Nothing Special   »   [go: up one dir, main page]

JPH04232512A - Attitude teaching method for robot - Google Patents

Attitude teaching method for robot

Info

Publication number
JPH04232512A
JPH04232512A JP40876290A JP40876290A JPH04232512A JP H04232512 A JPH04232512 A JP H04232512A JP 40876290 A JP40876290 A JP 40876290A JP 40876290 A JP40876290 A JP 40876290A JP H04232512 A JPH04232512 A JP H04232512A
Authority
JP
Japan
Prior art keywords
torch
angle
welding
robot
welding torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40876290A
Other languages
Japanese (ja)
Inventor
Masatoshi Hida
正俊 飛田
Tsudoi Murakami
村上 集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP40876290A priority Critical patent/JPH04232512A/en
Publication of JPH04232512A publication Critical patent/JPH04232512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To present an attitude teaching method for a multijoint welding robot by very easily and correctly teaching an objective torch angle and the attitude of the welding robot adapted to this angle. CONSTITUTION:Three parameters, namely, an angle alpha of inclination of a welding torch 7 to a reference face O including a weld line L (work line), an angle betaof pulling/pushing of the welding torch 7 to the weld line L, and an angle gammaof rotation of a wrist member 6 gripping the welding torch 7 to the axis of the welding torch 7 are inputted, and the attitude of the welding torch 7 is determined based on them, and the angle of each joint of this robot is determined based on data related to the attitude of the welding torch 7 and the front end coordinate values (position vector W) of the welding torch 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,アームの先端部に該ア
ームの軸芯回りに回動可能に例えば溶接トーチを具備し
てなる多関節型のロボットの姿勢教示方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for teaching the posture of a multi-jointed robot, which is equipped with, for example, a welding torch at the tip of an arm so as to be rotatable about the axis of the arm.

【0002】0002

【従来技術】この種の姿勢教示方法としては,従来,例
えば特開昭63−256281号公報に開示のものが知
られている。上記公報に開示の技術では,6軸の多関節
型の溶接ロボットにおいて,溶接線に対するトーチのト
ーチ角α,前進角β及びトーチ先端の座標P(P1 ,
P2 ,P3 )よりロボットの各関節部における角度
が求められる。具体的には,トーチ角α,前進角βより
ワーク座標系におけるトーチの方向ベクトルT(T1 
,T2 ,T3 )が求められ,この方向ベクトルTと
上記トーチ先端の座標Pとより逆変換にてロボットの関
節角θ1 〜θ6が求められる。
BACKGROUND OF THE INVENTION This type of posture teaching method is conventionally known, for example, as disclosed in Japanese Patent Laid-Open No. 63-256281. In the technology disclosed in the above publication, in a 6-axis articulated welding robot, the torch angle α, advance angle β, and the coordinates P(P1, P1,
P2, P3), the angle at each joint of the robot is determined. Specifically, the torch direction vector T (T1
, T2, T3) are determined, and the joint angles .theta.1 to .theta.6 of the robot are determined by inverse transformation using this direction vector T and the coordinates P of the tip of the torch.

【0003】また,上記公報に係る技術以外に一般的に
知られている技術としては,オフライン教示やオンライ
ン教示において,オペレータがCRT画面や実機を見な
がら各関節角を入力・修正し,目的とするトーチ角度に
近づける方法や,ロール・ピッチ・ヨー角やオイラー角
等を入力し,トーチの姿勢を教示する方法等が知られて
いる。
[0003] In addition to the technology disclosed in the above-mentioned publication, there is a generally known technology in offline teaching and online teaching in which the operator inputs and corrects each joint angle while looking at a CRT screen or the actual machine, and adjusts the joint angle to meet the purpose. There are known methods such as a method of approaching the torch angle to a certain value, and a method of inputting roll, pitch, yaw angles, Euler angles, etc. to teach the torch attitude.

【0004】0004

【発明が解決しようとする課題】ところが,上記公報に
開示の技術では,5個(P1 ,P2 ,P3 ,α,
β)のパラメータに基づいて6軸の溶接ロボットにおけ
る6個の各関節の角度が算出されることから,パラメー
タとしては1つ足りず,該溶接ロボットのとり得る姿勢
としては無限に存在することとなり,制御不能という不
具合を生じる。また,オフライン教示やオンライン教示
により各関節角度を入力して教示する方法では,オペレ
ータが試行錯誤により目的のトーチ角度に近づけなけれ
ばならず,操作性が悪く時間がかかると共に,正確な位
置決め設定をすることができない。
[Problem to be Solved by the Invention] However, in the technique disclosed in the above publication, five (P1, P2, P3, α,
Since the angles of each of the six joints in a six-axis welding robot are calculated based on the parameter β), one parameter is missing, and there are an infinite number of possible postures for the welding robot. , causing problems such as loss of control. In addition, in the method of teaching by inputting each joint angle using offline teaching or online teaching, the operator must approach the desired torch angle through trial and error, which is slow and slow to operate, and requires accurate positioning settings. Can not do it.

【0005】更に,ロール・ピッチ・ヨー角やオイラー
角等を入力して教示する方法では,溶接線に対してどの
ような角度を溶接トーチにとらせればよいかがオペレー
タにとって理解しずらく,教示を簡便に行ない得ないと
いう問題点がある。そこで,本発明の目的とするところ
は,多関節型の溶接ロボットにおいて,目的のトーチ角
度及びそれに見合った該溶接ロボットの姿勢を極めて簡
便且つ正確に教示することのできる姿勢教示方法を提供
することである。
Furthermore, in the method of teaching by inputting roll, pitch, yaw angles, Euler angles, etc., it is difficult for the operator to understand what angle the welding torch should take with respect to the welding line, and the teaching is difficult. The problem is that it cannot be done easily. SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a posture teaching method that can extremely easily and accurately teach a target torch angle and a corresponding posture of the welding robot to an articulated welding robot. It is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,アームの先端部に該アームの軸芯回りに回動可
能にトーチを具備してなる多関節型のロボットの姿勢教
示方法において,作業線を含む基準面に対する上記トー
チの傾斜角α,上記作業線に対する上記トーチの前進/
後退角β及び上記トーチの軸芯に対する該トーチを把持
する手首の回転角γの3つのパラメータを入力し,これ
に基づいて上記トーチの姿勢を決定すると共に,このト
ーチの姿勢に関するデータ及び上記トーチの先端座標値
に基づいて当該ロボットの各関節角を決定するようにし
た点に係る溶接ロボットの姿勢教示方法である。
[Means for Solving the Problems] In order to achieve the above object, the main means adopted by the present invention is to attach a torch to the tip of the arm so as to be rotatable around the axis of the arm. In the method for teaching the posture of an articulated robot, the inclination angle α of the torch with respect to a reference plane including a work line, the forward movement of the torch with respect to the work line;
Three parameters are input: the receding angle β and the rotation angle γ of the wrist that grips the torch with respect to the axis of the torch, and based on these, the attitude of the torch is determined, and the data regarding the attitude of this torch and the torch This is a method for teaching the posture of a welding robot, in which each joint angle of the robot is determined based on the coordinate value of the tip of the robot.

【0007】[0007]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここに
,図1は本発明の一実施例に係る姿勢教示方法を適用す
ることのできる溶接ロボットのシステム構成図,図2は
上記溶接ロボットの概略構成図,図3は図2における要
部拡大図,図4は上記溶接ロボットの溶接トーチと溶接
線との位置関係を示す説明図,図5は上記姿勢教示方法
における処理手順を示すフローチャートである。この実
施例に係る姿勢教示方法は,図1に示す如く,オフライ
ン教示システムにて実現され,このシステムは,溶接ロ
ボット1と,ロボット制御盤2と,オフライン教示シス
テムを実現するソフトを備えたパーソナルコンピータ3
と,CRT4等を具備して構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following examples are examples of embodying the present invention, and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a system configuration diagram of a welding robot to which the posture teaching method according to an embodiment of the present invention can be applied, FIG. 2 is a schematic configuration diagram of the welding robot, and FIG. 3 is an enlarged view of the main parts of FIG. 2. 4 are explanatory diagrams showing the positional relationship between the welding torch of the welding robot and the welding line, and FIG. 5 is a flowchart showing the processing procedure in the posture teaching method. The posture teaching method according to this embodiment is realized by an offline teaching system as shown in FIG. computer 3
It is configured with a CRT 4 and the like.

【0008】上記溶接ロボット1は,6軸の自由度を有
しており,図2に示すような関節部の構成を備えている
。そして,図2中のθ1 〜θ6 はそれぞれ各関節部
の関節角度を定義するものであって,位置ベクトルAは
,上記溶接ロボット1における第4軸,第5軸,第6軸
の回転中心に相当する。
The welding robot 1 has degrees of freedom in six axes and has a joint configuration as shown in FIG. θ1 to θ6 in FIG. 2 each define the joint angle of each joint, and the position vector A is the rotation center of the fourth, fifth, and sixth axes of the welding robot 1. Equivalent to.

【0009】上記溶接ロボット1では,アーム5の先端
部に該アーム5の軸芯回りに回動可能に手首部材6が配
備されており,該手首部材6に溶接トーチ7が把持され
ている。そして,上記溶接トーチ7では,図3に示す如
く,そのトーチ先端座標が位置ベクトルW(W1 ,W
2 ,W3 )にて定義され,該溶接トーチ7の軸芯に
沿ったトーチ先端と反対側における延設位置には仮想ト
ーチ頂点として位置ベクトルQが与えられている。そし
て,上記溶接ロボット1を用いた溶接作業においては,
上記溶接トーチ7と溶接線Lとは図4に示すような位置
関係となる。そして,同図中において,αは上記溶接線
Lを含む基準面に対する上記溶接トーチ7の傾斜角を,
βは上記溶接線Lに対する上記溶接トーチ7の前進/後
退角をそれぞれ表わす。
In the welding robot 1, a wrist member 6 is provided at the tip of the arm 5 so as to be rotatable around the axis of the arm 5, and a welding torch 7 is held by the wrist member 6. In the welding torch 7, as shown in FIG. 3, the torch tip coordinates are the position vector W (W1, W
2, W3), and a position vector Q is given as a virtual torch apex at an extended position on the side opposite to the torch tip along the axis of the welding torch 7. In the welding work using the above-mentioned welding robot 1,
The welding torch 7 and the welding line L have a positional relationship as shown in FIG. In the figure, α is the inclination angle of the welding torch 7 with respect to the reference plane including the welding line L.
β represents the advancing/retreating angle of the welding torch 7 with respect to the welding line L, respectively.

【0010】上記のような前提条件に基づいて,トーチ
先端座標及び上述の傾斜角α,前進/後退角βが決まれ
ば,上記溶接トーチ7の通過する空間位置を決定するこ
とができる。しかし,本実施例において用いられる上記
溶接ロボット1は上述の如く6軸構成であることから,
トーチ先端座標を表わす位置ベクトルWと傾斜角α,前
進/後退角βの値では変数が1つ不足することから,当
該溶接ロボット1の姿勢を決定することができない。こ
れは,上記溶接トーチ7の軸芯(位置ベクトルWとQと
により決定される)を中心として前述の回転中心を表す
位置ベクトルAが相対的に360°回転し得ることに基
づく。
[0010] Once the torch tip coordinates, the above-mentioned inclination angle α, and advance/retreat angle β are determined based on the above-mentioned preconditions, the spatial position through which the welding torch 7 passes can be determined. However, since the welding robot 1 used in this embodiment has a 6-axis configuration as described above,
The attitude of the welding robot 1 cannot be determined because one variable is missing from the values of the position vector W representing the torch tip coordinates, the inclination angle α, and the advance/retreat angle β. This is based on the fact that the position vector A representing the rotation center described above can rotate 360° relative to the axis of the welding torch 7 (determined by the position vectors W and Q).

【0011】そこで,本実施例においては,上述のパラ
メータに対して更に上記溶接トーチ7の軸芯に対する該
溶接トーチ7を把持する手首部材6の回転角γを考慮す
ることにより,上記塗装ロボット1の姿勢をオペレータ
にとって理解しやすく任意に決定し得るように配慮され
ている。
Therefore, in this embodiment, the rotation angle γ of the wrist member 6 that grips the welding torch 7 with respect to the axis of the welding torch 7 is taken into consideration in addition to the above-mentioned parameters. Consideration has been given to making it easy for the operator to understand and arbitrarily determine the posture of the robot.

【0012】引き続き,図5に基づいて,姿勢教示とそ
れに基づく処理の手順について説明する。尚,図5中の
S1,S2,…は各処理ステップを表し,ステップS1
〜S7はオフライン教示システムを用いて処理される。 先ず,S1において,溶接トーチ7の先端の経路が教示
され,溶接線L及び溶接方向が決定される。引き続き,
 S2において,溶接トーチ7の姿勢を教示したい所望
のステップが選択され,そのステップにおける現在の各
関節角度θ1 〜θ6 に基づいて傾斜角α,前進/後
退角β,回転角γが算出されCRT4上に表示される。
[0012] Continuing on, based on FIG. 5, the procedure of posture teaching and processing based thereon will be explained. In addition, S1, S2, ... in FIG. 5 represent each processing step, and step S1
~S7 is processed using the offline teaching system. First, in S1, the path of the tip of the welding torch 7 is taught, and the welding line L and welding direction are determined. continuation,
In S2, a desired step in which the posture of the welding torch 7 is to be taught is selected, and the inclination angle α, advance/retreat angle β, and rotation angle γ are calculated based on the current joint angles θ1 to θ6 in that step and displayed on the CRT 4. will be displayed.

【0013】そして,S3において,上記傾斜角α,前
進/後退角β,回転角γに関して変更して教示したい値
が入力され,これに基づいて上記溶接トーチ7の姿勢が
決定される。上記のようにして溶接トーチ7の姿勢が決
定されると,S4において,上記溶接トーチ7のトーチ
先端座標及び上記傾斜角α,前進/後退角β,回転角γ
の各値より逆変換にて当該溶接ロボット1の各関節角度
θ1 〜θ6 が算出される。また必要に応じて,上記
傾斜角α,前進/後退角β,回転角γより,ロール・ピ
ッチ・ヨー角やオイラー角等のロボット姿勢を算出する
ことも可能である。
Then, in S3, values to be changed and taught regarding the inclination angle α, advance/retreat angle β, and rotation angle γ are input, and the attitude of the welding torch 7 is determined based on these values. When the attitude of the welding torch 7 is determined as described above, in S4, the torch tip coordinates of the welding torch 7, the inclination angle α, the advance/retreat angle β, the rotation angle γ
Each joint angle θ1 to θ6 of the welding robot 1 is calculated from each value by inverse transformation. If necessary, it is also possible to calculate the robot posture, such as the roll, pitch, yaw angle, Euler angle, etc., from the inclination angle α, advance/retreat angle β, and rotation angle γ.

【0014】上記のようにして決定された溶接ロボット
1及び溶接トーチ7の姿勢は,CRT4上に表示され(
S5),その動作範囲及び干渉有無のチェックがなされ
る(S6)。そして,上記のようにして得られた教示デ
ータはメモリ内に格納され(S7),保存される。その
後,S8において,上記教示データはロボット制御盤2
に転送され,上記溶接ロボット1が制御される。引き続
き,以下に上述の逆変換・順変換について簡単に説明す
る。
The postures of the welding robot 1 and welding torch 7 determined as described above are displayed on the CRT 4 (
S5), the operating range and the presence or absence of interference are checked (S6). The teaching data obtained as described above is then stored in the memory (S7) and saved. After that, in S8, the above teaching data is transferred to the robot control panel 2.
and the welding robot 1 is controlled. Next, the above-mentioned inverse transformation and forward transformation will be briefly explained below.

【0015】図2における溶接ロボット1において各関
節角度をθ1 〜θ6 と定義すれば,次式のような座
標変換を行なうことにより,溶接トーチ7の空間位置を
決定することができる。ここでAは座標変換行列であっ
て,溶接ロボット1の機構やアーム長さによって決定さ
れる。上記行列Aは一般に正則で,逆行列を求めること
ができる。
If each joint angle in the welding robot 1 shown in FIG. 2 is defined as θ1 to θ6, the spatial position of the welding torch 7 can be determined by performing coordinate transformation as shown in the following equation. Here, A is a coordinate transformation matrix, which is determined by the mechanism of the welding robot 1 and the arm length. The above matrix A is generally regular, and its inverse matrix can be obtained.

【数1】[Math 1]

【0016】これより式■は次式のように逆変換が可能
であり,溶接トーチ7のトーチ先端座標を表わす位置ベ
クトルW(W1 ,W2 ,W3 )及び傾斜角α,前
進/後退角β,回転角γが既知であれば,各関節角度θ
1 〜θ6 を求めることができる。
From this, equation (2) can be inversely transformed as shown in the following equation, where the position vector W (W1, W2, W3) representing the torch tip coordinates of the welding torch 7, the inclination angle α, the advance/retreat angle β, If the rotation angle γ is known, each joint angle θ
1 to θ6 can be obtained.

【数2】[Math 2]

【0017】従って,本実施例システムにおいては,オ
ペレータの経験や勘に左右されずに極めて簡便且つ正確
に目的とする溶接トーチ7のトーチ角度(α,β,γ)
を教示することができる。そして,当該教示方法では,
ロール・ピッチ・ヨー角やオイラー角を用いる場合とは
異なり,溶接線Lに対する溶接トーチ7の角度を入力す
ることにより,オペレータにとって溶接対象物と溶接ト
ーチ7との関係を容易に理解することができ,操作性が
向上する。更に,溶接トーチ7の姿勢を決定するのに回
転角γを考慮することにより,オペレータの思惑通りに
溶接ロボット1の姿勢を決定することができる。そして
,上記回転角γはいかなる角度をとっても溶接線Lに対
する溶接トーチ7の方向ベクトルは変化することなく,
障害物との干渉を避けながら溶接を行ない得るようにそ
の教示を容易に行なうことができる。
Therefore, in the system of this embodiment, the target torch angle (α, β, γ) of the welding torch 7 can be determined extremely easily and accurately without being influenced by the operator's experience or intuition.
can be taught. In this teaching method,
Unlike the case where roll, pitch, yaw angles or Euler angles are used, by inputting the angle of the welding torch 7 with respect to the welding line L, the operator can easily understand the relationship between the welding object and the welding torch 7. This improves operability. Furthermore, by considering the rotation angle γ when determining the orientation of the welding torch 7, the orientation of the welding robot 1 can be determined as desired by the operator. And, no matter what the rotation angle γ is, the direction vector of the welding torch 7 with respect to the welding line L does not change.
The teaching can be easily performed so that welding can be performed while avoiding interference with obstacles.

【0018】尚,上記実施例においては,オフライン教
示システムにより教示データを作成し,この教示データ
をロボット制御盤に入れ転送する場合を例に説明したが
,溶接ロボット1の制御装置に図5に示すようなアルゴ
リズムを予め組み込み,ティーチングボックスから傾斜
角α,前進/後退角β,回転角γを入力し,直接的に上
記溶接ロボット1を教示することも可能である。更に,
上記のような溶接トーチ7に代えて,プラズマトーチを
用いて切断作業を行なう場合には,本アルゴリズムを用
いてトーチ姿勢を決定することにより,切断面の仕上が
り等に極めて有効である。
In the above embodiment, teaching data is created by an offline teaching system, and this teaching data is transferred to the robot control panel. It is also possible to directly teach the welding robot 1 by incorporating an algorithm as shown in advance and inputting the tilt angle α, advance/retreat angle β, and rotation angle γ from a teaching box. Furthermore,
When cutting is performed using a plasma torch instead of the welding torch 7 as described above, determining the torch posture using this algorithm is extremely effective for finishing the cut surface.

【0019】[0019]

【発明の効果】本発明は,上記したように,アームの先
端部に該アームの軸芯回りに回動可能にトーチを具備し
てなる多関節型のロボットの姿勢教示方法において,作
業線を含む基準面に対する上記トーチの傾斜角α,上記
作業線に対する上記トーチの前進/後退角β及び上記ト
ーチの軸芯に対する該トーチを把持する手首の回転角γ
の3つのパラメータを入力し,これに基づいて上記トー
チの姿勢を決定すると共に,このトーチの姿勢に関する
データ及び上記トーチの先端座標値に基づいて当該ロボ
ットの各関節角を決定するようにしたことを特徴とする
ロボットの姿勢教示方法であるから,多関節型のロボッ
トにおいて,目的のトーチ角度及びそれに見合った該ロ
ボットの姿勢を極めて簡便且つ正確に教示することがで
きる。
[Effects of the Invention] As described above, the present invention provides a method for teaching the posture of a multi-jointed robot, which is equipped with a torch at the tip of an arm so as to be rotatable about the axis of the arm. An inclination angle α of the torch with respect to the reference plane including, an advancing/retreating angle β of the torch with respect to the working line, and a rotation angle γ of the wrist gripping the torch with respect to the axis of the torch.
The three parameters are input, and the posture of the torch is determined based on these, and each joint angle of the robot is determined based on the data regarding the posture of the torch and the coordinate value of the tip of the torch. Since this robot posture teaching method is characterized by the following, it is possible to very easily and accurately teach a target torch angle and a corresponding robot posture to an articulated robot.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例に係る姿勢教示方法を適
用することのできる溶接ロボットのシステム構成図。
FIG. 1 is a system configuration diagram of a welding robot to which a posture teaching method according to an embodiment of the present invention can be applied.

【図2】  上記溶接ロボットの概略構成図。FIG. 2 is a schematic configuration diagram of the welding robot described above.

【図3】  図2における要部拡大図。[Figure 3] An enlarged view of the main parts in Figure 2.

【図4】  上記溶接ロボットの溶接トーチと溶接線と
の位置関係を示す説明図。
FIG. 4 is an explanatory diagram showing the positional relationship between the welding torch of the welding robot and the welding line.

【図5】  上記姿勢教示方法における処理手順を示す
フローチャート。
FIG. 5 is a flowchart showing a processing procedure in the posture teaching method.

【符号の説明】[Explanation of symbols]

1…溶接ロボット          2…ロボット制
御盤3…パーソナルコンピュータ4…CRT     
           5…アーム6…手首部材   
           7…溶接トーチL…溶接線  
              O…基準面θ1 〜θ6
 …関節角度      α…傾斜角β…前進/後退角
          γ…回転角S1〜S8…処理ステ
ップ
1...Welding robot 2...Robot control panel 3...Personal computer 4...CRT
5...Arm 6...Wrist member
7...Welding torch L...Welding line
O...Reference plane θ1 ~ θ6
…Joint angle α…Inclination angle β…Advance/retreat angle γ…Rotation angle S1 to S8…Processing step

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  アームの先端部に該アームの軸芯回り
に回動可能にトーチを具備してなる多関節型のロボット
の姿勢教示方法において,作業線を含む基準面に対する
上記トーチの傾斜角α,上記作業線に対する上記トーチ
の前進/後退角β及び上記トーチの軸芯に対する該トー
チを把持する手首の回転角γの3つのパラメータを入力
し,これに基づいて上記トーチの姿勢を決定すると共に
,このトーチの姿勢に関するデータ及び上記トーチの先
端座標値に基づいて当該ロボットの各関節角を決定する
ようにしたことを特徴とするロボットの姿勢教示方法。
Claim 1. A posture teaching method for a multi-jointed robot comprising a torch provided at the tip of an arm so as to be rotatable about the axis of the arm, wherein the inclination angle of the torch with respect to a reference plane including a work line is provided. Input three parameters: α, advance/retreat angle β of the torch with respect to the work line, and rotation angle γ of the wrist gripping the torch with respect to the axis of the torch, and determine the attitude of the torch based on these parameters. A method for teaching a robot posture, characterized in that each joint angle of the robot is determined based on the data regarding the posture of the torch and the coordinate value of the tip of the torch.
JP40876290A 1990-12-28 1990-12-28 Attitude teaching method for robot Pending JPH04232512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40876290A JPH04232512A (en) 1990-12-28 1990-12-28 Attitude teaching method for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40876290A JPH04232512A (en) 1990-12-28 1990-12-28 Attitude teaching method for robot

Publications (1)

Publication Number Publication Date
JPH04232512A true JPH04232512A (en) 1992-08-20

Family

ID=18518179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40876290A Pending JPH04232512A (en) 1990-12-28 1990-12-28 Attitude teaching method for robot

Country Status (1)

Country Link
JP (1) JPH04232512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617544B1 (en) 2000-05-19 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine
CN104874900A (en) * 2014-02-28 2015-09-02 发那科株式会社 Welding torch detector and welding robot system
US10710240B2 (en) 2017-09-12 2020-07-14 Fanuc Corporation Programming device for welding robot and programming method for welding robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617544B1 (en) 2000-05-19 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine
CN104874900A (en) * 2014-02-28 2015-09-02 发那科株式会社 Welding torch detector and welding robot system
CN104874900B (en) * 2014-02-28 2017-07-25 发那科株式会社 Welding torch detection means and welding robot system
US10016834B2 (en) 2014-02-28 2018-07-10 Fanuc Corporation Welding torch detector and welding robot system
US10710240B2 (en) 2017-09-12 2020-07-14 Fanuc Corporation Programming device for welding robot and programming method for welding robot

Similar Documents

Publication Publication Date Title
US6845295B2 (en) Method of controlling a robot through a singularity
JP5268495B2 (en) Off-line teaching data creation method and robot system
JP2006048244A (en) Working program generating device
US7248012B2 (en) Teaching data preparing method for articulated robot
JP2004094399A (en) Control process for multi-joint manipulator and its control program as well as its control system
JPH04232512A (en) Attitude teaching method for robot
Shanmugasundar et al. Method of Trajectory Generation of a Generic Robot using Bresenham’s Circle Algorithm
JPH0693209B2 (en) Robot's circular interpolation attitude control device
US20230226682A1 (en) Method for Teaching Torch Orientation for Robotic Welding
JP4745921B2 (en) Control method of welding robot
JP2979552B2 (en) Robot control method
KR102721360B1 (en) Circular welding method
JPS61253510A (en) Method for confirming robot control data
JP2019093487A (en) Robot control device and robot reverse conversion processing method
JPS63256281A (en) Teaching system for welding torch position
JP5583549B2 (en) Arc welding robot controller
JPH07334228A (en) Teaching data corrector for robot
JP3884928B2 (en) Posture calculation method and posture calculation apparatus for articulated robot
JPH0647689A (en) Control method of articulated robot
JP4000307B2 (en) Teaching data creation method for articulated robots
WO2022157878A1 (en) Evaluation device for motion trajectory and evaluation method for motion trajectory
JP2001096367A (en) Welding robot control device
JP2019093488A (en) Robot control device and robot reverse conversion processing method
JPH06198445A (en) Robot controller for tig welding
JPH04169909A (en) Robot attitude correcting system