Nothing Special   »   [go: up one dir, main page]

JPH04305353A - Method for casting beryllium-copper alloy - Google Patents

Method for casting beryllium-copper alloy

Info

Publication number
JPH04305353A
JPH04305353A JP8914391A JP8914391A JPH04305353A JP H04305353 A JPH04305353 A JP H04305353A JP 8914391 A JP8914391 A JP 8914391A JP 8914391 A JP8914391 A JP 8914391A JP H04305353 A JPH04305353 A JP H04305353A
Authority
JP
Japan
Prior art keywords
beryllium
copper
casting
copper alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8914391A
Other languages
Japanese (ja)
Other versions
JP2503119B2 (en
Inventor
Katsumi Suzuki
克美 鈴木
Hideki Takahara
英樹 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3089143A priority Critical patent/JP2503119B2/en
Publication of JPH04305353A publication Critical patent/JPH04305353A/en
Application granted granted Critical
Publication of JP2503119B2 publication Critical patent/JP2503119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a casting method for beryllium-copper alloy capable of making crystal grains fine through a simple method and reducing internal defects. CONSTITUTION:In casting beryllium-copper alloy wherein a content of beryllium is 0.2-2.0wt.% after it is cast, pure copper is added in beryllium-copper mother alloy having the content of beryllium exceeding the content of beryllium in cast beryllium copper alloy to manufacture molten raw material and after 0.05-0.5wt. parts of titanium is added to 100wt. parts of this molten material, the obtd. material is melted and cast as beryllium-copper alloy having above the composition.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、各種の鋳造法で製造さ
れるベリリウム銅合金の鋳造方法に関し、特にベリリウ
ム銅合金の結晶粒を微細化させて内部欠陥を低減させる
ベリリウム銅合金の鋳造方法に関するものである。 【0002】 【従来の技術】高強度、耐摩耗性、高熱伝導性を有する
ベリリウム銅合金の鋳物において、内部の健全性を増す
ために結晶粒を微細化させることが望まれている。その
ための方法として、一般的には溶湯を超音波を利用して
振動する超音波振動鋳造法、溶湯を電磁力により攪拌す
る電磁攪拌鋳造法、従来より低い温度で鋳造する低温鋳
造法がある。 【0003】 【発明が解決しようとする課題】しかしながら、上述し
た超音波振動鋳造法及び電磁攪拌鋳造法は、イニシャル
コスト及びランニングコストが高いとともに、銅合金へ
の適用が確立されておらず、適用した場合の効果が薄い
問題があった。また、上述した低温鋳造法では、低温鋳
込みにより内部欠陥が発生し易くなるなどの問題があり
、いずれの場合もその目的を達成するまでには至らなか
った。 【0004】本発明の目的は上述した課題を解決して、
簡単な方法で結晶粒を微細化させて内部欠陥を低減させ
ることのできるベリリウム銅合金の鋳造方法を提供しよ
うとするものである。 【0005】 【課題を解決するための手段】本発明のベリリウム銅合
金の鋳造方法は、鋳造後のベリリウム含有量が0.2〜
2.0重量%であるベリリウム銅合金を鋳造する際に、
鋳造後のベリリウム銅合金のベリリウム含有量以上のベ
リリウム含有量を有するベリリウム銅母合金に純銅を添
加して溶解原料をつくるとともに、この溶解原料100
重量部に対して0.05〜0.5重量部のチタンを添加
した後溶解して、前記組成のベリリウム銅合金として鋳
造することを特徴とするものである。 【0006】 【作用】上述した構成において、鋳造後の最終組成のベ
リリウム銅合金あるいはこれに近い組成の合金を微調整
配合して溶解後、Tiと添加する場合に対し、純銅を所
定量加えると純銅の酸化が著しいためCu 2 O又は
CuOの生成が多く、溶融加熱後Tiを添加することで
TiO2 の生成量が増加し、このTiO2 が凝固時
の結晶核となると思われ、鋳造の細晶粒が微細化すると
考えられる。 【0007】本発明において、純銅及びTiの量を限定
するのは、以下の理由による。まず、純銅の添加量は、
10重量%未満であるとCu2 Oの生成量が十分でな
く微細化の効果が少ないとともに、50重量%を超える
と純銅添加後のベリリウム銅合金の組成を現在使用され
ているものに近づけようとするとベリリウム銅母合金中
のベリリウムの含有量を極端に多くしなければならず実
際上不可能なことと、微細化効果が小さくなるためであ
る。また、Tiが0.05重量%未満であると添加効果
がないとともに、0.5重量%を超えると介在物として
のTiO2 が増加し鋳造性が低下するためである。 【0008】なお、ベリリウム銅合金組成の好ましい範
囲は、Be:0.2〜2.0重量%、Co:3%以下、
Ni:3%以下その他の不可避的元素を含み残部銅から
なる組成である。また、添加する純銅としては、電気銅
などの純銅地金あるいは純銅屑(ナゲット)を使用する
と好ましい。 【0009】 【実施例】まず、本発明のベリリウム銅合金の製造方法
のフローについて説明する。最初に、ベリリウム:0.
40〜0.75重量%、ニッケル:0.20重量%以下
、コバルト:2.40〜2.70重量%、不純物として
Si、Fe、Al、Sn、Zn、Cr、Pb、P、S及
びTiからなる群から選ばれた1種以上の合計1.0重
量%以下の組成からなるベリリウム銅母合金と、このベ
リリウム銅母合金と添加される純銅の合計重量に対して
10〜50重量%の銅ナゲットと、その他コバルト銅、
ニッケル銅などの成分調整用の合金を配合し、誘導加熱
溶解炉、抵抗加熱溶解炉などの各種溶解炉で溶解する。 このとき、図1にその溶解スケジュールを示す。 尚、材料の合金投入時期は銅線屑以外のものをさきに溶
解し、十分に溶けきったところで銅ナゲットを投入する
と好ましい。溶解温度は融点(約1050℃)より10
0℃以上高い1200℃程度が好ましく、しばらくたっ
たところでTiを溶解原料100重量部に対して0.0
5〜0.5重量部添加し、十分に溶けきったのを確認し
た後、鋳込温度まで鎮静させ冷却し、その後鋳型に注湯
する。これにより、結晶粒を微細化したベリリウム銅合
金を得ることができる。 【0010】以下、実際の例について説明する。 実施例 表1に示す組成のベリリウム銅母合金と、純銅ナゲット
とTi原料粉末との組合せをかえて、表2に示すような
A,B,C3種類のベリリウム銅合金を鋳造した。鋳造
に当たり、溶解温度1200℃、鋳型として鋳物肉厚を
3〜10mmに変化させた試験鋳型(シェル型)を用い
た。その後、JISに規定する結晶粒度測定法である求
積法により結晶粒度及び内部欠陥を求めた。結果を表1
に示す。但し、結晶粒度は肉厚3mmより測定したもの
である。なお、結晶微細化剤としてのTiは単味粉末と
して添加しても、Cu−50Ti合金等の合金として添
加してもよい。 【0011】 【表1】 【0012】       【0013】表1の結果から、本発明の範
囲内の試験No. 1〜13は、いずれかの点で本発明
を満たさない比較例試験No. 14〜20と比較して
、結晶粒度が小さく結晶粒が微細化していることがわか
る。また、Tiの添加量の多い比較例試験No. 17
,18では、結晶粒は小さくなるが内部欠陥が発生する
ことがわかる。これは、Tiの添加が多いとTiO2 
は溶解時ドロスとなってベリリウム銅合金溶湯内にうま
く溶け込まず、鋳造後介在物やポロシティーが発生しや
すくなるためである。 なお、本実施例においてはベリリウム含有量の多いベリ
リウム銅母合金に純銅を添加したが、ベリリウム含有量
が極めて低い銅であればよいものである。(たとえば、
0.1%以下)。 【0014】本発明は上述した実施例にのみ限定される
ものではなく、幾多の変形、変更が可能である。例えば
、上述した実施例では、純銅として電気銅や銅線屑を添
加したが、その他の純銅に近い低合金銅を使用しても同
様の結果を得ることができることはいうまでもない。 【0015】 【発明の効果】以上詳細に説明したところから明らかな
ように、本発明のベリリウム銅合金の鋳造方法によれば
、鋳造後の最終組成よりもベリリウム量の多いベリリウ
ム銅母合金に対し、まず所定量の純銅を同時にまたは順
次添加して溶解した後、所定量の結晶微細化剤であるT
iを添加するようにしたため、特別の装置を用いること
なく添加剤の添加という簡単な方法により結晶の核とな
るTiO2 の発生量を多くでき、安価に内部の健全性
を維持しつつ結晶粒を微細化したベリリウム銅合金を得
ることができる。また、微細化行程の温度依存性も少な
く、鋳造工程における管理も緩和される。 【0016】以上のように結晶粒を微細化することで、
従来の粗大粒に比べて強度が上昇するとともに、液体あ
るいは気体などを通すような機密性を要する部品にベリ
リウム銅合金の鋳物を適用する場合にも、信頼性を増す
ことができる。
[0001] [Industrial Application Field] The present invention relates to a method for casting beryllium-copper alloys produced by various casting methods, and in particular, the present invention relates to a method for casting beryllium-copper alloys produced by various casting methods. The present invention relates to a method for casting beryllium-copper alloys that reduces defects. [0002] In castings of beryllium-copper alloys having high strength, wear resistance, and high thermal conductivity, it is desired to refine the crystal grains in order to improve internal soundness. Generally speaking, methods for this purpose include ultrasonic vibration casting, in which the molten metal is vibrated using ultrasonic waves, electromagnetic stirring casting, in which the molten metal is stirred by electromagnetic force, and low-temperature casting, in which casting is performed at a lower temperature than conventional methods. [Problems to be Solved by the Invention] However, the above-mentioned ultrasonic vibration casting method and electromagnetic stirring casting method have high initial costs and running costs, and their application to copper alloys has not been established, so it is difficult to apply them. There was a problem that the effect was weak when doing so. Furthermore, the above-mentioned low-temperature casting method has problems such as internal defects being more likely to occur due to low-temperature casting, and in both cases, the objective has not been achieved. [0004] The purpose of the present invention is to solve the above-mentioned problems,
The object of the present invention is to provide a method for casting beryllium-copper alloys that can easily refine crystal grains and reduce internal defects. [Means for Solving the Problems] The method for casting beryllium copper alloy of the present invention is such that the beryllium content after casting is 0.2 to 0.2.
When casting a beryllium copper alloy with a content of 2.0% by weight,
Pure copper is added to a beryllium-copper master alloy having a beryllium content higher than that of the beryllium-copper alloy after casting to create a molten raw material, and 100% of this molten raw material is
The method is characterized in that 0.05 to 0.5 parts by weight of titanium is added and then melted and cast as a beryllium-copper alloy having the above composition. [Operation] In the above-mentioned configuration, when a predetermined amount of pure copper is added to the final composition of beryllium copper alloy after casting or an alloy with a composition close to this, which is finely adjusted and mixed and then added with Ti after melting. Since the oxidation of pure copper is significant, a large amount of Cu 2 O or CuO is produced, and by adding Ti after melting and heating, the amount of TiO2 produced increases, and this TiO2 is thought to become the crystal nucleus during solidification, resulting in the formation of fine crystals in casting. It is thought that the grains become finer. In the present invention, the amounts of pure copper and Ti are limited for the following reasons. First, the amount of pure copper added is
If it is less than 10% by weight, the amount of Cu2O produced will not be sufficient and the effect of refining will be small, and if it exceeds 50% by weight, it will be difficult to make the composition of the beryllium copper alloy after adding pure copper closer to that currently used. This is because the content of beryllium in the beryllium-copper master alloy must be extremely increased, which is practically impossible, and the refinement effect becomes small. Further, if Ti is less than 0.05% by weight, there will be no addition effect, and if it exceeds 0.5% by weight, TiO2 as inclusions will increase and castability will deteriorate. [0008] The preferred range of the beryllium copper alloy composition is Be: 0.2 to 2.0% by weight, Co: 3% or less,
Ni: 3% or less This is a composition containing other unavoidable elements and the balance consisting of copper. Further, as the pure copper to be added, it is preferable to use pure copper metal such as electrolytic copper or pure copper scraps (nuggets). [Example] First, the flow of the method for manufacturing a beryllium copper alloy of the present invention will be explained. First, beryllium: 0.
40 to 0.75% by weight, nickel: 0.20% by weight or less, cobalt: 2.40 to 2.70% by weight, impurities such as Si, Fe, Al, Sn, Zn, Cr, Pb, P, S, and Ti A beryllium copper mother alloy consisting of one or more selected from the group consisting of 1.0% by weight or less in total, and 10 to 50% by weight based on the total weight of this beryllium copper mother alloy and pure copper added. Copper nuggets and other cobalt copper,
Alloys for composition adjustment such as nickel copper are mixed and melted in various melting furnaces such as induction heating melting furnaces and resistance heating melting furnaces. At this time, the dissolution schedule is shown in FIG. It is preferable to melt the materials other than the copper wire scraps first, and then add the copper nuggets when they are fully melted. The melting temperature is 10% lower than the melting point (about 1050℃).
The temperature is preferably about 1200°C, which is higher than 0°C.
After adding 5 to 0.5 parts by weight and confirming that it has completely melted, the mixture is cooled down to the casting temperature, and then poured into a mold. Thereby, a beryllium copper alloy with finer crystal grains can be obtained. An actual example will be explained below. EXAMPLE Three types of beryllium copper alloys A, B, and C as shown in Table 2 were cast by changing the combinations of the beryllium copper master alloy having the composition shown in Table 1, pure copper nuggets, and Ti raw material powder. For casting, test molds (shell molds) with a melting temperature of 1200° C. and a casting wall thickness of 3 to 10 mm were used. Thereafter, the crystal grain size and internal defects were determined by the quadrature method, which is a crystal grain size measuring method specified in JIS. Table 1 shows the results.
Shown below. However, the crystal grain size was measured from a wall thickness of 3 mm. Note that Ti as a crystal refiner may be added as a single powder or as an alloy such as a Cu-50Ti alloy. [0011] [Table 1] [0013] From the results in Table 1, test No. 1 within the scope of the present invention. 1 to 13 are comparative test Nos. 1 to 13 which do not satisfy the present invention in any respect. It can be seen that the crystal grain size is smaller and the crystal grains are finer than those of Nos. 14 to 20. In addition, Comparative Example Test No. with a large amount of Ti added. 17
, 18, it can be seen that although the crystal grains become smaller, internal defects occur. This is because when a large amount of Ti is added, TiO2
This is because it becomes dross during melting and does not dissolve well into the molten beryllium-copper alloy, and inclusions and porosity are likely to occur after casting. Although pure copper is added to the beryllium-copper master alloy having a high beryllium content in this example, any copper having an extremely low beryllium content may be used. (for example,
(0.1% or less). [0014] The present invention is not limited to the above-described embodiments, but can be modified and changed in many ways. For example, in the above-described embodiment, electrolytic copper and copper wire scraps were added as pure copper, but it goes without saying that similar results can be obtained by using other low-alloy copper that is close to pure copper. Effects of the Invention As is clear from the above detailed explanation, according to the method for casting beryllium-copper alloy of the present invention, it is possible to cast a beryllium-copper master alloy with a larger amount of beryllium than the final composition after casting. First, a predetermined amount of pure copper is added and dissolved simultaneously or sequentially, and then a predetermined amount of T, which is a crystal refining agent, is added and dissolved.
By adding i, it is possible to increase the amount of TiO2 that becomes the nucleus of the crystal generated by the simple method of adding additives without using special equipment, and it is possible to reduce the crystal grains while maintaining internal integrity at low cost. A finely refined beryllium copper alloy can be obtained. Furthermore, the temperature dependence of the refinement process is small, and the control in the casting process is relaxed. [0016] By making the crystal grains finer as described above,
The strength is increased compared to conventional coarse grains, and reliability can also be increased when beryllium-copper alloy castings are applied to parts that require airtightness such as those that allow liquid or gas to pass through.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例における鋳造スケジュールの一
例を示すグラフである。
FIG. 1 is a graph showing an example of a casting schedule in an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  鋳造後のベリリウム含有量が0.2〜
2.0重量%であるベリリウム銅合金を鋳造する際に、
鋳造後のベリリウム銅合金のベリリウム含有量以上のベ
リリウム含有量を有するベリリウム銅母合金に純銅を添
加して溶解原料をつくるとともに、この溶解原料100
重量部に対して0.05〜0.5重量部のチタンを添加
した後溶解して、前記組成のベリリウム銅合金として鋳
造することを特徴とするベリリウム銅合金の鋳造方法。
[Claim 1] Beryllium content after casting is 0.2~
When casting a beryllium copper alloy with a content of 2.0% by weight,
Pure copper is added to a beryllium-copper master alloy having a beryllium content higher than that of the beryllium-copper alloy after casting to create a molten raw material, and 100% of this molten raw material is
A method for casting a beryllium-copper alloy, which comprises adding 0.05 to 0.5 parts by weight of titanium per part by weight, and then melting and casting the beryllium-copper alloy having the composition described above.
【請求項2】  純銅の添加量がベリリウム銅母合金と
純銅とを溶解して得た溶解原料の10〜50重量%であ
る請求項1に記載のベリリウム銅合金の鋳造方法。
2. The method for casting a beryllium copper alloy according to claim 1, wherein the amount of pure copper added is 10 to 50% by weight of the melted raw material obtained by melting the beryllium copper master alloy and pure copper.
JP3089143A 1991-03-29 1991-03-29 Beryllium copper alloy casting method Expired - Fee Related JP2503119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089143A JP2503119B2 (en) 1991-03-29 1991-03-29 Beryllium copper alloy casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089143A JP2503119B2 (en) 1991-03-29 1991-03-29 Beryllium copper alloy casting method

Publications (2)

Publication Number Publication Date
JPH04305353A true JPH04305353A (en) 1992-10-28
JP2503119B2 JP2503119B2 (en) 1996-06-05

Family

ID=13962648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089143A Expired - Fee Related JP2503119B2 (en) 1991-03-29 1991-03-29 Beryllium copper alloy casting method

Country Status (1)

Country Link
JP (1) JP2503119B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253827A (en) * 1995-03-14 1996-10-01 Aoki Kinzoku Shoji Kk Bronze casting alloy
JP2009046339A (en) * 2007-08-17 2009-03-05 Sumco Solar Corp Silicon casting device
JP2012055947A (en) * 2010-09-10 2012-03-22 Furukawa Electric Co Ltd:The Copper alloy material and copper alloy component
CN103866155A (en) * 2014-03-20 2014-06-18 峨眉山市中山新材料科技有限公司 Beryllium-copper alloy production and ingot casting process
CN113981257A (en) * 2021-09-23 2022-01-28 宁夏中色新材料有限公司 Preparation method of beryllium bronze mother alloy based on electroslag smelting of beryllium cloth bag powder waste
CN115478189A (en) * 2022-08-30 2022-12-16 峨眉山市中山新材料科技有限公司 Beryllium-copper alloy capable of effectively improving structural strength and preparation process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064115A (en) * 1973-10-12 1975-05-31
JPS6164839A (en) * 1984-09-03 1986-04-03 Ngk Insulators Ltd Conductive spring material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064115A (en) * 1973-10-12 1975-05-31
JPS6164839A (en) * 1984-09-03 1986-04-03 Ngk Insulators Ltd Conductive spring material and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253827A (en) * 1995-03-14 1996-10-01 Aoki Kinzoku Shoji Kk Bronze casting alloy
JP2009046339A (en) * 2007-08-17 2009-03-05 Sumco Solar Corp Silicon casting device
JP2012055947A (en) * 2010-09-10 2012-03-22 Furukawa Electric Co Ltd:The Copper alloy material and copper alloy component
CN103866155A (en) * 2014-03-20 2014-06-18 峨眉山市中山新材料科技有限公司 Beryllium-copper alloy production and ingot casting process
CN113981257A (en) * 2021-09-23 2022-01-28 宁夏中色新材料有限公司 Preparation method of beryllium bronze mother alloy based on electroslag smelting of beryllium cloth bag powder waste
CN113981257B (en) * 2021-09-23 2022-04-05 宁夏中色新材料有限公司 Preparation method of beryllium bronze mother alloy based on electroslag smelting of beryllium cloth bag powder waste
CN115478189A (en) * 2022-08-30 2022-12-16 峨眉山市中山新材料科技有限公司 Beryllium-copper alloy capable of effectively improving structural strength and preparation process thereof

Also Published As

Publication number Publication date
JP2503119B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
CA2592251C (en) A method of and a device for producing a liquid-solid metal composition
JP5116976B2 (en) Raw brass alloy for semi-fusion gold casting
CN109371295B (en) Al-Mn alloy with high Mn content and preparation method thereof
CN109385559A (en) A kind of high Mn content Al-Mn-Mg alloy and preparation method thereof
JP2005314809A (en) Copper alloy and semisolid casting method for producing the copper alloy
JPH04305353A (en) Method for casting beryllium-copper alloy
CN112593127A (en) Cast aluminum alloy and preparation method thereof
CN109266886B (en) Method for refining intermetallic compound phase of manganese-iron-containing aluminum alloy
CN115074580A (en) Ni 2 Al 3 -TiC high-temperature alloy refiner, preparation method and application
WO2007094265A1 (en) Raw material phosphor bronze alloy for casting of semi-molten alloy
CN112708807A (en) 4XXX series aluminum alloy and preparation method thereof
CN103014391B (en) The alloy preparation method of a kind of improvement 2618 aluminium alloy micostructure
CN112725661A (en) Aluminum alloy with strong corrosion resistance and preparation method thereof
KR101388922B1 (en) Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
CN102719706B (en) Zn-Al-Cr master alloy and preparation method and application thereof
JP5168069B2 (en) Method for producing aluminum alloy
CN116043150B (en) Method for improving copper alloy segregation
US4052203A (en) Crushable low reactivity nickel-base magnesium additive
KR100573781B1 (en) Flux for the Melting Treatment Method of Copper and Copper Alloy
JP2862677B2 (en) Copper alloy melting and casting methods
JP2007211325A (en) Raw material aluminum bronze alloy for casting half-melted alloy
CN116043150A (en) Method for improving copper alloy segregation
SU1638193A1 (en) Method of modification of aluminium-base casting alloys
JP3066459B2 (en) Cast mold material for shell core and method of manufacturing the same
JPH1060572A (en) Fine graphite cast iron and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees