Nothing Special   »   [go: up one dir, main page]

JPH04305244A - Illuminator and light exciting processing device with the same - Google Patents

Illuminator and light exciting processing device with the same

Info

Publication number
JPH04305244A
JPH04305244A JP3094996A JP9499691A JPH04305244A JP H04305244 A JPH04305244 A JP H04305244A JP 3094996 A JP3094996 A JP 3094996A JP 9499691 A JP9499691 A JP 9499691A JP H04305244 A JPH04305244 A JP H04305244A
Authority
JP
Japan
Prior art keywords
light
integrator
lamp
light source
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3094996A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3094996A priority Critical patent/JPH04305244A/en
Priority to US07/854,403 priority patent/US5223039A/en
Publication of JPH04305244A publication Critical patent/JPH04305244A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide an illuminator capable of irradiating a large area with uniformized high illuminance light. CONSTITUTION:The illuminator is provided with a light source part, an integrator part by which the light generated at the light source is enlarged and uniformized, and a collimator lens 104 by which the light enlarged and uniformized at the integrator part is made to a parallel luminous flux. It is a reflecting member in which the light generated at the light source part is reflected to the collimator lens by the integrator.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は照明装置に関し、特に、
半導体素子や電子回路などの製造に用いられ、大面積基
体に均一に高照度の光を色収差少なく照射することが要
求される光励起プロセス装置の照明装置に関する。
[Field of Industrial Application] The present invention relates to a lighting device, and in particular,
The present invention relates to an illumination device for a photoexcitation process device used in the manufacture of semiconductor devices, electronic circuits, etc., and required to uniformly irradiate a large-area substrate with high-intensity light with little chromatic aberration.

【0002】0002

【従来の技術】光励起プロセス装置は、半導体素子や電
子回路、特に超LSIの製造プロセス装置として原理的
に低温で低損傷の処理が可能なため、その実用化が期待
されている。光励起プロセス装置は、現在、クリーニン
グ装置やアニーリング装置へ応用されはじめ、さらに成
膜装置やエッチング装置などへの応用が検討されている
。近年では、超LSI製造プロセスの大面積化にともな
って、光励起プロセス装置の照明装置にも高照度および
均一性を保った上での大面積化が要求されている。
2. Description of the Related Art Optical excitation process equipment is expected to be put into practical use as a manufacturing process equipment for semiconductor elements and electronic circuits, especially VLSIs, since it is theoretically possible to perform processing at low temperatures and with little damage. Optical excitation process equipment is currently being applied to cleaning equipment and annealing equipment, and further applications to film forming equipment, etching equipment, etc. are being considered. In recent years, as the area of VLSI manufacturing processes has become larger, lighting devices for optically excited process devices are also required to have larger areas while maintaining high illuminance and uniformity.

【0003】図5は光励起プロセス装置に使用される照
明装置の従来例の構成を示す断面図である。
FIG. 5 is a sectional view showing the structure of a conventional illumination device used in a photoexcitation process device.

【0004】図5に示されるものはマルチランプアレイ
型であり、多数配置された棒状ランプ501と、各棒状
ランプ501の背部にそれぞれ設けられた複数の背面ミ
ラー502より構成されている。各ランプ501にてそ
れぞれ発生した光は、直接もしくは背面ミラー502で
反射され、下方に設置された処理室(不図示)へ導入さ
れる。
The one shown in FIG. 5 is of a multi-lamp array type, and is composed of a large number of rod-shaped lamps 501 arranged and a plurality of rear mirrors 502 provided at the back of each rod-shaped lamp 501. The light generated by each lamp 501 is directly or reflected by a rear mirror 502 and introduced into a processing chamber (not shown) installed below.

【0005】図6は他の従来例の構成を示す断面図であ
り、ハエノメレンズ型を示すものである。
FIG. 6 is a sectional view showing the structure of another conventional example, and shows a flywheel lens type.

【0006】点状ランプ601にて発生し、点状ランプ
601の背部に設けられた背面ミラー602によって略
平行な光束とされた光は、二次元状に微小レンズが配置
されたハエノメレンズ603およびコリメータレンズ6
04を通って下方に設置された処理室(不図示)へ導入
される。このとき、ハエノメレンズ603を通ることに
より拡大均一化され、コリメータレンズ604を通るこ
とにより平行光束化される。
The light generated by the point lamp 601 and made into a substantially parallel beam by a rear mirror 602 provided at the back of the point lamp 601 is passed through a flywheel lens 603 in which minute lenses are arranged two-dimensionally and a collimator. lens 6
04 and is introduced into a processing chamber (not shown) installed below. At this time, the light is expanded and made uniform by passing through the flywheel lens 603, and is made into a parallel light beam by passing through the collimator lens 604.

【0007】[0007]

【発明が解決しようとしている課題】しかしながら、上
記従来例のうち、マルチランプアレイ型においては、多
数のランプを必要とするためにコストが高いものとなり
、また、照度の均一化を図るために被処理基体をランプ
から離したときには照度が急激に低下してしまうという
問題点がある。ハエノメレンズ型においては、点状ラン
プにて発生した光のすべてがハエノメレンズを通るので
、点状ランプの光強度を上げるとハエノメレンズが過熱
して曇りが発生し、透過率が低下してしまう。また、広
帯域ランプが使用されているときには色収差が生じるた
めに均一化の度合が一定のものにならないという問題点
がある。
However, among the conventional examples mentioned above, the multi-lamp array type requires a large number of lamps, resulting in high cost, and also requires a large number of lamps to be covered in order to make the illuminance uniform. There is a problem in that when the treated substrate is removed from the lamp, the illumination intensity drops rapidly. In the flywheel lens type, all of the light generated by the dot lamp passes through the flywheel lens, so if the light intensity of the dot lamp is increased, the flywheel lens will overheat and become cloudy, resulting in a decrease in transmittance. Further, when a broadband lamp is used, there is a problem that the degree of uniformity is not constant due to chromatic aberration.

【0008】本発明の目的は、従来例の問題点を解決し
、広い面積に均一化された高照度の光を照射することの
できる照明装置を供給することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide a lighting device capable of irradiating uniform high-intensity light over a wide area.

【0009】[0009]

【課題を解決するための手段】本発明の照明装置は、光
源部と、該光源部にて発生した光を拡大均一化するイン
テグレータ部と、該インテグレータ部にて拡大均一化さ
れた光を平行光束とするコリメータレンズとを具備する
照明装置であって、前記インテグレータ部が光源部にて
発生した光をコリメータレンズに向けて反射させる反射
部材である。
[Means for Solving the Problems] The lighting device of the present invention includes a light source section, an integrator section that enlarges and homogenizes the light generated by the light source section, and a parallel light source that enlarges and homogenizes the light generated by the integrator section. The illumination device includes a collimator lens that produces a luminous flux, and the integrator section is a reflecting member that reflects light generated in the light source section toward the collimator lens.

【0010】この場合、インテグレータ部は、拡散作用
が生じる反射面を有する複数の要素から構成され、前記
各要素は、それぞれの各反射面が周期的に並ぶように配
設されてもよい。
[0010] In this case, the integrator section may be composed of a plurality of elements having reflective surfaces that produce a diffusing effect, and each of the elements may be arranged such that the respective reflective surfaces are arranged periodically.

【0011】[0011]

【作用】光を拡大均一化するインテグレータ部が反射部
材であるので、光源部にて発生した光によって加熱され
ることがなくなる。例えば、半径5〜100mmの球面
の一部が周期的に配設された反射光学素子であるインテ
グレータ部を従来のハエノメレンズの代わりに用いるこ
とにより、ランプの強度を上げた場合にも光強度が低下
せず、色収差も少ない光励起プロセス用照明装置が可能
になる。
[Operation] Since the integrator section that enlarges and makes the light uniform is a reflective member, it is not heated by the light generated in the light source section. For example, by using an integrator section, which is a reflective optical element in which parts of a spherical surface with a radius of 5 to 100 mm are arranged periodically, instead of a conventional flywheel lens, the light intensity will decrease even when the lamp intensity is increased. This makes it possible to create an illumination device for optically excitation processes with no chromatic aberrations.

【0012】0012

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

【0013】図1は本発明の一実施例の構成を示す断面
図である。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention.

【0014】本実施例はランプ101と、ランプ101
の背部に設けられランプ101とともに光源部を構成す
る背面ミラー102と、ランプ101からの直接光もし
くは背面ミラー102にて反射された光を拡大均一化し
て反射させるインテグレータ部であるミラーインテグレ
ータ103および該ミラーインテグレータ103による
反射光を略平行な光束とするコリメータレンズ104と
により構成されている。
[0014] In this embodiment, the lamp 101 and the lamp 101
a rear mirror 102 that is provided on the back of the lamp 101 and constitutes a light source section, a mirror integrator 103 that is an integrator section that enlarges and homogenizes and reflects direct light from the lamp 101 or light reflected by the rear mirror 102; A collimator lens 104 converts the light reflected by the mirror integrator 103 into a substantially parallel light beam.

【0015】図2(a)は図1中のミラーインテグレー
タ103の構成を示す断面図であり、(b)はその平面
図である。
FIG. 2(a) is a sectional view showing the structure of the mirror integrator 103 in FIG. 1, and FIG. 2(b) is a plan view thereof.

【0016】光を拡大均一化して反射させるミラーイン
テグレータ103は、上面が反射面207とされる六角
柱状の複数の要素206と、各要素206をその側面に
て接するように収容するケース205より構成されてい
る。なお、図2(b)には簡単化のために要素206は
一つだけ示されている。各要素206の上面である反射
面207は、反射光が拡散するように丸められている。 これにより、ミラーインテグレータ103としての反射
面には、拡散作用が生じる反射面207が周期的に配設
されることになる。このため、ランプ101にて発生し
、ミラーインテグレータ103にて反射されてコリメー
タレンズ104に入射される光は拡大均一化されたもの
となり、コリメータレンズ104を通ることにより平行
光束化されて処理室に入射される。
The mirror integrator 103 that enlarges, homogenizes, and reflects light is composed of a plurality of hexagonal columnar elements 206 whose upper surfaces serve as reflective surfaces 207, and a case 205 that accommodates each element 206 so that its side surfaces are in contact with each other. has been done. Note that only one element 206 is shown in FIG. 2(b) for simplicity. The reflective surface 207, which is the upper surface of each element 206, is rounded so that reflected light is diffused. As a result, the reflecting surfaces 207 that produce a diffusing effect are periodically disposed on the reflecting surface serving as the mirror integrator 103. Therefore, the light generated by the lamp 101, reflected by the mirror integrator 103, and incident on the collimator lens 104 is expanded and made uniform, and is converted into a parallel beam by passing through the collimator lens 104 and enters the processing chamber. It is incident.

【0017】本実施例のものにおいては、上記のような
ミラーインテグレータにて反射させることによって光を
拡大均一化するため、ランプの照度を大きなものとする
ことができ、大面積基体に均一化された高照度の光を効
率よく照射することができた。
In this embodiment, the light is expanded and made uniform by being reflected by the mirror integrator as described above, so that the illuminance of the lamp can be increased and the illuminance can be made uniform over a large area of the substrate. It was possible to efficiently irradiate high-intensity light.

【0018】なお、ランプ101としては点状光源が望
ましく、高圧Hgランプ、Xe−Hgランプ、Xeラン
プなどから用途により適当なものを選択すればよい。本
実施例においては高圧Hgランプを使用した。また、背
面ミラー102はランプ101にて発生した光を平行光
束化するものが望ましい。なお、光源として平行光束を
持つレーザを用いる場合は背面ミラー102は不必要と
なる。
It is preferable that the lamp 101 be a point light source, and an appropriate one may be selected from high-pressure Hg lamps, Xe-Hg lamps, Xe lamps, etc. depending on the purpose. In this example, a high pressure Hg lamp was used. Further, it is desirable that the rear mirror 102 converts the light generated by the lamp 101 into a parallel beam. Note that when a laser having a parallel light beam is used as a light source, the rear mirror 102 is unnecessary.

【0019】ミラーインテグレータ103の反射面は複
数の要素206の各反射面207によって構成されるも
のとして説明したが、これは反射面に所定の精度を持た
せたうえで製造を容易とするために行ったものである。 ミラーインテグレータの製造方法は、この方法に限定さ
れるものではなく、同様の周期的な反射面を成形したう
えでミラーを蒸着するものとしてもよい。
Although the reflective surface of the mirror integrator 103 has been described as being composed of the reflective surfaces 207 of the plurality of elements 206, this is done in order to provide the reflective surface with a predetermined precision and to facilitate manufacturing. That's what I did. The method for manufacturing the mirror integrator is not limited to this method, and a mirror may be deposited after forming a similar periodic reflective surface.

【0020】ミラーインテグレータ103を構成する各
要素206の各反射面207の形状としては、球面が造
り易く望ましい。各球面の半径は基体の大きさと、ミラ
ーインテグレータ103とコリメータレンズ104との
間隔によってほぼ決定され、5〜100mm程度である
。例えば、各要素206の大きさを6mm、基体の大き
さをφ6″とし、ミラーインテグレータ103とコリメ
タータレンズ104との間隔が350mmの場合には、
半径28mm程度が適当である。ミラーインテグレータ
103の各要素206の形状は本実施例のように六角柱
状に限定されるものではなく、例えば円形でも良い。し
かし、反射光の均一化のためには最も密に詰められる形
状(例えば本実施例のような六角柱状や角柱状)が望ま
しい。反射面207の材質としては各種金属、特に可視
紫外領域における反射率の高いA1が望ましい。
The shape of each reflective surface 207 of each element 206 constituting the mirror integrator 103 is preferably spherical because it is easy to form. The radius of each spherical surface is approximately determined by the size of the base and the distance between the mirror integrator 103 and the collimator lens 104, and is approximately 5 to 100 mm. For example, when the size of each element 206 is 6 mm, the size of the base is φ6'', and the distance between the mirror integrator 103 and the collimator lens 104 is 350 mm,
A radius of about 28 mm is appropriate. The shape of each element 206 of the mirror integrator 103 is not limited to the hexagonal column shape as in this embodiment, but may be circular, for example. However, in order to make the reflected light uniform, a shape that can be packed most densely (for example, a hexagonal columnar shape or a prismatic columnar shape as in this embodiment) is desirable. The reflective surface 207 is preferably made of various metals, especially A1, which has a high reflectance in the visible and ultraviolet region.

【0021】次に、本発明を光CVD装置に応用した実
施例について図3を参照して説明する。
Next, an embodiment in which the present invention is applied to a photo-CVD apparatus will be described with reference to FIG.

【0022】ランプ101にて発生した光は、ミラーイ
ンテグレータ103とコリメータレンズ104とによっ
て均一な平行光束とされ、石英性の光導入窓313を介
して反応室307に導入される。基体308は、その下
部に設けられたヒータ310によって加熱される支持体
309上に載置される。処理を行うための原料ガス31
2は、反応室307中の基体308近傍の部分から導入
され、基体308と反応後は排気311として反応室3
07から排出される。
The light generated by the lamp 101 is made into a uniform parallel light beam by the mirror integrator 103 and the collimator lens 104, and is introduced into the reaction chamber 307 through the light introduction window 313 made of quartz. The base body 308 is placed on a support body 309 that is heated by a heater 310 provided at the bottom thereof. Raw material gas 31 for processing
2 is introduced into the reaction chamber 307 from a portion near the substrate 308, and after reacting with the substrate 308, it is released into the reaction chamber 3 as an exhaust gas 311.
It is discharged from 07.

【0023】次に、本実施例における成膜動作について
説明する。
Next, the film forming operation in this embodiment will be explained.

【0024】まず、支持体309上に基体308を設置
する。続いてヒータ310に電流を流し、基体308を
室温から数百℃の間の所望の温度まで加熱する。次に、
原料ガス312を流し、排気311側に設けられたコン
ダクタンスバルブ(不図示)により反応室307内を0
.1Torrから100Torrの間の所望の圧力に保
持する。この後、ランプ101を点灯し、所望の膜厚が
得られるまで成膜を行う。
First, the base body 308 is placed on the support body 309 . Subsequently, a current is applied to the heater 310 to heat the base 308 to a desired temperature between room temperature and several hundred degrees Celsius. next,
The raw material gas 312 is caused to flow, and the inside of the reaction chamber 307 is brought to zero by a conductance valve (not shown) provided on the exhaust gas 311 side.
.. Maintain the desired pressure between 1 Torr and 100 Torr. Thereafter, the lamp 101 is turned on and film formation is performed until a desired film thickness is obtained.

【0025】ランプ101として高圧水銀ランプを用い
、原料ガス312としてSi2 H6を20sccm、
NH3 を200sccm供給し、圧力5Torr、基
板温度300℃、照度130mW/cm2 の条件でφ
6″基板上に成膜を行った。その結果、良質なSiN膜
が±3%の均一性をもって20nm/min.と比較的
高速に成膜された。
A high-pressure mercury lamp is used as the lamp 101, and Si2 H6 is used as the raw material gas 312 at 20 sccm.
NH3 was supplied at 200 sccm, the pressure was 5 Torr, the substrate temperature was 300°C, and the illuminance was 130 mW/cm2.
A film was formed on a 6″ substrate. As a result, a high quality SiN film was formed at a relatively high speed of 20 nm/min. with a uniformity of ±3%.

【0026】原料ガスを代えることにより、SiN、S
iO2 ,Ta2 O5 ,Al2 O3 ,AlNな
どの絶縁体、a−Si,poly−Si,GaAsなど
の半導体、Al,Wなどの金属が成膜可能である。
By changing the raw material gas, SiN, S
Insulators such as iO2, Ta2O5, Al2O3, and AlN, semiconductors such as a-Si, poly-Si, and GaAs, and metals such as Al and W can be formed.

【0027】次に、本発明を光アシストプラズマCVD
装置に応用した実施例について図4を参照して説明する
Next, the present invention will be described using photo-assisted plasma CVD.
An example applied to an apparatus will be described with reference to FIG. 4.

【0028】本実施例においては、反応室307の外周
部には、プラズマ発生手段であり高周波電源412より
電力供給を受けるリング状の高周波電極411が券回さ
れ、また、高周波電極411の近傍に形成される電界に
対して垂直な磁界を発生させるための磁界発生手段であ
る磁石413が設けられている。また、基体308の処
理を行うための原料ガスには、図3に示した実施例と同
様に反応室307中の基体308近傍の部分から導入さ
れる原料ガス312とプラズマ発生領域を通って基体3
08に到達するように反応室307の上部より導入され
る第2の原料ガス414とがある。この他の構成は図3
に示した実施例とほぼ同様であるため、図3と同じ番号
を付して説明は省略する。
In this embodiment, a ring-shaped high frequency electrode 411 which is plasma generating means and receives power from a high frequency power source 412 is arranged around the outer periphery of the reaction chamber 307. A magnet 413 is provided as a magnetic field generating means for generating a magnetic field perpendicular to the generated electric field. In addition, the raw material gas for processing the substrate 308 includes a raw material gas 312 introduced from a portion near the substrate 308 in the reaction chamber 307, and a plasma gas 312 introduced into the reaction chamber 307 in the vicinity of the substrate 308, as in the embodiment shown in FIG. 3
There is also a second raw material gas 414 introduced from the upper part of the reaction chamber 307 so as to reach the second raw material gas 414. Other configurations are shown in Figure 3.
Since it is almost the same as the embodiment shown in FIG. 3, the same reference numerals as in FIG. 3 will be given and the explanation will be omitted.

【0029】次に、本実施例における成膜動作について
説明する。
Next, the film forming operation in this embodiment will be explained.

【0030】まず、支持体309上に基体308を設置
し、ランプ101を点灯すると共にヒータ310に電流
を流し、基体308を室温から数百℃の間の所望の温度
に加熱する。次に、原料ガス312および第2の原料ガ
ス414を流し、排気311側に設けられたコンダクタ
ンスバルブ(不図示)により反応室307内を10mT
orrから1Torrの間の所望の圧力に保持する。さ
らに、磁石413による数百Gのマグネトロン磁場の存
在下、高周波電極411に高周波電源412で発生した
高周波電力を供給し、高周波電極411近傍に局在した
プラズマを発生させ、所望の膜厚が得られるまで成膜を
行う。
First, the base 308 is placed on the support 309, the lamp 101 is turned on, and a current is applied to the heater 310 to heat the base 308 to a desired temperature between room temperature and several hundred degrees Celsius. Next, the raw material gas 312 and the second raw material gas 414 are caused to flow, and the inside of the reaction chamber 307 is heated at 10 mT using a conductance valve (not shown) provided on the exhaust gas 311 side.
Maintain the desired pressure between orr and 1 Torr. Furthermore, in the presence of a magnetron magnetic field of several hundred G by the magnet 413, high-frequency power generated by the high-frequency power source 412 is supplied to the high-frequency electrode 411 to generate localized plasma near the high-frequency electrode 411, thereby obtaining the desired film thickness. Film formation is continued until it is completed.

【0031】ランプ101としてXeランプを用い、原
料ガス312としてTEOS(テトラエトキシシラン)
を100sccm、第2の原料ガス414としてO2 
を500sccm供給し、圧力0.1Torr、基板温
度300℃、照度0.6W/cm2 、高周波電力50
0W、磁束密度130Gの条件でφ6″基板上に成膜を
行った。その結果、水素含有率1atm%以下、ストレ
ス2×108 dyne/cm2 引張と良質なSiO
2 膜が±3%の均一性をもって180nm/min.
と高速に成膜された。
A Xe lamp is used as the lamp 101, and TEOS (tetraethoxysilane) is used as the source gas 312.
100 sccm, O2 as the second raw material gas 414
500sccm, pressure 0.1Torr, substrate temperature 300℃, illuminance 0.6W/cm2, high frequency power 50
A film was formed on a φ6" substrate under the conditions of 0W and magnetic flux density of 130G.As a result, the hydrogen content was 1 atm% or less, the stress was 2 x 108 dyne/cm2 tension, and high quality SiO was formed.
2 The film was processed at 180 nm/min. with a uniformity of ±3%.
The film was formed at high speed.

【0032】原料ガスを代えることにより、SiN,S
iO2 ,Ta2 O5 ,Al2 O3 ,AlNな
どの絶縁体、a−Si,poly−Si,GaAsなど
の半導体、Al、Wなどの金属が成膜可能である。
By changing the raw material gas, SiN, S
Insulators such as iO2, Ta2O5, Al2O3, and AlN, semiconductors such as a-Si, poly-Si, and GaAs, and metals such as Al and W can be formed.

【0033】なお、上記各計測値のうち、・密度は、エ
リプソメトリにより計測された屈折率とオージェ電子分
光により計測された組成比およびローレンツ−ローレン
ツ関係式により求めた。 ・水素含有率は赤外吸収スペクトル中のSi−H,N−
Hバンドの吸光度を吸収係数で割求めた。 ・ストレスは干渉計により測定した成膜前後の基体のそ
りの変化より求めた。
Of the above measured values, the density was determined from the refractive index measured by ellipsometry, the composition ratio measured by Auger electron spectroscopy, and the Lorentz-Lorentz relational expression.・Hydrogen content is determined by Si-H, N- in the infrared absorption spectrum.
The absorbance of the H band was divided by the absorption coefficient.・Stress was determined from changes in the warpage of the substrate before and after film formation, as measured by an interferometer.

【0034】[0034]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。
[Effects of the Invention] Since the present invention is constructed as described above, it produces the following effects.

【0035】請求項1に記載のものにおいては、光強度
が大幅に低下することなく、色収差も生じないためラン
プが発生する光強度を大きくすることができ、広い面積
に均一化された高照度の光とすることができる効果があ
る。
[0035] In the device according to claim 1, the light intensity does not decrease significantly and chromatic aberration does not occur, so the light intensity generated by the lamp can be increased, and high illuminance is uniformly distributed over a wide area. There is an effect that can be done with light.

【0036】請求項2に記載のものにおいては、上記の
効果を備えたインテグレータ部を容易に製造することが
できる効果がある。
According to the second aspect of the present invention, an integrator section having the above-mentioned effects can be easily manufactured.

【0037】請求項3に記載のものにおいては、光励起
のための光として広い面積に均一化された高照度の光が
用いられるため、高性能かつ高速な処理が可能な光励起
プロセス装置を実現することができる効果がある。
In the third aspect, since high-intensity light uniformized over a wide area is used as light for optical excitation, an optical excitation process device capable of high performance and high-speed processing is realized. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の構成を示す断面図である。FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention.

【図2】(a)は図1中のミラーインテグレータ103
の構成を示す断面図、(b)はその平面図である。
[Fig. 2] (a) shows the mirror integrator 103 in Fig. 1.
A cross-sectional view showing the configuration of the device, and (b) a plan view thereof.

【図3】本発明を光CVD装置に応用した実施例の構成
を示す図である。
FIG. 3 is a diagram showing the configuration of an embodiment in which the present invention is applied to a photo-CVD apparatus.

【図4】本発明を光アシストプラズCVD装置に応用し
た実施例の構成を示す図である。
FIG. 4 is a diagram showing the configuration of an embodiment in which the present invention is applied to an optically assisted plasma CVD apparatus.

【図5】マルチランプアレイ型の従来例の構成を示す図
である。
FIG. 5 is a diagram showing the configuration of a conventional example of a multi-lamp array type.

【図6】ハエノメレンズ型の従来例の構成を示す図であ
る。
FIG. 6 is a diagram showing the configuration of a conventional example of a flywheel lens type.

【符号の説明】[Explanation of symbols]

101    ランプ 102    背面ミラー 103    ミラーインテグレータ 104    コリメータレンズ 205    ケース 206    要素 207    反射面 307    反応室 308    基体 309    支持体 310    ヒータ 311    排気 312    原料ガス 313    光導入窓 411    高周波電極 412    高周波電源 413    磁石 414    第2の原料ガス 101 Lamp 102 Rear mirror 103 Mirror integrator 104 Collimator lens 205 Case 206 Element 207 Reflective surface 307 Reaction chamber 308 Base 309 Support 310 Heater 311 Exhaust 312 Raw material gas 313 Light introduction window 411 High frequency electrode 412 High frequency power supply 413 Magnet 414 Second source gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  光源部と、該光源部にて発生した光を
拡大均一化するインテグレータ部と、該インテグレータ
部にて拡大均一化された光を平行光束とするコリメータ
レンズとを具備する照明装置であって、前記インテグレ
ータ部が、光源部にて発生した光をコリメータレンズに
向けて反射させる反射部材であることを特徴とする照明
装置。
1. An illumination device comprising a light source section, an integrator section that enlarges and homogenizes the light generated by the light source section, and a collimator lens that converts the light enlarged and homogenized in the integrator section into a parallel light beam. The lighting device, wherein the integrator section is a reflecting member that reflects light generated in the light source section toward a collimator lens.
【請求項2】  インテグレータ部は、拡散作用が生じ
る反射面を有する複数の要素から構成され、前記各要素
は、それぞれの各反射面が周期的に並ぶように配設され
ている請求項1記載の照明装置。
2. The integrator section is composed of a plurality of elements each having a reflective surface that produces a diffusion effect, and each of the elements is arranged such that each of the reflective surfaces is arranged periodically. lighting equipment.
【請求項3】  請求項1または請求項2に記載の照明
装置が励起用の光源として使用されることを特徴とする
光励起プロセス装置。
3. A photoexcitation process device, characterized in that the illumination device according to claim 1 or 2 is used as a light source for excitation.
JP3094996A 1991-04-02 1991-04-02 Illuminator and light exciting processing device with the same Pending JPH04305244A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3094996A JPH04305244A (en) 1991-04-02 1991-04-02 Illuminator and light exciting processing device with the same
US07/854,403 US5223039A (en) 1991-04-02 1992-03-19 Illuminating apparatus and photo-excited process apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094996A JPH04305244A (en) 1991-04-02 1991-04-02 Illuminator and light exciting processing device with the same

Publications (1)

Publication Number Publication Date
JPH04305244A true JPH04305244A (en) 1992-10-28

Family

ID=14125473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094996A Pending JPH04305244A (en) 1991-04-02 1991-04-02 Illuminator and light exciting processing device with the same

Country Status (2)

Country Link
US (1) US5223039A (en)
JP (1) JPH04305244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699593B2 (en) 2009-11-18 2014-04-15 Panasonic Corporation Communication medium determining apparatus and method of determining communication medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212118A (en) * 1991-08-09 1993-05-18 Saxena Arjun N Method for selective chemical vapor deposition of dielectric, semiconductor and conductive films on semiconductor and metallic substrates
JP2989063B2 (en) * 1991-12-12 1999-12-13 キヤノン株式会社 Thin film forming apparatus and thin film forming method
JP3148004B2 (en) * 1992-07-06 2001-03-19 株式会社東芝 Optical CVD apparatus and method for manufacturing semiconductor device using the same
JPH06333857A (en) * 1993-05-27 1994-12-02 Semiconductor Energy Lab Co Ltd Device and method for forming film
JP2942239B2 (en) * 1997-05-23 1999-08-30 キヤノン株式会社 Exhaust method and exhaust apparatus, plasma processing method and plasma processing apparatus using the same
JP3352418B2 (en) 1999-01-28 2002-12-03 キヤノン株式会社 Pressure reduction method and pressure reduction device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB204538A (en) * 1922-10-11 1923-10-04 Christian Gottlob Feucht Improvements in railway switches
US4202605A (en) * 1979-04-05 1980-05-13 Rockwell International Corporation Active segmented mirror
US4289380A (en) * 1980-04-03 1981-09-15 The United States Of America As Represented By The Secretary Of The Navy Laser beam linear adjustable integrating mirror
JPS60128264A (en) * 1983-12-14 1985-07-09 Nec Corp Formation of thin film
JPS63216974A (en) * 1987-03-05 1988-09-09 Mitsubishi Electric Corp Device for forming thin film
JPH01306567A (en) * 1988-06-06 1989-12-11 Mitsubishi Electric Corp Formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699593B2 (en) 2009-11-18 2014-04-15 Panasonic Corporation Communication medium determining apparatus and method of determining communication medium

Also Published As

Publication number Publication date
US5223039A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
US8858753B2 (en) Focus ring heating method, plasma etching apparatus, and plasma etching method
KR100999002B1 (en) Method and apparatus for the treatment of a semiconductor wafer
US20070030568A1 (en) High-reflectance visible-light reflector member, liquid-crystal display backlight unit employing the same, and manufacture of the high-reflectance visible-light reflector member
JP2011071464A (en) Method of heating focus ring, plasma etching apparatus, and plasma etching method
JPH04305244A (en) Illuminator and light exciting processing device with the same
US6914011B2 (en) Film deposition system and method of fabricating semiconductor device employing the film deposition system
US5681394A (en) Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same
JP2973611B2 (en) Photoexcitation process apparatus and semiconductor device manufacturing method using the same
JP2000068222A (en) Substrate heat treatment device
US4768464A (en) Chemical vapor reaction apparatus
JP2004216321A5 (en)
US4882263A (en) Method of treating photoresists
JPH03276625A (en) Manufacturing equipment of semiconductor device
JPS6114724A (en) Irradiation of semiconductor wafer by ultraviolet ray
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP3139058B2 (en) Photoexcitation process apparatus and semiconductor device manufacturing method using the same
JPH0635663B2 (en) Surface treatment method and apparatus
JP4978684B2 (en) Silicon thin film processing method and flash lamp irradiation apparatus
JPH07294705A (en) Treatment after ultraviolet irradiation
JPH11223707A (en) Optical member and its production
JPH04365318A (en) Surface treatment apparatus
JPS6193630A (en) Manufacture of silicon dioxide film
JPH0430519A (en) Treating apparatus of surface of substrate
JPH0447454B2 (en)
JP2003059855A (en) Light irradiation-type heating treatment device