JPH04247824A - Manufacture of high strength spring - Google Patents
Manufacture of high strength springInfo
- Publication number
- JPH04247824A JPH04247824A JP757791A JP757791A JPH04247824A JP H04247824 A JPH04247824 A JP H04247824A JP 757791 A JP757791 A JP 757791A JP 757791 A JP757791 A JP 757791A JP H04247824 A JPH04247824 A JP H04247824A
- Authority
- JP
- Japan
- Prior art keywords
- spring
- strength
- steel wire
- temperature
- springs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 32
- 239000010959 steel Substances 0.000 claims abstract description 32
- 238000000137 annealing Methods 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910000639 Spring steel Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000000376 effect on fatigue Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、自動車のエンジンの弁
ばね、あるいは自動車の懸架ばね用等に用いられる疲労
強度の優れた高強度ばねの製造方法に関するものである
。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing high-strength springs with excellent fatigue strength, which are used for automobile engine valve springs, automobile suspension springs, and the like.
【0002】0002
【従来の技術】従来自動車のエンジン等に使用されてい
る弁ばね、あるいは自動車の懸架ばね用鋼線の一部は、
JISG3561、JISG3565、JISG356
6、JISG3567、JISG3568等で規定され
ているいわゆるオイルテンパー線を冷間でばねに成型加
工して使用される。ところで近年自動車エンジンの高出
力化、車体の軽量化の要望が極めて高く、これに対応す
るため高疲労強度のばねが強く求められているが、これ
らはJISで規定されている既存の材料では、この要求
を満たすことが難しくなってきている。この疲労強度向
上の要望に応えるため、材料的には、合金元素量を増し
たばね鋼が提案されている(例えば、特開昭59−17
7351、特開昭62−107044、特開昭62−1
77152、特開平2−107746号公報)。また、
ばね製造上からは、窒化処理、ショットピーニング等に
より表面を硬化させ適当な圧縮の残留応力を付与するの
が一般的になってきている。[Prior Art] Some steel wires for valve springs or automobile suspension springs conventionally used in automobile engines, etc.
JISG3561, JISG3565, JISG356
6. So-called oil-tempered wire specified by JIS G3567, JIS G3568, etc. is cold-molded into a spring and used. By the way, in recent years there has been an extremely high demand for higher output automobile engines and lighter vehicle bodies, and in order to meet these demands, there is a strong demand for springs with high fatigue strength, but these cannot be achieved using existing materials specified by JIS. It is becoming difficult to meet this demand. In order to meet this demand for improved fatigue strength, spring steel with an increased amount of alloying elements has been proposed as a material (for example, JP-A-59-17
7351, JP-A-62-107044, JP-A-62-1
77152, Japanese Unexamined Patent Publication No. 2-107746). Also,
In terms of spring manufacturing, it has become common practice to harden the surface by nitriding, shot peening, etc., and to apply appropriate compressive residual stress.
【0003】0003
【発明が解決しようとする課題】上述したばねの疲労強
度を向上させるためには、ばねを構成する鋼材の強度す
なわち硬さを上げることが一つの有効な手段であるが、
既に提案されている高強度用のばね鋼で、高い引張り強
さを有する焼入・焼戻鋼線(オイルテンパー線)を製造
しても、その鋼線の冷間加工性が低いため、冷間成形で
実際のばねに加工することができず、弁ばね、懸架ばね
等の高寿命化には限界があった。本発明は高強度の焼入
・焼戻鋼線から高強度のばねを製造する方法を得ること
を目的とするものである。[Problems to be Solved by the Invention] In order to improve the fatigue strength of the springs mentioned above, one effective means is to increase the strength or hardness of the steel materials that make up the springs.
Even if quenched and tempered steel wire (oil tempered wire) with high tensile strength is manufactured using the already proposed high-strength spring steel, the cold workability of the steel wire is low. It could not be processed into actual springs through inter-forming, and there was a limit to the longevity of valve springs, suspension springs, etc. The object of the present invention is to provide a method for manufacturing a high-strength spring from a high-strength hardened and tempered steel wire.
【0004】0004
【課題を解決するための手段】本発明者らは上記の問題
点を解決するため、種々の実験を重ねた結果、高強度の
焼入・焼戻鋼線の加工性が100℃〜550℃の温度範
囲で極めて向上することを見出し発明を完成したもので
ある。すなわち本発明は、
(1)重量%
C :0.55〜0.75%、
Si:1.00〜2.50%、
Mn:0.30〜1.50%
と、
Ni:1.00〜4.00%、
Cr:0.50〜2.50%、
Mo:0.10〜1.00%
のうち2種ないし3種と
V :0.05〜0.60%、
Nb:0.05〜0.60%
のうち1種ないし2種を含有し、残部は不可避不純物お
よびFeからなる引張強さ200Kgf/mm2 以上
を有する焼入・焼戻鋼線を、100℃以上550℃以下
の温度に加熱し、ばねに成形加工することを特徴とする
高強度ばねの製造方法、および(2)上記(1)項に記
載の方法でばねに成形加工した後、低温焼鈍を施すこと
なく「ばね」とする高強度ばねの製造方法、を要旨とす
るものである。[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted various experiments and found that the workability of high-strength hardened and tempered steel wire is 100°C to 550°C. The inventors completed the invention by discovering that the improvement was significantly improved in the temperature range of . That is, the present invention includes (1) weight % C: 0.55-0.75%, Si: 1.00-2.50%, Mn: 0.30-1.50%, and Ni: 1.00-1.00%. 4.00%, Cr: 0.50-2.50%, Mo: 0.10-1.00% and two or three of them and V: 0.05-0.60%, Nb: 0.05 A hardened and tempered steel wire containing one or two of ~0.60% and the remainder consisting of unavoidable impurities and Fe and having a tensile strength of 200 Kgf/mm2 or more is heated at a temperature of 100°C to 550°C. (2) After forming into a spring by the method described in item (1) above, producing a "spring" without performing low-temperature annealing. The gist of this paper is a method for manufacturing high-strength springs.
【0005】以下に本発明者らが行った実験結果を示し
、本発明の内容を詳説する。表1に示す化学成分を有す
る直径4.0mm、引張強さ220Kgf/mm2 の
オイルテンパー線を製造し、種々の温度で引張試験を行
った。[0005] Below, the results of experiments conducted by the present inventors will be shown, and the contents of the present invention will be explained in detail. Oil tempered wires having a diameter of 4.0 mm and a tensile strength of 220 Kgf/mm2 having the chemical components shown in Table 1 were manufactured, and tensile tests were conducted at various temperatures.
【0006】[0006]
【表1】[Table 1]
【0007】その時の試験片の絞り、および引張強さを
図3に示す。図4は図3に示した種々の温度で引っ張っ
た後の試験片の硬さを測定した結果である。図3から引
張り加工の温度が高くなるとともに延性が改善され、絞
りが増加し100℃を越すと40%以上の絞りを有する
ようになり、材料の加工性が極めて良く改善されている
ことがわかる。またその時の加工に要する動力を表わす
尺度と考えられる引張強さも、加工温度が300℃以上
で低下していることがわかる。さらに図4によると、こ
のような温度を上げて加工した後の材料の強度(硬さ)
は、加工温度が550℃位までは初期の硬さを維持し、
更に中間の温度域ではむしろ硬くなっていることがわか
る。FIG. 3 shows the reduction of area and tensile strength of the test piece at that time. FIG. 4 shows the results of measuring the hardness of the test pieces after being stretched at the various temperatures shown in FIG. From Figure 3, it can be seen that as the temperature of tensile processing increases, the ductility improves, and the reduction of area increases, and when the temperature exceeds 100°C, the reduction of area becomes more than 40%, indicating that the workability of the material is extremely improved. . It can also be seen that the tensile strength, which is considered to be a measure of the power required for processing at that time, decreases when the processing temperature is 300°C or higher. Furthermore, according to Figure 4, the strength (hardness) of the material after processing at such elevated temperatures
maintains its initial hardness until the processing temperature is around 550℃,
Furthermore, it can be seen that it becomes rather hard in the intermediate temperature range.
【0008】図3には、引張試験の際の破断状況を観察
し、微細な表面疵等を起点にした異常破断現象の有無(
○は異常破断無し、●は異常破断有り)を記入してあり
、この実験では150℃以上でこの異常破断は生じてい
なかった。なお、図3中のデータは、この異常破断が生
じた場合の値は除いてある。この結果によれば温度を上
げて加工することにより、微細な疵の破断に対する影響
を軽減できることがわかる。また、通常の冷間成形法で
製造したばねの内側には、引張残留応力が存在し、疲労
特性に悪影響を及ぼす低温焼鈍を行なうのが常であるが
、本発明法で成形したばねに存在する残留応力は極めて
低い値であり、低温焼鈍を行う必要がないことも特徴で
ある。[0008] Figure 3 shows the observation of the fracture state during the tensile test, and the presence or absence of abnormal fracture phenomena originating from minute surface flaws.
○ indicates no abnormal rupture, ● indicates abnormal rupture), and in this experiment, this abnormal rupture did not occur at temperatures above 150°C. Note that the data in FIG. 3 excludes values when this abnormal breakage occurs. This result shows that the effect of fine flaws on breakage can be reduced by processing at elevated temperatures. Additionally, tensile residual stress exists on the inside of springs manufactured using the normal cold forming method, and while low-temperature annealing is usually performed, which has a negative effect on fatigue properties, this stress does not exist in the springs formed using the method of the present invention. The residual stress caused by this process is extremely low, and another feature is that there is no need to perform low-temperature annealing.
【0009】以上のことから室温の引張強さが200K
gf/mm2 を越すような高強度の鋼線を加工する場
合、その加工温度を高めることにより、微細なきずに対
する割れ感受性の低減、材料延性の向上および加工動力
の低減をもたらし、かつ、加工した後の強度は最初有し
ていた以上の強度を確保できること等が明らかになり、
ひいては、通常行われている成形後の低温焼鈍をも省略
できることも明らかとなった。[0009] From the above, the tensile strength at room temperature is 200K.
When processing high-strength steel wires exceeding gf/mm2, increasing the processing temperature reduces cracking susceptibility to minute flaws, improves material ductility, and reduces processing power. It became clear that the later strength was greater than the initial strength.
Furthermore, it has also become clear that the normally performed low-temperature annealing after molding can be omitted.
【0010】0010
【作用】以下に本発明の各構成要件の範囲の限定理由お
よび作用について説明する。Cは焼入・焼戻鋼線の強度
(硬さ)を左右する元素で、0.55%未満では必要な
強度が得られないので避けなければならず、また、0.
75%を越えて添加してもそれ以上強度上の利点が無い
ので、上限を0.75%とした。Siは、ばねの特性上
重要な「へたり」を低減するために必要なが元素で、1
.00%未満では「へたり」が大き過ぎて、高強度の弁
ばね、懸架ばねとして使用できないので避ける必要があ
る。一方、2.50%を越えて添加しても、それ以上の
効果が得られないばかりか、製造上の困難さ、例えば脱
炭の抑制が増すので避けなければならない。Mnは脱酸
および鋼材の焼入性を与える元素で、0.30%未満で
はその効果が不十分であり、また、1.50%を越えて
添加してもそれ以上の効果が得られないので、上限を1
.50%とした。Ni、Cr、Moは、焼入性を上げ、
あるいは焼き戻し軟化抵抗を高め、あるいは微細な炭化
物を析出することにより、ばねの強度と靭性を向上せし
める元素であり、その2種ないし3種を複合して添加す
ることが必要である。そのため、Niは、1.00〜4
.00%添加することが必要であるが、1.00%未満
ではその効果が現れず、また、4.00%を越えて添加
してもそれ以上の効果が得られない。Crは、0.50
%以上の添加が必要であり、2.50%を越すと「へた
り」性が劣化するので避けなければならない。Moは焼
き戻し軟化抵抗を高め、また微細な炭化物を析出するこ
とにより、ばねに強度と靭性を付与する効果もあるため
、0.10〜1.00%の添加するが、0.10%未満
ではその効果が認められずまた1.00%を越えても効
果が飽和してしまうので除外する。V、Nbは結晶粒の
微細化、析出硬化により、強度の向上、へたり性の改善
を行うために添加する元素であり、0.05%以上0.
60%以下の範囲で1種または2種を複合して添加する
が、それぞれの成分が0.05%未満では効果がなく、
0.60%を越えて添加しても効果は飽和する。[Operation] The reason for limiting the scope of each component of the present invention and the operation will be explained below. C is an element that affects the strength (hardness) of quenched and tempered steel wire, and if it is less than 0.55%, the required strength cannot be obtained, so it must be avoided.
Since there is no further advantage in terms of strength if the content exceeds 75%, the upper limit was set at 0.75%. Si is an element that is necessary to reduce "settling", which is important in the characteristics of springs, and is
.. If it is less than 00%, the "sag" is too large and it cannot be used as a high-strength valve spring or suspension spring, so it must be avoided. On the other hand, if it is added in an amount exceeding 2.50%, not only no further effect can be obtained, but also production difficulties such as suppression of decarburization increase, so it must be avoided. Mn is an element that deoxidizes and provides hardenability to steel materials, and if it is less than 0.30%, its effect is insufficient, and if it is added in excess of 1.50%, no further effect can be obtained. Therefore, the upper limit is 1
.. It was set at 50%. Ni, Cr, and Mo improve hardenability,
Alternatively, it is an element that improves the strength and toughness of the spring by increasing temper softening resistance or precipitating fine carbides, and it is necessary to add two or three of these elements in combination. Therefore, Ni is 1.00 to 4
.. It is necessary to add 0.00%, but if it is less than 1.00%, no effect will be obtained, and if it is added in excess of 4.00%, no further effect will be obtained. Cr is 0.50
% or more is necessary, and if it exceeds 2.50%, the "settling" property deteriorates, so it must be avoided. Mo has the effect of increasing temper softening resistance and adding strength and toughness to the spring by precipitating fine carbides, so Mo is added in an amount of 0.10 to 1.00%, but less than 0.10%. Therefore, the effect is not recognized and the effect is saturated even if it exceeds 1.00%, so it is excluded. V and Nb are elements added to improve strength and set property by refining crystal grains and precipitation hardening, and are added in amounts of 0.05% or more.
One type or a combination of two types are added within a range of 60% or less, but if each component is less than 0.05%, there is no effect.
Even if it is added in excess of 0.60%, the effect is saturated.
【0011】更に、本発明は、高疲労強度を有するばね
の製造方法を目的としたものであるので、引張強さ20
0Kgf/mm2 以上の強さを有する焼入・焼戻鋼線
が対象となり、引張強さが200Kgf/mm2 未満
の場合は除外される。なお、対象とする焼入・焼戻鋼線
とは、必ずしも高い温度(オーステナイト域)から油等
に焼入して製造されるいわゆるオイルテンパー線に限ら
ず、空気焼入等によって得られた高強度の鋼線、あるい
は高周波加熱によって得られる焼入焼戻鋼線も含まれる
。この焼入・焼戻鋼線をばねに成形する際、いわゆる温
間で加工することが本発明の特徴である。加工温度が、
100℃未満では鋼線の延性が低く、また疵感受性が高
いのでばねに成形加工することができない。一方、55
0℃を越えた温度条件の場合、得られたばねの強度が低
下してしまい、高強度ばねが製造できないし、また酸化
が激しくなり表面状態が悪化するのでその対策も施す必
要がでるので除外する。Furthermore, since the present invention is directed to a method of manufacturing a spring having high fatigue strength, the present invention has a tensile strength of 20
Hardened and tempered steel wires with a strength of 0 Kgf/mm2 or more are targeted, and cases with a tensile strength of less than 200 Kgf/mm2 are excluded. The quenched and tempered steel wires in question are not necessarily limited to so-called oil-tempered wires manufactured by quenching in oil at high temperatures (austenite range), but also high-temperature steel wires obtained by air quenching, etc. It also includes high-strength steel wire or quenched and tempered steel wire obtained by high-frequency heating. A feature of the present invention is that when forming this hardened and tempered steel wire into a spring, it is processed in a so-called warm manner. The processing temperature is
If the temperature is less than 100°C, the steel wire has low ductility and is highly susceptible to flaws, so it cannot be formed into a spring. On the other hand, 55
In the case of temperature conditions exceeding 0°C, the strength of the obtained spring will decrease, making it impossible to manufacture high-strength springs, and oxidation will become severe and the surface condition will deteriorate, so countermeasures will need to be taken, so it is excluded. .
【0012】0012
【実施例】以下に本発明の実施例を示す。
(実施例1)表2に示す化学成分を有する鋼線から、引
張強さで220Kgf/mm2 の強度を有する直径4
.0mmのオイルテンパー線を製造し、表3に示す諸元
を有する自動車用弁ばねに種々の温度で成形加工した。[Examples] Examples of the present invention are shown below. (Example 1) A diameter 4 wire with a tensile strength of 220 Kgf/mm2 was made from a steel wire having the chemical composition shown in Table 2.
.. A 0 mm oil-tempered wire was manufactured and molded into an automobile valve spring having the specifications shown in Table 3 at various temperatures.
【0013】[0013]
【表2】[Table 2]
【0014】[0014]
【表3】[Table 3]
【0015】その時の加工温度と折損率の関係を図1に
示す。その結果、室温では折損が高い比率で生じている
ので、コイリングの温度を上げることにより折損率が低
下し150℃以上ではゼロとなっていることが明らかで
ある。FIG. 1 shows the relationship between the processing temperature and the breakage rate at that time. As a result, it is clear that since breakage occurs at a high rate at room temperature, the breakage rate decreases by increasing the coiling temperature and becomes zero at 150° C. or higher.
【0016】(実施例2)表4に示す化学成分を有する
鋼線から引張強さ220Kgf/mm2 の強度を有す
る直径3.2mmの焼入・焼戻鋼線を製造し、表5に示
す諸元を有する自動車用弁ばねに種々の温度で成形加工
した。(Example 2) A quenched and tempered steel wire having a tensile strength of 220 Kgf/mm2 and a diameter of 3.2 mm was manufactured from a steel wire having the chemical composition shown in Table 4, and the various properties shown in Table 5 were produced. The molded parts were molded into automotive valve springs at various temperatures.
【0017】[0017]
【表4】[Table 4]
【0018】[0018]
【表5】[Table 5]
【0019】その時のばねの加工温度と折損率の関係を
図2に示した。その結果、室温では折損が高い比率で生
じたが、コイリングの温度を上げることにより加工性が
向上し、150℃以上では折損率がゼロとなっているこ
とが明らかである。FIG. 2 shows the relationship between the processing temperature of the spring and the breakage rate. As a result, it is clear that breakage occurred at a high rate at room temperature, but workability improved by increasing the coiling temperature, and the breakage rate became zero at temperatures above 150°C.
【0020】(実施例3および比較例)前述の表4に示
す化学成分を有する鋼線から引張強さ210Kgf/m
m2 の強度を有する直径3.2mmの焼入・焼戻鋼線
を製造し、表5に示す諸元を有する自動車エンジンの弁
ばねにばねの成形温度を400℃とした本発明の実施例
と、常温(25℃)で成形加工した比較例により製造し
た。それらの弁ばねについて、最大応力τmax =1
15Kgf/mm2 で5×107 回の疲労試験を行
った。その結果を表6に示す。(Example 3 and Comparative Example) A tensile strength of 210 Kgf/m was obtained from a steel wire having the chemical composition shown in Table 4 above.
An embodiment of the present invention in which a hardened and tempered steel wire with a diameter of 3.2 mm and a strength of , a comparative example in which molding was performed at room temperature (25° C.). For those valve springs, the maximum stress τmax = 1
A fatigue test was conducted 5 x 107 times at 15Kgf/mm2. The results are shown in Table 6.
【0021】[0021]
【表6】[Table 6]
【0022】表6に示すように本発明による場合、ばね
に成形後の低温焼鈍を省略しても良好な疲労特性を有し
ていることがわかる。As shown in Table 6, it can be seen that the spring according to the present invention has good fatigue properties even if low-temperature annealing after forming the spring is omitted.
【0023】(実施例4)表7に示す組成の鋼線から引
張強さ225Kgf/mm2 の強度を有する直径3.
2mmの焼入・焼戻鋼線を製造し、直径3.2mmの芯
金に巻付ける試験(自径巻試験)を行なった。(Example 4) A steel wire having a tensile strength of 225Kgf/mm2 and having a diameter of 3mm was made from a steel wire having the composition shown in Table 7.
A 2 mm hardened and tempered steel wire was produced and tested by winding it around a core metal having a diameter of 3.2 mm (self-diameter winding test).
【0024】[0024]
【表7】[Table 7]
【0025】その結果、巻付ける温度が150℃以上の
場合、折損は皆無であり充分ばねに加工出来る延性を有
していることが確かめられた。As a result, it was confirmed that when the winding temperature was 150° C. or higher, there was no breakage, and the material had sufficient ductility to be processed into a spring.
【0026】(実施例5)表8に示す組成の鋼線から引
張強さ215Kgf/mm2 の強度を有する直径3.
4mmの焼入・焼戻鋼線を製造し、直径3.4mmの芯
金に巻付けた。(Example 5) A steel wire having a tensile strength of 215 Kgf/mm2 and having a diameter of 3 mm was made from a steel wire having the composition shown in Table 8.
A 4 mm hardened and tempered steel wire was manufactured and wound around a core metal having a diameter of 3.4 mm.
【0027】[0027]
【表8】[Table 8]
【0028】その結果巻付ける温度が、150℃以上の
場合は、折損が皆無であり充分なばねに加工できる延性
を有していることが確かめられた。また、上記の実施例
は、いずれも弁ばねについて記述したが、懸架ばねにつ
いても同様の効果を有することを確認した。As a result, it was confirmed that when the winding temperature was 150° C. or higher, there was no breakage and the material had sufficient ductility to be processed into a spring. Furthermore, although the above embodiments have all been described with respect to valve springs, it has been confirmed that suspension springs also have similar effects.
【0029】[0029]
【発明の効果】以上のように本発明によれば、引張強さ
200Kgf/mm2 以上の高強度を有する焼入・焼
戻鋼線から安定して「ばね」に成形加工でき、従来得ら
れなかった高疲労強度、高寿命を有する高強度ばねを製
造することができ、工業的な効果は多大である。As described above, according to the present invention, a quenched and tempered steel wire having a tensile strength of 200 Kgf/mm2 or more can be stably formed into a "spring", which has not been possible in the past. It is possible to produce high-strength springs with high fatigue strength and long life, which has great industrial effects.
【図1】実施例1のばね成形温度と折損率との関係を示
す図表である。FIG. 1 is a chart showing the relationship between spring forming temperature and breakage rate in Example 1.
【図2】実施例2のばね成形温度と折損率との関係を示
す図表である。FIG. 2 is a chart showing the relationship between spring forming temperature and breakage rate in Example 2.
【図3】引張強さ220Kgf/mm2 の焼入・焼戻
鋼線の各温度における引張試験の結果を示す図表である
。FIG. 3 is a chart showing the results of a tensile test at various temperatures of a quenched and tempered steel wire with a tensile strength of 220 Kgf/mm2.
【図4】図3に示す引張試験後の試験片の硬さを示した
図表である。4 is a chart showing the hardness of the test piece after the tensile test shown in FIG. 3. FIG.
Claims (2)
よびFeからなる引張強さ200Kgf/mm2 以上
を有する焼入・焼戻し鋼線を、100℃以上550℃以
下の温度に加熱し、ばねに成形加工することを特徴とす
る高強度ばねの製造方法。Claim 1: C: 0.55-0.75%, Si: 1.00-2.50%, Mn: 0.30-1.50%, Ni: 1.00-4. 00%, Cr: 0.50 to 2.50%, Mo: 0.10 to 1.00%, and two or three of them, V: 0.05 to 0.60%, Nb: 0.05 to A quenched and tempered steel wire containing one or two of 0.60% and the remainder consisting of unavoidable impurities and Fe and having a tensile strength of 200 Kgf/mm2 or more is heated to a temperature of 100°C or more and 550°C or less. A method for manufacturing a high-strength spring, characterized by forming the spring into a spring.
加工した後、低温焼鈍を施すことなく「ばね」とする高
強度ばねの製造方法。2. A method for manufacturing a high-strength spring, which is formed into a spring shape by the method according to claim 1 and then made into a "spring" without performing low-temperature annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3007577A JP2708279B2 (en) | 1991-01-25 | 1991-01-25 | Manufacturing method of high strength spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3007577A JP2708279B2 (en) | 1991-01-25 | 1991-01-25 | Manufacturing method of high strength spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04247824A true JPH04247824A (en) | 1992-09-03 |
JP2708279B2 JP2708279B2 (en) | 1998-02-04 |
Family
ID=11669669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3007577A Expired - Fee Related JP2708279B2 (en) | 1991-01-25 | 1991-01-25 | Manufacturing method of high strength spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2708279B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05320827A (en) * | 1992-05-26 | 1993-12-07 | Kobe Steel Ltd | Steel for spring excellent in fatigue property and steel wire for spring as well as spring |
EP0614994A1 (en) * | 1993-02-17 | 1994-09-14 | Sumitomo Electric Industries, Ltd. | Spring steel wires and process for producing the same |
EP0694621A1 (en) | 1994-07-28 | 1996-01-31 | Togo Seisakusho Corporation | Process for producing a coil spring |
KR100323468B1 (en) * | 1999-09-02 | 2002-02-06 | 허영준 | Method for manufacturing engine valve spring having high fatigue resistance |
EP1619264A1 (en) * | 2003-03-28 | 2006-01-25 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for high strength spring excellent in workability and high strength spring |
WO2010092067A1 (en) * | 2009-02-10 | 2010-08-19 | Gebr. Schmachtenberg Gmbh | Steel alloy |
CN116377331A (en) * | 2023-04-14 | 2023-07-04 | 东风商用车有限公司 | Spring steel material, single-piece steel plate spring and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63176430A (en) * | 1987-01-14 | 1988-07-20 | Honda Motor Co Ltd | Manufacture of coil spring |
-
1991
- 1991-01-25 JP JP3007577A patent/JP2708279B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63176430A (en) * | 1987-01-14 | 1988-07-20 | Honda Motor Co Ltd | Manufacture of coil spring |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05320827A (en) * | 1992-05-26 | 1993-12-07 | Kobe Steel Ltd | Steel for spring excellent in fatigue property and steel wire for spring as well as spring |
EP0614994A1 (en) * | 1993-02-17 | 1994-09-14 | Sumitomo Electric Industries, Ltd. | Spring steel wires and process for producing the same |
US5904830A (en) * | 1993-02-17 | 1999-05-18 | Sumitomo Electric Industries, Ltd. | Process for finishing steelwire |
EP0694621A1 (en) | 1994-07-28 | 1996-01-31 | Togo Seisakusho Corporation | Process for producing a coil spring |
US5665179A (en) * | 1994-07-28 | 1997-09-09 | Togo Seisakusho Corp. | Process for producing a coil spring |
KR100323468B1 (en) * | 1999-09-02 | 2002-02-06 | 허영준 | Method for manufacturing engine valve spring having high fatigue resistance |
EP1619264A1 (en) * | 2003-03-28 | 2006-01-25 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for high strength spring excellent in workability and high strength spring |
EP1619264A4 (en) * | 2003-03-28 | 2007-08-15 | Kobe Steel Ltd | Steel wire for high strength spring excellent in workability and high strength spring |
US8007716B2 (en) | 2003-03-28 | 2011-08-30 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for high strength spring excellent in workability and high strength |
WO2010092067A1 (en) * | 2009-02-10 | 2010-08-19 | Gebr. Schmachtenberg Gmbh | Steel alloy |
CN116377331A (en) * | 2023-04-14 | 2023-07-04 | 东风商用车有限公司 | Spring steel material, single-piece steel plate spring and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2708279B2 (en) | 1998-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7763123B2 (en) | Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting | |
KR100336339B1 (en) | Steel wire for high-strength springs and method of producing the same | |
US5665179A (en) | Process for producing a coil spring | |
JP5693126B2 (en) | Coil spring and manufacturing method thereof | |
WO2018190331A1 (en) | Helical compression spring and method for producing same | |
JPWO2007114491A1 (en) | Heat-treated steel for high-strength springs | |
WO2004087978A1 (en) | Steel wire for high strength spring excellent in workability and high strength spring | |
EP1801255A1 (en) | Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof | |
WO2013024876A1 (en) | Spring steel and spring | |
JP3754788B2 (en) | Coil spring with excellent delayed fracture resistance and manufacturing method thereof | |
JP4097151B2 (en) | High strength spring steel wire and high strength spring with excellent workability | |
JPH06240408A (en) | Steel wire for spring and its production | |
KR101789944B1 (en) | Coil spring, and method for manufacturing same | |
US20070163680A1 (en) | Steel for spring being excellent in resistance to setting and fatigue characteristics | |
JPH04247824A (en) | Manufacture of high strength spring | |
JP3918587B2 (en) | Spring steel for cold forming | |
JP3859331B2 (en) | High fatigue strength steel wires and springs and methods for producing them | |
WO2004055226A1 (en) | Steel wire for spring | |
JPS62274051A (en) | Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same | |
JP2004300481A (en) | Steel wire for spring having excellent settling resistance and crack resistance | |
JP3872364B2 (en) | Manufacturing method of oil tempered wire for cold forming coil spring | |
JP5400536B2 (en) | Hard drawing line | |
JP3142689B2 (en) | Spring with excellent fatigue strength | |
JPH032352A (en) | Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire | |
JP2000313938A (en) | High strength spring and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960528 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091017 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091017 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101017 Year of fee payment: 13 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101017 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |