JPH0433616B2 - - Google Patents
Info
- Publication number
- JPH0433616B2 JPH0433616B2 JP59091856A JP9185684A JPH0433616B2 JP H0433616 B2 JPH0433616 B2 JP H0433616B2 JP 59091856 A JP59091856 A JP 59091856A JP 9185684 A JP9185684 A JP 9185684A JP H0433616 B2 JPH0433616 B2 JP H0433616B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- injection
- temperature
- needle pin
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011347 resin Substances 0.000 claims description 42
- 229920005989 resin Polymers 0.000 claims description 42
- 238000002347 injection Methods 0.000 claims description 29
- 239000007924 injection Substances 0.000 claims description 29
- 238000001746 injection moulding Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/20—Injection nozzles
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は射出成形機における射出装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an injection device for an injection molding machine.
(従来技術)
従来の射出装置を第10図に示すと、原料樹脂
はホツパ9に供給されてシシリンダ107内に落
下し、図示しないヒータによる加熱と油圧モータ
12で駆動されるスクリユ8の回転により溶融可
塑化され、スクリユ8の前方へ送られて溶融樹脂
6として貯えられる。(Prior Art) When a conventional injection device is shown in FIG. 10, raw resin is supplied to a hopper 9 and falls into a cylinder 107, and is heated by a heater (not shown) and rotated by a screw 8 driven by a hydraulic motor 12. It is melted and plasticized, sent to the front of the screw 8, and stored as molten resin 6.
一方方向切換弁32のソレノイドbを励磁し、
油圧流入源31から方向切換弁32、比例電磁流
量調整弁33を経て圧力油を射出シリンダ11の
ヘツド側へ送ることにより、射出ラム10を経て
スクリユ8を図の左方へ前進させ、スクリユ8の
先端の溶融樹脂6をノズル103から成形品キヤ
ビテイ22へ射出する。なお、油圧モータ軸12
aは射出ラム10の内部でスプライン結合され、
両者の間で軸方向へ自由に摺動できるようになつ
ている。なお、図中1は固定側金型、2は可動側
金型、13は位置検出金具、14はスクリユ位置
センサ、34は電磁リリーフ弁、35は油圧セン
サ、130はコントローラである。 energize the solenoid b of the one-way switching valve 32,
By sending pressure oil from the hydraulic inflow source 31 through the directional switching valve 32 and the proportional electromagnetic flow rate adjustment valve 33 to the head side of the injection cylinder 11, the screw 8 is advanced to the left in the figure through the injection ram 10. The molten resin 6 at the tip is injected from the nozzle 103 into the molded product cavity 22. Note that the hydraulic motor shaft 12
a is spline-coupled inside the injection ram 10,
It is designed to be able to freely slide in the axial direction between the two. In the figure, 1 is a stationary mold, 2 is a movable mold, 13 is a position detection fitting, 14 is a screw position sensor, 34 is an electromagnetic relief valve, 35 is a hydraulic sensor, and 130 is a controller.
しかしこの従来例の場合、溶融可塑化された樹
脂がスクリユ8の前方に送られるに従い、その分
スクリユ8が右方へ後退し、ホツパ9からスクリ
ユ8の先端に至る長さがだんだん短くなる。その
ためホツパ9から供給された樹脂がスクリユ8の
先端に至るまでに受ける可塑化作用が変化し、溶
融樹脂6は軸方向に温度むらが発生する。 However, in the case of this conventional example, as the molten plasticized resin is sent forward of the screw 8, the screw 8 moves back to the right, and the length from the hopper 9 to the tip of the screw 8 gradually becomes shorter. Therefore, the plasticizing effect that the resin supplied from the hopper 9 receives before reaching the tip of the screw 8 changes, and temperature unevenness occurs in the molten resin 6 in the axial direction.
従つて軸方向に温度むらのある溶融樹脂6を射
出すると、射出樹脂温度も射出ストローク位置で
異なり、例えば第5図に示すように変化する。こ
の射出樹脂温度のむらにより、成形品キヤビテイ
22への充填時に流れ状態が不均一となり、また
冷却収縮の不均一となり、フローマーク、そり、
ひずみ、ひけなどの不具合を生じさせる欠点があ
つた。 Therefore, when molten resin 6 having temperature unevenness in the axial direction is injected, the temperature of the injected resin also varies depending on the injection stroke position, and changes as shown in FIG. 5, for example. Due to this uneven temperature of the injection resin, the flow state becomes uneven when filling the molded product cavity 22, and also the cooling shrinkage becomes uneven, resulting in flow marks, warpage, etc.
It had drawbacks that caused problems such as distortion and sink marks.
(発明が解決しようとする問題点)
本発明は従来の射出装置では避けることのでき
なかつた射出樹脂温度の不均一を改善し、成形品
質を飛躍的に向上させることを目的とするもので
ある。(Problems to be Solved by the Invention) The present invention aims to improve the non-uniformity of the temperature of the injected resin, which could not be avoided with conventional injection equipment, and to dramatically improve the molding quality. .
(問題点を解決するための手段)
このため本発明は、射出成形機において、スク
リユ先端からノズル出口の間の樹脂通路の流路方
向に、円錐状の穴と先端円錐状のニードルピンよ
りなる可変の円錐面絞りを設け、樹脂を射出する
際同可変絞りの開度を適宜に変化させて通過樹脂
の発熱量を制御するようにしてなるもので、これ
を問題点解決のための手段とするものである。(Means for Solving the Problems) Therefore, the present invention provides an injection molding machine with a conical hole and a needle pin with a conical tip in the flow direction of the resin passage between the screw tip and the nozzle outlet. A variable conical diaphragm is installed, and when resin is injected, the opening of the variable diaphragm is appropriately changed to control the amount of heat generated by the resin passing through.This is a means to solve the problem. It is something to do.
(作用)
本発明は、ノズルに円錐状の穴と先端円錐状の
ニードルピンよりなる可変の円錐面絞りを設け、
射出時その絞り量を射出ストローク位置(又は時
間)に応じて変えることにより、絞り通過樹脂の
発熱量を制御し、射出される樹脂温度を均一又は
所望の変化をするようにでき、射出ストローク方
向に温度むらがあることにより発生する成形品の
フローマーク、そり、ひずみ、ひけなどの不具合
を格段に改善できる。本発明では、ニードルピン
円錐面の絞りにより、樹脂流路が軸対称で、かつ
円錐面全周が使用されるので、通過樹脂の発熱量
が断面流路上均一になる。(Function) The present invention provides a nozzle with a variable conical surface diaphragm consisting of a conical hole and a conical needle pin at the tip,
By changing the aperture amount during injection according to the injection stroke position (or time), the amount of heat generated by the resin passing through the aperture can be controlled, the temperature of the injected resin can be made uniform or change as desired, and the injection stroke direction can be controlled. It is possible to significantly improve defects such as flow marks, warpage, distortion, and sink marks on molded products that occur due to temperature unevenness. In the present invention, the resin flow path is axially symmetrical due to the constriction of the conical surface of the needle pin, and the entire circumference of the conical surface is used, so that the calorific value of the passing resin becomes uniform on the cross-sectional flow surface.
(実施例)
以下本発明の実施例を図面について説明する
と、第1図は本発明の実施例を示す。また第1図
のノズル部分の詳細を第2図に示し、ニードルピ
ンの詳細を第3図に、レバーの詳細を第4図に示
す。さて第1図において、3はノズル、4はニー
ドルピン、5はバルブ本体、7はシリンダ、15
はレバー、16はピン、17は連結金具、18は
油圧シリンダ、19はトラニオン、20はブラケ
ツト、21は位置センサ、30はコントローラ、
36はサーボ弁である。なお、その他の符合1,
2,6,8〜12,12a,13,14,22,,
31〜35は第1図と同じであるので、部品名は
省略する。(Example) An example of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of the present invention. Further, details of the nozzle portion shown in Fig. 1 are shown in Fig. 2, details of the needle pin are shown in Fig. 3, and details of the lever are shown in Fig. 4. Now, in Figure 1, 3 is the nozzle, 4 is the needle pin, 5 is the valve body, 7 is the cylinder, 15
is a lever, 16 is a pin, 17 is a connecting fitting, 18 is a hydraulic cylinder, 19 is a trunnion, 20 is a bracket, 21 is a position sensor, 30 is a controller,
36 is a servo valve. In addition, other codes 1,
2,6,8~12,12a,13,14,22,,
Since 31 to 35 are the same as in FIG. 1, the names of the parts are omitted.
次に第2図において、3aはノズル穴、3bは
樹脂通路、4aはニードルピン4のレバー15と
の係合部、5aは樹脂通路で円周上の複数個の穴
である。また15aはレバー15のニードルピン
4との係合部、23はピン、24はボルト、25
は絞りである。 Next, in FIG. 2, 3a is a nozzle hole, 3b is a resin passage, 4a is an engaging portion of the needle pin 4 with the lever 15, and 5a is a resin passage, which is a plurality of holes on the circumference. Further, 15a is an engaging portion of the lever 15 with the needle pin 4, 23 is a pin, 24 is a bolt, 25
is the aperture.
さて第2図において、バルブボデイ5はシリン
ダ7にボルト24で取付けられ、ノズル3はバル
ブボデイ5にねじ込まれている。ニードルピン4
はバルブボデイ5に摺動自在に嵌合し、先端はノ
ズル3における樹脂通路の流路方向に形成された
円錐状の穴と、ニードルピン4の先端の円錐状部
とにより可変の円錐面絞り25を形成し、後部に
おいてレバー15と結合している。ニードルピン
4とレバー15の結合部は、第3図と第4図に示
すごとく、ニードルピン4の凹陥部4aとレバー
の2又15aが嵌り合い、レバー15によりニー
ドルピン4は軸方向前後に動かせるようになつて
いる。レバー15は、バルブ本体5に固定された
ピン23の回りに回転する。 Now, in FIG. 2, the valve body 5 is attached to the cylinder 7 with bolts 24, and the nozzle 3 is screwed into the valve body 5. needle pin 4
is slidably fitted into the valve body 5, and has a variable conical surface aperture 25 whose tip is formed by a conical hole formed in the flow direction of the resin passage in the nozzle 3 and a conical portion at the tip of the needle pin 4. , and is connected to the lever 15 at the rear. As shown in FIGS. 3 and 4, the connecting portion between the needle pin 4 and the lever 15 is such that the concave portion 4a of the needle pin 4 and the two prongs 15a of the lever fit together, and the needle pin 4 is moved back and forth in the axial direction by the lever 15. It is now movable. The lever 15 rotates around a pin 23 fixed to the valve body 5.
一方第1図において、ブラケツト20はシリン
ダ7に取付けられ、、トラニオン19により油圧
シリンダ18を回転自在に支持している。なお、
トラニオン19は、油圧シリンダ18の長手方向
中央部において両側へ突出しており、これはトラ
ニオン型油圧シリンダとして一般に使用されてい
るものである。また連結金具17は油圧シリンダ
18のロツドに取付けられ、レバー15にピン1
6で連結されており、位置センサ21は油圧シリ
ンダ18のストローク位置を検出するものであ
る。 On the other hand, in FIG. 1, a bracket 20 is attached to the cylinder 7 and rotatably supports the hydraulic cylinder 18 by a trunnion 19. In addition,
The trunnion 19 protrudes to both sides at the longitudinal center of the hydraulic cylinder 18, and is generally used as a trunnion type hydraulic cylinder. Further, the connecting fitting 17 is attached to the rod of the hydraulic cylinder 18, and the lever 15 is connected to the pin 1.
6, and the position sensor 21 detects the stroke position of the hydraulic cylinder 18.
次に以上の如く構成された実施例について作用
を説明すると、第1図において、方向切換弁32
のソレノイドbを励磁し、油圧流入源31から方
向切換弁32、比例電磁流量調整弁33を経て圧
力油を射出シリンダ11のヘツド側へ送ることに
より、射出ラム10を経てスクリユ8を図の左方
へ前進させ、同スクリユ8の先端の溶融樹脂6を
バルブ本体5、ノズル3の樹脂通路を経て成形品
キヤビテイ22へ射出する。 Next, to explain the operation of the embodiment configured as above, in FIG.
By energizing the solenoid b of The molten resin 6 at the tip of the screw 8 is injected into the molded product cavity 22 through the valve body 5 and the resin passage of the nozzle 3.
一方油圧流入源31からの圧力油は、分岐して
サーボ弁36にも通じており、同サーボ弁36に
より油圧シリンダ18への油量を制御し、従つて
油圧シリンダ18から連結金具17、ピン16、
レバー15を介してニードルピン4の動作を制御
する。そしてニードルピン4の位置により第2図
の絞り25の開度が変化する。またニードルピン
4の位置の検出は、ニードルピン4を動かす油圧
シリンダ18のストローク位置を位置センサ21
で検出することにより行なう。従つて位置センサ
21によりニードルピン4の先端の絞り25の開
度が検出され、その絞り開度はサーボ弁36によ
りフイードバツク制御される。 On the other hand, the pressure oil from the hydraulic inflow source 31 is branched and also communicated with a servo valve 36, which controls the amount of oil to the hydraulic cylinder 18, and therefore flows from the hydraulic cylinder 18 to the connecting fitting 17 and the pin. 16,
The operation of the needle pin 4 is controlled via the lever 15. The opening degree of the diaphragm 25 shown in FIG. 2 changes depending on the position of the needle pin 4. The position of the needle pin 4 is detected by a position sensor 21 that detects the stroke position of the hydraulic cylinder 18 that moves the needle pin 4.
This is done by detecting the Therefore, the position sensor 21 detects the opening degree of the throttle 25 at the tip of the needle pin 4, and the throttle opening degree is feedback-controlled by the servo valve 36.
さて第2図において、絞り25で樹脂通路が絞
られるので、射出時に溶融樹脂が絞り25を通過
する際、高速流による剪断発熱を生じ、樹脂温度
が上昇する。この温度上昇量は、絞り25の開度
を変えることにより、自由に制御できる。 Now, in FIG. 2, since the resin passage is narrowed by the throttle 25, when the molten resin passes through the throttle 25 during injection, shear heat is generated due to the high-speed flow, and the resin temperature rises. The amount of temperature rise can be freely controlled by changing the opening degree of the throttle 25.
(発明の効果)
前述の如くスクリユで可塑化された樹脂は、ス
クリユストローク位置により温度むらがあり、本
発明のような絞りなしでそのまま射出すると、例
えば第5図のような温度変化をする。これに対
し、第2図に示す絞りの開度を第8図イの曲線に
なるように制御して射出すると、絞りを通過する
溶融樹脂の温度上昇量は、同じく第8図ロに示す
ようになり、第5図の樹脂温度に第8図の温度上
昇量を加えることにより、第6図のような一定の
射出樹脂温度が得られる。(Effects of the Invention) As mentioned above, resin plasticized with a screw has temperature unevenness depending on the screw stroke position, and if it is directly injected without a restriction as in the present invention, the temperature will change as shown in Fig. 5, for example. . On the other hand, if the opening degree of the aperture shown in Fig. 2 is controlled so as to follow the curve shown in Fig. 8A, the temperature rise of the molten resin passing through the aperture will be as shown in Fig. 8B. By adding the temperature increase shown in FIG. 8 to the resin temperature shown in FIG. 5, a constant injection resin temperature as shown in FIG. 6 can be obtained.
また射出樹脂温度にむらがあると、成形品キヤ
ビテイへの充填時に流れ状態が不均一となり、ま
た冷却収縮も不均一となり、フローマーク、そ
り、ひずみ、ひけなどの不具合を生じるが、上述
の通り、本発明では一定の射出樹脂温度が得られ
るので、従来の不具合を無くすことができる。 Furthermore, if the temperature of the injected resin is uneven, the flow state will be uneven when filling the molded product cavity, and the cooling shrinkage will also be uneven, resulting in problems such as flow marks, warpage, distortion, and sink marks. In the present invention, a constant injection resin temperature can be obtained, so that the conventional problems can be eliminated.
また成形品によつては、射出樹脂温度が一定で
あるよりも、成形品形状、寸法などに適応した変
化をした方が、射出充填時の流動樹脂の冷却ある
いは剪断応力、また充填後の冷却、収縮の点から
良い場合があり、その場合にも、本発明により自
由に所望の射出樹脂温度が得られる。例えば、第
7図のように射出樹脂温度が一定勾配で下がるよ
うにしたい場合、第9図ハのような絞り開度にし
て射出し、従つて、同じく第9図ニのような温度
上昇量を得ればよい。なお、第5図〜第9図にお
いては、基準軸(横軸)を射出ストローク(位
置)にしているが、射出速度が決まれば位置と時
間は1対1で対応するから、射出ストローク(位
置)の代りに、射出時間を用いてもよい。 Also, depending on the molded product, rather than keeping the temperature of the injection resin constant, it is better to change the temperature of the injection resin in accordance with the shape and dimensions of the molded product to reduce the cooling or shear stress of the fluid resin during injection and filling, and the cooling after filling. , may be better from the viewpoint of shrinkage, and even in such cases, the present invention allows the desired injection resin temperature to be freely obtained. For example, if you want the temperature of the injected resin to decrease at a constant gradient as shown in Figure 7, you can inject at the aperture opening as shown in Figure 9 C, and the temperature rise will be as shown in Figure 9 D. All you have to do is get . In Figures 5 to 9, the reference axis (horizontal axis) is the injection stroke (position), but once the injection speed is determined, there is a one-to-one correspondence between the position and time, so the injection stroke (position) ) may be replaced by injection time.
第1図は本発明の実施例を示す射出成形機の回
路図、第2図は第1図における要部の拡大断面
図、第3図及び第4図は夫々第2図における要部
の詳細斜視図、第5図は従来の射出装置における
射出ストロークと射出樹脂温度との関係を示す線
図、第6図及び第7図は夫々本発明における射出
ストロークと射出樹脂温度との関係を示す線図、
第8図及び第9図は夫々本発明における射出スト
ロークと絞り開度並に温度上昇量との関係を示す
線図、第10図は従来の射出成形機の回路図であ
る。
図の主要部分の説明 3…ノズル、3a…ノズ
ル穴、3b…樹脂通路、4…ニードルピン、5…
バルブ本体、7…シリンダ、8…スクリユ、15
…レバー、18…油圧シリンダ、25…絞り(可
変絞り)。
Fig. 1 is a circuit diagram of an injection molding machine showing an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the main parts in Fig. 1, and Figs. 3 and 4 are details of the main parts in Fig. 2, respectively. A perspective view, FIG. 5 is a line diagram showing the relationship between the injection stroke and the injection resin temperature in a conventional injection device, and FIGS. 6 and 7 are lines showing the relationship between the injection stroke and the injection resin temperature in the present invention, respectively. figure,
8 and 9 are diagrams showing the relationship between the injection stroke, throttle opening and temperature rise in the present invention, respectively, and FIG. 10 is a circuit diagram of a conventional injection molding machine. Explanation of main parts of the figure 3... Nozzle, 3a... Nozzle hole, 3b... Resin passage, 4... Needle pin, 5...
Valve body, 7...Cylinder, 8...Screw, 15
...Lever, 18...Hydraulic cylinder, 25...Aperture (variable aperture).
Claims (1)
ル出口の間の樹脂通路の流路方向に、円錐状の穴
と先端円錐状のニードルピンよりなる可変の円錐
面絞りを設け、樹脂を射出する際同可変絞りの開
度を適宜に変化させて通過樹脂の発熱量を制御す
ることを特徴とする射出装置。1. In an injection molding machine, a variable conical surface orifice consisting of a conical hole and a needle pin with a conical tip is provided in the flow direction of the resin passage between the screw tip and the nozzle outlet, and the variable conical surface throttle is provided when injecting the resin. An injection device characterized by controlling the amount of heat generated by passing resin by appropriately changing the opening degree of the aperture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9185684A JPS60242022A (en) | 1984-05-10 | 1984-05-10 | Injection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9185684A JPS60242022A (en) | 1984-05-10 | 1984-05-10 | Injection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60242022A JPS60242022A (en) | 1985-12-02 |
JPH0433616B2 true JPH0433616B2 (en) | 1992-06-03 |
Family
ID=14038200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9185684A Granted JPS60242022A (en) | 1984-05-10 | 1984-05-10 | Injection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60242022A (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62184825A (en) * | 1986-02-12 | 1987-08-13 | Japan Steel Works Ltd:The | Evaluation of molding performance of injection molder and applicator of flow resistance therefor |
JPH07115386B2 (en) * | 1986-03-27 | 1995-12-13 | 株式会社小松製作所 | Injection molding machine |
EP0262229B1 (en) * | 1986-03-27 | 1992-12-16 | Kabushiki Kaisha Komatsu Seisakusho | Injection molding machine |
JPS63249613A (en) * | 1987-04-07 | 1988-10-17 | Komatsu Ltd | Method for controlling injection process in injection molder |
JPS63276523A (en) * | 1987-05-08 | 1988-11-14 | Komatsu Ltd | Control of injection molding machine |
JPS63283922A (en) * | 1987-05-15 | 1988-11-21 | Meiki Co Ltd | Injection molding machine |
DE69021824T2 (en) * | 1989-10-27 | 1996-04-18 | Mitsubishi Heavy Ind Ltd | Injection molding process and apparatus therefor. |
JPH03140222A (en) * | 1989-10-27 | 1991-06-14 | Mitsubishi Heavy Ind Ltd | Injection molding method and device |
US5478520A (en) * | 1989-10-27 | 1995-12-26 | Mitsubishi Jukogyo Kabushiki Kaisha | Process for injection molding and apparatus therefor |
JP2734477B2 (en) * | 1989-10-27 | 1998-03-30 | 三菱重工業株式会社 | Injection molding method and apparatus |
JP2647515B2 (en) * | 1989-10-27 | 1997-08-27 | 三菱重工業株式会社 | Injection molding method |
JPH05429A (en) * | 1991-06-24 | 1993-01-08 | Idemitsu Petrochem Co Ltd | Manufacture of foam |
DE102011054214A1 (en) * | 2011-10-05 | 2013-04-11 | Günther Heisskanaltechnik Gmbh | Method for operating a plurality of needle valve nozzles in an injection molding apparatus |
CN108582784A (en) * | 2018-05-31 | 2018-09-28 | 天津职业技术师范大学 | A kind of 3D printing head for material extrusion molding |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5355365A (en) * | 1976-10-30 | 1978-05-19 | Sumitomo Bakelite Co | Method and device for molding plastic |
-
1984
- 1984-05-10 JP JP9185684A patent/JPS60242022A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5355365A (en) * | 1976-10-30 | 1978-05-19 | Sumitomo Bakelite Co | Method and device for molding plastic |
Also Published As
Publication number | Publication date |
---|---|
JPS60242022A (en) | 1985-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6254377B1 (en) | Manifold system having flow control using extended valve pin | |
EP1810812B1 (en) | Manifold system having flow control | |
US6589039B1 (en) | Controlled injection using manifold having multiple feed channels | |
JPH0433616B2 (en) | ||
EP0409982A1 (en) | Control unit for injection molding machines | |
JPS60199623A (en) | Plastication control of injection molding machine | |
US3492700A (en) | Injection-molding machine | |
KR920009940B1 (en) | Process for injection molding and apparatus therefor | |
JPH053815B2 (en) | ||
JPS5917943B2 (en) | Mold gate control method | |
JPS6125816A (en) | Injection molding method and injection molding machine | |
JP2691043B2 (en) | Method and apparatus for controlling internal pressure of injection molding machine | |
JPH04347614A (en) | Method and apparatus for injection molding | |
JP2607961B2 (en) | Injection molding method | |
JP2515991Y2 (en) | Pressure holding device for injection molding machine | |
JPS646273Y2 (en) | ||
JPH0423895B2 (en) | ||
JPS5925634Y2 (en) | Injection molding machine | |
JPH01128818A (en) | Injection molder equipped with variable flow nozzle valve | |
JPS63109036A (en) | Mold assembly of injection molder | |
JPH08127051A (en) | Preplastication type injection molding machine |