Nothing Special   »   [go: up one dir, main page]

JPH04255203A - Oxide superconducting current lead - Google Patents

Oxide superconducting current lead

Info

Publication number
JPH04255203A
JPH04255203A JP3654291A JP3654291A JPH04255203A JP H04255203 A JPH04255203 A JP H04255203A JP 3654291 A JP3654291 A JP 3654291A JP 3654291 A JP3654291 A JP 3654291A JP H04255203 A JPH04255203 A JP H04255203A
Authority
JP
Japan
Prior art keywords
silver
oxide superconducting
superconducting
connection resistance
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3654291A
Other languages
Japanese (ja)
Other versions
JPH0779045B2 (en
Inventor
Koichi Numata
幸一 沼田
Kazutomo Hoshino
和友 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3036542A priority Critical patent/JPH0779045B2/en
Publication of JPH04255203A publication Critical patent/JPH04255203A/en
Publication of JPH0779045B2 publication Critical patent/JPH0779045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make possible to perform a soldering operation, and to reduce connection resistance by providing a silver-coated part, formed by sintering pressure-bonded silver foil, silver paste or a silver flame-sprayed layer, on the end part of a rod-like oxide superconducting material. CONSTITUTION:Y-Ba-Cu-O and the like can be used for oxide superconducting material, and a rod-like oxide superconducting body 1 formed by the power of the above-mentioned material. A sheet of silver foil is wound on the end part of the superconducting body 1 and pressure is applied thereto, or silver paste is applied and dried up. After silver frame-spraying process has been conducted, the material is sintered, and a silver-coated part 2 is formed. A stranded wire of the low-resistance normal conducting metal such as copper and the like, and a multi-core wire, which is formed by adding stabilized material to the superconducting substance such as a niobium-titanate alloy and the like can be used as a conductor to be connected to the above-mentioned silver-coated part 2. Especially, the use of a metal superconducting wire, having zero resistance at the temperature of liquid helium, for one or both of the oxide superconducting lead wires is good for reduction of connection resistance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は超電導コイルを用いた強
磁場発生用磁石等に大電流を供給する際に用いられる酸
化物超電導電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting current lead used for supplying a large current to a magnet for generating a strong magnetic field using a superconducting coil.

【0002】0002

【従来の技術およびその問題点】超電導材料は、臨界温
度Tc以下でゼロ抵抗、完全反磁性、ジョセフソン効果
等の特性を示す材料である。金属系の超電導材料は臨界
温度が20K未満と低いが、液体ヘリウム温度(4.2
K)で超電導コイルに大電流を流すことにより無損失で
高磁場を発生することが可能となっている。これらは磁
気浮上列車、核磁気共鳴診断装置等に利用されている。
BACKGROUND OF THE INVENTION Superconducting materials are materials that exhibit properties such as zero resistance, perfect diamagnetism, and the Josephson effect below a critical temperature Tc. Metal-based superconducting materials have a low critical temperature of less than 20K, but the critical temperature is lower than the liquid helium temperature (4.2
K), it is possible to generate a high magnetic field without loss by passing a large current through the superconducting coil. These are used in magnetic levitation trains, nuclear magnetic resonance diagnostic equipment, etc.

【0003】電流リードは室温部の電源から極低温の超
電導磁石に数百〜数千Aの電流を供給するものであり、
従来は銅線が用いられていた。しかし、常電導の銅を用
いると、■リード線の電気抵抗によるジュール熱、■熱
伝導によるリード線を通じての熱流入、が避けられない
。これらは電力の損失、冷媒であるヘリウムの損失につ
ながるので、最小の損失となるようその形状については
種々の検討が行われている。
[0003] The current lead supplies a current of several hundred to several thousand A from a power supply at room temperature to a superconducting magnet at an extremely low temperature.
Traditionally, copper wire was used. However, when normally conducting copper is used, 1) Joule heat due to the electrical resistance of the lead wire, and 2) heat inflow through the lead wire due to thermal conduction cannot be avoided. Since these lead to a loss of power and a loss of helium, which is a refrigerant, various studies are being carried out regarding the shape of the helium to minimize the loss.

【0004】1987年に発見されたY−Ba−Cu−
O系超電導体や1988年に発見されたBi−Sr−C
a−Cu−O系超電導体等の酸化物超電導体は臨界温度
が液体窒素温度以上であり、77Kという比較的高い温
度で超電導状態が実現されるので、上記用途に適用され
る材料として有望であるが、酸化物超電導体を用いる場
合、銅線との接続が問題となる。酸化物には半田付けは
適用できず、1つの手段として導電ペーストを塗布する
方法が考えられるが、この手法では接続抵抗が1/10
2Ω・cm2と大きく、大電流を流すことはできない。
[0004]Y-Ba-Cu- discovered in 1987
O-based superconductors and Bi-Sr-C discovered in 1988
Oxide superconductors such as a-Cu-O-based superconductors have a critical temperature higher than the liquid nitrogen temperature, and a superconducting state is achieved at a relatively high temperature of 77 K, so they are promising materials for the above applications. However, when using oxide superconductors, connection with copper wires becomes a problem. Soldering cannot be applied to oxides, and one possible method is to apply a conductive paste, but this method reduces the connection resistance by 1/10.
It has a large resistance of 2Ω/cm2, so large currents cannot be passed through it.

【0005】本発明は酸化物超電導体を電流リードとし
て用いる場合、銅等の導線と接続抵抗を低くでき、従っ
て大電流を流し得る酸化物超電導電流リードを提供する
ことを目的とするものである。
An object of the present invention is to provide an oxide superconducting current lead that can lower the connection resistance with a conductive wire such as copper when the oxide superconductor is used as a current lead, and therefore can flow a large current. .

【0006】[0006]

【問題点を解決するための手段】本発明の酸化物超電導
電流リードは、棒状とした酸化物超電導体端部に、圧着
された銀箔、銀ペーストもしくは銀溶射層を焼結した銀
コート部を有してなる酸化物超電導電流リードもしくは
この銀コート部に導線を複数本分散接続させてなる酸化
物超電導電流リードにより、前記課題を達成したもので
ある。
[Means for Solving the Problems] The oxide superconducting current lead of the present invention has a silver coated portion formed by sintering crimped silver foil, silver paste, or a silver sprayed layer on the end of a rod-shaped oxide superconductor. The above-mentioned object has been achieved by an oxide superconducting current lead formed by the present invention or an oxide superconducting current lead formed by distributing and connecting a plurality of conductive wires to the silver coated portion.

【0007】[0007]

【作用】このような本発明に係る酸化物超電導電流リー
ドでは、酸化物超電導体端部に形成された銀コート部に
より、半田付けが可能となり、導線との接続が低い接続
抵抗をもって可能となる。さらに、この銀コート部に複
数本の導線を分散接続することにより、冷却時に固定治
具等に生じる収縮応力が低減され、酸化物超電導電流リ
ードの破損なく、超電導マグネット等を運転することが
できる。しかも大電流を超電導磁石等に流してもリード
線での発熱はなく、また酸化物超電導体は伝熱係数が金
属よりも低いため、熱伝導に伴う熱流入を低下させるこ
とが可能となり、冷媒の消費量の低減が図れる。以下に
本発明の具体例を図を参照して説明する。
[Function] In the oxide superconducting current lead according to the present invention, soldering is possible due to the silver coated portion formed at the end of the oxide superconductor, and connection with a conducting wire is possible with low connection resistance. . Furthermore, by distributing and connecting multiple conductive wires to this silver-coated part, the shrinkage stress that occurs in fixing jigs, etc. during cooling is reduced, and superconducting magnets, etc. can be operated without damaging the oxide superconducting current leads. . Moreover, even when a large current is passed through a superconducting magnet, etc., there is no heat generation in the lead wires, and since oxide superconductors have a lower heat transfer coefficient than metals, it is possible to reduce the heat inflow due to heat conduction, and the refrigerant consumption can be reduced. Specific examples of the present invention will be described below with reference to the drawings.

【0008】本発明において使用できる酸化物超電導体
としては、Y−Ba−Cu−O系(臨界温度90K)、
Bi−(Pb)−Sr−Ca−Cu−O系(臨界温度1
10K)、Tl−Ba−Ca−Cu−O系(臨界温度1
25K)等が適用可能である。これら酸化物超電導体の
粉末を冷間静水圧処理等で棒状の酸化物超電導体1に成
形する。この棒状酸化物超電導体試料の端部に■銀箔を
巻き付けた上で冷間静水圧処理等により100〜500
kg/cm2で加圧する、あるいは■銀ペーストを塗布
して乾燥する、■銀を溶射する、工程を加えた上で、こ
れを温度800〜950℃で焼結し、銀コート部2を形
成する。このようにして得られた銀コート部2に接続す
る導線3としては、銅、アルミニウム等の低抵抗の常電
導金属の単芯線、撚り線、網線等及びニオブ−チタン合
金、ニオブ−錫合金、バナジウム−ガリウム合金等の超
電導物質に安定化材を加えた多芯線等が適応可能である
。特に、酸化物超電導電流リードの一方あるいは両方が
液体ヘリウム温度で用いられる場合、液体ヘリウム温度
で抵抗がゼロである金属系超電導導線を用いることは接
続抵抗の低減に有用である。
[0008] Oxide superconductors that can be used in the present invention include Y-Ba-Cu-O system (critical temperature 90K);
Bi-(Pb)-Sr-Ca-Cu-O system (critical temperature 1
10K), Tl-Ba-Ca-Cu-O system (critical temperature 1
25K) etc. are applicable. These oxide superconductor powders are formed into a rod-shaped oxide superconductor 1 by cold isostatic pressure treatment or the like. After wrapping silver foil around the end of this rod-shaped oxide superconductor sample, a cold hydrostatic pressure treatment of 100 to 500
After applying a pressure at kg/cm2 or applying a silver paste and drying it, or thermally spraying silver, this is sintered at a temperature of 800 to 950°C to form the silver coated part 2. . The conductive wire 3 to be connected to the silver coated portion 2 thus obtained may be a single core wire, a stranded wire, a mesh wire, etc. made of a low-resistance normal conductive metal such as copper or aluminum, or a niobium-titanium alloy or a niobium-tin alloy. , multifilamentary wires made of superconducting materials such as vanadium-gallium alloys and a stabilizing material are applicable. In particular, when one or both of the oxide superconducting current leads are used at liquid helium temperatures, using a metal-based superconducting wire that has zero resistance at liquid helium temperatures is useful for reducing connection resistance.

【0009】[0009]

【発明の効果】以上のような本発明によれば、酸化物超
電導リードと常電導リードとの接続抵抗を1/108Ω
・cm2以下に低減できるので、超電導磁石等に電流を
供給する際に熱進入を抑制でき、ヘリウム消費量の低減
、冷凍設備の小型化が可能となる。さらに、導線を銀コ
ート部に分散して複数本接続することにより、銅ブロッ
ク等を接続する場合に比べて冷却時に生じる収縮応力が
低減されることにより、接続線の切断が防止でき、且つ
接触面積が増大されるため、接続抵抗がさらに低減され
る。
According to the present invention as described above, the connection resistance between the oxide superconducting lead and the normal conducting lead can be reduced to 1/108Ω.
- Since it can be reduced to less than cm2, it is possible to suppress heat intrusion when supplying current to superconducting magnets, etc., making it possible to reduce helium consumption and downsize refrigeration equipment. Furthermore, by dispersing the conductor wires in the silver coated part and connecting multiple conductors, the shrinkage stress generated during cooling is reduced compared to when connecting copper blocks, etc., thereby preventing disconnection of the connecting wires and preventing contact. Since the area is increased, connection resistance is further reduced.

【0010】0010

【実施例1】Bi(Bi−Pb−Sr−Ca−Cu−O
)系酸化物超電導体(Bi:Pb:Sr:Ca:Cu=
0.8:0.2:0.8:1.0:1.4)の粉末を冷
間静水圧処理(1ton/cm2)で直径12mm、長
さ200mmの棒状に成形した。これを845℃で24
時間焼成した後、棒状試料の端部に、厚さ20μm、幅
20mmになるように、■銀箔を巻き冷間静水圧処理(
1000kg/cm2)を施し、■銀ペーストを塗布し
、もしくは■銀溶射し、次いで冷間静水圧処理(1to
n/cm2)を施した。再び845℃で24時間焼成し
、酸化物超電導電流リードを得た。
[Example 1] Bi(Bi-Pb-Sr-Ca-Cu-O
) system oxide superconductor (Bi:Pb:Sr:Ca:Cu=
0.8:0.2:0.8:1.0:1.4) was molded into a rod shape with a diameter of 12 mm and a length of 200 mm by cold isostatic pressure treatment (1 ton/cm2). This was heated to 845℃ for 24 hours.
After baking for a period of time, wrap silver foil around the end of the rod-shaped sample to a thickness of 20 μm and width of 20 mm, and apply cold isostatic pressure treatment (
1000 kg/cm2), apply silver paste or spray silver, and then cold isostatically process (1 to
n/cm2) was applied. It was fired again at 845° C. for 24 hours to obtain an oxide superconducting current lead.

【0011】図1に示す直流四端子法で本酸化物超電導
電流リードの臨界電流特性と接続抵抗を評価した。なお
、測定系の四端子の内、電流リードと電圧リードの間に
はほとんど電流は流れないので、両リード間の電位差は
ほとんど接続抵抗に起因するものと考えられ、その電位
差から接続抵抗を算出した。測定の結果、■の場合、臨
界電流は200Aであり、その時四端子の電流リードと
電圧リード間の電位差は1.5μVと非常に小く、接続
抵抗値は5.6×(1/10)8(Ω・cm2)であっ
た。■の場合には、臨界電流は200Aであり、電流リ
ードと電圧リード間の電位差は1.2μVと非常に小く
、接続抵抗値は4.5×(1/108)(Ω・cm2)
であった。また、■の場合には、臨界電流は200Aで
あり、電流リードと電圧リード間の電位差は2.0μV
と非常に小く、接続抵抗値は7.5×(1/108)(
Ω・cm2)であった。
The critical current characteristics and connection resistance of the present oxide superconducting current lead were evaluated using the DC four-terminal method shown in FIG. Of the four terminals of the measurement system, almost no current flows between the current lead and the voltage lead, so the potential difference between the two leads is thought to be mostly due to the connection resistance, and the connection resistance can be calculated from that potential difference. did. As a result of the measurement, in the case of ■, the critical current is 200A, and the potential difference between the current lead and the voltage lead of the four terminals is very small at 1.5 μV, and the connection resistance value is 5.6 × (1/10). 8 (Ω·cm2). In the case of (2), the critical current is 200A, the potential difference between the current lead and the voltage lead is very small at 1.2μV, and the connection resistance value is 4.5×(1/108)(Ω・cm2)
Met. In addition, in the case of ■, the critical current is 200A, and the potential difference between the current lead and the voltage lead is 2.0μV.
The connection resistance value is 7.5 x (1/108) (
Ω·cm2).

【0012】0012

【実施例2】実施例1と同様にして得た棒状試料の端部
に、幅50mmの銀箔を巻いた以外は実施例1と■と同
様にして銀コート部を形成した。この酸化物超電導電流
リード端部の銀コート部に外径3mm、長さ50mmの
撚り銅線を複数本(1,2,4,24,120)接続し
て酸化物超電導電流リードを作成した。
[Example 2] A silver coated portion was formed in the same manner as in Example 1 and (2) except that a silver foil having a width of 50 mm was wrapped around the end of a rod-shaped sample obtained in the same manner as in Example 1. A plurality of twisted copper wires (1, 2, 4, 24, 120) each having an outer diameter of 3 mm and a length of 50 mm were connected to the silver-coated portion of the end of this oxide superconducting current lead to create an oxide superconducting current lead.

【0013】このリードの接続抵抗を、図2に示す直流
四端子法で評価した。その結果を図3に示す。図3にお
いて、横軸は通電電流、縦軸は銅線と超電導体との間の
電位差である。従って、図3の傾きが接続抵抗となる。 なお、図3中の数字は導線の接続本数を示す。この図3
より、銅線の半田接続本数を増やすに従い、傾きは小さ
くなっており、接続抵抗は低減されることが分かる。1
20本接続した際のデータは図3中では、横軸と重なる
ため、省略してあるが、接続抵抗値は1μΩである。こ
の接続抵抗値では1000Aを通電しても発熱量は1W
と小さく、既存の冷凍機でも十分処理可能な値である。
The connection resistance of this lead was evaluated using the DC four terminal method shown in FIG. The results are shown in FIG. In FIG. 3, the horizontal axis represents the current flowing, and the vertical axis represents the potential difference between the copper wire and the superconductor. Therefore, the slope in FIG. 3 becomes the connection resistance. Note that the numbers in FIG. 3 indicate the number of connected conductive wires. This figure 3
It can be seen that as the number of soldered copper wires is increased, the slope becomes smaller and the connection resistance is reduced. 1
The data when 20 wires are connected is omitted in FIG. 3 because it overlaps with the horizontal axis, but the connection resistance value is 1 μΩ. With this connection resistance value, even if 1000A is applied, the amount of heat generated is 1W.
This is a small value that can be easily processed by existing refrigerators.

【0014】[0014]

【実施例3】実施例2における導線として、長さ50m
mのニオブ−チタン合金の超電導線を24本接続し、実
施例2と同様の手法を用いて液体ヘリウム温度で接続抵
抗を測定した。その結果、接続抵抗値は200nΩであ
り、実用上問題にならない低接続抵抗が得られた。
[Example 3] As the conductor in Example 2, the length is 50 m.
24 superconducting wires made of niobium-titanium alloy with a diameter of 1.5 m were connected, and the connection resistance was measured at liquid helium temperature using the same method as in Example 2. As a result, the connection resistance value was 200 nΩ, which was a low connection resistance that was not a problem in practical use.

【0015】[0015]

【比較例】実施例2と同様にして得た超電導体10本の
両端部の銀コート部に、外径30mmの丸棒状の銅を半
田付けした。両端の銅棒を固定しておき、室温と液体ヘ
リウム温度との間の熱サイクルを10回繰り返した。そ
の結果、10本中3本にクラックの発生が認められた。
[Comparative Example] A round copper rod having an outer diameter of 30 mm was soldered to the silver coated portions of both ends of 10 superconductors obtained in the same manner as in Example 2. The copper rods at both ends were kept fixed and thermal cycles between room temperature and liquid helium temperature were repeated 10 times. As a result, cracks were observed in 3 out of 10 pieces.

【0016】[0016]

【実施例4】実施例2と同様にして得た超電導体10本
の両端部の銀コート部に、外径3mm、長さ50mmの
撚り銅線を120本半田付けして酸化物超電導電流リー
ドを得た。銅線を比較例を同様の丸棒状の銅に固定し、
さらに銅を固定した上で、比較例と同様にして熱サイク
ル処理を施した。その結果、10本すべてにクラックの
発生は認められず、銅線を用いることにより、棒状の銅
に固定された場合よりも応力が低減されることが明らか
となった。
[Example 4] Oxide superconducting current leads were obtained by soldering 120 twisted copper wires with an outer diameter of 3 mm and a length of 50 mm to the silver-coated parts of both ends of 10 superconductors obtained in the same manner as in Example 2. I got it. A copper wire was fixed to a round bar-shaped copper similar to the comparative example,
Furthermore, after fixing the copper, a heat cycle treatment was performed in the same manner as in the comparative example. As a result, no cracks were observed in any of the 10 wires, and it became clear that by using copper wires, stress was reduced more than when the wires were fixed to a rod-shaped copper wire.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1に用いた直流四端子法の測定系を示す
説明図である。
FIG. 1 is an explanatory diagram showing a measurement system using the DC four-terminal method used in Example 1.

【図2】実施例2に用いた直流四端子法の測定系を示す
説明図である。
FIG. 2 is an explanatory diagram showing a measurement system of the DC four-terminal method used in Example 2.

【図3】実施例2における接続抵抗値を示す測定結果図
である。
FIG. 3 is a measurement result diagram showing connection resistance values in Example 2.

【符号の説明】[Explanation of symbols]

1  酸化物超電導体 2  銀コート部 3  導線 1 Oxide superconductor 2 Silver coat section 3 Conductor wire

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  棒状とした酸化物超電導体端部に、圧
着された銀箔、銀ペーストもしくは銀溶射層を焼結した
銀コート部を有してなる酸化物超電導電流リード。
1. An oxide superconducting current lead comprising a rod-shaped oxide superconductor end having a silver coated portion formed by sintering a crimped silver foil, silver paste, or a silver sprayed layer.
【請求項2】  前記銀コート部に導線が複数本分散接
続されてなる酸化物超電導電流リード。
2. An oxide superconducting current lead comprising a plurality of conducting wires connected in a distributed manner to the silver coated portion.
JP3036542A 1991-02-07 1991-02-07 Oxide superconducting current lead Expired - Lifetime JPH0779045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036542A JPH0779045B2 (en) 1991-02-07 1991-02-07 Oxide superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036542A JPH0779045B2 (en) 1991-02-07 1991-02-07 Oxide superconducting current lead

Publications (2)

Publication Number Publication Date
JPH04255203A true JPH04255203A (en) 1992-09-10
JPH0779045B2 JPH0779045B2 (en) 1995-08-23

Family

ID=12472664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036542A Expired - Lifetime JPH0779045B2 (en) 1991-02-07 1991-02-07 Oxide superconducting current lead

Country Status (1)

Country Link
JP (1) JPH0779045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267311A (en) * 1991-02-21 1992-09-22 Sumitomo Heavy Ind Ltd Method of making electrode of superconductive current lead
WO2005096440A1 (en) * 2004-03-31 2005-10-13 Council Of Scientific And Industrial Research Process for the preparation of low contact resistance contact on a high transition temperature superconductors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430187A (en) * 1987-07-24 1989-02-01 Toshiba Corp Electrode forming method for oxide superconductive material
JPS6433870A (en) * 1987-07-29 1989-02-03 Hitachi Ltd Method of connecting electrode terminal to oxide superconductor
JPH03245506A (en) * 1990-02-23 1991-11-01 Sumitomo Heavy Ind Ltd Manufacture of superconducting complex with electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430187A (en) * 1987-07-24 1989-02-01 Toshiba Corp Electrode forming method for oxide superconductive material
JPS6433870A (en) * 1987-07-29 1989-02-03 Hitachi Ltd Method of connecting electrode terminal to oxide superconductor
JPH03245506A (en) * 1990-02-23 1991-11-01 Sumitomo Heavy Ind Ltd Manufacture of superconducting complex with electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267311A (en) * 1991-02-21 1992-09-22 Sumitomo Heavy Ind Ltd Method of making electrode of superconductive current lead
JPH0779046B2 (en) * 1991-02-21 1995-08-23 住友重機械工業株式会社 Electrode forming method for superconducting current lead
WO2005096440A1 (en) * 2004-03-31 2005-10-13 Council Of Scientific And Industrial Research Process for the preparation of low contact resistance contact on a high transition temperature superconductors
US7792560B2 (en) 2004-03-31 2010-09-07 Council Of Scientific And Industrial Research Process for the preparation of low contact resistant contact on a high transition temperature superconductors
US8306590B2 (en) 2004-03-31 2012-11-06 Council Of Scientific And Industrial Research Process for the preparation of low contact resistant contact on a high transition temperature superconductors

Also Published As

Publication number Publication date
JPH0779045B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
US3596349A (en) Method of forming a superconducting multistrand conductor
US8306590B2 (en) Process for the preparation of low contact resistant contact on a high transition temperature superconductors
Yamada et al. HTS current leads prepared by the TFA-MOD processed YBCO tapes
JPH04255203A (en) Oxide superconducting current lead
EP0428993B2 (en) Use of an oxide superconducting conductor
JP2913940B2 (en) Superconducting current lead
JP3143932B2 (en) Superconducting wire manufacturing method
JPH0487307A (en) Manufacture of oxide lead
JP2001283660A (en) Connection structure for superconducting wire
JPH06163255A (en) Superconducting current connection part
JPH0353415A (en) Superconductor wire rod
JP2651018B2 (en) High magnetic field magnet
KR100581556B1 (en) APPARATUS FOR MANUFACTURING MgB2 PIT SUPERCONDUCTING WIRE/TAPES BY SPS AND ITS METHOD
JP2898713B2 (en) Current lead
JPH0888117A (en) Current lead for refrigerator cooling type superconductive coil
JP3363164B2 (en) Superconducting conductor
JP3548368B2 (en) Oxide superconducting current lead and method of manufacturing the same
JPH05109323A (en) Superconductive assembled conductor
JP2843448B2 (en) Superconducting current lead
JP4908566B2 (en) Method for manufacturing low contact resistance contacts on high transition temperature superconductors
KR100750963B1 (en) Structure of low AC loss high temperature superconducting tapes and a fabrication method thereof
JPH01206513A (en) Superconductive material
Negm et al. Increased Critical Current and Improved Magnetic Field Response of BSCCO Material by Surface Diffusion of Silver
JPH04160771A (en) Method of joining superconducting wire
JPH04171871A (en) Oxide superconductor and manufacture thereof