JPH04255203A - Oxide superconducting current lead - Google Patents
Oxide superconducting current leadInfo
- Publication number
- JPH04255203A JPH04255203A JP3654291A JP3654291A JPH04255203A JP H04255203 A JPH04255203 A JP H04255203A JP 3654291 A JP3654291 A JP 3654291A JP 3654291 A JP3654291 A JP 3654291A JP H04255203 A JPH04255203 A JP H04255203A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- oxide superconducting
- superconducting
- connection resistance
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052709 silver Inorganic materials 0.000 claims abstract description 29
- 239000004332 silver Substances 0.000 claims abstract description 29
- 238000005245 sintering Methods 0.000 claims abstract description 3
- 239000002887 superconductor Substances 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 18
- 239000010949 copper Substances 0.000 abstract description 15
- 229910052802 copper Inorganic materials 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 11
- 239000001307 helium Substances 0.000 abstract description 9
- 229910052734 helium Inorganic materials 0.000 abstract description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 5
- 239000004020 conductor Substances 0.000 abstract description 5
- 238000005476 soldering Methods 0.000 abstract description 4
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 abstract description 2
- 238000005507 spraying Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 5
- 229910002480 Cu-O Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000005668 Josephson effect Effects 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- BPAABJIBIBFRST-UHFFFAOYSA-N [V].[V].[V].[Ga] Chemical compound [V].[V].[V].[Ga] BPAABJIBIBFRST-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- KJSMVPYGGLPWOE-UHFFFAOYSA-N niobium tin Chemical compound [Nb].[Sn] KJSMVPYGGLPWOE-UHFFFAOYSA-N 0.000 description 1
- 229910000657 niobium-tin Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910000999 vanadium-gallium Inorganic materials 0.000 description 1
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は超電導コイルを用いた強
磁場発生用磁石等に大電流を供給する際に用いられる酸
化物超電導電流リードに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting current lead used for supplying a large current to a magnet for generating a strong magnetic field using a superconducting coil.
【0002】0002
【従来の技術およびその問題点】超電導材料は、臨界温
度Tc以下でゼロ抵抗、完全反磁性、ジョセフソン効果
等の特性を示す材料である。金属系の超電導材料は臨界
温度が20K未満と低いが、液体ヘリウム温度(4.2
K)で超電導コイルに大電流を流すことにより無損失で
高磁場を発生することが可能となっている。これらは磁
気浮上列車、核磁気共鳴診断装置等に利用されている。BACKGROUND OF THE INVENTION Superconducting materials are materials that exhibit properties such as zero resistance, perfect diamagnetism, and the Josephson effect below a critical temperature Tc. Metal-based superconducting materials have a low critical temperature of less than 20K, but the critical temperature is lower than the liquid helium temperature (4.2
K), it is possible to generate a high magnetic field without loss by passing a large current through the superconducting coil. These are used in magnetic levitation trains, nuclear magnetic resonance diagnostic equipment, etc.
【0003】電流リードは室温部の電源から極低温の超
電導磁石に数百〜数千Aの電流を供給するものであり、
従来は銅線が用いられていた。しかし、常電導の銅を用
いると、■リード線の電気抵抗によるジュール熱、■熱
伝導によるリード線を通じての熱流入、が避けられない
。これらは電力の損失、冷媒であるヘリウムの損失につ
ながるので、最小の損失となるようその形状については
種々の検討が行われている。[0003] The current lead supplies a current of several hundred to several thousand A from a power supply at room temperature to a superconducting magnet at an extremely low temperature.
Traditionally, copper wire was used. However, when normally conducting copper is used, 1) Joule heat due to the electrical resistance of the lead wire, and 2) heat inflow through the lead wire due to thermal conduction cannot be avoided. Since these lead to a loss of power and a loss of helium, which is a refrigerant, various studies are being carried out regarding the shape of the helium to minimize the loss.
【0004】1987年に発見されたY−Ba−Cu−
O系超電導体や1988年に発見されたBi−Sr−C
a−Cu−O系超電導体等の酸化物超電導体は臨界温度
が液体窒素温度以上であり、77Kという比較的高い温
度で超電導状態が実現されるので、上記用途に適用され
る材料として有望であるが、酸化物超電導体を用いる場
合、銅線との接続が問題となる。酸化物には半田付けは
適用できず、1つの手段として導電ペーストを塗布する
方法が考えられるが、この手法では接続抵抗が1/10
2Ω・cm2と大きく、大電流を流すことはできない。[0004]Y-Ba-Cu- discovered in 1987
O-based superconductors and Bi-Sr-C discovered in 1988
Oxide superconductors such as a-Cu-O-based superconductors have a critical temperature higher than the liquid nitrogen temperature, and a superconducting state is achieved at a relatively high temperature of 77 K, so they are promising materials for the above applications. However, when using oxide superconductors, connection with copper wires becomes a problem. Soldering cannot be applied to oxides, and one possible method is to apply a conductive paste, but this method reduces the connection resistance by 1/10.
It has a large resistance of 2Ω/cm2, so large currents cannot be passed through it.
【0005】本発明は酸化物超電導体を電流リードとし
て用いる場合、銅等の導線と接続抵抗を低くでき、従っ
て大電流を流し得る酸化物超電導電流リードを提供する
ことを目的とするものである。An object of the present invention is to provide an oxide superconducting current lead that can lower the connection resistance with a conductive wire such as copper when the oxide superconductor is used as a current lead, and therefore can flow a large current. .
【0006】[0006]
【問題点を解決するための手段】本発明の酸化物超電導
電流リードは、棒状とした酸化物超電導体端部に、圧着
された銀箔、銀ペーストもしくは銀溶射層を焼結した銀
コート部を有してなる酸化物超電導電流リードもしくは
この銀コート部に導線を複数本分散接続させてなる酸化
物超電導電流リードにより、前記課題を達成したもので
ある。[Means for Solving the Problems] The oxide superconducting current lead of the present invention has a silver coated portion formed by sintering crimped silver foil, silver paste, or a silver sprayed layer on the end of a rod-shaped oxide superconductor. The above-mentioned object has been achieved by an oxide superconducting current lead formed by the present invention or an oxide superconducting current lead formed by distributing and connecting a plurality of conductive wires to the silver coated portion.
【0007】[0007]
【作用】このような本発明に係る酸化物超電導電流リー
ドでは、酸化物超電導体端部に形成された銀コート部に
より、半田付けが可能となり、導線との接続が低い接続
抵抗をもって可能となる。さらに、この銀コート部に複
数本の導線を分散接続することにより、冷却時に固定治
具等に生じる収縮応力が低減され、酸化物超電導電流リ
ードの破損なく、超電導マグネット等を運転することが
できる。しかも大電流を超電導磁石等に流してもリード
線での発熱はなく、また酸化物超電導体は伝熱係数が金
属よりも低いため、熱伝導に伴う熱流入を低下させるこ
とが可能となり、冷媒の消費量の低減が図れる。以下に
本発明の具体例を図を参照して説明する。[Function] In the oxide superconducting current lead according to the present invention, soldering is possible due to the silver coated portion formed at the end of the oxide superconductor, and connection with a conducting wire is possible with low connection resistance. . Furthermore, by distributing and connecting multiple conductive wires to this silver-coated part, the shrinkage stress that occurs in fixing jigs, etc. during cooling is reduced, and superconducting magnets, etc. can be operated without damaging the oxide superconducting current leads. . Moreover, even when a large current is passed through a superconducting magnet, etc., there is no heat generation in the lead wires, and since oxide superconductors have a lower heat transfer coefficient than metals, it is possible to reduce the heat inflow due to heat conduction, and the refrigerant consumption can be reduced. Specific examples of the present invention will be described below with reference to the drawings.
【0008】本発明において使用できる酸化物超電導体
としては、Y−Ba−Cu−O系(臨界温度90K)、
Bi−(Pb)−Sr−Ca−Cu−O系(臨界温度1
10K)、Tl−Ba−Ca−Cu−O系(臨界温度1
25K)等が適用可能である。これら酸化物超電導体の
粉末を冷間静水圧処理等で棒状の酸化物超電導体1に成
形する。この棒状酸化物超電導体試料の端部に■銀箔を
巻き付けた上で冷間静水圧処理等により100〜500
kg/cm2で加圧する、あるいは■銀ペーストを塗布
して乾燥する、■銀を溶射する、工程を加えた上で、こ
れを温度800〜950℃で焼結し、銀コート部2を形
成する。このようにして得られた銀コート部2に接続す
る導線3としては、銅、アルミニウム等の低抵抗の常電
導金属の単芯線、撚り線、網線等及びニオブ−チタン合
金、ニオブ−錫合金、バナジウム−ガリウム合金等の超
電導物質に安定化材を加えた多芯線等が適応可能である
。特に、酸化物超電導電流リードの一方あるいは両方が
液体ヘリウム温度で用いられる場合、液体ヘリウム温度
で抵抗がゼロである金属系超電導導線を用いることは接
続抵抗の低減に有用である。[0008] Oxide superconductors that can be used in the present invention include Y-Ba-Cu-O system (critical temperature 90K);
Bi-(Pb)-Sr-Ca-Cu-O system (critical temperature 1
10K), Tl-Ba-Ca-Cu-O system (critical temperature 1
25K) etc. are applicable. These oxide superconductor powders are formed into a rod-shaped oxide superconductor 1 by cold isostatic pressure treatment or the like. After wrapping silver foil around the end of this rod-shaped oxide superconductor sample, a cold hydrostatic pressure treatment of 100 to 500
After applying a pressure at kg/cm2 or applying a silver paste and drying it, or thermally spraying silver, this is sintered at a temperature of 800 to 950°C to form the silver coated part 2. . The conductive wire 3 to be connected to the silver coated portion 2 thus obtained may be a single core wire, a stranded wire, a mesh wire, etc. made of a low-resistance normal conductive metal such as copper or aluminum, or a niobium-titanium alloy or a niobium-tin alloy. , multifilamentary wires made of superconducting materials such as vanadium-gallium alloys and a stabilizing material are applicable. In particular, when one or both of the oxide superconducting current leads are used at liquid helium temperatures, using a metal-based superconducting wire that has zero resistance at liquid helium temperatures is useful for reducing connection resistance.
【0009】[0009]
【発明の効果】以上のような本発明によれば、酸化物超
電導リードと常電導リードとの接続抵抗を1/108Ω
・cm2以下に低減できるので、超電導磁石等に電流を
供給する際に熱進入を抑制でき、ヘリウム消費量の低減
、冷凍設備の小型化が可能となる。さらに、導線を銀コ
ート部に分散して複数本接続することにより、銅ブロッ
ク等を接続する場合に比べて冷却時に生じる収縮応力が
低減されることにより、接続線の切断が防止でき、且つ
接触面積が増大されるため、接続抵抗がさらに低減され
る。According to the present invention as described above, the connection resistance between the oxide superconducting lead and the normal conducting lead can be reduced to 1/108Ω.
- Since it can be reduced to less than cm2, it is possible to suppress heat intrusion when supplying current to superconducting magnets, etc., making it possible to reduce helium consumption and downsize refrigeration equipment. Furthermore, by dispersing the conductor wires in the silver coated part and connecting multiple conductors, the shrinkage stress generated during cooling is reduced compared to when connecting copper blocks, etc., thereby preventing disconnection of the connecting wires and preventing contact. Since the area is increased, connection resistance is further reduced.
【0010】0010
【実施例1】Bi(Bi−Pb−Sr−Ca−Cu−O
)系酸化物超電導体(Bi:Pb:Sr:Ca:Cu=
0.8:0.2:0.8:1.0:1.4)の粉末を冷
間静水圧処理(1ton/cm2)で直径12mm、長
さ200mmの棒状に成形した。これを845℃で24
時間焼成した後、棒状試料の端部に、厚さ20μm、幅
20mmになるように、■銀箔を巻き冷間静水圧処理(
1000kg/cm2)を施し、■銀ペーストを塗布し
、もしくは■銀溶射し、次いで冷間静水圧処理(1to
n/cm2)を施した。再び845℃で24時間焼成し
、酸化物超電導電流リードを得た。[Example 1] Bi(Bi-Pb-Sr-Ca-Cu-O
) system oxide superconductor (Bi:Pb:Sr:Ca:Cu=
0.8:0.2:0.8:1.0:1.4) was molded into a rod shape with a diameter of 12 mm and a length of 200 mm by cold isostatic pressure treatment (1 ton/cm2). This was heated to 845℃ for 24 hours.
After baking for a period of time, wrap silver foil around the end of the rod-shaped sample to a thickness of 20 μm and width of 20 mm, and apply cold isostatic pressure treatment (
1000 kg/cm2), apply silver paste or spray silver, and then cold isostatically process (1 to
n/cm2) was applied. It was fired again at 845° C. for 24 hours to obtain an oxide superconducting current lead.
【0011】図1に示す直流四端子法で本酸化物超電導
電流リードの臨界電流特性と接続抵抗を評価した。なお
、測定系の四端子の内、電流リードと電圧リードの間に
はほとんど電流は流れないので、両リード間の電位差は
ほとんど接続抵抗に起因するものと考えられ、その電位
差から接続抵抗を算出した。測定の結果、■の場合、臨
界電流は200Aであり、その時四端子の電流リードと
電圧リード間の電位差は1.5μVと非常に小く、接続
抵抗値は5.6×(1/10)8(Ω・cm2)であっ
た。■の場合には、臨界電流は200Aであり、電流リ
ードと電圧リード間の電位差は1.2μVと非常に小く
、接続抵抗値は4.5×(1/108)(Ω・cm2)
であった。また、■の場合には、臨界電流は200Aで
あり、電流リードと電圧リード間の電位差は2.0μV
と非常に小く、接続抵抗値は7.5×(1/108)(
Ω・cm2)であった。The critical current characteristics and connection resistance of the present oxide superconducting current lead were evaluated using the DC four-terminal method shown in FIG. Of the four terminals of the measurement system, almost no current flows between the current lead and the voltage lead, so the potential difference between the two leads is thought to be mostly due to the connection resistance, and the connection resistance can be calculated from that potential difference. did. As a result of the measurement, in the case of ■, the critical current is 200A, and the potential difference between the current lead and the voltage lead of the four terminals is very small at 1.5 μV, and the connection resistance value is 5.6 × (1/10). 8 (Ω·cm2). In the case of (2), the critical current is 200A, the potential difference between the current lead and the voltage lead is very small at 1.2μV, and the connection resistance value is 4.5×(1/108)(Ω・cm2)
Met. In addition, in the case of ■, the critical current is 200A, and the potential difference between the current lead and the voltage lead is 2.0μV.
The connection resistance value is 7.5 x (1/108) (
Ω·cm2).
【0012】0012
【実施例2】実施例1と同様にして得た棒状試料の端部
に、幅50mmの銀箔を巻いた以外は実施例1と■と同
様にして銀コート部を形成した。この酸化物超電導電流
リード端部の銀コート部に外径3mm、長さ50mmの
撚り銅線を複数本(1,2,4,24,120)接続し
て酸化物超電導電流リードを作成した。[Example 2] A silver coated portion was formed in the same manner as in Example 1 and (2) except that a silver foil having a width of 50 mm was wrapped around the end of a rod-shaped sample obtained in the same manner as in Example 1. A plurality of twisted copper wires (1, 2, 4, 24, 120) each having an outer diameter of 3 mm and a length of 50 mm were connected to the silver-coated portion of the end of this oxide superconducting current lead to create an oxide superconducting current lead.
【0013】このリードの接続抵抗を、図2に示す直流
四端子法で評価した。その結果を図3に示す。図3にお
いて、横軸は通電電流、縦軸は銅線と超電導体との間の
電位差である。従って、図3の傾きが接続抵抗となる。
なお、図3中の数字は導線の接続本数を示す。この図3
より、銅線の半田接続本数を増やすに従い、傾きは小さ
くなっており、接続抵抗は低減されることが分かる。1
20本接続した際のデータは図3中では、横軸と重なる
ため、省略してあるが、接続抵抗値は1μΩである。こ
の接続抵抗値では1000Aを通電しても発熱量は1W
と小さく、既存の冷凍機でも十分処理可能な値である。The connection resistance of this lead was evaluated using the DC four terminal method shown in FIG. The results are shown in FIG. In FIG. 3, the horizontal axis represents the current flowing, and the vertical axis represents the potential difference between the copper wire and the superconductor. Therefore, the slope in FIG. 3 becomes the connection resistance. Note that the numbers in FIG. 3 indicate the number of connected conductive wires. This figure 3
It can be seen that as the number of soldered copper wires is increased, the slope becomes smaller and the connection resistance is reduced. 1
The data when 20 wires are connected is omitted in FIG. 3 because it overlaps with the horizontal axis, but the connection resistance value is 1 μΩ. With this connection resistance value, even if 1000A is applied, the amount of heat generated is 1W.
This is a small value that can be easily processed by existing refrigerators.
【0014】[0014]
【実施例3】実施例2における導線として、長さ50m
mのニオブ−チタン合金の超電導線を24本接続し、実
施例2と同様の手法を用いて液体ヘリウム温度で接続抵
抗を測定した。その結果、接続抵抗値は200nΩであ
り、実用上問題にならない低接続抵抗が得られた。[Example 3] As the conductor in Example 2, the length is 50 m.
24 superconducting wires made of niobium-titanium alloy with a diameter of 1.5 m were connected, and the connection resistance was measured at liquid helium temperature using the same method as in Example 2. As a result, the connection resistance value was 200 nΩ, which was a low connection resistance that was not a problem in practical use.
【0015】[0015]
【比較例】実施例2と同様にして得た超電導体10本の
両端部の銀コート部に、外径30mmの丸棒状の銅を半
田付けした。両端の銅棒を固定しておき、室温と液体ヘ
リウム温度との間の熱サイクルを10回繰り返した。そ
の結果、10本中3本にクラックの発生が認められた。[Comparative Example] A round copper rod having an outer diameter of 30 mm was soldered to the silver coated portions of both ends of 10 superconductors obtained in the same manner as in Example 2. The copper rods at both ends were kept fixed and thermal cycles between room temperature and liquid helium temperature were repeated 10 times. As a result, cracks were observed in 3 out of 10 pieces.
【0016】[0016]
【実施例4】実施例2と同様にして得た超電導体10本
の両端部の銀コート部に、外径3mm、長さ50mmの
撚り銅線を120本半田付けして酸化物超電導電流リー
ドを得た。銅線を比較例を同様の丸棒状の銅に固定し、
さらに銅を固定した上で、比較例と同様にして熱サイク
ル処理を施した。その結果、10本すべてにクラックの
発生は認められず、銅線を用いることにより、棒状の銅
に固定された場合よりも応力が低減されることが明らか
となった。[Example 4] Oxide superconducting current leads were obtained by soldering 120 twisted copper wires with an outer diameter of 3 mm and a length of 50 mm to the silver-coated parts of both ends of 10 superconductors obtained in the same manner as in Example 2. I got it. A copper wire was fixed to a round bar-shaped copper similar to the comparative example,
Furthermore, after fixing the copper, a heat cycle treatment was performed in the same manner as in the comparative example. As a result, no cracks were observed in any of the 10 wires, and it became clear that by using copper wires, stress was reduced more than when the wires were fixed to a rod-shaped copper wire.
【図1】実施例1に用いた直流四端子法の測定系を示す
説明図である。FIG. 1 is an explanatory diagram showing a measurement system using the DC four-terminal method used in Example 1.
【図2】実施例2に用いた直流四端子法の測定系を示す
説明図である。FIG. 2 is an explanatory diagram showing a measurement system of the DC four-terminal method used in Example 2.
【図3】実施例2における接続抵抗値を示す測定結果図
である。FIG. 3 is a measurement result diagram showing connection resistance values in Example 2.
1 酸化物超電導体 2 銀コート部 3 導線 1 Oxide superconductor 2 Silver coat section 3 Conductor wire
Claims (2)
着された銀箔、銀ペーストもしくは銀溶射層を焼結した
銀コート部を有してなる酸化物超電導電流リード。1. An oxide superconducting current lead comprising a rod-shaped oxide superconductor end having a silver coated portion formed by sintering a crimped silver foil, silver paste, or a silver sprayed layer.
続されてなる酸化物超電導電流リード。2. An oxide superconducting current lead comprising a plurality of conducting wires connected in a distributed manner to the silver coated portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3036542A JPH0779045B2 (en) | 1991-02-07 | 1991-02-07 | Oxide superconducting current lead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3036542A JPH0779045B2 (en) | 1991-02-07 | 1991-02-07 | Oxide superconducting current lead |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04255203A true JPH04255203A (en) | 1992-09-10 |
JPH0779045B2 JPH0779045B2 (en) | 1995-08-23 |
Family
ID=12472664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3036542A Expired - Lifetime JPH0779045B2 (en) | 1991-02-07 | 1991-02-07 | Oxide superconducting current lead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0779045B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267311A (en) * | 1991-02-21 | 1992-09-22 | Sumitomo Heavy Ind Ltd | Method of making electrode of superconductive current lead |
WO2005096440A1 (en) * | 2004-03-31 | 2005-10-13 | Council Of Scientific And Industrial Research | Process for the preparation of low contact resistance contact on a high transition temperature superconductors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6430187A (en) * | 1987-07-24 | 1989-02-01 | Toshiba Corp | Electrode forming method for oxide superconductive material |
JPS6433870A (en) * | 1987-07-29 | 1989-02-03 | Hitachi Ltd | Method of connecting electrode terminal to oxide superconductor |
JPH03245506A (en) * | 1990-02-23 | 1991-11-01 | Sumitomo Heavy Ind Ltd | Manufacture of superconducting complex with electrode |
-
1991
- 1991-02-07 JP JP3036542A patent/JPH0779045B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6430187A (en) * | 1987-07-24 | 1989-02-01 | Toshiba Corp | Electrode forming method for oxide superconductive material |
JPS6433870A (en) * | 1987-07-29 | 1989-02-03 | Hitachi Ltd | Method of connecting electrode terminal to oxide superconductor |
JPH03245506A (en) * | 1990-02-23 | 1991-11-01 | Sumitomo Heavy Ind Ltd | Manufacture of superconducting complex with electrode |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267311A (en) * | 1991-02-21 | 1992-09-22 | Sumitomo Heavy Ind Ltd | Method of making electrode of superconductive current lead |
JPH0779046B2 (en) * | 1991-02-21 | 1995-08-23 | 住友重機械工業株式会社 | Electrode forming method for superconducting current lead |
WO2005096440A1 (en) * | 2004-03-31 | 2005-10-13 | Council Of Scientific And Industrial Research | Process for the preparation of low contact resistance contact on a high transition temperature superconductors |
US7792560B2 (en) | 2004-03-31 | 2010-09-07 | Council Of Scientific And Industrial Research | Process for the preparation of low contact resistant contact on a high transition temperature superconductors |
US8306590B2 (en) | 2004-03-31 | 2012-11-06 | Council Of Scientific And Industrial Research | Process for the preparation of low contact resistant contact on a high transition temperature superconductors |
Also Published As
Publication number | Publication date |
---|---|
JPH0779045B2 (en) | 1995-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3596349A (en) | Method of forming a superconducting multistrand conductor | |
US8306590B2 (en) | Process for the preparation of low contact resistant contact on a high transition temperature superconductors | |
Yamada et al. | HTS current leads prepared by the TFA-MOD processed YBCO tapes | |
JPH04255203A (en) | Oxide superconducting current lead | |
EP0428993B2 (en) | Use of an oxide superconducting conductor | |
JP2913940B2 (en) | Superconducting current lead | |
JP3143932B2 (en) | Superconducting wire manufacturing method | |
JPH0487307A (en) | Manufacture of oxide lead | |
JP2001283660A (en) | Connection structure for superconducting wire | |
JPH06163255A (en) | Superconducting current connection part | |
JPH0353415A (en) | Superconductor wire rod | |
JP2651018B2 (en) | High magnetic field magnet | |
KR100581556B1 (en) | APPARATUS FOR MANUFACTURING MgB2 PIT SUPERCONDUCTING WIRE/TAPES BY SPS AND ITS METHOD | |
JP2898713B2 (en) | Current lead | |
JPH0888117A (en) | Current lead for refrigerator cooling type superconductive coil | |
JP3363164B2 (en) | Superconducting conductor | |
JP3548368B2 (en) | Oxide superconducting current lead and method of manufacturing the same | |
JPH05109323A (en) | Superconductive assembled conductor | |
JP2843448B2 (en) | Superconducting current lead | |
JP4908566B2 (en) | Method for manufacturing low contact resistance contacts on high transition temperature superconductors | |
KR100750963B1 (en) | Structure of low AC loss high temperature superconducting tapes and a fabrication method thereof | |
JPH01206513A (en) | Superconductive material | |
Negm et al. | Increased Critical Current and Improved Magnetic Field Response of BSCCO Material by Surface Diffusion of Silver | |
JPH04160771A (en) | Method of joining superconducting wire | |
JPH04171871A (en) | Oxide superconductor and manufacture thereof |