Nothing Special   »   [go: up one dir, main page]

JPH04274756A - Ultrasonic flaw detection for pipe - Google Patents

Ultrasonic flaw detection for pipe

Info

Publication number
JPH04274756A
JPH04274756A JP3036339A JP3633991A JPH04274756A JP H04274756 A JPH04274756 A JP H04274756A JP 3036339 A JP3036339 A JP 3036339A JP 3633991 A JP3633991 A JP 3633991A JP H04274756 A JPH04274756 A JP H04274756A
Authority
JP
Japan
Prior art keywords
ultrasonic
unit
flaw detection
scanning line
ultrasonic beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3036339A
Other languages
Japanese (ja)
Other versions
JP2501488B2 (en
Inventor
Yukimichi Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3036339A priority Critical patent/JP2501488B2/en
Publication of JPH04274756A publication Critical patent/JPH04274756A/en
Application granted granted Critical
Publication of JP2501488B2 publication Critical patent/JP2501488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To largely reduce change in ultrasonic wave beam width due to a defect position in a steel pipe, compensate an attenuation amount of ultrasonic waves and make uniform detection sensitivity with respect to various scanning lines. CONSTITUTION:A method for ultrasonic flaw detection of a pipe comprises steps for phase-controlling wave surfaces of ultrasonic beams 4 of a desired number of unit oscillators among a plurality of unit oscillators composing an array-type probe 1 so that the beams are focused to a scanning line 5 which is a center line of the ultrasonic beam 4 to detect flaws and for sequentially varying the desired number of unit oscillators to move a focus position of the ultrasonic beams.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超音波ビームを用いて
管体(以下、鋼管と総称する)の欠陥を探傷する管体の
超音波探傷法に係わり、特に各種の欠陥に対してほぼ同
一の検出感度が得られるようにビーム制御および超音波
の減衰による感度補償を行う管体の超音波探傷法に関す
る。
[Industrial Application Field] The present invention relates to an ultrasonic flaw detection method for pipe bodies (hereinafter collectively referred to as steel pipes) using ultrasonic beams, and particularly relates to an ultrasonic flaw detection method for detecting defects in pipe bodies (hereinafter collectively referred to as steel pipes) using ultrasonic beams. This article relates to an ultrasonic flaw detection method for tubular bodies that performs sensitivity compensation by beam control and ultrasonic attenuation so as to obtain the same detection sensitivity.

【0002】0002

【従来の技術】一般に、管体の超音波探傷法において欠
陥の程度と欠陥の位置を評価するに際し、超音波ビーム
を送波する探触子を管周方向に走査し、そのときの鋼管
の欠陥部位から反射されてくる欠陥エコーの高さのうち
、最大のピーク値を見つけ出すことが非常に重要となっ
ている。
[Prior Art] Generally, when evaluating the degree and position of defects in the ultrasonic flaw detection method for pipes, a probe that transmits an ultrasonic beam is scanned in the circumferential direction of the pipe, and the It is very important to find the maximum peak value among the heights of defect echoes reflected from the defect site.

【0003】そこで、従来、欠陥エコーの中から最大ピ
ーク値を見つけ出すために、検査員が探触子を持って探
触子位置を管周方向に動かしながら欠陥エコーの最大ピ
ーク値を見つけ出す,いわゆる手動探傷法の他、探触子
を大型化して大径の超音波ビームを用いて欠陥を探傷す
る超音波探傷法が考えられている。
[0003] Conventionally, in order to find the maximum peak value among the defect echoes, an inspector holds a probe and moves the probe position in the circumferential direction to find the maximum peak value of the defect echoes. In addition to the manual flaw detection method, an ultrasonic flaw detection method has been considered in which defects are detected by increasing the size of the probe and using a large diameter ultrasonic beam.

【0004】しかしながら、前者の手動探傷法では、も
ともと欠陥エコーのうちの最大ピークとなる部分の走査
範囲が非常に狭いことから、検査員が細心の注意を払い
ながら探触子を走査する必要があり、このため探傷作業
に相当な時間がかかり、また熟練者でなければ所望とす
る探傷精度を上げられない問題がある。
[0004] However, in the former manual flaw detection method, the scanning range of the maximum peak portion of the defect echo is originally very narrow, so the inspector needs to scan the probe with great care. Therefore, there is a problem that the flaw detection work takes a considerable amount of time and only an experienced person can increase the desired flaw detection accuracy.

【0005】一方、後者の超音波探傷法の場合には、大
径の超音波ビームを用いて欠陥部位を探傷するので、特
に探触子を走査せずに欠陥エコーの最大ピーク値を見つ
け出すことが可能である。しかし、大型の探触子から送
波される超音波ビームの進行方向は探触子のどの位置で
も平行であるので、鋼管に対する入射角の関係,ひいて
は鋼管入射後の屈折角の違いによって超音波ビームが分
散し、探触子から送波された超音波の一部しか探傷に寄
与しない問題がある。
On the other hand, in the case of the latter ultrasonic flaw detection method, a large-diameter ultrasonic beam is used to detect the defective area, so it is difficult to find the maximum peak value of the defect echo without particularly scanning the probe. is possible. However, since the traveling direction of the ultrasonic beam transmitted from a large probe is parallel at any position on the probe, the ultrasonic beam may be There is a problem in that the beam is dispersed and only a portion of the ultrasonic waves transmitted from the probe contributes to flaw detection.

【0006】そこで、以上のような不具合を改善するた
めに、大型の探触子を用い、かつ、その探触子の振動子
面をインボリュート曲線にそうように配置したものが開
発されている(米国特許第4195530号)。このよ
うな振動子面をもつ探触子を用いた場合には、鋼管に入
射する超音波ビームの方向を一定にできるが、前述と同
様に大型の探触子を用いて超音波ビームの径を大きくし
て欠陥を探傷することから、欠陥位置の判定精度が低く
なるという問題があり、未だ実用に供されていない。
[0006] Therefore, in order to improve the above-mentioned problems, a system has been developed that uses a large probe and arranges the transducer surface of the probe so that it follows an involute curve. U.S. Pat. No. 4,195,530). When a probe with such a transducer surface is used, the direction of the ultrasonic beam incident on the steel pipe can be kept constant, but as mentioned above, using a large probe can change the diameter of the ultrasonic beam. Since defects are detected by increasing the size of the defect, there is a problem in that the accuracy of determining the defect position is low, and this method has not yet been put into practical use.

【0007】そこで、近年においては、図10に示すよ
うに多数の単位振動子を直線状に配列したアレイ型探触
子1と、このアレイ型探触子1の所望とする数i(i=
0〜Ni−1 )の単位振動子群からまとめて超音波ビ
ームを送受波するとともに、順次所定方向に数個ずつず
らしながら数iの単位の振動子群を選択して励振走査す
る電子走査型超音波探傷装置とで構成され、鋼管2の探
傷に際し、単位振動子群から送波する超音波ビームの入
射角度を全走査線で等しくするため、当該単位振動子群
から送波する超音波ビームの方向をインボリュート曲線
3の法線方向に一致するように位相制御する方法が考え
られている(特開昭59−151057号公報、特開昭
61−18860号公報)。図中C0 はアレイ型探触
子1の中心、Cは励振走査する単位振動子群の中心、d
は単位振動子の間隔である。
Therefore, in recent years, as shown in FIG. 10, an array type probe 1 in which a large number of unit oscillators are arranged linearly, and a desired number i (i=
An electronic scanning type that transmits and receives ultrasonic beams from a group of unit transducers (0 to Ni-1) at once, and selects a group of i units of transducers to perform excitation scanning while sequentially shifting several transducers in a predetermined direction. When testing steel pipes 2, the ultrasonic beam transmitted from the unit transducer group is configured with an ultrasonic flaw detection device, in order to make the incident angle of the ultrasonic beam transmitted from the unit transducer group equal across all scanning lines. A method has been considered in which the phase is controlled so that the direction of the involute curve 3 coincides with the normal direction of the involute curve 3 (Japanese Patent Application Laid-Open No. 59-151057, Japanese Patent Application Laid-Open No. 61-18860). In the figure, C0 is the center of the array type probe 1, C is the center of the unit transducer group for excitation scanning, and d
is the interval of unit oscillators.

【0008】なお、以上のような各単位振動子の励振タ
イミングは、超音波ビームの方向を図に示す向きになる
ように制御すればよく、例えば同図i=0 〜N−1 
番の単位振動子を励振するタイミングの遅延時間tiは
次式で表わされる。 ti=i・d・sin(θj)/c
The excitation timing of each unit vibrator as described above may be controlled so that the direction of the ultrasonic beam is as shown in the figure, for example, i=0 to N-1 in the figure.
The delay time ti of the timing of exciting the unit oscillator number is expressed by the following equation. ti=i・d・sin(θj)/c

【0009】但し、dは単位振動子の間隔、θj=ta
n−1(△dj/Yc)、cは伝搬媒体の音速、△dj
=c−c0 、YcはX軸上の集束点からアレイ型探触
子までの距離である。
[0009] However, d is the interval between unit oscillators, θj=ta
n-1 (△dj/Yc), c is the sound speed of the propagation medium, △dj
=c−c0, Yc is the distance from the focal point on the X axis to the array type probe.

【0010】0010

【発明が解決しようとする課題】しかし、以上のような
アレイ型探触子1を用いた超音波探傷法は未だ実用の域
に達していない。その理由としては次のような問題点が
考えられている。
[Problems to be Solved by the Invention] However, the ultrasonic flaw detection method using the array type probe 1 as described above has not yet reached the level of practical use. The following problems are thought to be the reason for this.

【0011】その1つは、鋼管2に対して超音波ビーム
を一定の入射角で入射するために超音波を位相制御して
偏向するが、このとき超音波ビームはアレイ探触子の中
心で強く、それよりも遠くなるにしたがってその偏向角
に依存して減衰することである。つまり、単位振動子群
の各走査線における超音波の偏向角はそれぞれ異なるの
で、単位振動子群の超音波ごとにその超音波の減衰量が
異なること。
One method is to control the phase of the ultrasonic waves and deflect them in order to make the ultrasonic beams enter the steel pipe 2 at a constant angle of incidence. At this time, the ultrasonic beams are deflected at the center of the array probe. It is strong and attenuates depending on the deflection angle as the distance increases. In other words, since the deflection angles of the ultrasonic waves in each scanning line of the unit transducer group are different, the amount of attenuation of the ultrasonic waves is different for each ultrasonic wave of the unit transducer group.

【0012】他の1つは、実際にアレイ型探触子1を用
いて鋼管2を探傷する場合、超音波の損失を少なくする
ために、アレイ型探触子1から送波される超音波を水ま
たは樹脂などの接触媒体を介して鋼管2に入射するが、
各単位振動子群から出る超音波ビームが接触媒体を横切
る距離は一定でないので、各単位振動子群から送波する
超音波の減衰量が異なること。
Another problem is that when actually testing the steel pipe 2 using the array type probe 1, in order to reduce the loss of ultrasonic waves, the ultrasonic wave transmitted from the array type probe 1 is is incident on the steel pipe 2 through a contact medium such as water or resin, but
Since the distance that the ultrasonic beam emitted from each unit transducer group crosses the contact medium is not constant, the amount of attenuation of the ultrasonic wave transmitted from each unit transducer group is different.

【0013】さらに、他の1つは、図11に示すように
超音波の波面がインボリュート曲線3にほぼ平行で、か
つ、波面の法線が鋼管2に対してどの位置でも同じ入射
角となるように波面を位相制御しているが、超音波ビー
ム4の中心線である各走査線5の鋼管2までの距離が異
なることから、例えば鋼管内面などの欠陥位置によって
各走査線5ごとの超音波ビーム4のビーム幅が異なって
しまう。このことは、欠陥の深さの位置に応じて検出感
度が異なることを意味する。
Furthermore, as shown in FIG. 11, the wavefront of the ultrasonic wave is approximately parallel to the involute curve 3, and the normal to the wavefront has the same incident angle with respect to the steel pipe 2 at any position. However, since the distance to the steel pipe 2 of each scanning line 5, which is the center line of the ultrasonic beam 4, is different, the ultrasonic wave of each scanning line 5 may vary depending on the position of a defect, such as on the inner surface of the steel pipe. The beam width of the sound wave beam 4 will be different. This means that the detection sensitivity differs depending on the depth position of the defect.

【0014】本発明は上記実情にかんがみてなされたも
ので、鋼管内の欠陥位置による超音波ビーム幅の変化を
極力低減化する管体の超音波探傷法を提供することを目
的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an ultrasonic flaw detection method for a pipe body that minimizes changes in the ultrasonic beam width due to the position of a defect within a steel pipe.

【0015】また、本発明の他の目的は、各走査線の伝
搬媒体内距離差による減衰量および偏向角に依存する減
衰量を適切に補償し、各走査線の検出感度を均一化する
管体の超音波探傷法を提供することにある。
Another object of the present invention is to provide a system for properly compensating the attenuation amount due to the distance difference in the propagation medium of each scanning line and the attenuation amount depending on the deflection angle, and making the detection sensitivity of each scanning line uniform. The purpose is to provide an ultrasonic flaw detection method for the body.

【0016】[0016]

【課題を解決するための手段】先ず、請求項1,2に対
応する発明は上記課題を解決するために、アレイ型探触
子を用いて鋼管の欠陥を探傷する管体の超音波探傷法に
おいて、前記アレイ型探触子を構成する複数の単位振動
子のうち所望とする数の単位振動子群の超音波ビームを
、当該超音波ビームの中心線となる走査線に集束するよ
うに位相制御して探傷を行うとともに、前記所望とする
数の単位振動子群を順次変えながら超音波ビームの集束
位置を移動させる管体の超音波探傷法である。
[Means for Solving the Problems] First, in order to solve the above problems, the invention corresponding to claims 1 and 2 provides an ultrasonic flaw detection method for pipe bodies, which detects defects in steel pipes using an array type probe. , the ultrasonic beams of a desired number of unit transducers of the plurality of unit transducers constituting the array type probe are phased so as to be focused on a scanning line that is the center line of the ultrasonic beams. This is an ultrasonic flaw detection method for tubular bodies in which flaw detection is controlled and the focal position of the ultrasonic beam is moved while sequentially changing the desired number of unit transducer groups.

【0017】そして、前記超音波ビームを走査線に集束
させる手段は、走査線において欠陥位置が近距離音場距
離とほぼ等しくなるように同時使用する単位振動子の数
を決定するとともに、この決定された所望とする数の単
位振動子群の超音波ビームが近距離音場距離に集束する
ように各単位振動子を所定のタイミングで励振するもの
である。
The means for focusing the ultrasonic beam on a scanning line determines the number of unit transducers to be used simultaneously so that the defect position in the scanning line is approximately equal to the near field distance, and Each unit oscillator is excited at a predetermined timing so that the ultrasonic beams of a desired number of unit oscillators are focused at a near field distance.

【0018】次に、請求項3に対応する発明は、アレイ
型探触子を構成する複数の単位振動子のうち所望とする
数の単位振動子群によって形成される各走査線の伝搬媒
体内距離差に依存する減衰量および前記単位振動子群の
超音波ビームの偏向角に依存する減衰量の何れか一方ま
たは両方を求めるとともに、前記単位振動子群によって
受信する超音波受信信号に対し前記減衰量に応じて感度
補正を行う管体の超音波探傷法である。
[0018] Next, the invention corresponding to claim 3 provides a method for transmitting data in the propagation medium of each scanning line formed by a desired number of unit oscillators out of the plurality of unit oscillators constituting the array type probe. One or both of the attenuation amount depending on the distance difference and the attenuation amount depending on the deflection angle of the ultrasonic beam of the unit transducer group is determined, and the This is an ultrasonic flaw detection method for tubular bodies that performs sensitivity correction according to the amount of attenuation.

【0019】[0019]

【作用】従って、請求項1,2に対応する発明は以上の
ような手段を講じたことにより、各走査線ごとに鋼管ま
での距離が異なっても鋼管内の欠陥位置における超音波
ビームのビーム幅の変化を抑制でき、よって、欠陥種類
が異なっても各走査線の検出感度差を低減できる。
[Operation] Therefore, the invention corresponding to claims 1 and 2 takes the above measures, so that even if the distance to the steel pipe differs for each scanning line, the ultrasonic beam at the defect position in the steel pipe is Changes in the width can be suppressed, and therefore, even if the types of defects are different, the difference in detection sensitivity of each scanning line can be reduced.

【0020】さらに、請求項1,2に対応する発明にお
いては、伝達媒体内の距離差に依存する減衰量と超音波
の偏向角に依存する減衰量とを求めた後、単位振動子群
で受信した超音波受信信号に対し前記減衰量に基づいて
感度補正することにより、各走査線の検出感度を一定化
できる。
Furthermore, in the invention corresponding to claims 1 and 2, after determining the attenuation amount depending on the distance difference in the transmission medium and the attenuation amount depending on the deflection angle of the ultrasonic wave, By correcting the sensitivity of the received ultrasonic reception signal based on the amount of attenuation, the detection sensitivity of each scanning line can be made constant.

【0021】[0021]

【実施例】以下、本発明方法の実施例について説明する
。本発明方法を実現するためには、従来の超音波探傷法
で問題となっていた超音波の減衰量の他、超音波ビーム
の幅について解明する必要がある。
[Examples] Examples of the method of the present invention will be described below. In order to realize the method of the present invention, it is necessary to clarify the width of the ultrasonic beam as well as the amount of attenuation of the ultrasonic wave, which has been a problem with conventional ultrasonic flaw detection methods.

【0022】そこで、先ず,伝搬媒体内の距離差に依存
する超音波の減衰量について求めてみる。今、図10に
おいて単位振動子群から送波される超音波ビーム4の中
心線となる各走査線5の送出点、つまり各単位振動子群
の超音波送出中心点の座標を(△dj+△x,Yc)と
すれば、鋼管2への走査線5の入射点は次式に示す座標
点(x,y)をもって表すことができる。   x=△dj・y/Yc+△X          
                  …(1)  y
={−b+(b2 −4・a・c)1/2 }/(2・
a)    …(2)
First, let us find the amount of attenuation of ultrasonic waves that depends on the distance difference within the propagation medium. Now, in FIG. 10, the coordinates of the sending point of each scanning line 5, which is the center line of the ultrasonic beam 4 sent from the unit transducer group, that is, the ultrasonic sending center point of each unit transducer group, are (△dj+△ x, Yc), the point of incidence of the scanning line 5 on the steel pipe 2 can be expressed by the coordinate point (x, y) shown in the following equation. x=△dj・y/Yc+△X
...(1)y
={-b+(b2-4・a・c)1/2}/(2・
a) …(2)

【0023】但し、上式において
a=1+(△di/Yc)2 、b=2・△X・△di
/Yc、c=△X2 −R2 、R=鋼管2の半径、j
=0〜Nj−1 、Nj=走査線数である。従って、各
走査線5の伝搬媒体内距離Wjは次式で表すことができ
る。   Wj={(△di+△X−x)2 +(Yc−y)
2 }1/2   …(3)そこで、アレイ型探触子1
中心の走査線の伝搬媒体内距離W0 を基準にとると、
各走査線の伝搬媒体内距離差△Wjは、   △Wj=Wj−W0              
                       …(
4)となる。よって、各走査線の伝搬媒体内距離差△W
jに依存する減衰量△G1jは、   △G1j=α・△Wj             
                     …(5)
However, in the above formula, a=1+(△di/Yc)2, b=2・△X・△di
/Yc, c=△X2 −R2, R=radius of steel pipe 2, j
=0 to Nj-1, Nj = number of scanning lines. Therefore, the distance Wj in the propagation medium of each scanning line 5 can be expressed by the following equation. Wj={(△di+△X-x)2 +(Yc-y)
2 }1/2...(3) Therefore, array type probe 1
Based on the distance W0 of the central scanning line within the propagation medium,
The distance difference △Wj in the propagation medium of each scanning line is △Wj = Wj - W0
…(
4). Therefore, the distance difference △W in the propagation medium of each scanning line
The attenuation amount △G1j that depends on j is △G1j=α・△Wj
...(5)

【0024】によって求めることができる。αは実験な
どで求まる伝搬媒体の減衰定数である。このことは、予
め単位振動子群を選択するとき、その単位振動子群の中
心,つまり走査線の伝搬媒体内距離差を知って、上記(
5)式の減衰量に基づいて感度補正を行えば、伝搬媒体
内距離差に依存する減衰量の影響を除去できる。次に、
超音波の偏向角に依存する減衰量は各単位振動子の指向
性であると考えれば、次式によって表すことができる。   △G(θj)   =sin {k・d/2・sin (θj)}/{
k・d/2・sin (θj)}          
                         
                     …(6)
但し、上式においてk=2πλ、λ=c/f、c:伝搬
媒体の音速、f:超音波周波数、d:単位振動子の幅で
ある。
It can be determined by: α is the attenuation constant of the propagation medium found through experiments. This means that when you select a unit oscillator group in advance, you need to know the center of the unit oscillator group, that is, the distance difference in the propagation medium of the scanning line, and then
If the sensitivity is corrected based on the attenuation amount in equation 5), the influence of the attenuation amount depending on the distance difference within the propagation medium can be removed. next,
Considering that the amount of attenuation that depends on the deflection angle of the ultrasonic wave is the directivity of each unit oscillator, it can be expressed by the following equation. △G (θj) = sin {k・d/2・sin (θj)}/{
k・d/2・sin (θj)}

...(6)
However, in the above equation, k=2πλ, λ=c/f, c: sound speed of the propagation medium, f: ultrasonic frequency, d: width of unit oscillator.

【0025】さらに、超音波受信の際にも単位振動子の
タイミングをずらす,いわゆる位相角制御によって受信
した場合には、その超音波の位相角に依存する減衰量は
次式のようになる。   △G2j=20LOG{(△G(θj))2 }(
dB)        …(7)従って、各単位振動子
の受信信号に対し、上記(7)式の減衰量に基づいて感
度補正を行えば、超音波の位相角に依存する減衰量の影
響を除去できる。因みに、超音波受信の際にタイミング
をずらさず、M個の単位振動子で同時に受信した場合に
は次式のようになる。   △G2j=20LOG{△G(θj)・△G′(θ
j)}  …(8)△G′(θj)=sin {k・d
・M/2・sin (θj)}/{k・d・M/2・s
in (θj)} 従って、各走査線に対する感度補正量△Gjは、  △
Gj=△G1j+△G2j  (dB)       
               …(9)
Furthermore, when ultrasonic waves are received by shifting the timing of the unit transducer, that is, so-called phase angle control, the amount of attenuation depending on the phase angle of the ultrasonic waves is expressed by the following equation. △G2j=20LOG{(△G(θj))2 }(
dB) ...(7) Therefore, by performing sensitivity correction on the received signal of each unit transducer based on the attenuation amount in the above equation (7), the influence of the attenuation amount depending on the phase angle of the ultrasound can be removed. . Incidentally, if the timing is not shifted during ultrasonic reception and the reception is performed simultaneously by M unit transducers, the following equation is obtained. △G2j=20LOG{△G(θj)・△G′(θ
j)} …(8)△G′(θj)=sin {k・d
・M/2・sin (θj)}/{k・d・M/2・s
in (θj)} Therefore, the sensitivity correction amount △Gj for each scanning line is △
Gj=△G1j+△G2j (dB)
…(9)

【0026】
で表すことができる。よって、単位振動子群で受信した
超音波受信信号に対し、(9)式の感度補正量△Gjを
用いて補正すれば、各走査線の感度を一定にすることが
できる。
[0026]
It can be expressed as Therefore, if the ultrasonic reception signal received by the unit transducer group is corrected using the sensitivity correction amount ΔGj of equation (9), the sensitivity of each scanning line can be made constant.

【0027】次に、各走査線ごとの超音波ビーム幅の差
を極力小さくするビーム制御法について説明する。今、
アレイ型探触子1を用いたときの超音波ビームの半値幅
について調べると、図2のような結果が得られる。図中
,(イ)は同時に使用する単位振動子群によって定まる
開口に基づく近距離音場距離X0 より近くに超音波を
集束させた場合であって、一定のビーム幅をもつ伝搬方
向の範囲が非常に狭い。ここで、X0 =D2 /4λ
で表わされる。Dは単位振動子群によって定まる開口幅
である。(ロ)は近距離音場付近に集束させた例であっ
て、そのときの超音波ビームのビーム幅は例えばX1〜
X2までほぼ一定となっている。(ハ)は集束しない例
であって、この場合にはビーム幅は一定となるが、全体
的に太いために欠陥の位置判定精度が劣る。(ニ)は開
口を狭くして集束しない例であり、この場合には細いビ
ームが得られるが、近距離音場距離が短くなるので、超
音波が直ぐに広がってしまい、各欠陥位置でビーム幅を
等しくすることが難しい。
Next, a beam control method for minimizing the difference in ultrasonic beam width between each scanning line will be explained. now,
When the half-width of an ultrasonic beam when using the array type probe 1 is investigated, the results shown in FIG. 2 are obtained. In the figure, (a) is the case where the ultrasonic waves are focused closer than the near field distance X0 based on the aperture determined by the unit transducers used simultaneously, and the range in the propagation direction with a constant beam width is Very narrow. Here, X0 = D2 /4λ
It is expressed as D is the aperture width determined by the unit vibrator group. (b) is an example in which the ultrasonic beam is focused near the near field, and the beam width of the ultrasonic beam at that time is, for example,
It remains almost constant up to X2. (c) is an example in which the beam is not focused; in this case, the beam width is constant, but the overall width is wide, so the accuracy of defect position determination is poor. (d) is an example of narrowing the aperture and not focusing. In this case, a narrow beam is obtained, but since the near field distance becomes short, the ultrasonic waves spread quickly, and the beam width at each defect position is It is difficult to make them equal.

【0028】従って、以上のような実験例から総合的に
考えると、前記(ロ)のように欠陥位置が近距離音場付
近に集束させるときに最も有効であることが分かる。よ
って、各走査線の超音波ビームのビーム幅の差をできる
限り小さくするためには、超音波ビーム中央の走査線に
おいて欠陥位置が近距離音場距離とほぼ等しくなるよう
に同時使用する単位振動子の数を決定し、かつ、近距離
音場距離にて超音波が集束するように各単位振動子を励
振するタイミングを決めればよいことになる。
Therefore, when considering the above experimental examples comprehensively, it can be seen that it is most effective when the defect position is focused near the near field as in (b) above. Therefore, in order to minimize the difference in the beam width of the ultrasound beam between each scanning line, it is necessary to use unit vibrations that are used simultaneously so that the defect position is approximately equal to the near field distance in the scanning line at the center of the ultrasound beam. All that is required is to determine the number of transducers and the timing to excite each unit transducer so that the ultrasonic waves are focused at a near field distance.

【0029】以下、単位振動子の数と各単位振動子の励
振タイミングの決定法について説明する。超音波ビーム
の中心線である走査線において欠陥位置が近距離音場距
離になるようにするには、単位振動子数Nは、これら単
位振動子群の開口幅Dから下記式に従って求めることが
できる。今、近距離音場距離D2 /4λ=Wとすると
、  D=N・d                 
                         
…(10)
The method for determining the number of unit oscillators and the excitation timing of each unit oscillator will be explained below. In order for the defect position to be located at the near field distance on the scanning line, which is the center line of the ultrasound beam, the number N of unit transducers can be calculated from the aperture width D of the group of unit transducers according to the following formula. can. Now, if near sound field distance D2/4λ=W, then D=N・d

…(10)

【0030】の関係を有するので、この式か
ら単位振動子数Nを求めることができる。但し、W=W
0 +Wf ・Cs /Cw となる。W0 は超音波
ビーム中央の走査線の伝搬媒体内距離、Wf は入射点
から欠陥迄の距離、Cs は鋼管内の超音波音速:32
30m/s、Cw は接触媒体内の超音波音速、λは接
触媒体内の超音波波長、dは単位振動子の間隔である。
Since the following relationship exists, the unit oscillator number N can be determined from this equation. However, W=W
0 +Wf ・Cs /Cw. W0 is the distance in the propagation medium of the scanning line at the center of the ultrasonic beam, Wf is the distance from the point of incidence to the defect, Cs is the ultrasonic sound speed in the steel pipe: 32
30 m/s, Cw is the ultrasonic sound velocity in the coupling medium, λ is the ultrasonic wavelength in the coupling medium, and d is the distance between unit oscillators.

【0031】一方、1本のビームを作る単位振動子群の
タイミング制御は次の3つの遅延時間から求めることが
可能である。先ず、1本の超音波ビームの波面が鋼管各
面に一定の入射角で入射するためには、次の遅延時間t
1iが必要である。   lm =[{d・(N−1 )/2}2 +Yc2
 ]1/2  li =[d2 ・{(N−1 )/2
−i}2 +Yc2 ]1/2   t1i=(li 
−lm )/Cw                 
         …(11)但し、i=0〜(N−1
 )である。 さらに、超音波ビームを欠陥位置に集束させるためには
、次の遅延時間t2iが必要である。   lm =[{d・(N−1 )/2}2 +W2 
]1/2  li =[d2 ・{(N−1 )/2−
i}2 +W2 ]1/2   t2i=(li −l
m )/Cw                   
       …(12)但し、i=0〜(N−1 )
である。 さらに、各走査線がインボリュート曲線の法線方向にな
るように偏向角を制御するためには、次の遅延時間が必
要となる。   i・d・sin (θj )/Cw       
                   …(13)よ
って、j番目の走査線に対する単位振動子群の遅延時間
をtijとすると、   tij=t1i+t2i+{i・d・sin (θ
j )/Cw}    …(14)となる。
On the other hand, timing control of a group of unit oscillators forming one beam can be determined from the following three delay times. First, in order for the wavefront of one ultrasonic beam to be incident on each surface of the steel pipe at a constant angle of incidence, the following delay time t is required.
1i is required. lm = [{d・(N-1)/2}2 +Yc2
]1/2 li = [d2 ・{(N-1)/2
−i}2 +Yc2 ]1/2 t1i=(li
-lm)/Cw
...(11) However, i = 0 ~ (N-1
). Furthermore, the following delay time t2i is required to focus the ultrasound beam on the defect location. lm = [{d・(N-1)/2}2 +W2
]1/2 li = [d2 ・{(N-1)/2-
i}2 +W2 ]1/2 t2i=(li −l
m)/Cw
...(12) However, i = 0 ~ (N-1)
It is. Furthermore, in order to control the deflection angle so that each scanning line is in the normal direction of the involute curve, the following delay time is required. i・d・sin (θj)/Cw
...(13) Therefore, if the delay time of the unit oscillator group for the j-th scanning line is tij, then tij=t1i+t2i+{i・d・sin (θ
j )/Cw} (14).

【0032】従って、超音波を送波する場合には前記(
14)式の遅延時間のタイミングで各単位振動子をずら
しながら励振し、さらに超音波を受波する場合には前記
(14)式の遅延時間のタイミングで逆にずらして受信
すれば、超音波ビームのビーム幅の変化を小さくできる
Therefore, when transmitting ultrasonic waves, the above (
14) If you excite each unit transducer while shifting it at the timing of the delay time in equation (14), and when receiving ultrasonic waves, you can receive the ultrasonic wave by shifting it at the timing of the delay time in equation (14) above. Changes in beam width can be reduced.

【0033】次に、以上のような超音波探傷方法を適用
した探傷装置について図1を参照して説明する。この装
置は、アレイ型探触子1を制御して超音波を送波する送
信制御系20と、当該アレイ型探触子1による超音波の
受信制御および減衰量の補償等を行う受信制御系30と
から成っている。
Next, a flaw detection apparatus to which the above-described ultrasonic flaw detection method is applied will be explained with reference to FIG. This device includes a transmission control system 20 that controls the array probe 1 to transmit ultrasound, and a reception control system that controls the reception of the ultrasound by the array probe 1 and compensates for the amount of attenuation. It consists of 30.

【0034】この送信制御系20には、鋼管とアレイ型
探触子1の配置その他の探傷条件に基づいて各部を制御
する探傷制御部21が設けられ、これは具体的には超音
波ビーム中央の走査線において欠陥位置が近距離音場距
離とほぼ等しくなるように同時使用する単位振動子数を
決定する単位振動子数決定手段21aおよびこの単位振
動子数決定手段21aによつて決定された数の単位振動
子について送受信の遅延タイミングを作成する励振タイ
ミング作成手段21bを有し、単位振動子数データや送
受信の遅延タイミング信号を送信制御部22および受信
制御系30に送出する。
This transmission control system 20 is provided with a flaw detection control unit 21 that controls each part based on the arrangement of the steel pipe and the array type probe 1 and other flaw detection conditions. The unit oscillator number determining means 21a determines the number of unit oscillators to be used simultaneously so that the defect position is approximately equal to the near sound field distance in the scanning line of It has an excitation timing creation means 21b that creates delay timings for transmission and reception for several unit oscillators, and sends unit oscillator number data and transmission and reception delay timing signals to the transmission control section 22 and reception control system 30.

【0035】この送信制御部22では、探傷制御部21
の出力に基づいて発信チャンネルを選択するチャンネル
選択手段22aの他、選択チャンネルの発信タイミング
を制御するタイミング制御手段22bを有し、この選択
チャンネルの発信タイミングに従って多チャンネルパル
サー23が前記アレイ型探触子1を構成する単位振動子
を励振し、選択チャンネルに相当する単位振動子群から
超音波ビームを送波するものである。
In this transmission control section 22, the flaw detection control section 21
In addition to the channel selection means 22a for selecting a transmission channel based on the output of the channel selection means 22a, the multi-channel pulser 23 is provided with a timing control means 22b for controlling the transmission timing of the selected channel. The unit oscillators constituting the element 1 are excited, and an ultrasonic beam is transmitted from a group of unit oscillators corresponding to a selected channel.

【0036】一方、受信制御系30にあっては、探傷制
御部21の出力に基づいて単位振動子群を選択するとと
もに、この選択された単位振動子群の受信信号を加算す
る受信制御部31、この受信制御部31で加算された受
信信号の強度を調整する多チャンネル減衰部32が設け
られている。この多チャンネル減衰部32は、各走査線
の伝搬媒体内距離差に依存する減衰量を求める第1の減
衰量演算手段32a、超音波の位相角に依存する減衰量
を求める第2の減衰量演算手段32bおよび受信制御部
31から得られた受信信号を前記2つの減衰量に基づい
て各走査線ごとに感度補正を行う感度補正手段32c等
を有する。
On the other hand, in the reception control system 30, a reception control section 31 selects a unit transducer group based on the output of the flaw detection control section 21, and adds the received signals of the selected unit transducer group. A multi-channel attenuator 32 is provided to adjust the strength of the received signals added by the reception controller 31. This multi-channel attenuation unit 32 includes a first attenuation amount calculation means 32a that calculates an attenuation amount that depends on the distance difference in the propagation medium of each scanning line, and a second attenuation amount that calculates an attenuation amount that depends on the phase angle of the ultrasonic wave. It has a sensitivity correction means 32c, etc., which performs sensitivity correction for each scanning line on the received signal obtained from the calculation means 32b and the reception control section 31 based on the two attenuation amounts.

【0037】この多チャンネル減衰部32の出力側には
多チャンネル受信部33および表示部34が設けられて
いる。この多チャンネル受信部33は多チャンネル減衰
部32の出力を増幅し検波する機能を有し、一方、表示
部34は多チャンネル受信部33の増幅検波出力に基づ
いて探傷結果を表示する機能をもっている。
A multi-channel receiving section 33 and a display section 34 are provided on the output side of the multi-channel attenuation section 32. The multi-channel receiving section 33 has a function of amplifying and detecting the output of the multi-channel attenuating section 32, while the display section 34 has a function of displaying flaw detection results based on the amplified and detected output of the multi-channel receiving section 33. .

【0038】従って、以上のような探傷装置の構成によ
れば、探傷制御部21による単位振動子数の決定および
送信遅延タイミングに基づいて送信制御部22ではチャ
ンネル選択および発信タイミング信号を順次出力すると
、多チャンネルパルサー23はその送信制御部22の出
力に基づいて単位振動子群を選択し、かつ、順次所定の
タイミングで励振しながら各単位振動子から超音波を送
波する。その結果、各単位振動子から送波された超音波
は走査線に集束するように位相制御されるので、図3に
示すように鋼管内の欠陥位置における超音波ビームのビ
ーム幅の変化が非常に小さくなり、ひいては各走査線の
欠陥検出感度差を低減化できる。
Therefore, according to the configuration of the flaw detection apparatus as described above, the transmission control section 22 sequentially outputs channel selection and transmission timing signals based on the determination of the number of unit transducers by the flaw detection control section 21 and the transmission delay timing. The multi-channel pulser 23 selects a group of unit transducers based on the output of the transmission control section 22, and transmits ultrasonic waves from each unit transducer while sequentially exciting it at a predetermined timing. As a result, the phase of the ultrasonic waves transmitted from each unit transducer is controlled so that they are focused on the scanning line, so the beam width of the ultrasonic beam at the defect location in the steel pipe changes significantly, as shown in Figure 3. As a result, the difference in defect detection sensitivity between each scanning line can be reduced.

【0039】さらに、単位振動子群で受信した受信信号
は受信制御部31で加算した後、多チャンネル減衰部3
2に導き、ここで前述した演算式によって減衰量を求め
た後、受信信号に対して減衰量に応じて感度補正を行う
ので、各走査線の検出感度を一定化できる。
Furthermore, the received signals received by the unit transducer group are added by the reception control section 31, and then added to the multi-channel attenuation section 3.
2, and after calculating the amount of attenuation using the arithmetic expression described above, sensitivity correction is performed on the received signal according to the amount of attenuation, so that the detection sensitivity of each scanning line can be made constant.

【0040】因みに、図4ないし図9は従来の超音波探
傷法を用いた場合と本発明による超音波探傷法を用いた
場合との欠陥検出特性の比較図である。先ず、図4は外
面のスリット欠陥に対して、集束,偏向角制御および感
度補正を一切行わないときの各走査線の欠陥検出特性図
である。なお、この欠陥検出に際し、各走査線ごとに欠
陥エコー高さが最大になるように機械走査を行って得た
結果である。この図から明らかなように、種々の要因に
よって各走査線の欠陥検出感度差が20dB以上も異な
っており、欠陥検出精度に問題が多い。
Incidentally, FIGS. 4 to 9 are comparison diagrams of defect detection characteristics when using the conventional ultrasonic flaw detection method and when using the ultrasonic flaw detection method according to the present invention. First, FIG. 4 is a defect detection characteristic diagram of each scanning line when no focusing, deflection angle control, or sensitivity correction is performed for a slit defect on the outer surface. In addition, when detecting this defect, the results were obtained by performing mechanical scanning so that the defect echo height was maximized for each scanning line. As is clear from this figure, the defect detection sensitivity difference between each scanning line differs by more than 20 dB due to various factors, and there are many problems with defect detection accuracy.

【0041】これに対し、図5は、従来法であり、各走
査線の屈折角が一定となるように超音波ビームの偏向角
を位相制御したときの欠陥検出特性図であって、図4の
探傷結果に比べて感度差が小さくなっているが、未だ1
0dB以上の差が残っている。
On the other hand, FIG. 5 shows defect detection characteristics when the phase of the deflection angle of the ultrasonic beam is controlled so that the refraction angle of each scanning line is constant in the conventional method. The sensitivity difference is smaller compared to the flaw detection results, but it is still 1.
A difference of 0 dB or more remains.

【0042】一方、図6は、各走査線の屈折角が一定と
なるように超音波ビームの位相角を制御し、かつ、伝搬
媒体内の距離差による減衰量の感度補正を行ったときの
欠陥検出特性図であって、各走査線の間に僅かに検出感
度差が見られる。さらに、図7は、伝搬媒体内の距離差
による減衰量の感度補正と超音波ビームの位相角による
減衰量の感度補正とを行ったときの欠陥検出特性図であ
る。この図7から明らかなように、請求項3の効果によ
りスリット状欠陥に対する各走査線の検出感度を一定に
することができる。しかし、図8に示すようにドリルホ
ールの外面側エコーAとスリット状欠陥からのエコーB
との間には各走査線間にほぼ5dBの検出感度差がある
。このことは、欠陥の種類が異なると各走査線の検出感
度が異なることを意味する。
On the other hand, FIG. 6 shows the result when the phase angle of the ultrasonic beam is controlled so that the refraction angle of each scanning line is constant, and the sensitivity of the attenuation amount is corrected based on the distance difference in the propagation medium. It is a defect detection characteristic diagram, and a slight difference in detection sensitivity can be seen between each scanning line. Furthermore, FIG. 7 is a defect detection characteristic diagram when the sensitivity of the attenuation amount is corrected based on the distance difference in the propagation medium and the sensitivity correction of the attenuation amount based on the phase angle of the ultrasonic beam. As is clear from FIG. 7, the effect of claim 3 makes it possible to make the detection sensitivity of each scanning line constant for slit-like defects. However, as shown in Figure 8, echo A from the outer surface of the drill hole and echo B from the slit-like defect.
There is a detection sensitivity difference of approximately 5 dB between each scanning line. This means that the detection sensitivity of each scanning line differs depending on the type of defect.

【0043】そこで、さらに上述したように各走査線の
超音波ビーム幅の差をできる限り小さくするために、送
信時の同時使用する単位振動子数を12個とし、かつ、
超音波の焦点距離を近距離音場距離60mmにほぼ等し
い60mmに設定したところ、ドリルホールの外面側エ
コーとスリット状欠陥からのエコーの検出感度の各走査
線における差は図9のようになり、欠陥の種類に拘らず
各走査線の間でほぼ同一の検出感度を得ることができる
。なお、本発明は上記実施例に限定されるものでなく、
その要旨を逸脱しない範囲で種々変形して実施できる。
Therefore, as described above, in order to minimize the difference in the ultrasonic beam width of each scanning line, the number of unit transducers used simultaneously during transmission is set to 12, and
When the focal length of the ultrasonic wave was set to 60 mm, which is approximately equal to the near-field distance of 60 mm, the difference in detection sensitivity of the outer surface echo of the drill hole and the echo from the slit-like defect in each scanning line was as shown in Figure 9. , substantially the same detection sensitivity can be obtained between each scanning line regardless of the type of defect. Note that the present invention is not limited to the above embodiments,
Various modifications can be made without departing from the gist of the invention.

【0044】[0044]

【発明の効果】先ず、請求項1,2の発明においては、
各走査線の超音波ビーム幅の変化を低減化でき、欠陥種
類が異なっても各走査線の検出感度差を低減できる。
[Effect of the invention] First, in the invention of claims 1 and 2,
Changes in the ultrasonic beam width of each scanning line can be reduced, and even if the types of defects are different, the difference in detection sensitivity between each scanning line can be reduced.

【0045】次に、請求項3においては、各走査線の伝
搬媒体内距離差による減衰量および偏向角に依存する減
衰量を適切に補償でき、各走査線の検出感度差を均一化
できる。
Next, in claim 3, it is possible to appropriately compensate for the amount of attenuation due to the distance difference in the propagation medium of each scanning line and the amount of attenuation that depends on the deflection angle, and it is possible to equalize the difference in detection sensitivity of each scanning line.

【0046】以上の効果により、単一の探触子を管周方
向に機械的に走査したと同様な効果が電気的によって得
られ、手動走査の必要がなく、また検査員の熟練度に関
係なく、欠陥エコーのピークをとらえることができ、欠
陥の精度と位置とを再現性よく評価できる。
[0046] As a result of the above effects, the same effect as mechanically scanning a single probe in the tube circumferential direction can be obtained electrically, there is no need for manual scanning, and there is no need for manual scanning. It is possible to capture the peak of the defect echo without any problems, and the accuracy and position of the defect can be evaluated with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明方法を適用した探傷装置の一実施例
を示す機能ブロック図。
FIG. 1 is a functional block diagram showing an embodiment of a flaw detection apparatus to which the method of the present invention is applied.

【図2】  アレイ型探触子によって形成される超音波
ビームの半値幅を示す図。
FIG. 2 is a diagram showing the half-width of an ultrasound beam formed by an array type probe.

【図3】  本発明方法を実施して鋼管を探傷している
ときの状態図。
FIG. 3 is a state diagram when flaw detection is performed on a steel pipe by implementing the method of the present invention.

【図4】  ビーム制御および感度補正を行わない場合
の欠陥検出感度の特性図。
FIG. 4 is a characteristic diagram of defect detection sensitivity when beam control and sensitivity correction are not performed.

【図5】  各走査線の屈折角を一定にするように超音
波ビームを制御したときの従来の欠陥検出感度の特性図
FIG. 5 is a characteristic diagram of conventional defect detection sensitivity when the ultrasonic beam is controlled so that the refraction angle of each scanning line is constant.

【図6】  屈折角を一定になるように超音波ビームを
制御し、かつ、伝版媒体内の距離差に依存する減衰を補
正したときの欠陥検出感度の特性図。
FIG. 6 is a characteristic diagram of defect detection sensitivity when the ultrasonic beam is controlled so that the refraction angle is constant and attenuation that depends on the distance difference within the newsprint medium is corrected.

【図7】  屈折角を一定になるように超音波ビームを
制御し、かつ、伝版媒体内の距離差に依存する減衰と超
音波ビームの偏向角に依存する減衰を補正したときの欠
陥検出感度の特性図。
[Figure 7] Defect detection when controlling the ultrasonic beam so that the refraction angle is constant and correcting the attenuation that depends on the distance difference within the newsprint medium and the attenuation that depends on the deflection angle of the ultrasonic beam. Characteristic diagram of sensitivity.

【図8】  屈折角を一定になるように超音波ビームを
制御し、かつ、伝版媒体内の距離差に依存する減衰と超
音波ビームの偏向角に依存する減衰を補正した状態で、
2種類の欠陥つまりドリルホールとスリット状欠陥との
検出感度差を示す図。
FIG. 8: The ultrasonic beam is controlled so that the refraction angle is constant, and the attenuation that depends on the distance difference within the telegraphic medium and the attenuation that depends on the deflection angle of the ultrasonic beam are corrected.
FIG. 3 is a diagram showing the difference in detection sensitivity between two types of defects, ie, a drill hole and a slit-like defect.

【図9】  本発明方法により超音波ビームを制御し、
かつ、各走査線の感度補正を行ったときの2種類の欠陥
つまりドリルホールとスリット状欠陥との検出感度差を
示す図。
[Figure 9] Controlling the ultrasound beam by the method of the present invention,
Further, FIG. 7 is a diagram showing the difference in detection sensitivity between two types of defects, that is, a drill hole and a slit-like defect when sensitivity correction is performed for each scanning line.

【図10】  アレイ型探触子を用いて鋼管を探傷する
際の超音波ビーム方向を示す図。
FIG. 10 is a diagram showing the direction of an ultrasonic beam when testing a steel pipe using an array type probe.

【図11】  従来方法によって走査した場合に欠陥位
置によって各走査線の超音波ビームの幅が異なっている
状態を示す図。
FIG. 11 is a diagram showing a state in which the width of the ultrasonic beam of each scanning line differs depending on the defect position when scanning is performed using a conventional method.

【符号の説明】[Explanation of symbols]

1…アレイ型探触子、2…鋼管、3…インボリュート曲
線、4…超音波ビーム、5…走査線、20…送信制御系
、21…探傷制御部、22…送信制御部、23…多チャ
ンネルパルサー、31…受信制御部、32…多チャンネ
ル減衰部、33…多チャンネル受信部、34…表示部。
DESCRIPTION OF SYMBOLS 1...Array type probe, 2...Steel pipe, 3...Involute curve, 4...Ultrasonic beam, 5...Scanning line, 20...Transmission control system, 21...Flaw detection control section, 22...Transmission control section, 23...Multi-channel Pulsar, 31... Reception control section, 32... Multi-channel attenuation section, 33... Multi-channel receiving section, 34... Display section.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  アレイ型探触子を用いて管体の欠陥を
探傷する管体の超音波探傷法において、前記アレイ型探
触子を構成する複数の単位振動子のうち所望とする数の
単位振動子群の超音波ビームを、当該超音波ビームの中
心線となる走査線に集束するように波面を位相制御して
探傷を行うとともに、前記所望とする数の単位振動子群
を順次変えながら超音波ビームの集束位置を移動させる
ことを特徴とする管体の超音波探傷法。
Claim 1: In an ultrasonic flaw detection method for tube bodies in which defects in a tube body are detected using an array type probe, a desired number of unit transducers constituting the array type probe is used. Performing flaw detection by controlling the phase of the wavefront of the ultrasonic beam of the unit transducer group so as to focus it on a scanning line that is the center line of the ultrasonic beam, and sequentially changing the desired number of unit transducer groups. An ultrasonic flaw detection method for tubular bodies that is characterized by moving the focal point of the ultrasonic beam.
【請求項2】  超音波ビームを走査線に集束させる手
段は、走査線において欠陥位置が近距離音場距離とほぼ
等しくなるように同時使用する単位振動子の数を決定す
るとともに、この決定された前記所望とする数の単位振
動子群の超音波ビームが近距離音場距離に集束するよう
に各単位振動子を所定のタイミングで励振するものであ
る請求項1記載の管体の超音波探傷法。
2. The means for focusing the ultrasonic beam on a scanning line determines the number of unit transducers to be used simultaneously so that the defect position in the scanning line is approximately equal to the near field distance, and 2. The ultrasonic wave in a tubular body according to claim 1, wherein each unit transducer is excited at a predetermined timing so that the ultrasound beams of the desired number of unit transducers are focused in a near field distance. Flaw detection method.
【請求項3】  アレイ型探触子を用いて管体の欠陥を
検査する管体の超音波探傷法において、前記アレイ型探
触子を構成する複数の単位振動子のうち所望とする数の
単位振動子群の中心線となる各走査線の伝搬媒体内距離
差に依存する減衰量および前記単位振動子群における超
音波ビームの偏向角に依存する減衰量の何れか一方また
は両方を求めるとともに、前記単位振動子群によって受
信した超音波受信信号に対し前記減衰量に応じて感度補
正を行うことを特徴とする管材の超音波探傷法。
3. In an ultrasonic flaw detection method for a tube body in which defects in the tube body are inspected using an array type probe, a desired number of unit transducers constituting the array type probe is used. Calculating either or both of the attenuation amount depending on the distance difference in the propagation medium of each scanning line serving as the center line of the unit transducer group and the attenuation amount depending on the deflection angle of the ultrasonic beam in the unit transducer group. . An ultrasonic flaw detection method for pipe materials, characterized in that sensitivity correction is performed on the ultrasonic reception signal received by the unit transducer group according to the attenuation amount.
JP3036339A 1991-03-01 1991-03-01 Ultrasonic testing of pipes Expired - Lifetime JP2501488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036339A JP2501488B2 (en) 1991-03-01 1991-03-01 Ultrasonic testing of pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036339A JP2501488B2 (en) 1991-03-01 1991-03-01 Ultrasonic testing of pipes

Publications (2)

Publication Number Publication Date
JPH04274756A true JPH04274756A (en) 1992-09-30
JP2501488B2 JP2501488B2 (en) 1996-05-29

Family

ID=12467073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036339A Expired - Lifetime JP2501488B2 (en) 1991-03-01 1991-03-01 Ultrasonic testing of pipes

Country Status (1)

Country Link
JP (1) JP2501488B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105112A1 (en) 2007-02-28 2008-09-04 Jfe Steel Corporation Method for managing quality of tubular body and tubular body manufacturing method
WO2008105111A1 (en) 2007-02-28 2008-09-04 Jfe Steel Corporation Tubular object ultrasonic test device and ultrasonic test method
WO2008105109A1 (en) 2007-02-28 2008-09-04 Jfe Steel Corporation Calibration method of ultrasonic flaw detection and quality control method and production method of tubular body
US7779694B2 (en) 2005-11-21 2010-08-24 Jfe Steel Corporation Ultrasonic testing system and ultrasonic testing technique for pipe member
CN102565188A (en) * 2010-12-14 2012-07-11 同方威视技术股份有限公司 Ultrasonic detecting equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779694B2 (en) 2005-11-21 2010-08-24 Jfe Steel Corporation Ultrasonic testing system and ultrasonic testing technique for pipe member
WO2008105112A1 (en) 2007-02-28 2008-09-04 Jfe Steel Corporation Method for managing quality of tubular body and tubular body manufacturing method
WO2008105111A1 (en) 2007-02-28 2008-09-04 Jfe Steel Corporation Tubular object ultrasonic test device and ultrasonic test method
WO2008105109A1 (en) 2007-02-28 2008-09-04 Jfe Steel Corporation Calibration method of ultrasonic flaw detection and quality control method and production method of tubular body
EP2124045A1 (en) * 2007-02-28 2009-11-25 JFE Steel Corporation Tubular object ultrasonic test device and ultrasonic test method
US8266964B2 (en) 2007-02-28 2012-09-18 Jfe Steel Corporation Calibration of an ultrasonic flaw detector and quality control and production methods for a tubular body
US8393217B2 (en) 2007-02-28 2013-03-12 Jfe Steel Corporation Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for pipe
US8578580B2 (en) 2007-02-28 2013-11-12 Jfe Steel Corporation Quality control method and manufacturing method for pipe
EP2124045A4 (en) * 2007-02-28 2014-12-03 Jfe Steel Corp Tubular object ultrasonic test device and ultrasonic test method
CN102565188A (en) * 2010-12-14 2012-07-11 同方威视技术股份有限公司 Ultrasonic detecting equipment

Also Published As

Publication number Publication date
JP2501488B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
EP0263475B1 (en) Ultrasonic flaw detecting method and apparatus
KR101004267B1 (en) Ultrasonic testing system and ultrasonic testing technique for pipe member
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
CA2679297C (en) Quality control method and manufacturing method for pipe
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
WO2008105109A1 (en) Calibration method of ultrasonic flaw detection and quality control method and production method of tubular body
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
JP2501488B2 (en) Ultrasonic testing of pipes
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH0334588B2 (en)
JPH0619341B2 (en) Electronic scanning ultrasonic flaw detector
JPH0146027B2 (en)
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2002071648A (en) Method and device for ultrasonic flaw detection
JP2552178B2 (en) Ultrasonic flaw detection method for steel pipe welds
JPH09133657A (en) Method and apparatus for ultrasonic flaw detection
JPS62192653A (en) Ultrasonic flaw detecting method for steel tube weld seam part
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JP2612890B2 (en) Ultrasonic flaw detection method
JPS5960354A (en) Ultrasonic flaw detector
JP2635154B2 (en) Defect shape discrimination method using electronic scanning ultrasonic flaw detector
JPS62192655A (en) Ultrasonic flaw detecting method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 15

EXPY Cancellation because of completion of term