JPH04334894A - Organic thin film type electroluminescence element - Google Patents
Organic thin film type electroluminescence elementInfo
- Publication number
- JPH04334894A JPH04334894A JP3135448A JP13544891A JPH04334894A JP H04334894 A JPH04334894 A JP H04334894A JP 3135448 A JP3135448 A JP 3135448A JP 13544891 A JP13544891 A JP 13544891A JP H04334894 A JPH04334894 A JP H04334894A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- transporting
- electron
- hole
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 27
- 238000005401 electroluminescence Methods 0.000 title abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 245
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 abstract description 34
- 239000010410 layer Substances 0.000 description 245
- 150000001875 compounds Chemical class 0.000 description 150
- 238000007738 vacuum evaporation Methods 0.000 description 34
- 229910052782 aluminium Inorganic materials 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 230000005525 hole transport Effects 0.000 description 20
- 238000000576 coating method Methods 0.000 description 18
- 238000000151 deposition Methods 0.000 description 17
- 230000008021 deposition Effects 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- 239000011521 glass Substances 0.000 description 14
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- 238000005215 recombination Methods 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- -1 aromatic tertiary amine Chemical class 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- GGNDPFHHUHTCIO-UHFFFAOYSA-N 1h-benzimidazole;perylene-3,4,9,10-tetracarboxylic acid Chemical compound C1=CC=C2NC=NC2=C1.C1=CC=C2NC=NC2=C1.C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O GGNDPFHHUHTCIO-UHFFFAOYSA-N 0.000 description 1
- WXAIEIRYBSKHDP-UHFFFAOYSA-N 4-phenyl-n-(4-phenylphenyl)-n-[4-[4-(4-phenyl-n-(4-phenylphenyl)anilino)phenyl]phenyl]aniline Chemical compound C1=CC=CC=C1C1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 WXAIEIRYBSKHDP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は発光性物質からなる発光
層を有し、電界を印加することにより電気エネルギーを
直接光エネルギーに変換でき、従来の白熱灯、蛍光灯あ
るいは発光ダイオード等とは異なり、大面積の面状発光
体の実現を可能にする電界発光素子に関する。[Industrial Application Field] The present invention has a light-emitting layer made of a luminescent substance, and can directly convert electrical energy into light energy by applying an electric field, which is different from conventional incandescent lamps, fluorescent lamps, light-emitting diodes, etc. The present invention relates to an electroluminescent device that enables the realization of a large-area planar light emitter.
【0002】0002
【従来の技術】電界発光素子ではその発光励起機構の違
いから、(1)発光層内での電子や正孔の局所的な移動
により発光体を励起し、交流電界でのみ発光する真性電
界発光素子と、(2)電極からの電子と正孔の注入とそ
の発光層内での再結合により発光体を励起し、直流電界
で作動するキャリア注入型電界発光素子の二つに分けら
れる。[Prior Art] Due to differences in the luminescence excitation mechanism of electroluminescent elements, (1) intrinsic electroluminescence, in which a luminescent body is excited by local movement of electrons and holes within a luminescent layer, and emits light only in an alternating electric field; and (2) a carrier injection type electroluminescent device that excites a luminescent material by injecting electrons and holes from an electrode and recombining them within a light emitting layer, and operates in a DC electric field.
【0003】(1)の真性電界発光型の発光素子は一般
にZnSにMn、Cu等を添加した無機化合物を発光体
とするものであるが、駆動に200V以上の高い交流電
界を必要とすること、製造コストが高いこと、輝度や耐
久性も不充分である等の問題点を有する。
(2)のキャリア注入型電界発光素子は発光層として薄
膜状有機化合物を用いるようになってから高輝度のもの
が得られるようになった。たとえば特開昭59−194
393号公報、米国特許4,539,507号明細書、
特開昭63−295695号公報、米国特許4,720
,432号明細書及び特開昭63−264692号公報
には、陽極、有機質正孔注入輸送帯、有機質電子注入性
発光体及び陰極からなる電界発光素子が開示されており
、これらに使用される材料としては、たとえば有機質正
孔注入輸送用材料として芳香族三級アミンが、また有機
質電子注入性発光材料としてアルミニウムトリスオキシ
ン等が代表的な例として挙げられている。[0003] Intrinsic electroluminescence type light emitting devices (1) generally use an inorganic compound such as ZnS with Mn, Cu, etc. added as a light emitting body, but require a high alternating current electric field of 200 V or more for driving. However, it has problems such as high manufacturing cost and insufficient brightness and durability. The carrier injection type electroluminescent device (2) has become capable of achieving high luminance since thin film-like organic compounds have been used as the light emitting layer. For example, JP-A-59-194
No. 393, U.S. Patent No. 4,539,507,
JP-A-63-295695, U.S. Patent No. 4,720
, 432 and JP-A-63-264692 disclose electroluminescent devices comprising an anode, an organic hole-injecting transport band, an organic electron-injecting luminescent material, and a cathode. Typical examples of the materials include aromatic tertiary amine as an organic hole injecting and transporting material, and aluminum trisoxine as an organic electron-injecting light-emitting material.
【0004】またJpn.Journal of
Applied Physics,Vol.27,p
713−715には陽極、有機質正孔輸送層、発光層、
有機質電子輸送層及び陰極から成る電界発光素子が報告
されており、これらに使用される材料としては、有機質
正孔輸送材料としてN,N’−ジフェニル−N,N’−
ビス(3−メチルフェニル)−1,1’−ビフェニル−
4,4’−ジアミンが、また有機質電子輸送材料として
、3,4,9,10−ペリレンテトラカルボン酸ビスベ
ンズイミダゾールが、また発光材料としてはフタロペリ
ノンが例示されている。これらの例は有機化合物を正孔
輸送材料、発光材料、電子輸送材料として用いるために
は、これらの有機化合物の各種特性を探求し、かかる特
性を効果的に組み合わせて電界発光素子とする必要性を
意味し、換言すれば広い範囲の有機化合物の研究開発が
必要であることを示している。[0004] Also, Jpn. Journal of
Applied Physics, Vol. 27, p.
713-715 includes an anode, an organic hole transport layer, a light emitting layer,
Electroluminescent devices consisting of an organic electron transport layer and a cathode have been reported, and the materials used in these devices include N,N'-diphenyl-N,N'- as an organic hole transport material.
Bis(3-methylphenyl)-1,1'-biphenyl-
Examples include 4,4'-diamine, 3,4,9,10-perylenetetracarboxylic acid bisbenzimidazole as an organic electron transport material, and phthaloperinone as a luminescent material. These examples demonstrate that in order to use organic compounds as hole-transporting materials, luminescent materials, and electron-transporting materials, it is necessary to explore various properties of these organic compounds and effectively combine these properties to create electroluminescent devices. In other words, it shows that research and development of a wide range of organic compounds is necessary.
【0005】さらに上記例を含め、有機化合物を発光体
とするキャリア注入型電界発光素子はその研究の歴史も
浅く、いまだその材料研究やデバイス化への研究が充分
になされているとは言えない。現状では更なる輝度の向
上、フルカラーディスプレーへの対応を考えた場合の青
、緑及び赤の発光色相を精密に選択できるための発光波
長の多様化あるいは耐久性の向上など、多くの課題を抱
えているのが実情である。Furthermore, research on carrier injection electroluminescent devices using organic compounds as light emitters, including the examples mentioned above, has a short history, and it cannot be said that sufficient research into materials and device development has been carried out. . Currently, there are many issues to be solved, such as further improvement in brightness, diversification of emission wavelengths so that the emission hues of blue, green, and red can be precisely selected when considering support for full-color displays, and improvement of durability. The reality is that
【0006】[0006]
【発明が解決しようとする課題】本発明は上記従来技術
の実情に鑑みてなされたものであり、その目的は発光輝
度が高く、種々の発光色相を呈するとともに、耐久性に
優れた電界発光素子を提供することである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned state of the prior art, and its purpose is to provide an electroluminescent device that has high luminance, exhibits various luminous hues, and is highly durable. The goal is to provide the following.
【0007】[0007]
【課題を解決するための手段】本発明者らは前記目的を
解決するために、電界発光素子の発光特性とその層構成
について検討したところ、次のような事実を確認した。
(1)電界発光素子において、電極より注入された正孔
と電子の再結合は、主として電荷輸送層と発光層との界
面付近で行なわれる。
(2)正孔と電子を素子中の特定の場所に局在化させる
ことにより、発光効率を向上させることができる。[Means for Solving the Problems] In order to solve the above object, the present inventors studied the light emitting characteristics of an electroluminescent device and its layer structure, and confirmed the following facts. (1) In an electroluminescent device, recombination of holes and electrons injected from an electrode mainly occurs near the interface between the charge transport layer and the light emitting layer. (2) Luminous efficiency can be improved by localizing holes and electrons in specific locations within the device.
【0008】かかる事実に基づいて、本発明者らは更に
検討を進めたところ、作製の容易性、低駆動電圧性、高
発光効率、及び耐久性等を満足する電界発光素子は、そ
の層構成が請求項1乃至6に示される構成のものである
ことを知見した。Based on this fact, the present inventors further investigated and found that an electroluminescent device that satisfies ease of manufacture, low driving voltage, high luminous efficiency, durability, etc., is based on its layer structure. It has been found that the present invention has the configurations shown in claims 1 to 6.
【0009】以下、請求項1の発明から順次説明する。
請求項1の有機薄膜型電界発光素子は陽極及び陰極によ
り挟持された複数の有機化合物層より構成される有機薄
膜型電界発光素子において、前記有機化合物層が、正孔
輸送性発光材料を含む層と、正孔輸送性発光材料と電子
輸送性材料とが共存する層よりなることを特徴としてい
る。[0009] The invention will be explained in order starting from claim 1 below. The organic thin film electroluminescent device according to claim 1 is an organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer is a layer containing a hole transporting luminescent material. It is characterized by comprising a layer in which a hole-transporting luminescent material and an electron-transporting material coexist.
【0010】つぎに、図面に沿って請求項1の電界発光
素子について説明する。図1は請求項1の発明に係る電
界発光素子の模式断面図である。図中1は基板、2は陽
極、3aは正孔輸送性発光材料を含む層、3bは正孔輸
送性発光材料と電子輸送性材料とが共存する層、及び4
は陰極である。Next, the electroluminescent device according to claim 1 will be explained with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an electroluminescent device according to a first aspect of the invention. In the figure, 1 is a substrate, 2 is an anode, 3a is a layer containing a hole-transporting luminescent material, 3b is a layer in which a hole-transporting luminescent material and an electron-transporting material coexist, and 4
is the cathode.
【0011】基板1としては通常、ガラス板や合成樹脂
シートが用いられ、発光層より放出される光に対して透
明であることが望ましい。陽極2の形成材料としては、
ニッケル、金、白金、パラジウムやこれらの合金、或い
は酸化錫(SnO2)、酸化錫インジウム(ITO)、
沃化銅などの仕事関数の大きな金属やそれらの合金、化
合物、更にはポリ(3−メチルチオフェン)、ポリピロ
ール等の導電性ポリマーなどを用いることができる。一
方陰極4の形成材料としては、仕事関数の小さな銀、錫
、鉛、マグネシウム、マンガン、アルミニウム、或いは
これらの合金が用いられる。陽極2及び陰極4として用
いる材料のうち少なくとも一方は、素子の発光波長領域
において充分透明であることが望ましい。具体的には8
0%以上の光透過率を有することが望ましい。[0011] As the substrate 1, a glass plate or a synthetic resin sheet is usually used, and it is desirable that the substrate be transparent to the light emitted from the light emitting layer. The material for forming the anode 2 is as follows:
Nickel, gold, platinum, palladium and alloys thereof, tin oxide (SnO2), indium tin oxide (ITO),
Metals with large work functions such as copper iodide, alloys and compounds thereof, and conductive polymers such as poly(3-methylthiophene) and polypyrrole can be used. On the other hand, as the material for forming the cathode 4, silver, tin, lead, magnesium, manganese, aluminum, or an alloy thereof, which has a small work function, is used. It is desirable that at least one of the materials used for the anode 2 and the cathode 4 be sufficiently transparent in the emission wavelength region of the device. Specifically 8
It is desirable to have a light transmittance of 0% or more.
【0012】また正孔輸送性発光材料としては蛍光性を
有し、正孔輸送性に優れた化合物であればいずれのもの
も使用できる。以下に本発明で好ましく使用される化合
物を表1に例示する。
〔正孔輸送性発光材料の代表例〕As the hole-transporting luminescent material, any compound having fluorescence and excellent hole-transporting properties can be used. Compounds preferably used in the present invention are illustrated in Table 1 below. [Representative examples of hole-transporting luminescent materials]
【表1】[Table 1]
【0013】電子輸送性材料としては、ペリレン誘導体
やオキサジアゾール誘導体等の電子輸送性を示す化合物
であればいずれのものも使用できる。以下に本発明で好
ましく使用される化合物を表2に例示する。
〔電子輸送性材料の代表例〕As the electron-transporting material, any compound exhibiting electron-transporting properties such as perylene derivatives and oxadiazole derivatives can be used. Compounds preferably used in the present invention are illustrated in Table 2 below. [Representative examples of electron transporting materials]
【表2】[Table 2]
【0014】また、請求項1の発明においては、電子輸
送性材料として上記表2に示される他に次の表3に示す
電子輸送性発光材料も使用できる。
〔電子輸送性発光材料の代表例〕In addition to the electron-transporting materials shown in Table 2, electron-transporting luminescent materials shown in Table 3 below can also be used. [Representative examples of electron-transporting luminescent materials]
【表3】[Table 3]
【0015】請求項1に係る電界発光素子は基板上にス
パッタリング等により陽極を設け、その上に前記した化
合物の単独、或いは他の化合物との共存状態による薄層
を、真空蒸着法や、スピンコーティング法などの湿式製
膜法により順次塗工し、次いでその上に適宜な手段によ
り陰極を設けることにより作製される。その際各層中に
含まれる正孔輸送性発光材料や電子輸送性材料は同一の
物であっても、或いは異なった化合物のいずれであって
もよい。また同一層中に複数の同種化合物を含んでも良
い。複数の化合物よりなる層を形成するときは、真空蒸
着の場合には、それぞれの化合物を同時に蒸発させる多
元蒸着法や、化合物の融点が近い場合は予め充分混合し
た状態で蒸発させても良い。湿式製膜法の場合には、そ
れぞれの化合物の混合溶液を用いて塗布することになる
。また必要に応じて陰極4の上に保護層を設けてもよい
。[0015] In the electroluminescent device according to claim 1, an anode is provided on a substrate by sputtering or the like, and a thin layer of the above-mentioned compound alone or in coexistence with other compounds is formed on the anode by vacuum evaporation or spin. It is produced by coating sequentially by a wet film forming method such as a coating method, and then providing a cathode thereon by an appropriate means. In this case, the hole-transporting luminescent material and electron-transporting material contained in each layer may be the same or different compounds. Moreover, a plurality of similar compounds may be included in the same layer. When forming a layer consisting of a plurality of compounds, in the case of vacuum evaporation, a multi-component evaporation method is used in which each compound is evaporated at the same time, or if the compounds have close melting points, they may be evaporated in a sufficiently mixed state in advance. In the case of a wet film forming method, a mixed solution of each compound is used for coating. Further, a protective layer may be provided on the cathode 4 if necessary.
【0016】さて前記したように、請求項1の発明では
有機化合物層が、正孔輸送性発光材料を含む層3aと、
正孔輸送性発光材料と電子輸送性材料とが共存する層3
bとからなることを特徴とするが、この場合、有機化合
物層を正孔輸送性発光材料に電子輸送性材料を加えた層
と電子輸送性材料を含む層としてもよい。As described above, in the invention of claim 1, the organic compound layer includes a layer 3a containing a hole-transporting luminescent material;
Layer 3 in which hole-transporting luminescent material and electron-transporting material coexist
In this case, the organic compound layer may be a layer in which an electron transporting material is added to a hole transporting luminescent material, and a layer containing an electron transporting material.
【0017】このような構成による請求項1の素子を、
陽極、正孔輸送性発光層、電子輸送層、及び陰極よりな
る従来型素子とを比較すると、次のような相違がある。
すなわち従来型素子においては前述したように、電極か
ら注入された正孔、電子は層3aと層3bとの界面付近
でのみ再結合して発光が行なわれるのに対し、請求項1
に係る構成の素子では、共存層3b全体にわたって再結
合が生じ、発光が行なわれる。この結果発光サイトが従
来に比べて大巾に増加し、発光輝度、発光効率の向上が
実現されるのである。[0017] The element according to claim 1 having such a configuration,
When compared with a conventional device consisting of an anode, a hole-transporting light-emitting layer, an electron-transporting layer, and a cathode, there are the following differences. That is, in the conventional element, as described above, holes and electrons injected from the electrode are recombined only near the interface between the layer 3a and the layer 3b to emit light.
In the device having the above configuration, recombination occurs throughout the coexistence layer 3b, and light is emitted. As a result, the number of light-emitting sites increases significantly compared to the conventional method, and improvements in luminance and luminous efficiency are realized.
【0018】次に、請求項2の電界発光素子について述
ベる。Next, the electroluminescent device according to claim 2 will be described.
【0019】請求項2の電界発光素子は陽極及び陰極に
より挟持された複数の有機化合物層より構成される有機
薄膜型電界発光素子において、前記有機化合物層が、正
孔輸送性材料を含む層と、正孔輸送性材料と電子輸送性
発光材料とが共存する層よりなることを特徴としている
。The electroluminescent device according to claim 2 is an organic thin film type electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer is a layer containing a hole transporting material. , is characterized by comprising a layer in which a hole-transporting material and an electron-transporting light-emitting material coexist.
【0020】以下図面に沿って請求項2の電界発光素子
について説明する。図1は請求項2の発明に係る電界発
光素子の模式断面図である。図中1は基板、2は陽極、
3cは正孔輸送性材料を含む層、3dは正孔輸送性材料
と電子輸送性発光材料とが共存する層、及び4は陰極で
ある。The electroluminescent device according to claim 2 will be explained below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an electroluminescent device according to a second aspect of the invention. In the figure, 1 is the substrate, 2 is the anode,
3c is a layer containing a hole-transporting material, 3d is a layer in which a hole-transporting material and an electron-transporting light-emitting material coexist, and 4 is a cathode.
【0021】基板1、陽極2及び陰極4としては請求項
1の発明と同様な材料が使用される。The substrate 1, anode 2 and cathode 4 are made of the same materials as those of the first aspect of the invention.
【0022】また正孔輸送性材料として製膜性が良く、
正孔輸送性に優れた化合物であればいずれのものも使用
できる。このような化合物としては、たとえば表4に示
すような化合物が挙げられる他、表1に示す正孔輸送性
発光材料も使用できる。[0022] Also, as a hole transporting material, it has good film forming properties,
Any compound can be used as long as it has excellent hole transport properties. Examples of such compounds include compounds shown in Table 4, and hole-transporting light-emitting materials shown in Table 1 can also be used.
【0023】〔正孔輸送性材料の代表例〕[Representative examples of hole-transporting materials]
【表4】[Table 4]
【0024】請求項2に係る電界発光素子は基板上にス
パッタリング等により陽極を設け、その上に前記した化
合物の単独、或いは他の化合物との共存状態による薄層
を、真空蒸着法や、スピンコーティング法などの湿式製
膜法により順次塗工し、次いでその上に適宜な手段によ
り陰極を設けることにより作製される。その際各層中に
含まれる正孔輸送性材料や電子輸送性発光材料は同一の
物であっても、或いは異なった化合物のいずれであって
もよい。また同一層中に複数の同種化合物を含んでも良
い。複数の化合物よりなる層を形成するときは、真空蒸
着の場合には、それぞれの化合物を同時に蒸発させる多
元蒸着法や、化合物の融点が近い場合は予め充分混合し
た状態で蒸発させても良い。湿式製膜法の場合には、そ
れぞれの化合物の混合溶液を用いて塗布することになる
。また必要に応じて陰極4の上に保護層を設けてもよい
。In the electroluminescent device according to claim 2, an anode is provided on a substrate by sputtering or the like, and a thin layer of the above-mentioned compound alone or in coexistence with other compounds is formed on the anode by vacuum evaporation or spin. It is produced by coating sequentially by a wet film forming method such as a coating method, and then providing a cathode thereon by an appropriate means. In this case, the hole-transporting material and electron-transporting luminescent material contained in each layer may be the same or different compounds. Moreover, a plurality of similar compounds may be included in the same layer. When forming a layer consisting of a plurality of compounds, in the case of vacuum evaporation, a multi-component evaporation method is used in which each compound is evaporated at the same time, or if the compounds have close melting points, they may be evaporated in a sufficiently mixed state in advance. In the case of a wet film forming method, a mixed solution of each compound is used for coating. Further, a protective layer may be provided on the cathode 4 if necessary.
【0025】さて前記したように、請求項2の発明では
有機化合物層が、正孔輸送性材料を含む層3cと、正孔
輸送性材料と電子輸送性発光材料とが共存する層3dと
からなることを特徴とするが、この場合、有機化合物層
を、正孔輸送性材料と電子輸送性発光材料とが共存する
層と、電子輸送性発光材料を含む層としてもよい。As described above, in the invention of claim 2, the organic compound layer is composed of the layer 3c containing the hole transporting material and the layer 3d containing the hole transporting material and the electron transporting luminescent material. However, in this case, the organic compound layer may be a layer in which a hole-transporting material and an electron-transporting luminescent material coexist, and a layer containing an electron-transporting luminescent material.
【0026】このような構成による請求項2の素子を、
陽極、正孔輸送層、電子輸送性発光層、及び陰極よりな
る従来型素子とを比較すると、次のような相違がある。
すなわち従来型素子においては前述したように、電極か
ら注入された正孔、電子は正孔輸送層と電子輸送性発光
層との界面付近でのみ再結合して発光が行なわれるのに
対し、請求項2の発明による構成の素子では、共存層3
d全体にわたって再結合が生じ、発光が行なわれる。こ
の結果発光サイトが従来に比べて大巾に増加し、発光輝
度、発光効率の向上が実現されるのである。[0026] The element according to claim 2 having such a configuration,
When compared with a conventional device consisting of an anode, a hole transporting layer, an electron transporting light emitting layer, and a cathode, there are the following differences. In other words, in conventional devices, holes and electrons injected from the electrode recombine only near the interface between the hole transporting layer and the electron transporting light emitting layer to emit light, as described above. In the device having the structure according to the invention in item 2, the coexistence layer 3
Recombination occurs throughout d, and light is emitted. As a result, the number of light-emitting sites increases significantly compared to the conventional method, and improvements in luminance and luminous efficiency are realized.
【0027】次に、請求項3の発明について述ベる。請
求項3の電界発光素子は、陽極及び陰極により挟持され
た複数の有機化合物層より構成される有機薄膜型電界発
光素子において、前記有機化合物層が、正孔輸送性材料
を含む層と、正孔輸送性材料と電子輸送性発光材料とが
共存する層と、電子輸送性発光材料を含む層よりなるこ
とを特徴としている。Next, the invention of claim 3 will be described. The electroluminescent device according to claim 3 is an organic thin film electroluminescent device composed of a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material and a hole transporting material. It is characterized by comprising a layer in which a hole-transporting material and an electron-transporting luminescent material coexist, and a layer containing an electron-transporting luminescent material.
【0028】以下、図面に沿って請求項3の電界発光素
子について説明する。図3は請求項3の発明に係る電界
発光素子の模式断面図である。図中1は基板、2は陽極
、3eは正孔輸送性材料を含む層、3fは正孔輸送性材
料と電子輸送性発光材料とが共存する層、3gは電子輸
送性発光材料を含む層、及び4は陰極である。The electroluminescent device according to claim 3 will be explained below with reference to the drawings. FIG. 3 is a schematic cross-sectional view of an electroluminescent device according to the third aspect of the invention. In the figure, 1 is a substrate, 2 is an anode, 3e is a layer containing a hole-transporting material, 3f is a layer in which a hole-transporting material and an electron-transporting luminescent material coexist, and 3g is a layer containing an electron-transporting luminescent material. , and 4 are cathodes.
【0029】基板1、陽極2及び陰極4としては請求項
1の発明で説明したと同様な材料が使用される。For the substrate 1, anode 2 and cathode 4, the same materials as described in the first aspect of the invention are used.
【0030】正孔輸送性材料としては製膜性が良く、正
孔輸送性に優れた化合物であればいずれのものも使用で
きるが、好ましくは表4に示すものが使用できる。As the hole-transporting material, any compound can be used as long as it has good film-forming properties and is excellent in hole-transporting properties, but preferably those shown in Table 4 can be used.
【0031】また、正孔輸送性発光材料としては、製膜
性、正孔輸送性に加えて蛍光性を有する化合物であれば
いずれのものも使用できるが、好ましくは前記表1に示
した正孔輸送性発光材料が使用される。[0031] As the hole-transporting luminescent material, any compound can be used as long as it has fluorescence in addition to film-forming properties and hole-transporting properties. A pore-transporting luminescent material is used.
【0032】電子輸送性材料としては、製膜性に優れ、
電子輸送性を示す化合物であればいずれのものも使用で
きる。このような電子輸送性材料としては、たとえば表
2に示す化合物が挙げられる。[0032] As an electron transporting material, it has excellent film forming properties,
Any compound can be used as long as it exhibits electron transport properties. Examples of such electron-transporting materials include the compounds shown in Table 2.
【0033】また電子輸送性発光材料としては、たとえ
ば表3に示すような化合物が用いられる。Further, as the electron-transporting luminescent material, compounds shown in Table 3 are used, for example.
【0034】請求項3に係る電界発光素子は基板上にス
パッタリング等により陽極を設け、その上に前記した化
合物の単独、或いは他の化合物との共存状態による薄層
を、真空蒸着法や、スピンコーティング法などの湿式製
膜法により順次塗工し、次いでその上に適宜な手段によ
り陰極を設けることにより作製される。その際各層中に
含まれる正孔輸送性材料や正孔輸送性発光材料、或いは
電子輸送性材料や電子輸送性発光材料は同一の物であっ
ても、或いは異なった化合物のいずれであってもよい。
また同一層中に複数の同種化合物を含んでも良い。複数
の化合物よりなる層を形成するときは、真空蒸着の場合
には、それぞれの化合物を同時に蒸発させる多元蒸着法
や、化合物の融点が近い場合は予め充分混合した状態で
蒸発させても良い。湿式製膜法の場合には、それぞれの
化合物の混合溶液を用いて塗布することになる。また必
要に応じて陰極4の上に保護層を設けてもよい。In the electroluminescent device according to claim 3, an anode is provided on a substrate by sputtering or the like, and a thin layer of the above-mentioned compound alone or in coexistence with other compounds is formed on the anode by vacuum evaporation or spin. It is produced by coating sequentially by a wet film forming method such as a coating method, and then providing a cathode thereon by an appropriate means. In this case, the hole-transporting material, hole-transporting luminescent material, electron-transporting material, and electron-transporting luminescent material contained in each layer may be the same or different compounds. good. Moreover, a plurality of similar compounds may be included in the same layer. When forming a layer consisting of a plurality of compounds, in the case of vacuum evaporation, a multi-component evaporation method is used in which each compound is evaporated at the same time, or if the compounds have close melting points, they may be evaporated in a sufficiently mixed state in advance. In the case of a wet film forming method, a mixed solution of each compound is used for coating. Further, a protective layer may be provided on the cathode 4 if necessary.
【0035】さて前記したように、請求項3の発明では
有機化合物層が、正孔輸送性材料を含む層3eと、正孔
輸送性材料と電子輸送性発光材料とが共存する層3f、
及び電子輸送性発光材料を含む層3gとからなることを
特徴とするが、有機化合物層は、正孔輸送性発光材料を
含む層と、正孔輸送性発光材料と電子輸送性材料とが共
存する層と、電子輸送性材料を含む層からなっていても
かまわない。As described above, in the invention according to claim 3, the organic compound layer includes a layer 3e containing a hole-transporting material, a layer 3f in which a hole-transporting material and an electron-transporting luminescent material coexist,
and a layer 3g containing an electron-transporting luminescent material, where the organic compound layer includes a layer containing a hole-transporting luminescent material, and a hole-transporting luminescent material and an electron-transporting material coexisting. It may be composed of a layer containing an electron-transporting material and a layer containing an electron-transporting material.
【0036】このような構成による請求項3の素子を、
陽極、正孔輸送層、電子輸送性発光層、及び陰極よりな
る従来型素子、或いは陽極、正孔輸送性発光層、電子輸
送層、及び陰極よりなる従来型素子と比較すると、次の
ような相違がある。[0036] The element according to claim 3 having such a configuration,
Compared to a conventional device consisting of an anode, a hole transporting layer, an electron transporting light emitting layer, and a cathode, or a conventional device consisting of an anode, a hole transporting light emitting layer, an electron transporting layer, and a cathode, There is a difference.
【0037】すなわち従来型素子においては前述したよ
うに、電極から注入された正孔、電子は正孔輸送層と電
子輸送性発光層、或いは正孔輸送性発光層と電子輸送層
との界面付近でのみ再結合して発光が行なわれるのに対
し、本発明による構成の素子では、共存層3f全体にわ
たって再結合が生じ、発光が行なわれる。この結果発光
サイトが従来に比べて大巾に増加し、発光輝度、発光効
率の向上が実現されるのである。That is, in the conventional device, as described above, holes and electrons injected from the electrodes are deposited near the interface between the hole transporting layer and the electron transporting light emitting layer, or between the hole transporting light emitting layer and the electron transporting layer. In contrast, in the element configured according to the present invention, recombination occurs throughout the entire coexistence layer 3f and light emission occurs. As a result, the number of light-emitting sites increases significantly compared to the conventional method, and improvements in luminance and luminous efficiency are realized.
【0038】次に、請求項4の発明について述ベる。Next, the invention of claim 4 will be described.
【0039】請求項4の発明は、陽極及び陰極により挟
持された複数の有機化合物層より構成される有機薄膜型
電界発光素子において、前記有機化合物層が、正孔輸送
性材料を含む層と、発光性材料を含む層と、発光性材料
と電子輸送性材料とが共存する層よりなることを特徴と
している。[0039] The invention according to claim 4 is an organic thin film type electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material; It is characterized by comprising a layer containing a luminescent material and a layer in which a luminescent material and an electron transporting material coexist.
【0040】以下、図面に沿って請求項4の電界発光素
子について説明する。図4は請求項4の発明に係る電界
発光素子の模式断面図である。図中1は基板、2は陽極
、3hは正孔輸送性材料を含む層、3iは発光材料を含
む層、3jは発光性材料と電子輸送性材料とが共存する
層、及び4は陰極である。The electroluminescent device according to claim 4 will be explained below with reference to the drawings. FIG. 4 is a schematic cross-sectional view of an electroluminescent device according to a fourth aspect of the invention. In the figure, 1 is a substrate, 2 is an anode, 3h is a layer containing a hole-transporting material, 3i is a layer containing a luminescent material, 3j is a layer in which a luminescent material and an electron-transporting material coexist, and 4 is a cathode. be.
【0041】基板1、陽極2及び陰極4としては請求項
1の発明と同様なものが使用される。As the substrate 1, anode 2, and cathode 4, those similar to those of the first aspect of the invention are used.
【0042】正孔輸送性材料としては製膜性が良く、正
孔輸送性に優れた化合物であればいずれのものも使用で
きるが、好ましくは表4に示したものと同様のものが使
用される。As the hole-transporting material, any compound can be used as long as it has good film-forming properties and has excellent hole-transporting properties, but preferably the same compounds as shown in Table 4 are used. Ru.
【0043】発光性材料としては製膜性に優れ、蛍光性
を有するたとえば表1及び表3で示される化合物が使用
される。As the luminescent material, the compounds shown in Tables 1 and 3, for example, which have excellent film-forming properties and have fluorescence, are used.
【0044】なお、表1に示す化合物は正孔輸送性材料
として、また表3に示す化合物は電子輸送性材料として
も使用することが可能である。The compounds shown in Table 1 can be used as hole-transporting materials, and the compounds shown in Table 3 can also be used as electron-transporting materials.
【0045】電子輸送性材料としは、製膜性に優れ、電
子輸送性を示す化合物であればいずれのものも使用でき
るが、表2に示す化合物が好ましく用いられる。As the electron-transporting material, any compound can be used as long as it has excellent film-forming properties and exhibits electron-transporting properties, but the compounds shown in Table 2 are preferably used.
【0046】請求項4に係る電界発光素子は基板上にス
パッタリング等により陽極を設け、その上に前記した化
合物の単独、或いは他の化合物との共存状態による薄層
を、真空蒸着法や、スピンコーティング法などの湿式製
膜法により順次塗工し、次いでその上に適宜な手段によ
り陰極を設けることにより作製される。その際各層中に
含まれる正孔輸送性材料や発光性材料、或いは電子輸送
性材料は同一の物であっても、或いは異なった化合物の
いずれであってもよい。また同一層中に複数の同種化合
物を含んでも良い。複数の化合物よりなる層を形成する
ときは、真空蒸着の場合には、それぞれの化合物を同時
に蒸発させる多元蒸着法や、化合物の融点が近い場合は
予め充分混合した状態で蒸発させても良い。湿式製膜法
の場合には、それぞれの化合物の混合溶液を用いて塗布
することになる。また必要に応じて陰極4の上に保護層
を設けてもよい。In the electroluminescent device according to claim 4, an anode is provided on a substrate by sputtering or the like, and a thin layer of the above-mentioned compound alone or in coexistence with other compounds is formed on the anode by vacuum evaporation or spin. It is produced by coating sequentially by a wet film forming method such as a coating method, and then providing a cathode thereon by an appropriate means. In this case, the hole-transporting material, luminescent material, or electron-transporting material contained in each layer may be the same or different compounds. Moreover, a plurality of similar compounds may be included in the same layer. When forming a layer consisting of a plurality of compounds, in the case of vacuum evaporation, a multi-component evaporation method is used in which each compound is evaporated at the same time, or if the compounds have close melting points, they may be evaporated in a sufficiently mixed state in advance. In the case of a wet film forming method, a mixed solution of each compound is used for coating. Further, a protective layer may be provided on the cathode 4 if necessary.
【0047】さて前記したように、請求項4の発明では
有機化合物層が、正孔輸送性材料を含む層3hと、発光
性材料を含む層3i、及び発光性材料と電子輸送性材料
とが共存する層3jとからなることを特徴とするが、有
機化合物層が正孔輸送性材料とが共存する層と、発光性
材料を含む層と、電子輸送性材料を含む層とからなって
いてもかまわない。As described above, in the invention of claim 4, the organic compound layer includes a layer 3h containing a hole-transporting material, a layer 3i containing a luminescent material, and a layer 3i containing a luminescent material and an electron-transporting material. The organic compound layer is composed of a layer in which a hole-transporting material coexists, a layer containing a luminescent material, and a layer containing an electron-transporting material. I don't mind.
【0048】このような構成による請求項4の素子を、
陽極、正孔輸送層、発光層、電子輸送層、及び陰極より
なる従来型素子と比較すると、次のような相違がある。[0048] The element according to claim 4 having such a configuration,
When compared with a conventional device consisting of an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode, there are the following differences.
【0049】すなわち従来型素子においては前述したよ
うに、電極から注入された正孔、電子は正孔輸送層と発
光層、或いは発光層と電子輸送層との界面付近でのみ再
結合して発光が行なわれるのに対し、本発明による構成
の素子では、共存層3j全体にわたって再結合が生じ、
発光が行なわれる。この結果発光サイトが従来に比べて
大巾に増加し、発光輝度、発光効率の向上が実現される
のである。In other words, in conventional devices, as described above, holes and electrons injected from the electrodes recombine only near the interface between the hole transport layer and the light emitting layer, or between the light emitting layer and the electron transport layer, and emit light. In contrast, in the device configured according to the present invention, recombination occurs throughout the coexistence layer 3j,
Light emission occurs. As a result, the number of light-emitting sites increases significantly compared to the conventional method, and improvements in luminance and luminous efficiency are realized.
【0050】次に、請求項5の発明について述ベる。Next, the invention of claim 5 will be described.
【0051】請求項5の発明は、陽極及び陰極により挟
持された複数の有機化合物層より構成される有機薄膜型
電界発光素子において、前記有機化合物層が、正孔輸送
性材料を含む層と、発光性材料と電子輸送性材料とが共
存する層よりなることを特徴としている。[0051] The invention according to claim 5 is an organic thin film type electroluminescent device composed of a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material; It is characterized by comprising a layer in which a luminescent material and an electron transporting material coexist.
【0052】以下、図面に沿って請求項5の電界発光素
子について説明する。図5は請求項5の発明に係る電界
発光素子の模式断面図である。図中1は基板、2は陽極
、3kは正孔輸送性材料を含む層、3lは発光性材料と
電子輸送性材料とが共存する層、及び4は陰極である。The electroluminescent device according to claim 5 will be explained below with reference to the drawings. FIG. 5 is a schematic cross-sectional view of an electroluminescent device according to the fifth aspect of the invention. In the figure, 1 is a substrate, 2 is an anode, 3k is a layer containing a hole-transporting material, 3l is a layer in which a luminescent material and an electron-transporting material coexist, and 4 is a cathode.
【0053】基板1、陽極2及び陰極4としては請求項
1の発明と同様なものが使用される。As the substrate 1, anode 2, and cathode 4, those similar to those of the invention according to claim 1 are used.
【0054】正孔輸送性材料としては製膜性が良く、正
孔輸送性に優れた化合物であればいずれのものも使用で
きるが、好ましくは表4に示したものと同様のものが使
用される。As the hole-transporting material, any compound can be used as long as it has good film-forming properties and has excellent hole-transporting properties, but preferably the same compounds as shown in Table 4 are used. Ru.
【0055】発光性材料としては製膜性に優れ、蛍光性
を有するたとえば表1及び表3で示される合物が使用さ
れる。なお、前記の化合物のうち、表1記載のものは正
孔輸送性材料として、また表3記載のものは電子輸送性
材料としても使用することが可能である。As the luminescent material, the compounds shown in Tables 1 and 3, for example, which have excellent film-forming properties and have fluorescence, are used. Among the above compounds, those listed in Table 1 can be used as hole-transporting materials, and those listed in Table 3 can also be used as electron-transporting materials.
【0056】電子輸送性材料としては、製膜性に優れ、
電子輸送性を示すものであればいずれのものも使できる
が、好ましくは表2に示される化合物が使用される。[0056] As an electron transporting material, it has excellent film forming properties,
Any compound that exhibits electron transport properties can be used, but preferably the compounds shown in Table 2 are used.
【0057】請求項5に係る電界発光素子は基板上にス
パッタリング等により陽極を設け、その上に前記した化
合物の単独、或いは他の化合物との共存状態による薄層
を、真空蒸着法や、スピンコーティング法などの湿式製
膜法により順次塗工し、次いでその上に適宜な手段によ
り陰極を設けることにより作製される。その際各層中に
含まれる正孔輸送性材料や発光性材料、或いは電子輸送
性材料は同一の物であっても、或いは異なった化合物の
いずれであってもよい。また同一層中に複数の同種化合
物を含んでも良い。複数の化合物よりなる層を形成する
ときは、真空蒸着の場合には、それぞれの化合物を同時
に蒸発させる多元蒸着法や、化合物の融点が近い場合は
予め充分混合した状態で蒸発させても良い。湿式製膜法
の場合には、それぞれの化合物の混合溶液を用いて塗布
することになる。また必要に応じて陰極4の上に保護層
を設けてもよい。In the electroluminescent device according to claim 5, an anode is provided on a substrate by sputtering or the like, and a thin layer of the above-mentioned compound alone or in coexistence with other compounds is formed on the anode by vacuum evaporation or spin. It is produced by coating sequentially by a wet film forming method such as a coating method, and then providing a cathode thereon by an appropriate means. In this case, the hole-transporting material, luminescent material, or electron-transporting material contained in each layer may be the same or different compounds. Moreover, a plurality of similar compounds may be included in the same layer. When forming a layer consisting of a plurality of compounds, in the case of vacuum evaporation, a multi-component evaporation method is used in which each compound is evaporated at the same time, or if the compounds have close melting points, they may be evaporated in a sufficiently mixed state in advance. In the case of a wet film forming method, a mixed solution of each compound is used for coating. Further, a protective layer may be provided on the cathode 4 if necessary.
【0058】さて前記したように、請求項5の発明では
有機化合物層が、正孔輸送性材料を含む層3kと、発光
性材料と電子輸送性材料とが共存する層3lとからなる
ことを特徴とするが、有機化合物層が、正孔輸送性材料
と発光性材料とが共存する層と、電子輸送性発光材料を
含む層とからなっていてもよい。As described above, in the invention of claim 5, the organic compound layer is composed of the layer 3k containing a hole transporting material and the layer 3l containing a luminescent material and an electron transporting material. However, the organic compound layer may be composed of a layer in which a hole-transporting material and a luminescent material coexist, and a layer containing an electron-transporting luminescent material.
【0059】このような構成による請求項5の素子を、
陽極、正孔輸送層、発光層、電子輸送層、及び陰極より
なる従来型素子、或いは陽極、正孔輸送性発光層、電子
輸送層、及び陰極よりなる従来型素子と比較すると、次
のような相違がある。The element according to claim 5 having such a configuration,
Compared to a conventional device consisting of an anode, a hole transporting layer, a light emitting layer, an electron transport layer, and a cathode, or a conventional device consisting of an anode, a hole transporting light emitting layer, an electron transport layer, and a cathode, There is a difference.
【0060】すなわち従来型素子においては前述したよ
うに、電極から注入された正孔、電子は正孔輸送層と発
光層、或いは発光層と電子輸送層との界面付近でのみ再
結合して発光が行なわれるのに対し、本発明による構成
の素子では、共存層3l全体にわたって再結合が生じ、
発光が行なわれる。この結果発光サイトが従来に比べて
大巾に増加し、発光輝度、発光効率の向上が実現される
のである。In other words, in conventional devices, as described above, holes and electrons injected from the electrodes recombine and emit light only near the interface between the hole transport layer and the light emitting layer, or between the light emitting layer and the electron transport layer. In contrast, in the device configured according to the present invention, recombination occurs throughout the coexistence layer 3l,
Light emission occurs. As a result, the number of light-emitting sites increases significantly compared to the conventional method, and improvements in luminance and luminous efficiency are realized.
【0061】次に、請求項6の発明について述ベる。Next, the invention of claim 6 will be described.
【0062】請求項6の発明は、陽極及び陰極により挟
持された複数の有機化合物層より構成される有機薄膜型
電界発光素子において、前記有機化合物層が、正孔輸送
性材料を含む層と、発光性材料を含む層と、発光性材料
と電子輸送性材料とが共存する層よりなることを特徴と
している。[0062] The invention according to claim 6 is an organic thin film type electroluminescent device composed of a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material; It is characterized by comprising a layer containing a luminescent material and a layer in which a luminescent material and an electron transporting material coexist.
【0063】以下、図面に沿って請求項6の電界発光素
子について説明する。図6は請求項6の発明に係る電界
発光素子の模式断面図である。図中1は基板、2は陽極
、3mは正孔輸送性材料を含む層、3nは発光性材料を
含む層、3oは発光性材料と電子輸送性材料とが共存す
る層、3p電子輸送性材料を含む層、及び4は陰極であ
る。The electroluminescent device according to claim 6 will be described below with reference to the drawings. FIG. 6 is a schematic cross-sectional view of an electroluminescent device according to a sixth aspect of the invention. In the figure, 1 is the substrate, 2 is the anode, 3m is a layer containing a hole-transporting material, 3n is a layer containing a luminescent material, 3o is a layer in which a luminescent material and an electron-transporting material coexist, 3p is an electron-transporting material. The layer containing the material, and 4 is the cathode.
【0064】基板1、陽極2及び陰極4としては請求項
1の発明と同様なものが使用される。As the substrate 1, anode 2, and cathode 4, those similar to those of the first aspect of the invention are used.
【0065】正孔輸送性材料としては製膜性が良く、正
孔輸送性に優れた化合物であればいずれのものも使用で
きるが、表4に示したものと同様なものを使用するのが
好ましい。As the hole-transporting material, any compound can be used as long as it has good film-forming properties and has excellent hole-transporting properties, but it is preferable to use the same compounds as shown in Table 4. preferable.
【0066】発光性材料としては製膜性に優れ、蛍光性
を有する化合物が使用されるが、好ましくは表1及び表
3で示したものが用いられる。この場合、表1に示した
化合物は正孔輸送性材料として、また表3に示した化合
物は電子輸送性材料としても用いられる。[0066] As the luminescent material, compounds having excellent film-forming properties and fluorescence are used, and those shown in Tables 1 and 3 are preferably used. In this case, the compounds shown in Table 1 are used as hole-transporting materials, and the compounds shown in Table 3 are also used as electron-transporting materials.
【0067】また、電子輸送性材料としては、製膜性に
優れ、電子輸送性を示す化合物であればいずれも使用で
きるが、好ましくは表2に記載したものが使用される。[0067] As the electron-transporting material, any compound can be used as long as it has excellent film-forming properties and exhibits electron-transporting properties, but those listed in Table 2 are preferably used.
【0068】請求項6に係る電界発光素子は基板上にス
パッタリング等により陽極を設け、その上に前記した化
合物の単独、或いは他の化合物との共存状態による薄層
を、真空蒸着法や、スピンコーティング法などの湿式製
膜法により順次塗工し、次いでその上に適宜な手段によ
り陰極を設けることにより作製される。その際各層中に
含まれる正孔輸送性材料や発光性材料、或いは電子輸送
性材料は同一の物であっても、或いは異なった化合物の
いずれであってもよい。また同一層中に複数の同種化合
物を含んでも良い。複数の化合物よりなる層を形成する
ときは、真空蒸着の場合には、それぞれの化合物を同時
に蒸発させる多元蒸着法や、化合物の融点が近い場合は
予め充分混合した状態で蒸発させても良い。湿式製膜法
の場合には、それぞれの化合物の混合溶液を用いて塗布
することになる。また必要に応じて陰極4の上に保護層
を設けてもよい。In the electroluminescent device according to claim 6, an anode is provided on a substrate by sputtering or the like, and a thin layer of the above-mentioned compound alone or in coexistence with other compounds is formed on the anode by vacuum evaporation or spin. It is produced by coating sequentially by a wet film forming method such as a coating method, and then providing a cathode thereon by an appropriate means. In this case, the hole-transporting material, luminescent material, or electron-transporting material contained in each layer may be the same or different compounds. Moreover, a plurality of similar compounds may be included in the same layer. When forming a layer consisting of a plurality of compounds, in the case of vacuum evaporation, a multi-component evaporation method is used in which each compound is evaporated at the same time, or if the compounds have close melting points, they may be evaporated in a sufficiently mixed state in advance. In the case of a wet film forming method, a mixed solution of each compound is used for coating. Further, a protective layer may be provided on the cathode 4 if necessary.
【0069】さて前記したように、請求項6の発明では
有機化合物層が、正孔輸送性材料を含む層3mと、発光
性材料を含む層3nと、発光性材料と電子輸送性材料と
が共存する層3o、及び電子輸送性材料を含む層3pと
からなることを特徴とするが、有機化合物層を、正孔輸
送性発光材料を含む層と、正孔輸送性材料と発光性材料
とが共存する層と、発光性材料を含む層、及び電子輸送
性発光材料を含む層としてもよく、また有機化合物層を
、正孔輸送性材料を含む層と、正孔輸送性材料と発光性
材料とが共存する層と、発光性材料を含む層と、発光性
材料と電子輸送性材料とが共存する層及び電子輸送性材
料を含む層としてもよい。As described above, in the invention of claim 6, the organic compound layer includes a layer 3m containing a hole transporting material, a layer 3n containing a luminescent material, and a layer 3n containing a luminescent material and an electron transporting material. The organic compound layer is composed of a layer 3o that coexists with a layer 3p containing an electron-transporting material, and a layer 3p containing a hole-transporting luminescent material, a hole-transporting material, and a luminescent material. The organic compound layer may be a layer containing a hole-transporting material, a layer containing a luminescent material, and a layer containing an electron-transporting luminescent material. A layer containing a luminescent material, a layer containing a luminescent material, a layer containing a luminescent material and an electron-transporting material, and a layer containing an electron-transporting material may be used.
【0070】このような構成による請求項6の素子を、
陽極、正孔輸送層、発光層、電子輸送層、及び陰極より
なる従来型素子と比較すると、次のような相違がある。[0070] The element according to claim 6 having such a configuration,
When compared with a conventional device consisting of an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode, there are the following differences.
【0071】すなわち従来型素子においては前述したよ
うに、電極から注入された正孔、電子は正孔輸送層と発
光層、或いは発光層と電子輸送層との界面付近でのみ再
結合して発光が行なわれるのに対し、請求項6に係る構
成の素子では、共存層3o全体にわたって再結合が生じ
、発光が行なわれる。この結果発光サイトが従来に比べ
て大巾に増加し、発光輝度、発光効率の向上が実現され
るのである。In other words, in conventional devices, as described above, holes and electrons injected from the electrodes recombine and emit light only near the interface between the hole transport layer and the light emitting layer, or the light emitting layer and the electron transport layer. In contrast, in the device having the configuration according to the sixth aspect, recombination occurs throughout the coexistence layer 3o, and light emission occurs. As a result, the number of light-emitting sites increases significantly compared to the conventional method, and improvements in luminance and luminous efficiency are realized.
【0072】[0072]
【実施例】以下、実施例により本発明を更に説明する。[Examples] The present invention will be further explained below with reference to Examples.
【0073】実施例1
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
正孔輸送性発光材料(表1の化合物No.3)からなる
、厚さ750Åの正孔輸送性発光層を真空蒸着により形
成した。次に前記表1の化合物No.3及び電子輸送性
材料(表2の化合物No.1)を、ほぼ同じ蒸着レート
(約2Å/sec)で共蒸着し、正孔輸送性発光材料と
電子輸送性材料との共存層を、約250Åの厚さに形成
した。最後にアルミニウムからなる陰極約1000Åを
同じく真空蒸着により形成し、図1に示すような素子を
作製した(素子A)。蒸着時の真空度は約5.0×10
−6Torr、基板温度は室温である。比較のために前
記表1の化合物No.3からなる正孔輸送性発光層、及
び表2の化合物No.1からなる電子輸送層がそれぞれ
約500Åの厚さに積層された以外は、上記条件と全く
同様にして素子を作製した(素子P1)。これらの素子
の陽極及び陰極にリード線を介して直流電源を接続し、
駆動したところ、素子P1では24Vの電圧を印加した
時に電流密度87.1mA /cm2の電流が流れ、
529cd/m2の輝度の青色発光が観測された。この
素子の最大発光効率は0.26lm/Wであった。これ
に対して素子Aでは同じ電流密度で輝度は約2.1倍、
また最大発光効率は約1.4倍に向上した。しかも発光
の色調には変化が認められなかった。Example 1 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
A hole-transporting luminescent layer made of a hole-transporting luminescent material (compound No. 3 in Table 1) and having a thickness of 750 Å was formed by vacuum deposition. Next, Compound No. of Table 1 above. 3 and an electron-transporting material (compound No. 1 in Table 2) were co-deposited at approximately the same deposition rate (approximately 2 Å/sec) to form a co-existence layer of the hole-transporting luminescent material and the electron-transporting material at approximately It was formed to a thickness of 250 Å. Finally, a cathode made of aluminum having a thickness of about 1000 Å was similarly formed by vacuum evaporation to produce a device as shown in FIG. 1 (device A). The degree of vacuum during deposition is approximately 5.0 x 10
−6 Torr, and the substrate temperature is room temperature. For comparison, Compound No. 1 in Table 1 above was used. A hole-transporting light-emitting layer consisting of Compound No. 3 in Table 2; A device was fabricated under exactly the same conditions as above, except that electron transport layers each consisting of P1 were laminated to a thickness of about 500 Å (device P1). Connect a DC power source to the anode and cathode of these elements via lead wires,
When driven, when a voltage of 24 V was applied to element P1, a current with a current density of 87.1 mA/cm2 flowed.
Blue light emission with a brightness of 529 cd/m2 was observed. The maximum luminous efficiency of this device was 0.26 lm/W. On the other hand, in element A, the brightness is approximately 2.1 times higher at the same current density.
Furthermore, the maximum luminous efficiency was improved by about 1.4 times. Furthermore, no change was observed in the color tone of the emitted light.
【0074】実施例2
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物No.3及び表2の化合物No.1を
、ほぼ同じ蒸着レート(約2Å/sec)で共蒸着し、
正孔輸送性発光材料と電子輸送性材料との共存層を、約
250Åの厚さに形成した。次に前記化合物表2の化合
物No.1からなる厚さ750Åの電子輸送層と、アル
ミニウムからなる陰極約1000Åを同じく真空蒸着に
より形成し、素子を作製した(素子B)。蒸着時の真空
度は約5.0×10−6Torr、基板温度は室温であ
る。素子Bを実施例1と同様に直流電源に接続し、駆動
したところ、比較例P1に対して同じ電流密度での輝度
は約20.0倍、また最大発光効率は約1.2倍に向上
した。しかも発光の色調には変化が認められなかった。Example 2 On a glass plate with an anode made of indium tin oxide (ITO) having a size of 3 mm x 3 mm and a thickness of 1000 Å,
Compound No. in Table 1 above. 3 and Compound No. 3 in Table 2. 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec),
A coexistence layer of a hole-transporting luminescent material and an electron-transporting material was formed to a thickness of about 250 Å. Next, Compound No. 2 in Compound Table 2 above. An electron transport layer of 750 Å thick made of 1 and a cathode of about 1000 Å made of aluminum were also formed by vacuum evaporation to produce a device (device B). The degree of vacuum during vapor deposition was approximately 5.0×10 −6 Torr, and the substrate temperature was room temperature. When element B was connected to a DC power source and driven in the same manner as in Example 1, the luminance at the same current density was approximately 20.0 times higher than that of Comparative Example P1, and the maximum luminous efficiency was approximately 1.2 times higher. did. Furthermore, no change was observed in the color tone of the emitted light.
【0075】実施例3
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表4の化合物No.1からなる、厚さ750Åの正
孔輸送層を真空蒸着により形成した。次に前記表4の化
合物No.1及び表3の化合物No.1を、ほぼ同じ蒸
着レート(約2Å/sec)で共蒸着し、正孔輸送性材
料と電子輸送性発光材料との共存層を、約250Åの厚
さに形成した。最後にアルミニウムからなる陰極約10
00Åを同じく真空蒸着により形成し、図1に示すよう
な素子を作製した(素子C)。蒸着時の真空度は約5.
0×10 6Torr、基板温度は室温である。比較
のために前記表4の化合物No.1からなる正孔輸送層
、及び表3の化合物No.1からなる電子輸送性発光層
がそれぞれ約500Åの厚さに積層された以外は、上記
条件と全く同様にして素子を作製した(素子P2)。こ
れらの素子の陽極及び陰極にリード線を介して直流電源
を接続し、駆動したところ、素子P2では34Vの電圧
を印加した時に電流密度201mA/cm2の電流が流
れ、1940cd/m2の輝度の黄緑色発光が観測され
た。この素子の最大発光効率は0.36lm/Wであっ
た。これに対して素子Cでは同じ電流密度で輝度は約1
.3倍、また最大発光効率は約1.2倍に向上した。
発光の色調には変化が認められなかった。Example 3 On a glass plate on which an anode made of indium tin oxide (ITO) with a size of 3 mm x 3 mm and a thickness of 1000 Å was formed,
Compound No. in Table 4 above. A hole transport layer of 750 Å thick was formed by vacuum evaporation. Next, Compound No. of Table 4 above. 1 and compound No. 1 in Table 3. 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec) to form a co-existence layer of a hole transporting material and an electron transporting light emitting material to a thickness of approximately 250 Å. Finally, a cathode made of aluminum about 10
00 Å was also formed by vacuum evaporation to produce a device as shown in FIG. 1 (device C). The degree of vacuum during deposition was approximately 5.
0×10 6 Torr, and the substrate temperature was room temperature. For comparison, Compound No. 4 in Table 4 above was used. A hole transport layer consisting of Compound No. 1 in Table 3; A device was fabricated under exactly the same conditions as above, except that the electron-transporting light-emitting layers each consisting of 1 were laminated to a thickness of about 500 Å (device P2). When a DC power supply was connected to the anode and cathode of these elements via lead wires and they were driven, when a voltage of 34V was applied to element P2, a current with a current density of 201 mA/cm2 flowed, and a yellow color with a brightness of 1940 cd/m2 was generated. Green light emission was observed. The maximum luminous efficiency of this device was 0.36 lm/W. On the other hand, in element C, the brightness is about 1 at the same current density.
.. The maximum luminous efficiency was improved by 3 times, and the maximum luminous efficiency was improved by about 1.2 times. No change was observed in the color tone of the emitted light.
【0076】実施例4
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表4の化合物NO.1及び表3の化合物No.1を
、ほぼ同じ蒸着レート(約2Å/sec)で共蒸着し、
正孔輸送性材料と電子輸送性発光材料との共存層を、約
250Åの厚さに形成した。次に前記表3の化合物No
.1からなる厚さ750Åの電子輸送性発光層と、アル
ミニウムからなる陰極約1000Åを同じく真空蒸着に
より形成し、素子を作製した(素子D)。蒸着時の真空
度は約5.0×10−6Torr、基板温度は室温であ
る。素子Dを実施例1と同様に直流電源に接続し、駆動
したところ、比較例P2に対して同じ電流密度での輝度
は約1.4倍、また最大発光効率は約1.2倍に向上し
た。しかも発光の色調には変化が認められなかった。Example 4 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound NO. of Table 4 above. 1 and compound No. 1 in Table 3. 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec),
A coexistence layer of a hole-transporting material and an electron-transporting light-emitting material was formed to a thickness of about 250 Å. Next, compound No. of Table 3 above
.. An electron transporting light emitting layer having a thickness of 750 Å made of 1 and a cathode having a thickness of about 1000 Å made of aluminum were similarly formed by vacuum evaporation to produce a device (device D). The degree of vacuum during vapor deposition was approximately 5.0×10 −6 Torr, and the substrate temperature was room temperature. When element D was connected to a DC power source and driven in the same manner as in Example 1, the luminance at the same current density was approximately 1.4 times higher than that of Comparative Example P2, and the maximum luminous efficiency was approximately 1.2 times higher. did. Furthermore, no change was observed in the color tone of the emitted light.
【0077】実施例5
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表4の化合物No.1からなる、厚さ500Åの正
孔輸送層を真空蒸着により形成した。次に前記表4の化
合物No.1及び表3の化合物No.1を、ほぼ同じ蒸
着レート(約2Å/sec)で共蒸着し、正孔輸送性材
料と電子輸送性発光材料との共存層を、約50Åの厚さ
に形成した。更にその上に前記表3の化合物No.1か
らなる電子輸送性発光層約500Å、最後にアルミニウ
ムからなる陰極約1000Åを同じく真空蒸着により形
成し、図3に示すような素子を作製した(素子E)。蒸
着時の真空度は約5.0×10−6Torr、基板温度
は室温である。比較のために前記表4の化合物No.1
からなる正孔輸送層、及び表3の化合物No.1からな
る電子輸送性発光層がそれぞれ約500Åの厚さに積層
された以外は、上記条件と全く同様にして素子を作製し
た(素子P3)。これらの素子の陽極及び陰極にリード
線を介して直流電源を接続し、駆動したところ、素子P
3では34Vの電圧を印加した時に電流密度201mA
/cm2の電流が流れ、1940cd/m2の輝度の黄
緑色発光が観測された。この素子の最大発光効率は0.
36lm/Wであった。これに対して素子Eでは同じ電
流密度で輝度は約1.4倍、また最大発光効率は約1.
3倍に向上した。発光の色調には変化が認められなかっ
た。Example 5 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound No. in Table 4 above. A hole transport layer of 500 Å thick was formed by vacuum evaporation. Next, Compound No. of Table 4 above. 1 and compound No. 1 in Table 3. 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec) to form a coexistence layer of a hole transporting material and an electron transporting luminescent material to a thickness of approximately 50 Å. Furthermore, compound No. 3 of Table 3 above was added. An electron-transporting light-emitting layer of about 500 Å made of 1 and finally a cathode of about 1000 Å made of aluminum were formed by vacuum evaporation to produce a device as shown in FIG. 3 (device E). The degree of vacuum during vapor deposition was approximately 5.0×10 −6 Torr, and the substrate temperature was room temperature. For comparison, Compound No. 4 in Table 4 above was used. 1
and a hole transport layer consisting of Compound No. in Table 3. A device was fabricated under exactly the same conditions as above, except that the electron-transporting light-emitting layers each consisting of 1 were laminated to a thickness of about 500 Å (device P3). When a DC power supply was connected to the anode and cathode of these elements via lead wires and driven, the element P
3, the current density is 201mA when a voltage of 34V is applied.
A current of /cm2 was passed, and yellow-green light emission with a brightness of 1940 cd/m2 was observed. The maximum luminous efficiency of this element is 0.
It was 36 lm/W. On the other hand, in element E, the brightness is approximately 1.4 times higher at the same current density, and the maximum luminous efficiency is approximately 1.
Improved by 3 times. No change was observed in the color tone of the emitted light.
【0078】実施例6
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物No.3からなる、厚さ500Åの正
孔輸送性発光層を真空蒸着により形成した。次に前記表
1の化合物No.3及び表2の化合物No.1を、ほぼ
同じ蒸着レート(約2Å/sec)で共蒸着し、正孔輸
送性発光材料と電子輸送性材料との共存層を、約50Å
の厚さに形成した。更にその上に前記表2の化合物No
.1からなる電子輸送性発光層約500Å、最後にアル
ミニウムからなる陰極約1000Åを同じく真空蒸着に
より形成し、素子を作製した(素子F)。蒸着時の真空
度は約5.0×10−6Torr、基板温度は室温であ
る。比較のために前記表1の化合物No.3からなる正
孔輸送性発光層、及び表2の化合物No.1からなる電
子輸送性層がそれぞれ約500Åの厚さに積層された以
外は、上記条件と全く同様にして素子を作製した(素子
P4)。これらの素子の陽極及び陰極にリード線を介し
て直流電源を接続し、駆動したところ、素子P4では2
4Vの電圧を印加した時に電流密度87.1mA/cm
2の電流が流れ、529cd/m2の輝度の青色発光が
観測された。この素子の最大発光効率は0.26lm/
Wであった。これに対して素子Fでは同じ電流密度で輝
度は約2.7倍、また最大発光効率は約1.8倍に向上
した。発光の色調には変化が認められなかった。Example 6 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound No. in Table 1 above. A hole-transporting light-emitting layer having a thickness of 500 Å was formed by vacuum evaporation. Next, Compound No. of Table 1 above. 3 and Compound No. 3 in Table 2. 1 was co-evaporated at approximately the same deposition rate (approximately 2 Å/sec), and a co-evaporation layer of a hole-transporting luminescent material and an electron-transporting material was formed at a thickness of approximately 50 Å.
It was formed to a thickness of . Furthermore, compound No. of Table 2 above is added.
.. An electron-transporting light-emitting layer of about 500 Å made of aluminum and finally a cathode of about 1000 Å made of aluminum were also formed by vacuum evaporation to produce a device (device F). The degree of vacuum during vapor deposition was approximately 5.0×10 −6 Torr, and the substrate temperature was room temperature. For comparison, Compound No. 1 in Table 1 above was used. A hole-transporting light-emitting layer consisting of Compound No. 3 in Table 2; A device was produced under exactly the same conditions as above, except that the electron transporting layers each consisting of P1 were laminated to a thickness of about 500 Å (device P4). When a DC power supply was connected to the anode and cathode of these elements via lead wires and the elements were driven, 2
Current density 87.1mA/cm when applying a voltage of 4V
2 current flowed, and blue light emission with a brightness of 529 cd/m2 was observed. The maximum luminous efficiency of this element is 0.26lm/
It was W. On the other hand, in element F, the luminance was improved by about 2.7 times and the maximum luminous efficiency was improved by about 1.8 times at the same current density. No change was observed in the color tone of the emitted light.
【0079】実施例7
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表4の化合物No.1からなる、厚さ500Åの正
孔輸送層を真空蒸着により形成した。次に前記表3の化
合物No.1からなる発光層を、約50Åの厚さに形成
した。更にその上に前記表4の化合物No.1及び表2
の化合物No.1を、ほぼ同じ蒸着レート(約2Å/s
ec)で共蒸着し、発光性材料と電子輸送性材料とが共
存する層500Åを形成した。最後にアルミニウムから
なる陰極約1000Åを同じく真空蒸着により形成し、
図4に示すような素子を作製した(素子G)。蒸着時の
真空度は約5.0×10−6Torr、基板温度は室温
である。比較のために前記表4の化合物No.1からな
る正孔輸送層500Å、表3の化合物No.1からなる
発光層約50Å、及び表2の化合物No.1からなる電
子輸送性層約500Åが順次積層された以外は、上記条
件と全く同様にして素子を作製した(素子P5)。これ
らの素子の陽極及び陰極にリード線を介して直流電源を
接続し、駆動したところ、素子Gでは25Vの電圧を印
加した時に電流密度186mA/cm2の電流が流れ、
2360cd/m2の輝度の黄緑色発光が観測された。
この素子の最大発光効率は0.42lm/Wであった。
これに対して素子P5では同じ電流密度で輝度は約1.
3倍、また最大発光効率は約1.2倍に向上した。発光
の色調には変化が認められなかった。Example 7 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound No. in Table 4 above. A hole transport layer of 500 Å thick was formed by vacuum evaporation. Next, Compound No. of Table 3 above. A light-emitting layer consisting of 1 was formed to a thickness of about 50 Å. Furthermore, compound No. 1 in Table 4 above was added. 1 and Table 2
Compound No. 1 at approximately the same deposition rate (approximately 2 Å/s
ec) to form a layer of 500 Å in which a luminescent material and an electron transporting material coexist. Finally, a cathode of approximately 1000 Å made of aluminum is formed by vacuum evaporation,
A device as shown in FIG. 4 was manufactured (device G). The degree of vacuum during vapor deposition was approximately 5.0×10 −6 Torr, and the substrate temperature was room temperature. For comparison, Compound No. 4 in Table 4 above was used. A hole transport layer of 500 Å consisting of Compound No. 1 in Table 3; A light-emitting layer of about 50 Å consisting of Compound No. 1 in Table 2, A device was fabricated under exactly the same conditions as described above, except that about 500 Å of electron transporting layer consisting of 1 was sequentially laminated (device P5). When a DC power supply was connected to the anode and cathode of these elements via lead wires and they were driven, a current with a current density of 186 mA/cm2 flowed in element G when a voltage of 25 V was applied.
Yellow-green light emission with a brightness of 2360 cd/m2 was observed. The maximum luminous efficiency of this device was 0.42 lm/W. On the other hand, in element P5, the brightness is about 1.0 at the same current density.
The maximum luminous efficiency was improved by 3 times, and the maximum luminous efficiency was improved by about 1.2 times. No change was observed in the color tone of the emitted light.
【0080】実施例8
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表4の化合物NO.1及び表3の化合物No.1を
、ほぼ同じ蒸着レート(約2Å/sec)で共蒸着し、
正孔輸送性材料と発光性材料との共存層を、約500Å
の厚さに形成した。次に前記表3の化合物No.1から
なる厚さ50Åの発光層を同じく真空蒸着により形成し
た。更にその上に前記表2の化合物No.1からなる電
子輸送層約500Å、最後にアルミニウムからなる陰極
約1000Åを同じく真空蒸着により形成し、素子を作
製した(素子H)。蒸着時の真空度は約5.0×10−
6Torr、基板温度は室温である。素子Hを実施例1
と同様に直流電源に接続し、駆動したところ、比較例P
5に対して同じ電流密度での輝度は約1.4倍、また最
大発光効率は約1.3倍に向上した。しかも発光の色調
には変化が認められなかった。Example 8 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound NO. of Table 4 above. 1 and compound No. 1 in Table 3. 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec),
The coexistence layer of the hole transporting material and the luminescent material is approximately 500 Å thick.
It was formed to a thickness of . Next, Compound No. of Table 3 above. A 50 Å thick light-emitting layer made of 1 was also formed by vacuum evaporation. Furthermore, compound No. 2 of Table 2 above was added. An electron transport layer of about 500 Å made of aluminum and finally a cathode of about 1000 Å made of aluminum were also formed by vacuum evaporation to produce a device (device H). The degree of vacuum during evaporation is approximately 5.0 x 10-
6 Torr, and the substrate temperature was room temperature. Example 1 of element H
When connected to a DC power source and driven in the same way as, Comparative Example P
At the same current density, the luminance was improved by about 1.4 times, and the maximum luminous efficiency was improved by about 1.3 times compared to that of No. 5. Furthermore, no change was observed in the color tone of the emitted light.
【0081】実施例9
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物No.3からなる、厚さ500Åの正
孔輸送層を真空蒸着により形成した。次に前記表3の化
合物No.1及び表2の化合物No.1を、ほぼ同じ蒸
着レート(約2Å/sec)で共蒸着し、発光性材料と
電子輸送性材料とが共存する層500Åを形成した。最
後にアルミニウムからなる陰極約1000Åを同じく真
空蒸着により形成し、図5に示すような素子を作製した
(素子I)。蒸着時の真空度は約5.0×10−6To
rr、基板温度は室温である。比較のために前記表1の
化合物No.3からなる正孔輸送層500Å、表3の化
合物No.1からなる発光層約50Å、及び表2の化合
物No.1からなる電子輸送性層約500Åを順次積層
した以外は、上記条件と全く同様にして素子を作製した
(素子P6)。これらの素子の陽極及び陰極にリード線
を介して直流電源を接続し、駆動したところ、素子P6
では31Vの電圧を印加した時に電流密度159mA/
cm2の電流が流れ、1216cd/m2の輝度の黄緑
色発光が観測された。この素子の最大発光効率は0.2
1lm/Wであった。これに対して素子Iでは同じ電流
密度で輝度は約1.5倍、また最大発光効率は約1.3
倍に向上した。また、発光の色調には変化が認められな
かった。Example 9 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound No. in Table 1 above. A hole transport layer of 500 Å thick was formed by vacuum evaporation. Next, Compound No. of Table 3 above. Compound No. 1 and Table 2 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec) to form a layer of 500 Å in which a luminescent material and an electron transporting material coexist. Finally, a cathode made of aluminum having a thickness of about 1000 Å was similarly formed by vacuum evaporation to produce a device as shown in FIG. 5 (device I). The degree of vacuum during vapor deposition is approximately 5.0 x 10-6 To
rr, the substrate temperature is room temperature. For comparison, Compound No. 1 in Table 1 above was used. A hole transport layer of 500 Å consisting of Compound No. 3 in Table 3; A light-emitting layer of about 50 Å consisting of Compound No. 1 in Table 2, A device was fabricated under exactly the same conditions as above, except that an electron transporting layer of about 500 Å consisting of P1 was sequentially laminated (device P6). When a DC power supply was connected to the anode and cathode of these elements via lead wires and driven, element P6
Then, when a voltage of 31V is applied, the current density is 159mA/
A current of cm2 was passed, and yellow-green light emission with a brightness of 1216 cd/m2 was observed. The maximum luminous efficiency of this element is 0.2
It was 1 lm/W. On the other hand, in Element I, the brightness is about 1.5 times higher at the same current density, and the maximum luminous efficiency is about 1.3.
improved twice. Further, no change was observed in the color tone of the emitted light.
【0082】実施例10
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物NO.3及び表3の化合物No.1を
、ほぼ同じ蒸着レート(約2Å/sec)で共蒸着し、
正孔輸送性材料と発光性材料との共存層を、約500Å
の厚さに形成した。次に前記表2の化合物No.1から
なる電子輸送層約500Å、最後にアルミニウムからな
る陰極約1000Åを同じく真空蒸着により形成し、素
子を作製した(素子J)。蒸着時の真空度は約5.0×
10−6Torr、基板温度は室温である。素子Jを実
施例1と同様に直流電源に接続し、駆動したところ、比
較例P6に対して同じ電流密度での輝度は約1.4倍、
また最大発光効率は約1.2倍に向上した。発光の色調
には変化が認められなかった。Example 10 On a glass plate on which an anode made of indium tin oxide (ITO) was formed, the size was 3 mm x 3 mm and the thickness was 1000 Å.
Compound No. in Table 1 above. 3 and Compound No. 3 in Table 3. 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec),
The coexistence layer of the hole transporting material and the luminescent material is approximately 500 Å thick.
It was formed to a thickness of . Next, Compound No. of Table 2 above. An electron transport layer of about 500 Å made of aluminum and finally a cathode of about 1000 Å made of aluminum were also formed by vacuum evaporation to produce a device (device J). The degree of vacuum during vapor deposition is approximately 5.0×
The temperature of the substrate was 10 −6 Torr and room temperature. When element J was connected to a DC power source and driven in the same manner as in Example 1, the luminance at the same current density was approximately 1.4 times that of Comparative Example P6.
Furthermore, the maximum luminous efficiency was improved by about 1.2 times. No change was observed in the color tone of the emitted light.
【0083】実施例11
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物No.3からなる、厚さ500Åの正
孔輸送層を真空蒸着により形成した。次に前記表3の化
合物No.1からなる発光層を、約50Åの厚さに形成
した。次に前記表3の化合物No.1及び表2の化合物
No.1を、ほぼ同じ蒸着レート(約2Å/sec)で
共蒸着し、発光性材料と電子輸送性材料とが共存する層
約50Åを形成した。更にその上に前記表2の化合物N
o.1からなる電子輸送層を約500Åの厚さに形成し
た。最後にアルミニウムからなる陰極約1000Åを同
じく真空蒸着により形成し、図6に示すような素子を作
製した(素子K)。蒸着時の真空度は約5.0×10−
6Torr、基板温度は室温である。比較のために前記
表1の化合物No.3からなる正孔輸送層500Å、表
3の化合物No.1からなる発光層約50Å、及び表2
の化合物No.1からなる電子輸送層約500Åが順次
積層された以外は、上記条件と全く同様にして素子を作
製した(素子P7)。これらの素子の陽極及び陰極にリ
ード線を介して直流電源を接続し、駆動したところ、素
子P7では31Vの電圧を印加した時に電流密度159
mA/cm2の電流が流れ、1216cd/m2の輝度
の黄緑色発光が観測された。この素子の最大発光効率は
0.21lm/Wであった。これに対して素子Kでは同
じ電流密度で輝度は約1.4倍、また最大発光効率は約
1.3倍に向上した。発光の色調には変化が認められな
かった。Example 11 On a glass plate on which an anode made of indium tin oxide (ITO) with a size of 3 mm x 3 mm and a thickness of 1000 Å was formed,
Compound No. in Table 1 above. A hole transport layer of 500 Å thick was formed by vacuum evaporation. Next, Compound No. of Table 3 above. A light-emitting layer consisting of 1 was formed to a thickness of about 50 Å. Next, Compound No. of Table 3 above. Compound No. 1 and Table 2 1 was codeposited at approximately the same deposition rate (approximately 2 Å/sec) to form a layer of approximately 50 Å in which the luminescent material and the electron transporting material coexist. Furthermore, compound N of Table 2 above is added.
o. An electron transport layer consisting of 1 was formed to a thickness of about 500 Å. Finally, a cathode made of aluminum having a thickness of about 1000 Å was similarly formed by vacuum evaporation to produce a device as shown in FIG. 6 (device K). The degree of vacuum during evaporation is approximately 5.0 x 10-
6 Torr, and the substrate temperature was room temperature. For comparison, Compound No. 1 in Table 1 above was used. A hole transport layer of 500 Å consisting of Compound No. 3 in Table 3; 1, and Table 2
Compound No. A device was fabricated under exactly the same conditions as above, except that an electron transport layer of about 500 Å consisting of P1 was sequentially laminated (device P7). When a DC power supply was connected to the anode and cathode of these elements via lead wires and they were driven, the current density of element P7 was 159 when a voltage of 31V was applied.
A current of mA/cm2 flowed, and yellow-green light emission with a brightness of 1216 cd/m2 was observed. The maximum luminous efficiency of this device was 0.21 lm/W. On the other hand, in element K, the luminance was improved by about 1.4 times and the maximum luminous efficiency was improved by about 1.3 times at the same current density. No change was observed in the color tone of the emitted light.
【0084】実施例12
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物No.3からなる厚さ約500Åの正
孔輸送層を真空蒸着により形成した。次に前記表1の化
合物No.3及び表3の化合物No.1を、ほぼ同じ蒸
着レート(約2Å/sec)で共蒸着し、正孔輸送性材
料と発光性材料との共存層を、約50Åの厚さに形成し
た。次に前記表3の化合物No.1からなる、厚さ約5
0Åの発光層を同じく真空蒸着により形成した。更にそ
の上に前記表2の化合物No.1からなる電子輸送層約
500Å、最後にアルミニウムからなる陰極約1000
Åを同じく真空蒸着により形成し、素子を作製した(素
子L)。蒸着時の真空度は約5.0×10−6Torr
、基板温度は室温である。素子Lを実施例1と同様に直
流電源に接続し、駆動したところ、比較例P7に対して
同じ電流密度での輝度は約1.8倍、また最大発光効率
は約1.5倍に向上した。発光の色調には変化が認めら
れなかった。Example 12 On a glass plate with an anode made of indium tin oxide (ITO) having a size of 3 mm x 3 mm and a thickness of 1000 Å,
Compound No. in Table 1 above. A hole transport layer of about 500 Å thick was formed by vacuum deposition. Next, Compound No. of Table 1 above. 3 and Compound No. 3 in Table 3. 1 was co-evaporated at approximately the same deposition rate (approximately 2 Å/sec) to form a co-existing layer of a hole transporting material and a luminescent material to a thickness of approximately 50 Å. Next, Compound No. of Table 3 above. 1, thickness approximately 5
A 0 Å light emitting layer was also formed by vacuum evaporation. Furthermore, compound No. 2 of Table 2 above was added. an electron transport layer of about 500 Å made of aluminum, and finally a cathode of about 1000 Å made of aluminum.
.ANG. was similarly formed by vacuum evaporation to produce a device (device L). The degree of vacuum during vapor deposition is approximately 5.0 x 10-6 Torr
, the substrate temperature is room temperature. When element L was connected to a DC power source and driven in the same manner as in Example 1, the luminance at the same current density was approximately 1.8 times higher than that of Comparative Example P7, and the maximum luminous efficiency was approximately 1.5 times higher. did. No change was observed in the color tone of the emitted light.
【0085】実施例13
大きさ3mm×3mm、厚さ1000Åの酸化錫インジ
ウム(ITO)による陽極の形成されたガラス板上に、
前記表1の化合物No.3からなる厚さ約500Åの正
孔輸送層を真空蒸着により形成した。次に前記表1の化
合物No.3及び表3の化合物No.1を、ほぼ同じ蒸
着レート(約2Å/sec)で共蒸着し、正孔輸送性材
料と発光性材料との共存層を、約50Åの厚さに形成し
た。次に前記表3の化合物No.1からなる、厚さ約5
0Åの発光層を同じく真空蒸着により形成した。次に前
記表3の化合物No.1及び表2の化合物No.1を、
ほぼ同じ蒸着レート(約2Å/sec)で共蒸着し、発
光性材料と電子輸送性材料との共存層を約50Åの厚さ
に形成した。更にその上に前記表2の化合物No.1か
らなる電子輸送層約500Å、最後にアルミニウムから
なる陰極約1000Åを同じく真空蒸着により形成し、
素子を作製した(素子M)。蒸着時の真空度は約5.0
×10−6Torr、基板温度は室温である。素子Mを
実施例1と同様に直流電源に接続し、駆動したところ、
比較例P7に対して同じ電流密度での輝度は約2.2倍
、また最大発光効率は約1.9倍に向上した。発光の色
調には変化が認められなかった。Example 13 On a glass plate with an anode made of indium tin oxide (ITO) having a size of 3 mm x 3 mm and a thickness of 1000 Å,
Compound No. in Table 1 above. A hole transport layer of about 500 Å thick was formed by vacuum deposition. Next, Compound No. of Table 1 above. 3 and Compound No. 3 in Table 3. 1 was co-evaporated at approximately the same deposition rate (approximately 2 Å/sec) to form a co-existence layer of a hole-transporting material and a luminescent material to a thickness of approximately 50 Å. Next, Compound No. of Table 3 above. 1, thickness approximately 5
A 0 Å light emitting layer was also formed by vacuum evaporation. Next, Compound No. of Table 3 above. Compound No. 1 and Table 2 1,
Co-evaporation was performed at approximately the same deposition rate (approximately 2 Å/sec) to form a coexisting layer of a luminescent material and an electron transporting material to a thickness of approximately 50 Å. Furthermore, compound No. 2 of Table 2 above was added. An electron transport layer of about 500 Å made of aluminum, and finally a cathode of about 1000 Å made of aluminum, were also formed by vacuum evaporation.
A device was produced (device M). The degree of vacuum during deposition is approximately 5.0
×10 −6 Torr, and the substrate temperature was room temperature. When element M was connected to a DC power source and driven in the same manner as in Example 1,
Compared to Comparative Example P7, the luminance at the same current density was improved by about 2.2 times, and the maximum luminous efficiency was improved by about 1.9 times. No change was observed in the color tone of the emitted light.
【0086】[0086]
【発明の効果】本発明の有機薄膜型電界発光素子は前記
したような構成であるので、次のような作用効果を有す
る。
(1)電極から注入された正孔及び電子の再結合確率が
高まり、発光輝度を向上させることが出来る。
(2)光エネルギーへの変換効率が向上する分、素子の
発熱を抑制することができるので、昇温による有機化合
物層の変質を低減し、電界発光素子の長寿命化を図るこ
とが出来る。
(3)異なる化合物の共存する層を設けることにより、
個々の材料の結晶化が抑制され、長期間にわたって安定
した発光特性を維持することが可能である。[Effects of the Invention] Since the organic thin film type electroluminescent device of the present invention has the above-described structure, it has the following effects. (1) The probability of recombination of holes and electrons injected from the electrode is increased, and luminance of light emission can be improved. (2) Since the heat generation of the element can be suppressed by improving the conversion efficiency into light energy, it is possible to reduce the deterioration of the organic compound layer due to temperature rise and to extend the life of the electroluminescent element. (3) By providing a layer in which different compounds coexist,
Crystallization of individual materials is suppressed, making it possible to maintain stable luminescent properties over a long period of time.
【図1】請求項1に係る有機薄膜型電界発光素子の模式
断面図である。FIG. 1 is a schematic cross-sectional view of an organic thin film type electroluminescent device according to claim 1.
【図2】請求項2に係る有機薄膜型電界発光素子の模式
断面図である。FIG. 2 is a schematic cross-sectional view of an organic thin film type electroluminescent device according to claim 2.
【図3】請求項3に係る有機薄膜型電界発光素子の模式
断面図である。FIG. 3 is a schematic cross-sectional view of an organic thin film type electroluminescent device according to claim 3.
【図4】請求項4に係る有機薄膜型電界発光素子の模式
断面図である。FIG. 4 is a schematic cross-sectional view of an organic thin film type electroluminescent device according to claim 4.
【図5】請求項5に係る有機薄膜型電界発光素子の模式
断面図である。FIG. 5 is a schematic cross-sectional view of an organic thin film type electroluminescent device according to claim 5.
【図6】請求項6に係る有機薄膜型電界発光素子の模式
断面図である。FIG. 6 is a schematic cross-sectional view of an organic thin film electroluminescent device according to claim 6.
1:基板
2:陽極
3a:正孔輸送性発光材料を含む層
3b:正孔輸送性発光材料と電子輸送性材料が共存する
層
3c:正孔輸送性材料を含む層
3d:正孔輸送性材料と電子輸送性発光材料が共存する
層
3e:正孔輸送性材料を含む層
3f:正孔輸送性材料と電子輸送性発光材料とが共存す
る層
3g:電子輸送性発光材料を含む層
3h:正孔輸送性材料を含む層
3i:発光性材料を含む層
3j:発光性材料と電子輸送性材料とが共存する層3k
:正孔輸送性材料を含む層
3l:発光性材料と電子輸送性材料とが共存する層3m
:正孔輸送性材料を含む層
3n:発光性材料を含む層
3o:発光性材料と電子輸送性材料とが共存する層3p
:電子輸送性材料を含む層
4:陰極1: Substrate 2: Anode 3a: Layer containing a hole-transporting luminescent material 3b: Layer where a hole-transporting luminescent material and an electron-transporting material coexist 3c: Layer containing a hole-transporting material 3d: Hole-transporting material Layer 3e in which a material and an electron-transporting luminescent material coexist: Layer 3f containing a hole-transporting material: Layer 3g in which a hole-transporting material and an electron-transporting luminescent material coexist: Layer 3h containing an electron-transporting luminescent material : Layer 3i containing a hole transporting material: Layer 3j containing a luminescent material: Layer 3k in which a luminescent material and an electron transporting material coexist
: Layer 3l containing a hole transporting material: Layer 3m containing a luminescent material and an electron transporting material
: Layer 3n containing a hole transporting material: Layer 3o containing a luminescent material: Layer 3p in which a luminescent material and an electron transporting material coexist
: Layer 4 containing electron transporting material: Cathode
Claims (6)
有機化合物層より構成される有機薄膜型電界発光素子に
おいて、前記有機化合物層が、正孔輸送性発光材料を含
む層と、正孔輸送性発光材料と電子輸送性材料とが共存
する層よりなることを特徴とする有機薄膜型電界発光素
子。1. An organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole-transporting luminescent material and a hole-transporting luminescent material. An organic thin film electroluminescent device comprising a layer in which a light emitting material and an electron transporting material coexist.
有機化合物層より構成される有機薄膜型電界発光素子に
おいて、前記有機化合物層が、正孔輸送性材料を含む層
と、正孔輸送性材料と電子輸送性発光材料とが共存する
層よりなることを特徴とする有機薄膜型電界発光素子。2. An organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer comprises a layer containing a hole transporting material and a hole transporting material. 1. An organic thin film electroluminescent device comprising a layer in which an electron-transporting luminescent material and an electron-transporting luminescent material coexist.
有機化合物層より構成される有機薄膜型電界発光素子に
おいて、前記有機化合物層が、正孔輸送性材料を含む層
と、正孔輸送性材料と電子輸送性発光材料とが共存する
層と、電子輸送性発光材料を含む層よりなることを特徴
とする有機薄膜型電界発光素子。3. An organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer comprises a layer containing a hole transporting material and a hole transporting material. 1. An organic thin film electroluminescent device comprising: a layer in which an electron-transporting luminescent material coexists with an electron-transporting luminescent material; and a layer containing an electron-transporting luminescent material.
有機化合物層より構成される有機薄膜型電界発光素子に
おいて、前記有機化合物層が、正孔輸送性材料を含む層
と、発光性材料を含む層と、発光性材料と電子輸送性材
料とが共存する層よりなることを特徴とする有機薄膜型
電界発光素子。4. An organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material and a luminescent material. 1. An organic thin film electroluminescent device comprising a layer and a layer in which a luminescent material and an electron transporting material coexist.
有機化合物層より構成される有機薄膜型電界発光素子に
おいて、前記有機化合物層が、正孔輸送性材料を含む層
と、発光性材料と電子輸送性材料とが共存する層よりな
ることを特徴とする有機薄膜型電界発光素子。5. An organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material, a luminescent material and an electron transporting material. An organic thin film type electroluminescent device characterized by comprising a layer in which a transporting material coexists.
有機化合物層より構成される有機薄膜型電界発光素子に
おいて、前記有機化合物層が、正孔輸送性材料を含む層
と、発光性材料を含む層と、発光性材料と電子輸送性材
料とが共存する層と、電子輸送性材料を含む層よりなる
ことを特徴とする有機薄膜型電界発光素子。6. An organic thin film electroluminescent device comprising a plurality of organic compound layers sandwiched between an anode and a cathode, wherein the organic compound layer includes a layer containing a hole transporting material and a luminescent material. 1. An organic thin film electroluminescent device comprising a layer, a layer in which a luminescent material and an electron transporting material coexist, and a layer containing an electron transporting material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3135448A JPH04334894A (en) | 1991-05-10 | 1991-05-10 | Organic thin film type electroluminescence element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3135448A JPH04334894A (en) | 1991-05-10 | 1991-05-10 | Organic thin film type electroluminescence element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04334894A true JPH04334894A (en) | 1992-11-20 |
Family
ID=15151954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3135448A Pending JPH04334894A (en) | 1991-05-10 | 1991-05-10 | Organic thin film type electroluminescence element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04334894A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711244A (en) * | 1993-06-24 | 1995-01-13 | Mitsui Petrochem Ind Ltd | Thin film element emitting light in electric field and method for producing same |
JPH0785972A (en) * | 1993-09-20 | 1995-03-31 | Toshiba Corp | Organic el element |
JPH07288185A (en) * | 1994-04-20 | 1995-10-31 | Dainippon Printing Co Ltd | Organic thin film electroluminescent (el) element |
US5540999A (en) * | 1993-09-09 | 1996-07-30 | Takakazu Yamamoto | EL element using polythiophene |
WO1998008360A1 (en) * | 1996-08-19 | 1998-02-26 | Tdk Corporation | Organic electroluminescent device |
JPH1088122A (en) * | 1996-09-12 | 1998-04-07 | Sony Corp | Organic electroluminescent element |
US5792557A (en) * | 1994-02-08 | 1998-08-11 | Tdk Corporation | Organic EL element |
JP2001110570A (en) * | 1999-07-30 | 2001-04-20 | Sony Corp | Organic field light emitting element |
US6329083B1 (en) | 1997-11-05 | 2001-12-11 | Nec Corporation | Organic electroluminescent device containing a benzoperylene compound |
WO2002052904A1 (en) * | 2000-12-26 | 2002-07-04 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
WO2003091357A1 (en) * | 2000-10-30 | 2003-11-06 | Sony Corporation | Organic electroluminescent element |
US6897473B1 (en) | 1998-03-13 | 2005-05-24 | Cambridge Display Technology Ltd. | Electroluminescent devices |
WO2005071772A1 (en) * | 2004-01-13 | 2005-08-04 | Eastman Kodak Company | Using a crstallization-inhibitor in organic electroluminescent devices |
US7255938B2 (en) | 2003-09-30 | 2007-08-14 | Sanyo Electric Co., Ltd. | Organic electroluminescent device and organic compound for use in organic electroluminescent device |
JP2009076511A (en) * | 2007-09-18 | 2009-04-09 | Fujifilm Corp | Organic electroluminescent element |
JP2009076510A (en) * | 2007-09-18 | 2009-04-09 | Fujifilm Corp | Organic electroluminescent element |
JP2014017532A (en) * | 2000-12-28 | 2014-01-30 | Semiconductor Energy Lab Co Ltd | Light-emitting device |
-
1991
- 1991-05-10 JP JP3135448A patent/JPH04334894A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711244A (en) * | 1993-06-24 | 1995-01-13 | Mitsui Petrochem Ind Ltd | Thin film element emitting light in electric field and method for producing same |
US5540999A (en) * | 1993-09-09 | 1996-07-30 | Takakazu Yamamoto | EL element using polythiophene |
JPH0785972A (en) * | 1993-09-20 | 1995-03-31 | Toshiba Corp | Organic el element |
US5792557A (en) * | 1994-02-08 | 1998-08-11 | Tdk Corporation | Organic EL element |
JPH07288185A (en) * | 1994-04-20 | 1995-10-31 | Dainippon Printing Co Ltd | Organic thin film electroluminescent (el) element |
WO1998008360A1 (en) * | 1996-08-19 | 1998-02-26 | Tdk Corporation | Organic electroluminescent device |
JPH1088122A (en) * | 1996-09-12 | 1998-04-07 | Sony Corp | Organic electroluminescent element |
US6753097B2 (en) | 1997-11-05 | 2004-06-22 | Samsung Sdi Co., Ltd. | Organic electroluminescent device |
US6329083B1 (en) | 1997-11-05 | 2001-12-11 | Nec Corporation | Organic electroluminescent device containing a benzoperylene compound |
US6897473B1 (en) | 1998-03-13 | 2005-05-24 | Cambridge Display Technology Ltd. | Electroluminescent devices |
US7393704B2 (en) | 1998-03-13 | 2008-07-01 | Cambridge Display Tech Ltd | Electroluminescent devices |
US8115199B2 (en) | 1998-03-13 | 2012-02-14 | Cambridge Display Technology Ltd. | Electroluminescent devices |
JP2005174947A (en) * | 1998-03-13 | 2005-06-30 | Cambridge Display Technol Ltd | Electroluminescent element |
US7078251B2 (en) | 1998-03-13 | 2006-07-18 | Cambridge Display Technology Ltd. | Electroluminescent devices |
US7449714B2 (en) | 1998-03-13 | 2008-11-11 | Cambridge Display Technology Ltd. | Electroluminescent devices |
US7227180B2 (en) | 1998-03-13 | 2007-06-05 | Cambridge Display Technology Ltd. | Electroluminescent devices |
JP2001110570A (en) * | 1999-07-30 | 2001-04-20 | Sony Corp | Organic field light emitting element |
WO2003091357A1 (en) * | 2000-10-30 | 2003-11-06 | Sony Corporation | Organic electroluminescent element |
KR100779327B1 (en) * | 2000-12-26 | 2007-11-23 | 이데미쓰 고산 가부시키가이샤 | Organic electroluminescence device |
US7709102B2 (en) | 2000-12-26 | 2010-05-04 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
WO2002052904A1 (en) * | 2000-12-26 | 2002-07-04 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP2014017532A (en) * | 2000-12-28 | 2014-01-30 | Semiconductor Energy Lab Co Ltd | Light-emitting device |
US7255938B2 (en) | 2003-09-30 | 2007-08-14 | Sanyo Electric Co., Ltd. | Organic electroluminescent device and organic compound for use in organic electroluminescent device |
WO2005071772A1 (en) * | 2004-01-13 | 2005-08-04 | Eastman Kodak Company | Using a crstallization-inhibitor in organic electroluminescent devices |
US7211948B2 (en) | 2004-01-13 | 2007-05-01 | Eastman Kodak Company | Using a crystallization-inhibitor in organic electroluminescent devices |
JP2009076510A (en) * | 2007-09-18 | 2009-04-09 | Fujifilm Corp | Organic electroluminescent element |
JP2009076511A (en) * | 2007-09-18 | 2009-04-09 | Fujifilm Corp | Organic electroluminescent element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4611578B2 (en) | Organic electroluminescent device | |
JP2597377B2 (en) | Electroluminescent device with organic luminescent medium | |
EP0817538B1 (en) | Organic EL device with dual doping layers | |
JPH04334894A (en) | Organic thin film type electroluminescence element | |
JPH09199276A (en) | Organic thin film el element | |
JPH11149985A (en) | Organic electroluminescent device having inorganic electron transport layer | |
WO2001048116A1 (en) | White organic electroluminescence element | |
JP2000082586A (en) | Organic el element | |
JPH04137485A (en) | Electroluminesence element | |
US6222314B1 (en) | Organic electoluminescent device with inorganic insulating hole injecting layer | |
JPH0665569A (en) | Electroluminescent element | |
JP3744103B2 (en) | Organic electroluminescence device | |
WO2005044942A1 (en) | Organic electroluminescent device and display | |
JPH03141588A (en) | Electroluminescent device | |
JP2002260858A (en) | Light-emitting element and its manufacturing method | |
KR100572654B1 (en) | Organic Electroluminescent Device | |
KR100547055B1 (en) | Organic Electroluminescent Device | |
JP3967946B2 (en) | Organic electroluminescence device | |
JP3555736B2 (en) | Organic electroluminescent device | |
JPH06151063A (en) | Organic electroluminescent element | |
JP2004031212A (en) | Organic electroluminescent element | |
KR100581639B1 (en) | Organic Electroluminescent Device | |
JP4631600B2 (en) | Organic electroluminescence device | |
JPH0468076A (en) | Electroluminescent element | |
JPH03163186A (en) | Electroluminescent element |