Nothing Special   »   [go: up one dir, main page]

JPH04291149A - Ultrasonic flaw detection method for steel pipe and device - Google Patents

Ultrasonic flaw detection method for steel pipe and device

Info

Publication number
JPH04291149A
JPH04291149A JP3056900A JP5690091A JPH04291149A JP H04291149 A JPH04291149 A JP H04291149A JP 3056900 A JP3056900 A JP 3056900A JP 5690091 A JP5690091 A JP 5690091A JP H04291149 A JPH04291149 A JP H04291149A
Authority
JP
Japan
Prior art keywords
steel pipe
ultrasonic
ultrasonic probe
flaw detection
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3056900A
Other languages
Japanese (ja)
Other versions
JP2501489B2 (en
Inventor
Akira Murayama
村山 章
Tetsuo Nakano
中野 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3056900A priority Critical patent/JP2501489B2/en
Publication of JPH04291149A publication Critical patent/JPH04291149A/en
Application granted granted Critical
Publication of JP2501489B2 publication Critical patent/JP2501489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable S/N and flaw-detection performance to be improved by moving relative positions of a steel pipe and a probe so that a focus of the ultrasonic probe on an outer periphery face of the steel pipe moves along a spiral-shaped channel groove of an inner periphery face. CONSTITUTION:A plurality of spiral-shaped channels 3 exist on an inner periphery face of a steel pipe 1 and ultrasonic probes 15b and 15a are placed at positions of an outer periphery face 4 opposing each top portion 3a and a bottom portion 3b. The ultrasonic output from the probes 15a and 15b is focused near the bottom portion 3b and the top portion 3a of the inner periphery face. Its reflection wave enters the probes 15a and 15b again and is input to a flaw detector 20 separately. A positional relationship between the steel pipe 1 and the probes 15 is relatively changed by a movement control mechanism so that the focus of the probes 15 moves along the top portion 3a or the bottom portion 3b. Thus the ultrasonic focus can be continuously detected without deviating from a portion of the channel 3 which is set once. The flaw detector 20 receives the reflection wave due to a defect from each probe 15 by a plurality of reception circuits and then displays it.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は内周面に互いに平行する
複数の螺旋状溝が形成された鋼管の欠陥を超音波探触子
でもって検出する鋼管の超音波探傷方法及びその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and apparatus for detecting defects in a steel pipe having a plurality of parallel spiral grooves formed on its inner peripheral surface using an ultrasonic probe.

【0002】0002

【従来の技術】例えばボイラー設備の配管に使用される
鋼管のなかには、鋼管内に蒸気や水,加圧水等の流体が
通流する場合に、熱伝達効率を向上させたり、または流
体の乱流を防止する目的のために、内周面に複数の螺旋
状溝が形成されたものがある。なお、このように内周面
に螺旋状溝が形成された鋼管をライフル・チューブと呼
ぶこともある。
[Prior Art] For example, some steel pipes used for boiler equipment piping are designed to improve heat transfer efficiency or reduce turbulent flow when fluids such as steam, water, or pressurized water flow through the steel pipes. Some products have a plurality of spiral grooves formed on their inner circumferential surface for the purpose of preventing this. Note that a steel pipe having a spiral groove formed on its inner circumferential surface in this manner is sometimes called a rifle tube.

【0003】図9(a)はこのような鋼管の構成を示す
外観図であり、図9(b)は図9(a)の鋼管1を軸方
向に切断して示す軸方向断面図であり、図9(c)は図
9(a)の鋼管1を直径方向に切断して示す径方向断面
図である。図示するように、この鋼管1の内周面2に互
いに平行する複数の螺旋状態溝3が形成されている。螺
旋状態溝3は台形状の断面形状を有している。そして、
互いに隣接する螺旋状態溝3どうしで、軸心方向に突出
する山部3aと外周面4方向に向く谷部3bとを構成し
ている。したがって、鋼管1の厚みtは山部3aで厚く
(t=tT )、谷部3bで薄い(t=tB )。
FIG. 9(a) is an external view showing the structure of such a steel pipe, and FIG. 9(b) is an axial cross-sectional view showing the steel pipe 1 of FIG. 9(a) cut in the axial direction. , FIG. 9(c) is a radial cross-sectional view showing the steel pipe 1 of FIG. 9(a) cut in the diametrical direction. As shown in the figure, a plurality of spiral grooves 3 are formed in the inner circumferential surface 2 of the steel pipe 1 in parallel with each other. The spiral groove 3 has a trapezoidal cross-sectional shape. and,
The spiral grooves 3 adjacent to each other form a peak 3a projecting in the axial direction and a trough 3b facing the outer circumferential surface 4. Therefore, the thickness t of the steel pipe 1 is thicker at the peaks 3a (t=tT) and thinner at the valleys 3b (t=tB).

【0004】このような鋼管1の表面および内部に存在
する欠陥を超音波を用いて検出する超音波探傷法におい
ては、図10に示すように、被探傷体としての鋼管1の
外周面4の1箇所に例えば斜角探触子または垂直探触子
からなる超音波探触子5を配設する。そして、図示しな
い探傷器から信号線を介してこの超音波探触子5内の振
動子5aにパスル信号を印加して、この振動子5aから
鋼管1へ超音波を送信させる。振動子5aから出力され
た超音波は外周面4から鋼管1内へ入力して、鋼管1内
を伝播して、内周面2で大きく反射される。したがって
、振動子5aには外周面4で反射された表面反射波と内
周面で反射された底面反射波とが受信される。
In the ultrasonic flaw detection method that uses ultrasonic waves to detect defects existing on the surface and inside of the steel pipe 1, as shown in FIG. An ultrasonic probe 5 made of, for example, an oblique probe or a vertical probe is disposed at one location. Then, a pulse signal is applied from a flaw detector (not shown) to the vibrator 5a in the ultrasonic probe 5 via a signal line, and the ultrasonic wave is transmitted from the vibrator 5a to the steel pipe 1. The ultrasonic waves output from the vibrator 5a enter the steel pipe 1 from the outer peripheral surface 4, propagate within the steel pipe 1, and are largely reflected at the inner peripheral surface 2. Therefore, the vibrator 5a receives the surface reflected wave reflected by the outer circumferential surface 4 and the bottom reflected wave reflected by the inner circumferential surface.

【0005】また、鋼管1の内部および各表面4,2に
欠陥が存在すると、その欠陥にて反射された欠陥反射波
が振動子5bに受信される。よって、この振動子5aで
受信された超音波の受信信号を例えばCRT表示装置等
に表示させると、欠陥に起因する欠陥反射波が現われる
ので、欠陥の発生位置と概略の欠陥規模を把握できる。
[0005] Furthermore, if a defect exists inside the steel pipe 1 and on each surface 4, 2, a defect reflected wave reflected by the defect is received by the vibrator 5b. Therefore, when the received ultrasonic signal received by the vibrator 5a is displayed on, for example, a CRT display device, a defect reflected wave caused by the defect appears, so that the location of the defect and the approximate size of the defect can be grasped.

【0006】また、上述したような螺旋状溝3が形成さ
れた鋼管1における欠陥は内周面2と外周面4において
軸方向に多発するので、一般に内外面の軸方向傷を対象
に探傷を行う。すなわち、超音波探触子5にて受信され
る超音波の受信感度を、内周面2近傍の欠陥も外周面近
傍の欠陥も高いS/Nでもって検出できるように調整す
る。
Furthermore, since defects in the steel pipe 1 in which the spiral groove 3 as described above is formed occur frequently in the axial direction on the inner circumferential surface 2 and the outer circumferential surface 4, flaw detection is generally carried out targeting axial flaws on the inner and outer surfaces. conduct. That is, the receiving sensitivity of the ultrasonic waves received by the ultrasonic probe 5 is adjusted so that defects near the inner peripheral surface 2 and defects near the outer peripheral surface can be detected with a high S/N.

【0007】そして、実際の鋼管1に対して超音波探傷
を実行するまえに、図11に示すように、基準となる人
工欠陥A〜Dを刻設した対比試験片6を用いて探傷器に
おいて検出される欠陥反射波の感度調整を行う。なお、
人工欠陥A,B,C,Dは、それぞれ螺旋状溝3の山部
3aの外周面4,内周面2,谷部3bの外周面4,内周
面2にそれぞれ形成された同一規模(5%t=深さ0.
2mm )の人工欠陥である。そして、この対比試験片
6の各人工欠陥A〜Dを静止状態で最良のS/Nが得ら
れるように、偏心等の手段を用いて最適の屈折角に調整
する。 また、この対比試験片6に用いた鋼管1は50.8mm
の外径と5.6 mmの厚みを有する。
[0007] Before carrying out ultrasonic flaw detection on the actual steel pipe 1, as shown in FIG. Adjust the sensitivity of detected defect reflected waves. In addition,
Artificial defects A, B, C, and D are formed on the outer circumferential surface 4 and inner circumferential surface 2 of the peak portion 3a of the spiral groove 3, and on the outer circumferential surface 4 and inner circumferential surface 2 of the valley portion 3b, respectively. 5%t=depth 0.
2mm) is an artificial defect. Then, each of the artificial defects A to D of this comparison test piece 6 is adjusted to an optimal refraction angle using means such as eccentricity so that the best S/N can be obtained in a stationary state. Moreover, the steel pipe 1 used for this comparison test piece 6 is 50.8 mm.
It has an outer diameter of 5.6 mm and a thickness of 5.6 mm.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、内周面
2に螺旋状溝3が形成されており、鋼管1の厚みtが山
部3aと谷部3bとで大きく異なるので、外周面4から
入射された超音波が山部3aの内面にて反射されて振動
子5aに戻る経路と、谷部3bの内面にて反射されて振
動子5aに戻る経路とが大きく異なることになる。また
、山部3aと谷部3bとの境目の壁にて反射されて戻る
経路もある。したがって、超音波探触子5から出力され
て再度超音波探触子5へ戻る経路が内周面2に形成され
た螺旋状溝3に大きく影響され、一義的に定まらない。 その結果、欠陥反射波と他の種々の散乱反射波に起因す
る雑音との比で示されるS/Nが大幅に低下する。
[Problems to be Solved by the Invention] However, since the spiral groove 3 is formed on the inner circumferential surface 2 and the thickness t of the steel pipe 1 differs greatly between the peaks 3a and the valleys 3b, The path in which the generated ultrasonic waves are reflected on the inner surface of the peak portion 3a and returns to the transducer 5a is significantly different from the path in which the ultrasonic wave is reflected on the inner surface of the valley portion 3b and returns to the transducer 5a. There is also a path where the light is reflected by the wall at the boundary between the mountain portion 3a and the valley portion 3b and returns. Therefore, the path that is output from the ultrasonic probe 5 and returns to the ultrasonic probe 5 is greatly influenced by the spiral groove 3 formed on the inner circumferential surface 2 and cannot be uniquely determined. As a result, the S/N ratio, which is the ratio between the defective reflected waves and the noise caused by various other scattered reflected waves, is significantly reduced.

【0009】よって、CRT表示装置に表示される反射
波(エコー)の高さが一定しなかったり、消滅したり、
また、現れる位置が絶えず変化する。したがって、CR
T表示装置に表示される反射波がどの位置の欠陥に起因
するものであるか、さらに、その反射波が欠陥に起因す
るものであるのか、内周面2からの反射波であるのかの
判断が難しい等の問題が生じる。
[0009] Therefore, the height of the reflected wave (echo) displayed on the CRT display device may not be constant, or it may disappear.
Also, the position in which it appears changes constantly. Therefore, C.R.
Determining which position of the defect the reflected wave displayed on the T display device is caused by, and further determining whether the reflected wave is caused by the defect or the reflected wave from the inner circumferential surface 2. Problems arise, such as difficulty in

【0010】さらに、使用する超音波探触子が図10に
示した通常の垂直探触子または通常に斜角探触子である
ので、振動子5aから出力される超音波が広く広がって
、山部3aや谷部3bに当たって散乱し、S/Nをさら
に低下させる問題もある。
Furthermore, since the ultrasonic probe used is the normal vertical probe shown in FIG. 10 or the normal oblique probe, the ultrasonic waves output from the transducer 5a spread widely, There is also the problem that the light hits the peaks 3a and valleys 3b and is scattered, further reducing the S/N.

【0011】なお、このような不都合を解消するために
、鋼管1の内周面2に螺旋状溝3を形成するまえの鋼管
そのものの状態で高い検出感度でもって超音波探傷を行
い、次に、螺旋状溝3を形成したあとの完成された状態
の鋼管を検出感度を低下させて探傷する2段階探傷法が
考えられる。
In order to eliminate this inconvenience, ultrasonic flaw detection is performed with high detection sensitivity on the steel pipe itself before the spiral groove 3 is formed on the inner circumferential surface 2 of the steel pipe 1, and then A two-step flaw detection method is considered in which the completed steel pipe after the spiral groove 3 has been formed is flaw-detected by lowering the detection sensitivity.

【0012】また、螺旋状溝3が形成された最終状態で
、厚みtが厚い(t=tT )山部3aに対応した検出
感度で超音波探傷を実行する1段階探傷法も考えられる
。この場合、谷部3bの欠陥に対する検出感度は最適検
出感度より低くなる。
[0012] A one-step flaw detection method is also conceivable, in which ultrasonic flaw detection is performed at a detection sensitivity corresponding to the peak portion 3a having a thick thickness t (t=tT) in the final state in which the helical groove 3 is formed. In this case, the detection sensitivity for defects in the valley portion 3b becomes lower than the optimum detection sensitivity.

【0013】さらに、螺旋状溝3が形成された最終状態
で、山部3aの外周面と内周面とをそれぞれ専用の超音
波探触子で探傷し、さらに、谷部3bの外周面と内周面
とをそれぞれ専用の超音波探触子で探傷する手法も考え
られる。この場合、山部3aの外周面と内周面を探傷す
る各超音波探触子の検出感度は山部3aの厚みtT に
対応した検出感度に設定し、谷部3bの外周面と内周面
を探傷する各超音波探触子の検出感度は谷部3bの厚み
tB に対応した検出感度、すなわち山部3aの検出感
度より低く設定する。
Furthermore, in the final state in which the spiral groove 3 is formed, the outer circumferential surface and the inner circumferential surface of the peak portion 3a are inspected using dedicated ultrasonic probes, and the outer circumferential surface and the inner circumferential surface of the trough portion 3b are inspected. A method of detecting flaws on the inner circumferential surface using dedicated ultrasonic probes may also be considered. In this case, the detection sensitivity of each ultrasonic probe that detects flaws on the outer circumferential surface and inner circumferential surface of the peak portion 3a is set to a detection sensitivity corresponding to the thickness tT of the peak portion 3a, and The detection sensitivity of each ultrasonic probe for detecting flaws on the surface is set lower than the detection sensitivity corresponding to the thickness tB of the valley portion 3b, that is, the detection sensitivity of the peak portion 3a.

【0014】しかしながら、上述した各探傷法もまだ次
のような問題があった。すなわち、2段階探傷法におい
ては、螺旋状溝3を形成する過程で山部3aに相当する
位置に欠陥(傷)が発生する懸念がある。また、2段階
探傷は工程が増大するので、設備や探傷作業能率が低下
する。
However, each of the flaw detection methods described above still has the following problems. That is, in the two-step flaw detection method, there is a concern that defects (scratches) may occur at positions corresponding to the peaks 3a during the process of forming the spiral groove 3. Furthermore, since the two-step flaw detection increases the number of steps, equipment and flaw detection work efficiency are reduced.

【0015】また、上述した各探傷法においては、各超
音波探触子の検出感度を鋼管1を静的状態で各厚みtT
 ,tB に対応した最適値に設定している。しかし、
実際においては、鋼管1と各超音波探触子との相対位置
を移動させながら探傷作業を実行する。したがって、鋼
管1の内周面2から見た超音波探触子5の軌跡は図12
の矢印で示すように、螺旋状溝3の山部3aと谷部3b
とを横切る。したがって、各超音波探触子は厚みtが大
きく変動する鋼管1を探傷することになるので、前述し
た問題は何等解消しないことになる。
In each of the above-mentioned flaw detection methods, the detection sensitivity of each ultrasonic probe is determined at each thickness tT when the steel pipe 1 is in a static state.
, tB. but,
In reality, flaw detection work is performed while moving the relative positions of the steel pipe 1 and each ultrasonic probe. Therefore, the trajectory of the ultrasonic probe 5 seen from the inner circumferential surface 2 of the steel pipe 1 is as shown in FIG.
As shown by the arrows, the peaks 3a and troughs 3b of the spiral groove 3
cross the Therefore, each ultrasonic probe will detect flaws in the steel pipe 1 whose thickness t varies greatly, so the above-mentioned problem will not be solved in any way.

【0016】本発明はこのような事情に鑑みてなされた
ものであり、鋼管の外周面に配設された超音波探触子の
焦点が内周面の螺旋状溝に沿って移動するように鋼管と
超音波探触子との相対位置を移動させることによって、
螺旋状溝の山部及び谷部を常時最良の検出感度で探傷で
き、また、厚み変化に起因する雑音成分を極力低減し、
S/Nを向上させると共に、探傷性能を大幅に向上でき
る鋼管の超音波探傷方法及びその装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and is designed to move the focal point of an ultrasonic probe disposed on the outer circumferential surface of a steel pipe along a spiral groove on the inner circumferential surface. By moving the relative position between the steel pipe and the ultrasonic probe,
The peaks and valleys of spiral grooves can always be detected with the best detection sensitivity, and noise components caused by thickness changes are reduced as much as possible.
It is an object of the present invention to provide an ultrasonic flaw detection method for steel pipes and an apparatus therefor, which can improve S/N and significantly improve flaw detection performance.

【0017】[0017]

【課題を解決するための手段】上記課題を解消するため
に本発明は、内周面に互いに平行する複数の螺旋状溝が
形成された鋼管の外周面に超音波探触子を対向させて、
この超音波探触子から鋼管に対して超音波の送受信を行
うことによって、鋼管の表面および内部に存在する欠陥
を検出する鋼管の超音波探傷方法において、
[Means for Solving the Problems] In order to solve the above problems, the present invention provides an ultrasonic probe that faces the outer peripheral surface of a steel pipe in which a plurality of mutually parallel spiral grooves are formed on the inner peripheral surface. ,
In an ultrasonic flaw detection method for steel pipes that detects defects on the surface and inside of steel pipes by transmitting and receiving ultrasonic waves from this ultrasonic probe to and from the steel pipes,

【0018
】超音波探触子の焦点が螺旋状溝の山部又は谷部に沿っ
て移動するように、超音波探触子と鋼管との位置関係を
相対的に変化させることによって、超音波探触子でもっ
て連続して欠陥検出を行うようにしている。
0018
]The ultrasonic probe is created by relatively changing the positional relationship between the ultrasonic probe and the steel pipe so that the focus of the ultrasonic probe moves along the peaks or valleys of the spiral groove. Defect detection is performed continuously with the child.

【0019】また、別の発明の鋼管の超音波探傷方法に
よれは、上記各手段に加えて、全ての螺旋状溝の山部及
び谷部に沿って焦点が移動するように、鋼管の外周方向
に沿って少なくとも螺旋状溝数の2倍以上の超音波探触
子を配設するようにしている。
[0019] In addition to the above-mentioned means, according to the ultrasonic flaw detection method for steel pipes according to another invention, the outer circumference of the steel pipe is At least twice as many ultrasonic probes as the number of spiral grooves are arranged along the direction.

【0020】さらに、別の発明における鋼管の超音波探
傷装置においては、鋼管における外周面の外周方向に沿
って配設された少なくとも螺旋状溝数の2倍以上の超音
波探触子と、この各超音波探触子の焦点が螺旋状溝の山
部及び谷部に位置するように各超音波探触子を支持する
超音波探触子支持機構と、この超音波探触子支持機構に
よって支持された各超音波探触子の焦点が各螺旋状溝の
山部又は谷部に沿って移動するように、超音波探触子と
前記鋼管との位置関係を相対的に変化させる移動制御機
構と、各超音波探触子から出力された超音波の受信信号
から欠陥の発生位置および欠陥規模を検出する信号処理
部とを備えている。
Furthermore, an ultrasonic flaw detection device for steel pipes according to another invention includes an ultrasonic probe having at least twice the number of helical grooves disposed along the outer circumferential direction of the outer circumferential surface of the steel pipe; An ultrasonic probe support mechanism that supports each ultrasonic probe so that the focal point of each ultrasonic probe is located at the peaks and valleys of the spiral groove, and this ultrasonic probe support mechanism. Movement control that relatively changes the positional relationship between the ultrasonic probe and the steel pipe so that the focal point of each supported ultrasonic probe moves along the peaks or valleys of each spiral groove. The device includes a mechanism and a signal processing unit that detects the location and size of a defect from the received ultrasonic signals output from each ultrasonic probe.

【0021】さらに別の発明においては、移動制御機構
を、超音波探触子支持機構によって支持された各超音波
探触子の焦点が各螺旋状溝の山部又は谷部に沿って移動
するように、鋼管を軸心回りに回転させなが軸方向に移
動させる鋼管移動制御装置でもって構成している。
In still another invention, the movement control mechanism is configured such that the focal point of each ultrasonic probe supported by the ultrasonic probe support mechanism moves along the peak or trough of each spiral groove. The steel pipe movement control device rotates the steel pipe around its axis and moves it in the axial direction.

【0022】[0022]

【作用】このように構成された鋼管の超音波探傷方法及
びその装置によれば、この鋼管の外周面に配設された超
音波探触子は焦点を有する超音波探触子で形成されてい
る。そして、各超音波探触子から出力される超音波は鋼
管の内周面に形成された螺旋状溝の山部又は谷部近傍で
焦点を結ぶ。すなわち、静止状態において、山部又は谷
部に存在する欠陥が最良の状態で検出するように検出感
度調整が行われる。
[Operation] According to the method and device for ultrasonic flaw detection of steel pipes configured as described above, the ultrasonic probe disposed on the outer peripheral surface of the steel pipe is formed of an ultrasonic probe having a focal point. There is. The ultrasonic waves output from each ultrasonic probe are focused near the peaks or valleys of the spiral groove formed on the inner circumferential surface of the steel pipe. That is, in a stationary state, the detection sensitivity is adjusted so that defects existing in peaks or valleys are detected in the best condition.

【0023】そして、超音波探触子の焦点が螺旋状溝の
山部又は谷部に沿って移動するように、鋼管と超音波探
触子の位置関係が相対的に変化する。例えば、鋼管を軸
心回りに回転させながら軸方向に移動させるている。し
たがって、たとえ鋼管を移動させたとしても、超音波の
焦点は一旦設定された螺旋状溝の山部又は谷部を外れる
ことはない。よって、鋼管を移動することによって超音
波探触子から出力されて再度この超音波探触子へ受信さ
れる超音波の経路が変化することはない。その結果、欠
陥に起因する欠陥反射波のS/Nが低下することはない
Then, the relative positional relationship between the steel pipe and the ultrasonic probe changes so that the focal point of the ultrasonic probe moves along the peaks or valleys of the spiral groove. For example, a steel pipe is moved in the axial direction while being rotated around the axis. Therefore, even if the steel pipe is moved, the focus of the ultrasonic wave will not deviate from the peaks or valleys of the spiral groove once set. Therefore, moving the steel pipe does not change the path of the ultrasonic waves output from the ultrasonic probe and received by the ultrasonic probe again. As a result, the S/N of the defect reflected wave due to the defect does not decrease.

【0024】また、別の発明においては、超音波探触子
が鋼管の外周方向に沿って螺旋状溝の形成数の2倍以上
の数の超音波探触子が鋼管の全周に亘って配設されてい
る。したがって、各螺旋状溝の山部及び谷部に亘って均
等にその山部又は谷部に対してそれぞれ焦点が設定され
ている。よって、例えば、鋼管を回転させながら移動さ
せると、全ての螺旋状溝の各山部及び谷部が同時に探傷
される。よって、探傷作業能率が大幅に向上する。さら
に、信号処理部において各超音波探触子から出力された
超音波の受信信号から欠陥の発生位置および欠陥規模を
検出している。
Further, in another invention, the number of ultrasonic probes is twice or more the number of spiral grooves formed along the outer circumferential direction of the steel pipe, and the number of ultrasonic probes is twice or more the number of spiral grooves formed along the outer circumferential direction of the steel pipe. It is arranged. Therefore, the focus is set evenly over the peaks and valleys of each spiral groove. Therefore, for example, when the steel pipe is moved while being rotated, the peaks and valleys of all the spiral grooves are simultaneously detected. Therefore, the flaw detection work efficiency is greatly improved. Further, the signal processing section detects the location and size of the defect from the received ultrasonic signals output from each ultrasonic probe.

【0025】また、別の発明の鋼管の超音波探傷装置に
おいては、超音波探触子支持機構で各超音波探触子を鋼
管の外周面の周方向に配設し、鋼管支持移動装置でもっ
て鋼管を軸心回りに回転させなが軸方向に移動させてい
る。
Further, in the ultrasonic flaw detection apparatus for steel pipes of another invention, each ultrasonic probe is disposed in the circumferential direction of the outer peripheral surface of the steel pipe by the ultrasonic probe support mechanism, and This allows the steel pipe to rotate around its axis while moving it in the axial direction.

【0026】[0026]

【実施例】以下本発明の一実施例を図面を用いて説明す
る。図1は実施例の鋼管の超音波探傷方法を適用した超
音波探傷装置全体を示すシステム構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram showing an entire ultrasonic flaw detection apparatus to which an ultrasonic flaw detection method for steel pipes according to an embodiment is applied.

【0027】検査ライン10に沿って被検体としての鋼
管1を搭載した試験用搬送台車11が移動制御される。 鋼管1は両側に配設された複数の回転ローラ12により
一定速度で軸心回り回転させられる。また、検査ライン
10上には試験用搬送台車11の移動位置を検出するた
めの位置センサ13が設けられている。さらに、検査ラ
イン10の上方位置には超音波探触子支持機構14が例
えば建屋に天井固定された支持移動機構に移動自在に設
けられている。この超音波探触子支持機構14の下面に
は多数の超音波探触子15a,15bが鋼管1の外周面
4に対向するように取付けられている。
The movement of a test carrier 11 carrying a steel pipe 1 as a test object is controlled along the inspection line 10. The steel pipe 1 is rotated around its axis at a constant speed by a plurality of rotating rollers 12 arranged on both sides. Further, a position sensor 13 is provided on the inspection line 10 to detect the moving position of the test carrier 11. Further, above the inspection line 10, an ultrasonic probe support mechanism 14 is movably provided, for example, on a support movement mechanism fixed to the ceiling of the building. A large number of ultrasonic probes 15a and 15b are attached to the lower surface of this ultrasonic probe support mechanism 14 so as to face the outer peripheral surface 4 of the steel pipe 1.

【0028】なお、位置センサ13側の先頭位置のチャ
ンネルAおよびチャンルBの各超音波探触子15a,1
5bは鋼管1の移動速度および回転速度を制御するため
のセンサである。
Note that the ultrasonic probes 15a, 1 of channel A and channel B at the leading position on the position sensor 13 side
5b is a sensor for controlling the moving speed and rotational speed of the steel pipe 1.

【0029】検査ライン10に平行に校正ライン16が
配設されており、この校正ライン16上に人工欠陥が形
成された校正用鋼管17を搭載した校正用搬送台車18
が移動制御される。そして、前記超音波探触子支持機構
14は前述した支持移動機構によって、検査ライン10
上および校正ライン16上を図中矢印で示すように任意
に移動可能である。
A calibration line 16 is arranged parallel to the inspection line 10, and on this calibration line 16, a calibration carrier 18 is loaded with a calibration steel pipe 17 in which an artificial defect is formed.
movement is controlled. The ultrasonic probe support mechanism 14 is moved to the inspection line 10 by the aforementioned support movement mechanism.
It can be moved arbitrarily above and on the calibration line 16 as shown by arrows in the figure.

【0030】校正ライン16の近傍位置に超音波探傷装
置全体の動作を制御する監視制御装置19が配設されて
いる。この監視制御装置19内には、超音波探触子15
a,15bによって欠陥や厚みを検出する信号処理部と
しての探傷器20,探傷結果を表示する表示器21,鋼
管1,17を移動制御する鋼管移動制御装置22,探傷
結果を印字出力するプリンタ23,探傷結果を記憶する
記憶部24,各部の動作を制御するコンピュータ25等
が収納されている。
A monitoring control device 19 is provided near the calibration line 16 to control the operation of the entire ultrasonic flaw detection device. This monitoring and control device 19 includes an ultrasonic probe 15.
a, 15b, a flaw detector 20 as a signal processing unit that detects defects and thickness, a display 21 that displays the flaw detection results, a steel pipe movement control device 22 that controls the movement of the steel pipes 1 and 17, and a printer 23 that prints out the flaw detection results. , a storage section 24 for storing flaw detection results, a computer 25 for controlling the operation of each section, and the like are housed.

【0031】図2は超音波探触子支持機構14の正面図
である。図示するように、鋼管1が超音波探触子支持機
構14の下方位置に移動すると、各超音波波探触子15
a,15bがそれぞれのマニプレータ26の動作によっ
て、鋼管1の外周面4に水を介して当接するように位置
制御される。そして、各マニプレータ26は、図3に示
すように、各超音波探触子15a,15bを、鋼管1の
内周面2に形成された螺旋溝3の山部3aに対向するチ
ャンネルAの山部超音波探触子列と、螺旋溝3の谷部3
bに対向するチャンネルBの山部超音波探触子列に分け
て配列する。
FIG. 2 is a front view of the ultrasonic probe support mechanism 14. As shown in the figure, when the steel pipe 1 moves to the lower position of the ultrasonic probe support mechanism 14, each ultrasonic wave probe 15
a and 15b are controlled in position by the operation of their respective manipulators 26 so that they come into contact with the outer circumferential surface 4 of the steel pipe 1 via water. As shown in FIG. part ultrasonic probe array and the valley part 3 of the spiral groove 3
The ultrasonic probes are divided into rows of peak ultrasonic probes in channel B facing channel B.

【0032】次に、鋼管移動制御装置22の動作を図4
〜図6を用いて説明する。前述したように、先頭位置の
チャンネルBの超音波探触子15bは内周面2の谷部3
bに対向するので、図5(a)に示すように、探傷器2
0で得られる表面および谷部3bの底面での各エコーT
,B1 との間の時間tbは谷部3b部分における厚み
に対応する。また、チャンネルAの超音波探触子15a
は内周面2の山部3aに対向するので、図5(b)に示
すように、探傷器20で得られる表面および山部3aの
底面での各エコーT,B2 との間の時間taは山部3
a部分における厚みに対応する。
Next, the operation of the steel pipe movement control device 22 is shown in FIG.
~Explained using FIG. 6. As mentioned above, the ultrasonic probe 15b of channel B at the leading position
b, so as shown in Fig. 5(a), the flaw detector 2
Each echo T on the surface and the bottom of the valley 3b obtained at 0
, B1 corresponds to the thickness at the valley portion 3b. In addition, the ultrasonic probe 15a of channel A
is opposed to the peak 3a of the inner circumferential surface 2, so as shown in FIG. Yamabe 3
It corresponds to the thickness at part a.

【0033】しかし、図4に示すように、チャンネルA
の超音波探触子15aが山部3aと谷部3bとの間に位
置すると、図5(b)に示すように、山部3aのエコー
B2の他に谷部3bに対応するエコーB1 が現れる。
However, as shown in FIG.
When the ultrasonic probe 15a is located between the peak 3a and the valley 3b, as shown in FIG. 5(b), in addition to the echo B2 of the peak 3a, there is an echo B1 corresponding to the valley 3b. appear.

【0034】このとき、探触子15bには肉厚測定に対
応する図5(a)の波形が得られる。また、探触子15
aには、谷部3bからのエコー高さB1 (ゲート1)
と山部3aからのエコー高さB2 (ゲート2)が検出
された図5(b)の波形が得られる。この状態で、探触
子15bに表れる各エコー高さB1 ,B2 を比較し
て、B1 >B2 の差が1/2以上開いた時に回転速
度を上昇させる方向へ、一方、B1<B2 の差が1/
2以上開いた時に回転速度を下げる方向に、鋼管1を搭
載した試験用搬送台車11の移動速度、および鋼管1を
回転させる回転ローラ12の回転速度を制御すればよい
。図6は、各チャンネルA,Bの超音波探触子15a,
15bでもって鋼管1の厚みtを計測して、鋼管1の回
転速度と移動速度を制御するための制御ブロック図であ
る。
At this time, the waveform shown in FIG. 5(a) corresponding to the wall thickness measurement is obtained on the probe 15b. In addition, the probe 15
In a, the echo height B1 from the valley 3b (gate 1)
The waveform shown in FIG. 5B is obtained in which the echo height B2 (gate 2) from the peak portion 3a is detected. In this state, the echo heights B1 and B2 appearing on the probe 15b are compared, and when the difference of B1 > B2 is 1/2 or more, the rotation speed is increased, while the difference of B1 < B2 is increased. is 1/
What is necessary is to control the moving speed of the test carrier 11 carrying the steel pipe 1 and the rotation speed of the rotary roller 12 that rotates the steel pipe 1 so as to reduce the rotation speed when the steel pipe 1 is opened twice or more. FIG. 6 shows the ultrasonic probes 15a of each channel A and B,
15b is a control block diagram for measuring the thickness t of the steel pipe 1 and controlling the rotational speed and moving speed of the steel pipe 1. FIG.

【0035】このように構成された鋼管移動速度制御装
置22の制御によって、各チャンネルA,Bの各超音波
探触子15a,15bは鋼管1の外周面4における指定
された山部3aまたは谷部3bの対向面を忠実に倣って
いく。
Under the control of the steel pipe moving speed control device 22 configured as described above, each ultrasonic probe 15a, 15b of each channel A, B is moved to a specified peak 3a or valley on the outer circumferential surface 4 of the steel pipe 1. Faithfully follow the opposing surface of section 3b.

【0036】鋼管1の内周面2には、例えば互いに平行
する8本の螺旋状溝3が形成されている。互いに隣接す
る螺旋状溝3の山部3aの厚みtT は谷部3bの厚み
tB より大きい。そして、図3に示すように、外周面
4における8本の螺旋状溝3の各山部3aおよび各谷部
3bに対向する位置にそれぞれ超音波探触子15a,1
5bがこの外周面4に対向する姿勢で配設されている。 そして、各超音波探触子15a,15bはそれぞれ専用
の信号線を介して監視制御装置19内の探傷器20に接
続されている。
For example, eight mutually parallel spiral grooves 3 are formed on the inner circumferential surface 2 of the steel pipe 1. The thickness tT of the peak portions 3a of the spiral grooves 3 adjacent to each other is greater than the thickness tB of the valley portions 3b. As shown in FIG. 3, ultrasonic probes 15a and 1 are placed at positions facing each peak 3a and each trough 3b of the eight spiral grooves 3 on the outer peripheral surface 4.
5b is disposed in a position facing this outer circumferential surface 4. Each of the ultrasonic probes 15a and 15b is connected to a flaw detector 20 in the monitoring and control device 19 via a dedicated signal line.

【0037】各超音波探触子15a,15bは、例えば
、焦点型探触子で構成されており、その焦点近傍が最も
感度よく、かつ超音波ビームを絞ることができ、ビーム
拡散が小さいことから、高いS/Nでもって欠陥を検出
できる。また、焦点位置は組込まれた各振動子の音響レ
ンズの曲率を調整することによって容易にその位置を変
更できる。そして、各山部3aに対応する各超音波探触
子15aの焦点は山部3aの内面近傍に位置するように
調整されており、各谷部3bに対応する各超音波探触子
15bの焦点は谷部3bの内面近傍に位置するように調
整されている。
Each of the ultrasonic probes 15a and 15b is composed of, for example, a focusing type probe, which has the highest sensitivity near its focal point, can narrow down the ultrasonic beam, and has small beam dispersion. Therefore, defects can be detected with high S/N. Further, the focal position can be easily changed by adjusting the curvature of the acoustic lens of each incorporated vibrator. The focus of each ultrasonic probe 15a corresponding to each peak 3a is adjusted to be located near the inner surface of the peak 3a, and the focus of each ultrasonic probe 15b corresponding to each valley 3b is adjusted to be located near the inner surface of the peak 3a. The focal point is adjusted to be located near the inner surface of the valley portion 3b.

【0038】また、この焦点を有する超音波探触子15
a,15bにおいては、振動子で感度良く受信する超音
波の範囲が比較的狭いので、比較的狭い範囲における超
音波探傷を行うことができる。すなわち、隣接する他の
超音波探触子から出力された超音波に起因する散乱超音
波が入射されるのが抑制される。
[0038] Also, the ultrasonic probe 15 having this focal point
In a and 15b, the range of ultrasonic waves that are sensitively received by the vibrator is relatively narrow, so ultrasonic flaw detection can be performed in a relatively narrow range. That is, the incidence of scattered ultrasound caused by ultrasound output from other adjacent ultrasound probes is suppressed.

【0039】これら16個の各超音波探触子15a,1
5bは前述したように、超音波探触子支持機構14の各
マニプレータ26によってそれぞれ独立して支持されて
いる。また、各超音波探触子15a,15bは直接鋼管
1の外相面4に接触するのではなく、図示しない給水設
備によって、超音波探触子15a,15bと外周面4と
の間に水が供給されている。すなわち、各超音波探触子
15a,15bは水を介して外周面4に配設されている
ので、超音波が円滑に鋼管内に入出力される。一般にこ
の測定法は水侵法と呼ばれている。
Each of these 16 ultrasonic probes 15a, 1
5b is independently supported by each manipulator 26 of the ultrasound probe support mechanism 14, as described above. In addition, each of the ultrasonic probes 15a, 15b does not directly contact the outer surface 4 of the steel pipe 1, but water is supplied between the ultrasonic probes 15a, 15b and the outer surface 4 by a water supply facility (not shown). Supplied. That is, since each of the ultrasonic probes 15a and 15b is disposed on the outer circumferential surface 4 through water, ultrasonic waves are smoothly input and output into the steel pipe. This measurement method is generally called the water invasion method.

【0040】前記探傷器20は、内部に各超音波探触子
15a,15bへ一定間隔でパルス信号を送出する送信
回路と、各超音波探触子15a,15bから出力された
超音波の受信信号を受信する複数の受信回路と、この各
受信回路で受信した反射波を表示するCRT表示装置と
が組込まれている。この探傷器20内には、各受信回路
で受信した欠陥に起因する反射波を記録するデータ記録
装置も組込まれている。なお、各超音波探触子15a,
15bの検出感度は各受信回路の増幅度調整によって行
う。具体的には、図1に示すように人工欠陥を有する校
正用鋼管17を用いる。
[0040] The flaw detector 20 includes a transmitting circuit that sends out pulse signals at regular intervals to each of the ultrasonic probes 15a and 15b, and a receiving circuit for receiving ultrasonic waves output from each of the ultrasonic probes 15a and 15b. A plurality of receiving circuits that receive signals and a CRT display device that displays reflected waves received by each of the receiving circuits are incorporated. This flaw detector 20 also incorporates a data recording device that records reflected waves caused by defects received by each receiving circuit. Note that each ultrasonic probe 15a,
The detection sensitivity of 15b is determined by adjusting the amplification degree of each receiving circuit. Specifically, as shown in FIG. 1, a calibration steel pipe 17 having an artificial defect is used.

【0041】次に、このように構成された鋼管の超音波
探傷装置の検出感度と雑音レベルとの関係を、図7に示
す0.2mm の基準傷深さ(欠陥規模)の人工欠陥を
有した校正用鋼管17と、傷深さ(欠陥規模)が前記基
準より小さい0.1 mmと、基準より大きい、0.3
mm,0.4mm,0.5mmとの合計5種類の校正用
鋼管17を用いて測定した。なお、測定に使用した超音
波探触子15a,15bは、発振周波数が5MHzで、
振動子の直径が8mmで、焦点距離が30mmの特性を
有する。
Next, the relationship between the detection sensitivity and noise level of the ultrasonic flaw detection system for steel pipes constructed as described above is shown in FIG. The calibration steel pipe 17 has a flaw depth (defect size) of 0.1 mm, which is smaller than the standard, and 0.3 mm, which is larger than the standard.
The measurement was performed using a total of five types of calibration steel pipes 17: mm, 0.4 mm, and 0.5 mm. In addition, the ultrasonic probes 15a and 15b used for the measurement have an oscillation frequency of 5 MHz,
The vibrator has a diameter of 8 mm and a focal length of 30 mm.

【0042】測定結果を図8(a)(b)に示す。この
測定結果でも明らかなように、0.2mm の基準欠陥
においては、図8(a)に示すように外周面4に存在す
る傷A,Cを検出する場合の雑音レベルは46dBであ
り、図8(b)に示すように内周面2に存在する傷B,
Dを検出する場合の雑音レベルは43dBである。そし
て、得られた検出感度と雑音レベルとの比で示されるS
/Nは、外面傷A,Cに対して約20dBを確保でき、
また、内面傷B,Dに対して約19dBを確保できた。 なお、欠陥規模(傷深さ)が増大すると欠陥の検出感度
が増大し、S/Nも向上することは言うまでもない。
The measurement results are shown in FIGS. 8(a) and 8(b). As is clear from this measurement result, for the reference defect of 0.2 mm, the noise level when detecting flaws A and C existing on the outer circumferential surface 4 as shown in Fig. 8(a) is 46 dB. As shown in 8(b), scratches B exist on the inner circumferential surface 2,
The noise level when detecting D is 43 dB. Then, S is expressed as the ratio between the obtained detection sensitivity and the noise level.
/N can secure approximately 20 dB against external scratches A and C,
In addition, about 19 dB could be secured against internal scratches B and D. It goes without saying that as the defect size (flaw depth) increases, the defect detection sensitivity increases and the S/N also improves.

【0043】発明者は上述した効果を確認するために、
同一の5個の校正用鋼管17を用いて、この校正用鋼管
17を従来の回転させない手法で測定を行った。そして
、その測定結果を図8(c)(d)に示す。なお、この
測定に用いた超音波探触子は、発振周波数が5MHzで
、振動子の形状が6×12の矩形状を有し、屈折角度は
40度に設定されている斜角探触子を用いた。したがっ
て、当然この超音波探触子は焦点を有していない。そし
て、振動子と鋼管1の外周面4との間にアクリル樹脂を
介在させて直接接触法で測定した。
[0043] In order to confirm the above-mentioned effect, the inventor
Using the same five calibration steel tubes 17, measurements were performed using a conventional method in which the calibration steel tubes 17 were not rotated. The measurement results are shown in FIGS. 8(c) and 8(d). The ultrasonic probe used for this measurement was an angle probe with an oscillation frequency of 5 MHz, a transducer having a rectangular shape of 6 x 12, and a refraction angle set at 40 degrees. was used. Therefore, naturally, this ultrasonic probe does not have a focal point. Then, an acrylic resin was interposed between the vibrator and the outer circumferential surface 4 of the steel pipe 1, and measurement was performed by a direct contact method.

【0044】図8(c)に示すように、外周面4に存在
する傷A,Cを検出する場合の雑音レベルは47dBで
あり、図8(d)に示すように内周面2に存在する傷B
,Dを検出する場合の雑音レベルは47dBである。 しかし、振動子には山部3aや谷部3bや山部3aと谷
部3bとの境界面で反射された複数種類の超音波が入射
されるので、欠陥の検出感度が大幅に低下する。その結
果、得られた検出感度と雑音レベルとの比で示されるS
/Nは、外面傷A,Cに対して約8dBであり、内面傷
B,Dに対して約1.5dBである。ちなみに、探傷可
能なS/Nの最低限界は約3(=10dB)と言われて
おり、外面傷はかろうじて探傷できるが、内面傷はまっ
たく探傷できない。したがって、図8(a)(b)に示
した実施例装置のS/Nが従来手法に比較して大幅に向
上したことがより明確になった。
As shown in FIG. 8(c), the noise level when detecting scratches A and C existing on the outer peripheral surface 4 is 47 dB, and as shown in FIG. 8(d), the noise level when detecting scratches A and C existing on the inner peripheral surface 2 is wound B
, D is detected at a noise level of 47 dB. However, since a plurality of types of ultrasonic waves reflected at the peaks 3a, troughs 3b, and the interface between the peaks 3a and troughs 3b are incident on the vibrator, the defect detection sensitivity is significantly reduced. As a result, S is expressed as the ratio between the obtained detection sensitivity and the noise level.
/N is approximately 8 dB for external scratches A and C, and approximately 1.5 dB for internal scratches B and D. By the way, the lowest S/N limit that can be detected is said to be approximately 3 (=10 dB), and external flaws can be barely detected, but internal flaws cannot be detected at all. Therefore, it became clearer that the S/N of the example device shown in FIGS. 8(a) and 8(b) was significantly improved compared to the conventional method.

【0045】このように、各超音波探触子15a,15
bから得られる欠陥に起因する反射波のS/Nが大幅に
向上するので、螺旋状溝3の山部3aまたは谷部3bに
存在する微細な欠陥も精度良く検出できる。
In this way, each ultrasonic probe 15a, 15
Since the S/N of the reflected wave caused by the defect obtained from b is greatly improved, even minute defects present in the peaks 3a or troughs 3b of the spiral groove 3 can be detected with high accuracy.

【0046】さらに、鋼管1の外周面4の外周方向に沿
って螺旋状溝3の各山部3a毎及び各谷部3b毎にそれ
ぞれこの各山部3a,各谷部3bに沿って焦点が移動す
る専用の超音波探触子15a,15bを配設しているの
で、各探触子から出力される超音波が隣の山部3a又は
谷部3bを横切ることはない。よって、探傷している超
音波の経路長が変化することはないので、反射波が探傷
器20内のCRT表示装置の表示画面上で移動すること
なく、あたかも停止しているように表示される。したが
って、観測者にとっても非常に監視しやすい画面となり
、観測者の精神的負担を軽減できる。
Further, along the outer circumferential direction of the outer circumferential surface 4 of the steel pipe 1, a focal point is set along each peak 3a and each valley 3b of the spiral groove 3, respectively. Since the dedicated moving ultrasonic probes 15a and 15b are provided, the ultrasonic waves output from each probe will not cross the adjacent peaks 3a or troughs 3b. Therefore, since the path length of the ultrasonic waves being detected does not change, the reflected waves do not move on the display screen of the CRT display device in the flaw detector 20 and are displayed as if they were stationary. . Therefore, the screen becomes very easy to monitor for the observer, and the mental burden on the observer can be reduced.

【0047】また、各超音波探触子15a,15bとし
て細い帯状の音場が得られる焦点型の探触子を採用し、
さらに、山部3aと谷部3bとをそれぞれ専用の探触子
15a,15bを割当て、それぞれ焦点を絞って内周面
2の各所を探傷している。したがった、山部3aや谷部
3bに当たる超音波の散乱を防止するとともに、欠陥に
起因する反射波のS/Nをより一層向上できる。
[0047] Further, as each of the ultrasonic probes 15a and 15b, a focusing type probe capable of obtaining a narrow band-shaped sound field is adopted,
Further, dedicated probes 15a and 15b are assigned to the peaks 3a and troughs 3b, respectively, and each location on the inner circumferential surface 2 is detected with a focused focus. Therefore, scattering of ultrasonic waves hitting the peaks 3a and troughs 3b can be prevented, and the S/N of reflected waves caused by defects can be further improved.

【0048】また、山部3aと谷部3bとをそれぞれ専
用の超音波探触子15a,15bで測定しているので、
CRT表示装置に表示された欠陥反射波(エコー)が山
部3aの外面か内面か、また谷部3bの外面か内面かを
簡単に識別できる。
Furthermore, since the peaks 3a and the valleys 3b are measured using dedicated ultrasonic probes 15a and 15b,
It is possible to easily identify whether the defect reflected wave (echo) displayed on the CRT display device is the outer surface or the inner surface of the peak portion 3a, or the outer surface or the inner surface of the valley portion 3b.

【0049】なお、本発明は上述した実施例に限定され
るものではない。実施例においては、各山部3aおよび
各谷部3bと1対1で各超音波探触子を配設したが、山
部3aおよび谷部3bの幅が広い場合は、1つの山部3
aまたは谷部3bに2個以上の超音波探触子15a,1
5bを配設してもよい。
It should be noted that the present invention is not limited to the embodiments described above. In the embodiment, each ultrasonic probe was arranged one-to-one with each peak 3a and each valley 3b, but if the width of the peak 3a and valley 3b is wide, one peak 3
Two or more ultrasonic probes 15a, 1 in a or valley 3b
5b may be provided.

【0050】[0050]

【発明の効果】以上説明したように本発明の鋼管の超音
波探傷方法及びその装置によれば、内周面に螺旋状溝を
有する鋼管の外周面に配設された超音波探触子の焦点が
螺旋状溝に沿って移動するように超音波探触子と鋼管と
の位置関係を相対的に変化させている。したがって、螺
旋状溝の山部及び谷部はそれぞれ専用の超音波探触子で
、しかも常時最良の検出感度で探傷される。その結果、
厚み変化に起因する雑音成分を極力低減し、S/Nを向
上させると共に、探傷性能を大幅に向上できる。
As explained above, according to the method and apparatus for ultrasonic flaw detection of steel pipes of the present invention, the ultrasonic probe disposed on the outer peripheral surface of a steel pipe having a spiral groove on the inner peripheral surface can be The relative positional relationship between the ultrasonic probe and the steel pipe is changed so that the focal point moves along the spiral groove. Therefore, the peaks and valleys of the spiral groove are detected using dedicated ultrasonic probes, and always with the best detection sensitivity. the result,
It is possible to reduce noise components caused by thickness changes as much as possible, improve S/N, and significantly improve flaw detection performance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例に係わる鋼管の超音波探
傷装置全体を示すシステム構成図、
FIG. 1 is a system configuration diagram showing an entire ultrasonic flaw detection device for steel pipes according to an embodiment of the present invention;

【図2】  同実施例装置の超音波探触子支持機構を示
す側面図、
[Fig. 2] A side view showing the ultrasonic probe support mechanism of the same embodiment device;

【図3】  同実施例装置の要部を取出して示す断面模
式図、
[Fig. 3] A schematic cross-sectional view showing the main parts of the device according to the embodiment,

【図4】  同実施例装置における各超音波探触子の取
付位置を示す図、
[Fig. 4] A diagram showing the mounting position of each ultrasonic probe in the same embodiment device,

【図5】  同実施例装置における各超音波探触子にて
得られたエコー波形図、
[Figure 5] Echo waveform diagram obtained with each ultrasound probe in the same example device,

【図6】  同実施例装置の鋼管移動制御装置を示すブ
ロック図、
[Fig. 6] A block diagram showing the steel pipe movement control device of the same embodiment device,

【図7】  同実施例装置に用いる校正用鋼管の断面図
[Figure 7] Cross-sectional view of the calibration steel pipe used in the same example device,

【図8】  同実施例装置の検出感度特性と従来手法
における検出感度特性とを示す図、
[Fig. 8] A diagram showing the detection sensitivity characteristics of the same embodiment device and the detection sensitivity characteristics of the conventional method,

【図9】  螺旋状溝を有した鋼管の構成を示す図、[Figure 9] Diagram showing the configuration of a steel pipe with a spiral groove,


図10】  従来の超音波探傷方法を示す図、
[
Figure 10: Diagram showing the conventional ultrasonic flaw detection method,

【図11
】  従来手法に用いる対比試験片を示す図、
[Figure 11
] A diagram showing a comparative test piece used in the conventional method,

【図12
】  従来手法における超音波探触子の移動方向を示す
図。
[Figure 12
] A diagram showing the moving direction of an ultrasound probe in a conventional method.

【符号の説明】[Explanation of symbols]

1…鋼管、2…内周面、3…螺旋状溝、3a…山部、3
b…谷部、4…外周面、10…検査ライン、11…試験
用搬送台車、12…回転ローラ、14…超音波探触子支
持機構、15a,15b…超音波探触子、19…監視制
御装置、20…探傷器、25…コンピュータ。
DESCRIPTION OF SYMBOLS 1... Steel pipe, 2... Inner peripheral surface, 3... Spiral groove, 3a... Mountain part, 3
b...Trough, 4...Outer peripheral surface, 10...Inspection line, 11...Test carrier, 12...Rotating roller, 14...Ultrasonic probe support mechanism, 15a, 15b...Ultrasonic probe, 19...Monitoring Control device, 20...flaw detector, 25...computer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  内周面に互いに平行する複数の螺旋状
溝が形成された鋼管の外周面に超音波探触子を対向させ
て、この超音波探触子から前記鋼管に対して超音波の送
受信を行うことによって、前記鋼管の表面および内部に
存在する欠陥を検出する鋼管の超音波探傷方法において
、前記超音波探触子の焦点が前記螺旋状溝の山部又は谷
部に沿って螺旋状に移動するように、前記超音波探触子
と前記鋼管との位置関係を相対的に変化させることによ
って、前記超音波探触子でもって連続して欠陥検出を行
うことを特徴とする鋼管の超音波探傷方法。
1. An ultrasonic probe is placed opposite the outer circumferential surface of a steel pipe in which a plurality of parallel spiral grooves are formed on the inner circumferential surface, and an ultrasonic wave is applied to the steel pipe from the ultrasonic probe. In the ultrasonic flaw detection method for steel pipes, which detects defects existing on the surface and inside of the steel pipe by transmitting and receiving the The ultrasonic probe is characterized in that defects are continuously detected using the ultrasonic probe by relatively changing the positional relationship between the ultrasonic probe and the steel pipe so as to move in a spiral manner. Ultrasonic flaw detection method for steel pipes.
【請求項2】  全ての螺旋状溝の山部及び谷部に沿っ
て焦点が移動するように、鋼管の外周方向に沿って少な
くとも前記螺旋状溝数の2倍以上の超音波探触子を配設
することを特徴とする請求項1記載の鋼管の超音波探傷
方法。
2. At least twice as many ultrasonic probes as the number of spiral grooves are provided along the outer circumferential direction of the steel pipe so that the focal point moves along the peaks and valleys of all the spiral grooves. 2. The method of ultrasonic flaw detection for steel pipes according to claim 1.
【請求項3】  内周面に互いに平行する複数の螺旋状
溝が形成された鋼管の外周面からこの鋼管に対して超音
波の送受信を行うことによって、前記鋼管の表面および
内部に存在する欠陥を検出する鋼管の超音波探傷装置に
おいて、前記鋼管における外周面の外周方向に沿って配
設された少なくとも前記螺旋状溝数の2倍以上の超音波
探触子と、この各超音波探触子の焦点が前記螺旋状溝の
山部及び谷部に位置するように前記各超音波探触子を支
持する超音波探触子支持機構と、この超音波探触子支持
機構によって支持された各超音波探触子の焦点が前記各
螺旋状溝の山部又は谷部に沿って移動するように、前記
超音波探触子と前記鋼管との位置関係を相対的に変化さ
せる移動制御機構と、前記各超音波探触子から出力され
た超音波の受信信号から前記欠陥の発生位置および欠陥
規模を検出する信号処理部とを備えたことを特徴とする
鋼管の超音波探傷装置。
3. Defects existing on the surface and inside of the steel pipe are eliminated by transmitting and receiving ultrasonic waves to and from the outer peripheral surface of the steel pipe, in which a plurality of parallel spiral grooves are formed on the inner peripheral surface of the steel pipe. An ultrasonic flaw detection device for a steel pipe that detects ultrasonic flaw detection, comprising: an ultrasonic probe having at least twice the number of spiral grooves disposed along the outer circumferential direction of the outer circumferential surface of the steel pipe, and each of the ultrasonic probes. an ultrasonic probe support mechanism that supports each of the ultrasonic probes so that the focal point of each ultrasonic probe is located at the peaks and troughs of the spiral groove; A movement control mechanism that relatively changes the positional relationship between the ultrasonic probe and the steel pipe so that the focus of each ultrasonic probe moves along the peaks or valleys of each of the spiral grooves. and a signal processing unit that detects the location and scale of the defect from the received ultrasonic signals output from each of the ultrasonic probes.
【請求項4】  前記移動制御機構は、超音波探触子支
持機構によって支持された各超音波探触子の焦点が各螺
旋状溝の山部又は谷部に沿って移動するように、前記鋼
管を軸心回りに回転させなが軸方向に移動させる鋼管移
動制御装置であることを特徴とする請求項3記載の鋼管
の超音波探傷装置。
4. The movement control mechanism moves the focal point of each ultrasonic probe supported by the ultrasonic probe support mechanism along the peak or valley of each spiral groove. 4. The ultrasonic flaw detection apparatus for steel pipes according to claim 3, wherein the apparatus is a steel pipe movement control device that moves the steel pipe in the axial direction while rotating the steel pipe around its axis.
JP3056900A 1991-03-20 1991-03-20 Method and apparatus for ultrasonic flaw detection of steel pipe Expired - Fee Related JP2501489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056900A JP2501489B2 (en) 1991-03-20 1991-03-20 Method and apparatus for ultrasonic flaw detection of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056900A JP2501489B2 (en) 1991-03-20 1991-03-20 Method and apparatus for ultrasonic flaw detection of steel pipe

Publications (2)

Publication Number Publication Date
JPH04291149A true JPH04291149A (en) 1992-10-15
JP2501489B2 JP2501489B2 (en) 1996-05-29

Family

ID=13040331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056900A Expired - Fee Related JP2501489B2 (en) 1991-03-20 1991-03-20 Method and apparatus for ultrasonic flaw detection of steel pipe

Country Status (1)

Country Link
JP (1) JP2501489B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026040A1 (en) * 1997-11-19 1999-05-27 Friedrich Theysohn Gmbh Device for detecting errors and/or measuring wall thickness in continuous strips or tubes made of plastic using ultrasonic signals
CN113466116A (en) * 2021-06-25 2021-10-01 中核四达建设监理有限公司 Device for detecting corrosion resistance of carbon steel
JP2023104276A (en) * 2022-01-17 2023-07-28 三菱重工パワーインダストリー株式会社 Ultrasonic inspection apparatus and ultrasonic inspection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026040A1 (en) * 1997-11-19 1999-05-27 Friedrich Theysohn Gmbh Device for detecting errors and/or measuring wall thickness in continuous strips or tubes made of plastic using ultrasonic signals
CN113466116A (en) * 2021-06-25 2021-10-01 中核四达建设监理有限公司 Device for detecting corrosion resistance of carbon steel
CN113466116B (en) * 2021-06-25 2023-01-31 中核四达建设监理有限公司 Device for detecting corrosion resistance of carbon steel
JP2023104276A (en) * 2022-01-17 2023-07-28 三菱重工パワーインダストリー株式会社 Ultrasonic inspection apparatus and ultrasonic inspection system

Also Published As

Publication number Publication date
JP2501489B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
CA1078953A (en) Apparatus for measuring the radial dimensions of a cylindrical tube by ultrasonics
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
US4918989A (en) Ultrasonic method of measuring the thickness of the plating on a metal tube, the corresponding apparatus and its application to Zr plated alloy tubes
JP2007187593A (en) Inspection device for piping and inspection method for piping
JP2011027754A (en) Circuit device for ultrasonic nondestructive test of test object
CN109696482A (en) A kind of phased array supersonic flexible probe detection method of elbow corrosion
US4760737A (en) Procedure for flaw detection in cast stainless steel
JP4897420B2 (en) Ultrasonic flaw detector
US4545249A (en) Acoustical position gage
JP2501489B2 (en) Method and apparatus for ultrasonic flaw detection of steel pipe
JPS5818623B2 (en) Oyobi Sonotamenosouchi
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JPS60205254A (en) Ultrasonic flaw detection for pipe
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves
JP4596325B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JPH11183445A (en) Flaw detector
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JPH0726939B2 (en) Ultrasonic flaw detector
JPH0278949A (en) Ultrasonic flaw detecting device
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JPH05126808A (en) Ultrasonic flaw detecting method
JPS6365362A (en) Ultrasonic flaw detection device
JPH0850118A (en) Inside-surface pitting detection device for boiler heat-transfer tube
JP2003098160A (en) Method and apparatus for inspecting surface of cylindrical body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees