point metal powder sintered body and the tip of the high melting point metal rod 71 as in the conventional example shown in FIG. The electrode 72 was fixed with a brazing material, the tip of the impregnated electrode 72 was sharpened, and a metal coating 73 such as Ir, Ru, Re, Os, etc. having a low work function and facilitating electron emission was coated on the tip. It is something.
このIr,Ru,Re,Osなどの金属は仕事函数が
低く約1.6eV位で、Baなどを含む電子放射性物質
を含浸した含浸型電極の仕事函数1.8〜1.9eVより
相当低く尖鋭端部のみから安定して電子放射を得
ることができる。この場合、金属被膜73として
はIr,Ru,Re,Osなどの単体金属に限らず、こ
れらの合金や酸化物でもよく、またこれら以外の
電子放射を容易にする金属類でもよい。 Metals such as Ir, Ru, Re, and Os have a low work function of about 1.6 eV, which is considerably lower than the 1.8 to 1.9 eV work function of impregnated electrodes impregnated with electron radioactive substances such as Ba. Electron radiation can be stably obtained. In this case, the metal coating 73 is not limited to single metals such as Ir, Ru, Re, and Os, but may also be alloys or oxides of these metals, or other metals that facilitate electron emission.
この放電管で両電極間に約20Vの電圧を印加す
れば放電し、ガラス管内部に充填したガス3の種
類に応じた発光色が放出される。 When a voltage of about 20 V is applied between both electrodes of this discharge tube, a discharge occurs, and a luminescent color corresponding to the type of gas 3 filled inside the glass tube is emitted.
本実施例では電子放射側電極にのみ含浸型電極
を使用する例で説明したが、他側の電極に本考案
による電極を使用しても動作することは言う迄も
ない。 In this embodiment, an example in which an impregnated electrode is used only as the electrode on the electron emission side has been described, but it goes without saying that the operation can also be performed even if the electrode according to the present invention is used as the electrode on the other side.
(考案の効果)
本考案によれば放電管の電子放射側電極が低い
温度でしかも先端のみから電子放射し易いため電
極の損耗が少なくかつ安定した放電を得ることが
できる。(Effects of the invention) According to the invention, since the electron emitting side electrode of the discharge tube is at a low temperature and electrons are easily emitted only from the tip, stable discharge can be obtained with less wear and tear on the electrode.
第1図aは本考案の一実施例である放電管の概
略断面図、第1図bは本考案の一実施例である電
極先端部の拡大図、第2図は従来の放電管の概略
断面図、第3図は従来の放電管電極の使用状態を
示す先端部の拡大図、第4図は従来の電極先端部
の他の実施例である。
1……電極、2……ガラス管、3……希ガス、
4……電源、7……電極、71……高融点金属
棒、72……含浸型電極、73……金属被膜。
Figure 1a is a schematic cross-sectional view of a discharge tube that is an embodiment of the present invention, Figure 1b is an enlarged view of the tip of an electrode that is an embodiment of the present invention, and Figure 2 is a schematic diagram of a conventional discharge tube. A cross-sectional view, FIG. 3 is an enlarged view of the tip of a conventional discharge tube electrode showing how it is used, and FIG. 4 is another embodiment of the conventional electrode tip. 1... Electrode, 2... Glass tube, 3... Rare gas,
4... Power supply, 7 ... Electrode, 71... High melting point metal rod, 72... Impregnated electrode, 73... Metal coating.
Claims (1)
該二本の電極を内部に封止したガラス管と、該ガ
ラス管内に希ガスを封入した放電管において、少
なくとも一方の電極の先端部を多孔質高融点金属
体に電子放射性物質を含浸させた含浸型電極で形
成すると共に、該含浸型電極の尖鋭にした先端部
に仕事函数を低下させるIr,Ru,Re,Osのうち
いずれか1種類の金属膜を被着したことを特徴と
する放電管。 Two electrodes with sharp tips placed opposite each other,
In a glass tube in which the two electrodes are sealed inside, and in a discharge tube in which a rare gas is sealed in the glass tube, the tip of at least one electrode is impregnated with a porous high melting point metal body and an electron radioactive substance. A discharge characterized in that it is formed by an impregnated electrode, and a metal film of any one of Ir, Ru, Re, and Os that reduces the work function is deposited on the sharpened tip of the impregnated electrode. tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17534284U JPH043388Y2 (en) | 1984-11-19 | 1984-11-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17534284U JPH043388Y2 (en) | 1984-11-19 | 1984-11-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6190157U JPS6190157U (en) | 1986-06-12 |
JPH043388Y2 true JPH043388Y2 (en) | 1992-02-03 |
Family
ID=30732949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17534284U Expired JPH043388Y2 (en) | 1984-11-19 | 1984-11-19 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH043388Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000045417A1 (en) | 1999-01-26 | 2000-08-03 | Hamamatsu Photonics K.K. | Electrode for discharge tube and discharge tube using it |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2610597B2 (en) * | 1988-02-23 | 1997-05-14 | ウシオ電機株式会社 | Electrodes for high pressure discharge lamps |
-
1984
- 1984-11-19 JP JP17534284U patent/JPH043388Y2/ja not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000045417A1 (en) | 1999-01-26 | 2000-08-03 | Hamamatsu Photonics K.K. | Electrode for discharge tube and discharge tube using it |
Also Published As
Publication number | Publication date |
---|---|
JPS6190157U (en) | 1986-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4105910A (en) | Fluorescent lamp with an integral fail-safe and auxiliary-amalgam component | |
US5585694A (en) | Low pressure discharge lamp having sintered "cold cathode" discharge electrodes | |
US2339392A (en) | Cathode | |
DE1220039B (en) | Metal halide electric lamp | |
US4097762A (en) | Xenon arc discharge lamp having a particular electrode composition and wherein the arc discharge is obtained without heating the electrode | |
US2497496A (en) | Electrode structure for electric discharge devices or lamps | |
JPH043388Y2 (en) | ||
US2438732A (en) | Electron tube cathode | |
US2864028A (en) | Thermionic dispenser cathode | |
US11164736B2 (en) | Electrode for a discharge lamp, discharge lamp and method for producing an electrode | |
GB1430723A (en) | Mass for a high-temperature-resistant emission electrode and process for the production of said mass | |
JP2773174B2 (en) | Electrode material | |
GB1307417A (en) | Mercury-vapour discharge lamp | |
EP1150335A1 (en) | Electrode for discharge tube and discharge tube using it | |
JP3152134B2 (en) | Discharge lamp electrode and method of manufacturing the same | |
KR19990077092A (en) | Gas filled discharge gap | |
JP3363816B2 (en) | Discharge tube electrode and discharge tube using the same | |
US3837909A (en) | Coated coil emissive electrode | |
JP2754647B2 (en) | Manufacturing method of electrode material | |
US3259778A (en) | Starting of high temperature electrode lamps | |
US2446157A (en) | Electrode | |
US2600112A (en) | Electron emitter | |
JPH11288689A (en) | Electrode for discharge tube | |
JPS6336929Y2 (en) | ||
JP2623094B2 (en) | Cold cathode discharge lamp device |