JPH04297400A - Collision detecting method of meteoroid/debris against spacecraft - Google Patents
Collision detecting method of meteoroid/debris against spacecraftInfo
- Publication number
- JPH04297400A JPH04297400A JP6170291A JP6170291A JPH04297400A JP H04297400 A JPH04297400 A JP H04297400A JP 6170291 A JP6170291 A JP 6170291A JP 6170291 A JP6170291 A JP 6170291A JP H04297400 A JPH04297400 A JP H04297400A
- Authority
- JP
- Japan
- Prior art keywords
- debris
- meteoroid
- spacecraft
- collision
- sensors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000012634 fragment Substances 0.000 abstract 1
- 230000035939 shock Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は宇宙航行機に対するメテ
オロイド(隕石)/デブリス(宇宙破片)の衝突検知方
法に関し、宇宙ステーション、人工衛星等の宇宙航行機
に適用して有用なものである。
【0002】
【従来の技術】近年の宇宙開発に伴ない多くの人工衛生
が打ち上げられ、また将来的な宇宙ステーションの設置
も検討されている。これら人工衛星、宇宙ステーション
等の宇宙航行機の中には有人のものも多く、この宇宙航
行機内における人に対する安全対策は充分講じられてい
なければならない。
【0003】
【発明が解決しようとする課題】超高速で宇宙航行機に
衝突するメテオロイド/デブリスの、宇宙航行機におけ
る衝突位置及び損傷の程度を把握する方法は未だ確立さ
れていないが、特に有人の宇宙航行機では、クルーの安
全上、メテオロイド/デブリスの衝突位置及び衝突によ
る損傷の程度を迅速に把握する必要がある。
【0004】本発明は、上記従来技術に鑑み、メテオロ
イド/デブリスの宇宙航行機に対する衝突位置及び衝突
の衝撃を検知することができる宇宙航行機に対するメテ
オロイド/デブリスの衝突検知方法を提供することを目
的とする。
【0005】
【課題を解決するための手段】上記目的を達成する本発
明の構成は、
【0006】宇宙ステーション、人工衛星等の宇宙航行
機の外周面に、ライン状またはマトリックス状に、振動
を検知する多数のセンサを配設しておき、メテオロイド
/デブリスが宇宙航行機に衝突する際に発生する振動を
各センサで検出するとともに、この振動の各センサへの
到達時間差及び強度によりメテオロイド/デブリスの衝
突位置及び衝撃の強さを検知するようにしたことを特徴
とする。
【0007】
【作用】上記構成の本発明によれば、メテオロイド/デ
ブリスの衝突により発生する振動は、ライン状またはマ
トリックス状に配設した多数のセンサで検出する。した
がって、各センサが検出した振動を総合的に判定するこ
とにより衝突位置及び衝撃の強さが特定される。
【0008】
【実施例】以下本発明の実施例を図面に基づき詳細に説
明する。
【0009】図1に示すように、宇宙ステーション1の
機体1aの外周面には、所定の間隔でマトリックス状に
配置した多数のセンサ2が貼着してある。これら各セン
サ2は、機体1aに対するメテオロイド/デブリスの衝
突により生起される機体1aの振動を検出するもので、
検出した振動のデータは、同軸ケーブル、ツイストケー
ブル若しくは光ファイバー等の伝送路3を介してDIU
サンプリングユニット4に集められ、このDIUサンプ
リングユニット4を介してコンピュータ5に供給される
。コンピュータ5は各センサ2が送出するデータに基づ
き衝突位置及び衝撃の程度を検出する。
【0010】更に詳言すると、図2に示すように、マト
リックス状に等間隔に配設したNo.1〜No. 16
のセンサ2を考えた場合、衝突位置6にメテオロイド/
デブリスが衝突したとすると、各センサ2における衝撃
波の検知時間T1 〜T16(添字はセンサ2のNo.
を表わす)は、サンプリングを連続して行なうと、
T6 <T10<T7 <T11<T5 <T9
< ………<T6 となる。これらのうち衝撃
波を最初に検知したNo. 6のセンサ2から4番目に
検知したNo. 11のセンサ2までの4個のセンサ2
(No. 6、No. 7、No. 10、No. 1
1)の検知時間T6 、T7 、T10、T11に着目
する。
【0011】メテオロイド/デブリスが衝突した時間を
T0 とすると、
(T11−T0)2 +(T6 −T0)2 =(
T10−T0)2 +(T7 −T0)2 【0012
】したがって、T0 =(T112 +T62−T10
2 −T72)/2(T11+T6 −T10−T7
)となり、T6 、T7 、T10、T11のデータの
みでT0 を計算する。
【0013】また、衝撃波の伝播速度=vとするとNo
. 11のセンサ2から衝突位置6を表わす座標(x,
y)は、下記の計算により求まる。
【0014】すなわち、伝播速度vは宇宙ステーション
1の構造的特性であり、既知であり、lをセンサ2で形
成するマトリックスの間隔とすると、
x=(l112 −l72+l2 )/2ly=(l1
12 −l102 +l2)/2l【0015】このと
き、l11=v×(T11−T0 )、l7 =v×(
T7 −T0 )、l10=v×(T10−T0 )【
0016】したがって、衝突位置6は上記座標(x,y
)により特定される。
【0017】一方、衝突の程度は、No. 6、No.
7、No.10、No. 11の各センサ2を通過す
る衝撃波の振幅及びエネルギー量を検知し、コンピュー
タ5内にデータベースとして記憶している製造特性と比
較することにより求まる。
【0018】
【発明の効果】以上実施例とともに具体的に説明したよ
うに、本発明によればメテオロイド/デブリスの衝突位
置及び衝撃の程度を迅速に把握することが可能となる。Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a method for detecting collisions of meteoroids/debris (space debris) with respect to spacecraft, and relates to a method for detecting collisions of meteoroids/debris (space debris) with spacecraft such as space stations and artificial satellites. It is useful when applied to [0002] With recent space development, many artificial satellites have been launched, and the installation of future space stations is also being considered. Many of these spacecraft such as artificial satellites and space stations are manned, and sufficient safety measures must be taken for people inside these spacecraft. [0003] Problems to be Solved by the Invention [0003] Although there is still no established method for determining the collision position and degree of damage to a spacecraft due to meteoroids/debris colliding with a spacecraft at ultra-high speed, For the safety of the crew, it is necessary for spacecrafts to quickly determine the location of meteoroid/debris collisions and the extent of damage caused by the collision. SUMMARY OF THE INVENTION In view of the above-mentioned prior art, an object of the present invention is to provide a method for detecting a collision of meteoroids/debris with a spacecraft, which is capable of detecting the collision position of the meteoroid/debris with the spacecraft and the impact of the collision. shall be. [Means for Solving the Problems] The structure of the present invention that achieves the above object is as follows: [0006] Vibrations are applied to the outer peripheral surface of a spacecraft such as a space station or an artificial satellite in a line or matrix pattern. A large number of sensors are installed to detect the meteoroid/debris, and each sensor detects the vibrations that occur when the meteoroid/debris collides with the spacecraft. It is characterized by detecting the location of the collision and the strength of the impact. [Operation] According to the present invention having the above-mentioned structure, vibrations generated due to meteoroid/debris collision are detected by a large number of sensors arranged in a line or matrix. Therefore, by comprehensively determining the vibrations detected by each sensor, the location of the collision and the strength of the impact can be determined. [Embodiments] Hereinafter, embodiments of the present invention will be explained in detail based on the drawings. As shown in FIG. 1, a large number of sensors 2 are attached to the outer peripheral surface of the body 1a of the space station 1, arranged in a matrix at predetermined intervals. Each of these sensors 2 detects vibrations of the aircraft body 1a caused by meteoroid/debris collision with the aircraft body 1a,
The detected vibration data is sent to the DIU via a transmission line 3 such as a coaxial cable, twisted cable, or optical fiber.
The signals are collected in a sampling unit 4 and supplied to a computer 5 via this DIU sampling unit 4. The computer 5 detects the collision position and the degree of impact based on the data sent by each sensor 2. More specifically, as shown in FIG. 2, the No. 1~No. 16
When considering the sensor 2 of , meteoroid/
Assuming that debris collides, the shock wave detection time at each sensor 2 is T1 to T16 (subscripts are the number of sensor 2).
) represents when sampling is performed continuously,
T6 <T10<T7 <T11<T5 <T9
<......<T6. Of these, No. 1 was the first to detect a shock wave. No. 6 detected fourth from sensor 2. 4 sensors 2 up to 11 sensors 2
(No. 6, No. 7, No. 10, No. 1
Focusing on the detection times T6, T7, T10, and T11 in 1). [0011] If the time of meteoroid/debris collision is T0, (T11-T0)2 + (T6-T0)2 = (
T10-T0)2 + (T7-T0)2 0012
] Therefore, T0 = (T112 +T62-T10
2 -T72)/2(T11+T6 -T10-T7
), and T0 is calculated using only the data of T6, T7, T10, and T11. [0013] Also, if the propagation velocity of the shock wave = v, then No.
.. Coordinates (x,
y) is determined by the following calculation. That is, the propagation velocity v is a structural characteristic of the space station 1 and is known, and if l is the interval of the matrix formed by the sensor 2, then x=(l112 -l72+l2)/2ly=(l1
12 -l102 +l2)/2l At this time, l11=v×(T11-T0), l7=v×(
T7 - T0 ), l10 = v x (T10 - T0 ) [
Therefore, the collision position 6 is located at the above coordinates (x, y
). On the other hand, the degree of collision is No. 6, No.
7.No. 10, No. It is determined by detecting the amplitude and energy amount of the shock waves passing through each of the 11 sensors 2 and comparing them with manufacturing characteristics stored as a database in the computer 5. [0018] As described above in detail with the embodiments, according to the present invention, it is possible to quickly grasp the collision position of meteoroid/debris and the degree of impact.
【図1】(a)は本発明の実施例を適用する宇宙ステー
ションの一部を示す正面図、(b)は(a)のA−A線
矢視図である。FIG. 1(a) is a front view showing a part of a space station to which an embodiment of the present invention is applied, and FIG. 1(b) is a view taken along the line A--A in FIG.
【図2】本発明の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of the present invention.
1 宇宙ステーション 2 センサ 1 Space station 2 Sensor
Claims (1)
航行機の外周面に、ライン状またはマトリックス状に、
振動を検知する多数のセンサを配設しておき、メテオロ
イド/デブリスが宇宙航行機に衝突する際に発生する振
動を各センサで検出するとともに、この振動の各センサ
への到達時間差及び強度によりメテオロイド/デブリス
の衝突位置及び衝撃の強さを検知するようにしたことを
特徴とする宇宙航行機に対するメテオロイド/デブリス
の衝突検知方法。[Claim 1] On the outer peripheral surface of a spacecraft such as a space station or an artificial satellite, in the form of a line or matrix,
A large number of sensors are installed to detect vibrations, and each sensor detects the vibrations generated when the meteoroid/debris collides with the spacecraft. / A method for detecting a collision of meteoroid/debris with respect to a spacecraft, characterized in that the collision position of the debris and the strength of the impact are detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06170291A JP3165455B2 (en) | 1991-03-26 | 1991-03-26 | Method and apparatus for detecting collision of meteoroid or debris with spacecraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06170291A JP3165455B2 (en) | 1991-03-26 | 1991-03-26 | Method and apparatus for detecting collision of meteoroid or debris with spacecraft |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04297400A true JPH04297400A (en) | 1992-10-21 |
JP3165455B2 JP3165455B2 (en) | 2001-05-14 |
Family
ID=13178841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06170291A Expired - Fee Related JP3165455B2 (en) | 1991-03-26 | 1991-03-26 | Method and apparatus for detecting collision of meteoroid or debris with spacecraft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3165455B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1057503A1 (en) * | 1998-12-21 | 2000-12-06 | Sergei Mikhailovich Safronov | Method for playing a space game and devices for realising this method |
WO2003073122A1 (en) * | 2002-02-28 | 2003-09-04 | Astrium Gmbh | Method for the detection of damage to spacecraft caused by the impact of foreign bodies |
US9751643B2 (en) | 2011-07-18 | 2017-09-05 | D-Orbit S.R.L. | Device for moving or removing artificial satellites |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102358436B (en) * | 2011-08-31 | 2013-09-04 | 中国航天科技集团公司第五研究院第五一三研究所 | Device for realizing spacecraft orbit keeping by utilizing space debris |
-
1991
- 1991-03-26 JP JP06170291A patent/JP3165455B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1057503A1 (en) * | 1998-12-21 | 2000-12-06 | Sergei Mikhailovich Safronov | Method for playing a space game and devices for realising this method |
EP1057503A4 (en) * | 1998-12-21 | 2002-10-30 | Sergei Mikhailovich Safronov | Method for playing a space game and devices for realising this method |
WO2003073122A1 (en) * | 2002-02-28 | 2003-09-04 | Astrium Gmbh | Method for the detection of damage to spacecraft caused by the impact of foreign bodies |
DE10208724C1 (en) * | 2002-02-28 | 2003-09-25 | Astrium Gmbh | Method for detecting damage to spacecraft caused by the impact of foreign objects |
US9751643B2 (en) | 2011-07-18 | 2017-09-05 | D-Orbit S.R.L. | Device for moving or removing artificial satellites |
US9809327B2 (en) | 2011-07-18 | 2017-11-07 | D-Orbit S.R.L. | Device for moving or removing artificial satellites |
EP2734448B1 (en) * | 2011-07-18 | 2019-02-06 | D-Orbit S.r.l. | Device for moving or removing artificial satellites |
Also Published As
Publication number | Publication date |
---|---|
JP3165455B2 (en) | 2001-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101865758B (en) | Impact load location method based on multiple signal classification algorithm | |
Prosser et al. | Acoustic emission signals in thin plates produced by impact damage | |
US20120279308A1 (en) | Elastic wave rail defect detection system | |
EP2293058B1 (en) | Lamb wave dispersion compensation for the Embedded Ultrasonic Strucure Radar (EUSR) approach for ultrasonic beam steering | |
CA2128333A1 (en) | Methods and Apparatus for Determining the Trajectory of a Supersonic Projectile | |
EP2169422B1 (en) | System and method for acoustic tracking an underwater vehicle trajectory | |
CN103424739A (en) | Acoustic ranging system using atmospheric dispersion | |
CN106537175A (en) | Device and method for the acoustic examination of objects in the environment of a means of conveyance | |
US20070295855A1 (en) | Target maneuver detection | |
CN104597126A (en) | Method for detecting structure health of spacecraft based on acoustic sensor | |
JPH01217285A (en) | Multistatic radar apparatus | |
US9676493B2 (en) | System and method for damage tracking and monitoring during ground handling of aircraft | |
CN104730515A (en) | Device for measuring distance between trains by means of sound signals | |
Sherki et al. | Design of real time sensor system for detection and processing of seismic waves for earthquake early warning system | |
JPH04297400A (en) | Collision detecting method of meteoroid/debris against spacecraft | |
US20070063912A1 (en) | Cruciform antenna comprising linear sub-antennas and associated processing | |
US11594141B1 (en) | System and methods to neutralize an attacking UAV based on acoustic features | |
De Simone et al. | Proof of concept for a smart composite orbital debris detector | |
CN110688705A (en) | Aircraft and method for estimating impact parameters on the skin of an aircraft | |
WO2012077345A1 (en) | Monitoring device | |
Shoval et al. | Measurement of angular position of a mobile robot using ultrasonic sensors | |
JPS5938675A (en) | Apparatus for detecting obstacle for vehicle | |
KR102292869B1 (en) | Device for active cancellation of acoustic reflection | |
RU2092902C1 (en) | Method for detection of position of vehicle and device which implements said method | |
De Simone et al. | Smart composite detector of orbital debris and micrometeoroids particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010206 |
|
LAPS | Cancellation because of no payment of annual fees |