JPH04231454A - Coated ticn-base cermet - Google Patents
Coated ticn-base cermetInfo
- Publication number
- JPH04231454A JPH04231454A JP2416053A JP41605390A JPH04231454A JP H04231454 A JPH04231454 A JP H04231454A JP 2416053 A JP2416053 A JP 2416053A JP 41605390 A JP41605390 A JP 41605390A JP H04231454 A JPH04231454 A JP H04231454A
- Authority
- JP
- Japan
- Prior art keywords
- cermet
- ticn
- hard
- phase
- iron group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011195 cermet Substances 0.000 title claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract 2
- 239000011230 binding agent Substances 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 abstract description 10
- -1 iron group metals Chemical class 0.000 abstract description 9
- 150000002739 metals Chemical class 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 41
- 239000000463 material Substances 0.000 description 28
- 238000005520 cutting process Methods 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000007733 ion plating Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 229910003178 Mo2C Inorganic materials 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910015417 Mo2 C Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、耐摩耗性、靱性に優れ
たTiCN基サーメットに関し、特に切削工具として被
削材仕上面に優れた表面被覆サーメットに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a TiCN-based cermet with excellent wear resistance and toughness, and more particularly to a surface-coated cermet with an excellent finished surface of a workpiece as a cutting tool.
【0002】0002
【従来技術】近年、切削用焼結体として、周期律表第4
a、5a、6a族元素の複炭窒化物からなる硬質相と、
鉄族金属からなる結合相によって構成されるサーメット
が用いられるようになった。[Prior Art] In recent years, as a sintered body for cutting,
a hard phase consisting of a double carbonitride of group a, 5a, and 6a elements;
Cermets composed of a binder phase made of iron group metals have come into use.
【0003】かかるサーメットとしては、これまでTi
Cを主成分とするTiC基サーメットが主流であったが
、このTiC基サーメットは、古くから工具材料として
用いられていた超硬合金に比較して耐欠損性が劣るため
に、かかる系に対して窒化物を添加することにより靱性
を改善したいわゆるTiCN基サーメットが提案されて
いる。[0003] Such cermets have so far been made of Ti.
TiC-based cermets, whose main component is C, have been the mainstream, but this TiC-based cermet has inferior fracture resistance compared to cemented carbide, which has been used as tool material for a long time, so it is difficult to use such systems. A so-called TiCN-based cermet with improved toughness by adding nitride has been proposed.
【0004】このTiCN基サーメットにおける硬質相
は、一般にTi、Wの複炭窒化物から構成され、さらに
硬質相形成成分としてMo、Ta等の炭化物や窒化物等
が添加されているが、このうちMoやMo2 Cは、硬
質相の結合相との濡れ性を改善することから硬質相成分
として必須成分とされている。また、TaCはサーメッ
トの耐酸化性を改善するとともに切削工具としてのクレ
ータ摩耗の進行を抑制する効果を有することから実用性
の点から必須の成分とされてきた。The hard phase in this TiCN-based cermet is generally composed of double carbonitrides of Ti and W, and carbides and nitrides such as Mo and Ta are added as hard phase forming components. Mo and Mo2C are considered essential components as hard phase components because they improve the wettability of the hard phase with the binder phase. Furthermore, TaC improves the oxidation resistance of cermet and has the effect of suppressing the progress of crater wear when used as a cutting tool, so it has been regarded as an essential component from the point of view of practicality.
【0005】また、硬質相を形成する炭素(C)および
窒素(N)はサーメットの靱性および硬度を決定する大
きな要因であり、最近では窒素を多量に含有させること
により、サーメットの靱性を高めようとする試みがなさ
れている。[0005] Carbon (C) and nitrogen (N), which form the hard phase, are major factors that determine the toughness and hardness of cermets.Recently, efforts have been made to increase the toughness of cermets by incorporating a large amount of nitrogen. Attempts are being made to do so.
【0006】ところが、最近に至りTiCN基サーメッ
トに対して各種の改良がなされ、例えば特公昭63−3
017号では、MoやMo2 Cが窒素を多量に含む系
に対しては結合相との濡れ性改善効果が発揮されず、焼
結性を阻害するという理由からMoやMo2 Cを添加
せず、TiNからなる相を析出した系が提案され、その
他、硬質成分としてNbCを添加しサーメットの耐熱衝
撃性や耐酸化性を改善することなども提案されている。However, recently various improvements have been made to TiCN-based cermets.
In No. 017, Mo and Mo2C are not added because they do not have the effect of improving wettability with the binder phase in systems containing a large amount of nitrogen and inhibit sinterability. A system in which a phase consisting of TiN is precipitated has been proposed, and it has also been proposed to add NbC as a hard component to improve the thermal shock resistance and oxidation resistance of cermet.
【0007】[0007]
【発明が解決しようとする問題点】しかしながら、これ
らのTiCN基サーメットによれば、これらの技術改良
はサーメットの本質的な改良には至っておらず、これま
で工具材料として主流である超硬合金に対する切削特性
の劣化は依然として残っている。しかも、切削条件が厳
しくなる傾向にために工具材料としてもより高い特性の
ものが要求されている。[Problems to be Solved by the Invention] However, with these TiCN-based cermets, these technological improvements have not led to essential improvements in cermets, and up until now there has been no improvement in the quality of cemented carbide, which is the mainstream tool material. Deterioration of cutting properties still remains. Moreover, as cutting conditions tend to become stricter, tool materials with even higher properties are required.
【0008】そこで、従来のサーメットの組成について
種々検討したところ、組織上有芯構造を形成するサーメ
ットへMoやMo2 Cを添加すると、Mo自体がTi
Cに比較して硬度、熱伝導率、ヤング率、耐酸化性等の
特性において劣るために工具材料として特に耐摩耗性の
低下を招く傾向にあるという観点からMoを添加しない
方がよいを考えられる。Therefore, various studies were conducted on the composition of conventional cermets, and it was found that when Mo or Mo2C is added to a cermet that forms a cored structure, the Mo itself becomes Ti.
Since it is inferior to C in properties such as hardness, thermal conductivity, Young's modulus, and oxidation resistance, we thought it would be better not to add Mo from the viewpoint that it tends to cause a decrease in wear resistance especially when used as a tool material. It will be done.
【0009】また、特公昭63−3017号の構成によ
れば、TiN相の析出はTiN相自体が金属との濡れ性
に劣るために結合相との界面が破壊源となり強度が劣化
するという問題を有している。Furthermore, according to the structure of Japanese Patent Publication No. 63-3017, the problem with the precipitation of the TiN phase is that since the TiN phase itself has poor wettability with metal, the interface with the binder phase becomes a source of fracture and the strength deteriorates. have.
【0010】一方、Taの耐酸化性効果は窒素を多量に
含有するサーメットではその効果はほとんどなく、逆に
焼結性を阻害し、緻密体を得るためにはMoを無添加と
する場合には特に焼結温度を高く設定する必要があるた
めに焼結体粒子の粒成長を引起しサーメットの耐摩耗性
を低下するという問題があることがわかった。On the other hand, the oxidation resistance effect of Ta has almost no effect on cermets containing a large amount of nitrogen, and on the contrary, it inhibits sinterability. It has been found that there is a problem in that the sintering temperature needs to be set particularly high, which causes grain growth of the sintered particles and reduces the wear resistance of the cermet.
【0011】さらに被削材の仕上面の品質に対してはサ
ーメットに含有される結合相成分としての鉄族金属の影
響より、その向上には限界があった。Furthermore, there is a limit to the improvement in the quality of the finished surface of the workpiece due to the influence of the iron group metal as a binder phase component contained in the cermet.
【0012】0012
【問題点を解決するための手段】本発明者等は、上記の
知見から耐摩耗性、耐欠損性、耐酸化性に優れたサーメ
ットの組成について検討をおこなった結果、硬質相を形
成する金属成分としてTi、Wを必須成分とし、従来こ
れにMoやTaを添加していたのに対してこれらの代わ
りに、NbおよびVを選択してそれぞれ特定の範囲で配
合するとともに系中のMoおよびTaの量を極力小さく
することによって優れた切削特性を有するTiCN基サ
ーメットが得られることを知見し、さらにこのサーメッ
トの表面に特定の被膜を形成することにより上記サーメ
ット自体の特性を阻害することなく被削材の切削加工後
の仕上面品質を向上できることを知見した。[Means for Solving the Problem] Based on the above knowledge, the present inventors investigated the composition of cermet with excellent wear resistance, chipping resistance, and oxidation resistance. Ti and W are essential components, and conventionally Mo and Ta have been added to them, but instead of these, Nb and V are selected and added within a specific range, and Mo and Ta in the system are added. It has been discovered that a TiCN-based cermet with excellent cutting properties can be obtained by minimizing the amount of Ta, and by forming a specific coating on the surface of this cermet, the properties of the cermet itself are not impaired. It was discovered that the quality of the finished surface after cutting the work material could be improved.
【0013】即ち、本発明は、少なくともTi、W、N
bおよびVを含有する硬質相と、鉄族金属からなる結合
相とから構成され、全体組成から前記鉄族金属を除く他
の成分組成を〔 (Ti)a (Nb, V)b (W
)c〕(Cu Nv )z と表した時、a+b+c=
1、0.50≦a≦0.95、0.05≦b+c≦0.
5、0.40≦b/b+c≦0.95、0.40≦v≦
0.60、0.80≦z≦1.0、u+v=1を満足す
るとともに、前記NbとVとの原子比(Nb/V)が1
〜10の範囲にあるTiCN基サーメットの表面に、該
サーメットよりTiに富み、平均粒径を0.4μm以下
、鉄族金属含有量が100ppm以下のTiを含有する
硬質膜を被覆してなることを特徴とするものである。That is, the present invention provides at least Ti, W, N
It is composed of a hard phase containing b and V and a binder phase made of an iron group metal, and the other components excluding the iron group metal from the overall composition are [ (Ti) a (Nb, V) b (W
)c](Cu Nv )z, a+b+c=
1, 0.50≦a≦0.95, 0.05≦b+c≦0.
5, 0.40≦b/b+c≦0.95, 0.40≦v≦
0.60, 0.80≦z≦1.0, u+v=1, and the atomic ratio of Nb and V (Nb/V) is 1.
The surface of a TiCN-based cermet in the range of ~10 is coated with a hard film containing Ti, which is richer in Ti than the cermet, has an average particle size of 0.4 μm or less, and has an iron group metal content of 100 ppm or less. It is characterized by:
【0014】本発明の被覆TiCN基サーメットは、基
本的に硬質相並びに結合相からなる母材と、その母材表
面に形成された硬質被覆層から構成されるものである。The coated TiCN-based cermet of the present invention basically consists of a base material consisting of a hard phase and a binder phase, and a hard coating layer formed on the surface of the base material.
【0015】サーメット母材において、硬質相を形成す
る成分として、Tiは、およそTiCNとして焼結体内
に存在するが、このTi量(a)が0.5より少ないと
サーメット工具としての特徴である耐摩耗性、金属に対
する低い親和性が不十分となり、0.95を越えると耐
欠損性に劣ることとなる。なお、aは0.70≦a≦0
.9であることが特に望ましい。In the cermet base material, Ti is a component that forms a hard phase and is present in the sintered body as approximately TiCN, but if the Ti amount (a) is less than 0.5, it is characteristic of a cermet tool. Abrasion resistance and low affinity for metals will be insufficient, and if it exceeds 0.95, chipping resistance will be poor. Note that a is 0.70≦a≦0
.. 9 is particularly desirable.
【0016】また、Nb、V、Wは、硬質相を形成する
補助的成分で、いずれもサーメットの粒成長を抑制する
効果を有し、微細な結晶構造を形成させサーメットの強
度、靱性を高める作用をなす。よって、これらの合量(
b+c)が0.05より少ないと耐欠損性が不十分とな
り、0.5より大きいと耐摩耗性が劣るとともに被削材
との反応性が高く成る傾向にある。なお、(b+c)値
は0.10≦b+c≦0.30であることが特に望まし
い。[0016] Nb, V, and W are auxiliary components that form a hard phase, and all have the effect of suppressing the grain growth of cermet, forming a fine crystal structure and increasing the strength and toughness of cermet. act. Therefore, the total amount of these (
If b+c) is less than 0.05, the chipping resistance will be insufficient, and if it is larger than 0.5, the wear resistance will be poor and the reactivity with the work material will tend to be high. Note that it is particularly desirable that the (b+c) value is 0.10≦b+c≦0.30.
【0017】これらのうち、WはWCとして硬質相の結
合相との濡れ性を改善するとともに靱性を高める作用を
なすために必須の成分であるが、硬質相が(Ti,W)
CNから構成される場合は、耐摩耗性、耐酸化性、耐欠
損性等の特性が実用的レベルに達していないというに問
題がある。そこで、硬質相を強化し諸特性を向上するこ
とを目的としてMoやTa等の炭化物が必須の成分とし
てこれまで使用されたが、前述した通りMo2 C自体
、硬質相主成分であるTiCあるいはTiCNに比較し
て特性が劣るために逆にサーメットの特性を劣化させて
しまう。また、焼結性は系中の結合相の量に大きく左右
されるが、結合相が同量である場合、TaCの添加によ
り焼結性が低下するために高温焼成が必要となり、これ
により結晶の粒径が大きくなるためにサーメットの耐摩
耗性が劣化する。Among these, W is an essential component for improving the wettability of the hard phase with the binder phase and increasing toughness as WC, but when the hard phase is (Ti, W)
When made of CN, there is a problem in that properties such as wear resistance, oxidation resistance, and chipping resistance do not reach a practical level. Therefore, carbides such as Mo and Ta have been used as essential components for the purpose of strengthening the hard phase and improving various properties, but as mentioned above, Mo2C itself is a main component of the hard phase, TiC or TiCN. Since its properties are inferior to that of cermet, it actually deteriorates the properties of the cermet. In addition, sinterability is greatly influenced by the amount of binder phase in the system, but when the binder phase is the same amount, the addition of TaC reduces sinterability, requiring high temperature firing, which causes crystallization. The wear resistance of the cermet deteriorates as the particle size of the cermet increases.
【0018】これに対してNbは炭化物としてMo2
Cに比較してそれ自体優れた特性を有するためにサーメ
ットの特性改善に大きく寄与するとともに焼結性に影響
を与えないために、サーメットの耐摩耗性、耐酸化性、
耐欠損性を向上することができることがわかった。また
、VはVCとしてNbとともに硬質相を形成することに
よりNbの添加効果をを助長し、特にサーメットの高速
切削時の耐摩耗性を大きく向上することができる。On the other hand, Nb is Mo2 as a carbide.
Since it has superior properties in itself compared to C, it greatly contributes to improving the properties of cermet, and it does not affect sinterability, so it has excellent wear resistance, oxidation resistance,
It was found that fracture resistance can be improved. Furthermore, V forms a hard phase together with Nb as VC, thereby enhancing the effect of adding Nb, and can greatly improve the wear resistance particularly during high-speed cutting of cermet.
【0019】このような関係から、W、Nb、Vの合量
(b+c)に対するNbとVの合量(b)の割合(b/
b+c)が前記式において0.4より小さいと耐摩耗性
、耐酸化性に劣り、逆に0.95より大きいと耐欠損性
が低下する。なお、Nb/Vの原子比は1〜10、特に
2〜6であることが望ましい。From this relationship, the ratio (b/
If b+c) in the above formula is less than 0.4, the wear resistance and oxidation resistance will be poor, and if it is larger than 0.95, the chipping resistance will be reduced. Note that the atomic ratio of Nb/V is preferably 1 to 10, particularly 2 to 6.
【0020】一方、窒素および炭素の量はサーメットの
硬度および靱性を決定する要因として非常に重要であり
、特に窒素の量が増加するに従い、靱性が向上する傾向
にあるが、窒素の量が過多になると焼成時の窒化物の分
解によるガスがボイド中に焼結体中に残留するという問
題が生じる。よって前記式において窒素量(v)が0.
4より小さいと、靱性が低下し耐欠損性が不十分となり
、0.6を越えると焼結体内にボイドが発生し信頼性に
欠けるようになる。On the other hand, the amount of nitrogen and carbon is a very important factor in determining the hardness and toughness of cermet, and especially as the amount of nitrogen increases, the toughness tends to improve. When this happens, a problem arises in that gas from decomposition of nitrides during firing remains in the sintered body in the voids. Therefore, in the above formula, if the nitrogen amount (v) is 0.
When it is less than 4, the toughness decreases and fracture resistance becomes insufficient, and when it exceeds 0.6, voids occur in the sintered body, resulting in a lack of reliability.
【0021】また、窒素、炭素量のTi、W、Nb、V
の合量に対する比率(z)が0.8より小さいと焼結性
が劣化しボイドが残留し、1.0より大きいと遊離炭素
が発生するために強度劣化を引き起こす結果となる。望
ましくは0.85≦z≦1.0である。[0021] In addition, the amount of nitrogen and carbon is Ti, W, Nb, and V.
If the ratio (z) to the total amount is less than 0.8, the sinterability will deteriorate and voids will remain, and if it is larger than 1.0, free carbon will be generated, resulting in deterioration of strength. Desirably, 0.85≦z≦1.0.
【0022】本発明において結合相を形成する鉄族金属
としては、Niおよび/またはCoが挙げられ、望まし
くはNiとCoから構成され、特にCo/Ni+Coの
モル比が0.5〜0.9であることが耐摩耗性向上の点
からよい。また、この鉄族金属は系中において3〜40
重量%、特に5〜30重量%の割合で存在することが望
ましい。[0022] The iron group metal forming the binder phase in the present invention includes Ni and/or Co, preferably composed of Ni and Co, particularly when the molar ratio of Co/Ni+Co is 0.5 to 0.9. It is preferable from the viewpoint of improving wear resistance. In addition, this iron group metal is 3 to 40% in the system.
Preferably, it is present in a proportion by weight, in particular from 5 to 30% by weight.
【0023】上述したサーメットによれば、例えば構造
用合金鋼SCM435を被削材として切削を行うと、サ
ーメット中の鉄族金属並びに硬質相中のW等が被削材と
反応し、仕上げ面が荒れる場合がある。そこで、本発明
によれば、かかるTiCN基サーメットの表面にTiを
含有する硬質膜を被覆する。According to the above-mentioned cermet, when cutting is performed using, for example, structural alloy steel SCM435 as a work material, the iron group metals in the cermet and W in the hard phase react with the work material, causing the finished surface to deteriorate. It may get rough. Therefore, according to the present invention, the surface of such a TiCN-based cermet is coated with a hard film containing Ti.
【0024】この硬質膜は、サーメット母材と被削材と
の反応性を抑制させるために、硬質膜のTi量を母材の
Ti量、特に表層部のTi量よりも富んだ膜にすること
により前述したサーメットの被削材との反応性を抑制す
ることができる。また、サーメット表面に硬質膜を形成
する際に、サーメット表面において富む鉄族金属が硬質
膜中に拡散し、これが硬質膜の硬度、被削材との非反応
性等の被膜本来の特性を劣化させてしまう。よって、こ
の硬質膜は、その膜中に含有される鉄族金属量を100
ppm以下、特に70ppm以下に制御することが必要
である。In order to suppress the reactivity between the cermet base material and the workpiece material, this hard film has a Ti content richer than that of the base material, especially the Ti content in the surface layer. This makes it possible to suppress the reactivity of the cermet with the work material described above. In addition, when forming a hard film on the cermet surface, iron group metals that are abundant on the cermet surface diffuse into the hard film, which deteriorates the original properties of the hard film, such as hardness and non-reactivity with the workpiece material. I'll let you. Therefore, this hard film has an iron group metal content of 100%.
It is necessary to control it to below ppm, especially below 70 ppm.
【0025】さらに、硬質膜を構成する結晶の粒径は、
膜の硬度、強度を左右する要因となり、その結晶粒径が
小さいほど硬質且つ高強度、高靱性な被膜となる。よっ
て本発明によれば、この硬質膜の結晶粒径を0.4μm
以下、特に0.3μm 以下に制御することにより硬
質膜としての本来の機能を発揮するとともに、膜中破壊
に起因する粒脱落、しいては膜剥離を防止することがで
きる。Furthermore, the grain size of the crystals constituting the hard film is
It is a factor that influences the hardness and strength of the film, and the smaller the crystal grain size, the harder, higher strength, and higher toughness the film becomes. Therefore, according to the present invention, the crystal grain size of this hard film is set to 0.4 μm.
In particular, by controlling the thickness to 0.3 μm or less, it is possible to exhibit its original function as a hard film, and to prevent particle drop-off due to breakage in the film, and thus film peeling.
【0026】なお、Ti量がサーメット中のTi量より
も富むTi含有硬質膜としては、TiC、TiN、Ti
CN等が好適であり、これらの膜中には場合により酸素
が含まれることもある。[0026] The Ti-containing hard film in which the Ti content is higher than that in the cermet includes TiC, TiN, Ti
CN or the like is suitable, and these films may contain oxygen depending on the case.
【0027】この硬質膜は、サーメット表面に1〜10
μm の厚みで被覆するのが望ましく、膜厚が1μm
より小さいと、被削材との反応性抑制効果が小さく、被
削材の表面に荒れが生じ、10μm より厚いと母材と
被覆層との熱膨張差により使用時に剥離し易くなる。[0027] This hard film has a thickness of 1 to 10 on the cermet surface.
It is desirable to coat with a thickness of 1 μm.
If it is smaller, the effect of suppressing the reactivity with the work material will be small, and the surface of the work material will become rough, and if it is thicker than 10 μm, it will be easy to peel off during use due to the difference in thermal expansion between the base material and the coating layer.
【0028】次に、上記被覆TiCN基サーメットを製
造する方法について説明すると、まず、原料粉末として
Ti、W、Nbの炭化物、窒化物、炭窒化物の粉末およ
び鉄族金属粉末を最終焼結体が前述した割合に成るよう
に秤量混合する。その後、この混合粉末をプレス成形、
押し出し成形、射出成形等の周知の成形手段で成形後、
焼成する。Next, the method for manufacturing the above-mentioned coated TiCN-based cermet will be explained. First, powders of carbides, nitrides, and carbonitrides of Ti, W, and Nb and powders of iron group metals are used as raw material powders to form a final sintered body. Weigh and mix so that they are in the proportions mentioned above. After that, this mixed powder is press-molded,
After molding using well-known molding methods such as extrusion molding and injection molding,
Fire.
【0029】焼成は、真空中、窒素中の雰囲気あるいは
還元性雰囲気中で1400〜1600℃の温度で焼成す
ることによって高密度の焼結体が得られる。A high-density sintered body can be obtained by firing at a temperature of 1,400 to 1,600° C. in a vacuum, a nitrogen atmosphere, or a reducing atmosphere.
【0030】なお、焼成において鉄族金属との濡れ性に
優れるMoを実質上添加しないことに起因して系全体の
焼結性が若干低下することがあるが、この場合には鉄族
金属の量を増やすか、または炭素を0.05〜3重量%
程度添加することにより焼結性は改善される。[0030] Note that the sinterability of the entire system may be slightly reduced due to the fact that Mo, which has excellent wettability with iron group metals, is not substantially added during firing. increase the amount or carbon from 0.05 to 3% by weight
Sinterability is improved by adding a certain amount.
【0031】さらに、用いるTi化合物系原料粉末とし
て、TiC、TiCN、TiN等が挙げられるが、Ti
Nは場合により最終焼結体中にTiN相として残存する
ことがあるが、このTiN相は、それ自体結合相との濡
れ性が悪いことから結合相とTiN相との界面がクラッ
クの起点となりサーメットの機械的特性を劣化させてし
まう。よって、原料としてTiCやTiCNを用い、多
量のTiN粉末の添加を行わず、TiN相が形成されな
いように考慮すべきである。Furthermore, TiC, TiCN, TiN, etc. can be mentioned as the Ti compound-based raw material powder to be used.
In some cases, N may remain as a TiN phase in the final sintered body, but this TiN phase itself has poor wettability with the binder phase, so the interface between the binder phase and the TiN phase becomes the starting point of cracks. It deteriorates the mechanical properties of cermet. Therefore, consideration should be given to using TiC or TiCN as a raw material and not adding a large amount of TiN powder to prevent the formation of a TiN phase.
【0032】本発明によれば、上記の系に対して特性を
改善する目的でさらにZr、Hf、Cr等の炭化物、窒
化物、炭窒化物等を添加することもできる。According to the present invention, carbides, nitrides, carbonitrides, etc. such as Zr, Hf, Cr, etc. can be further added to the above system for the purpose of improving the characteristics.
【0033】次に、上記のようにして得られたサーメッ
トの表面にTiを含有する硬質膜を形成する。具体的に
は、熱CVD、プラズマCVD、レーザCVD等の化学
気相成長法(CVD法)、スパッタリング、イオンプレ
ーティング等の物理的蒸着法(PDV法)、あるいは気
相含浸法等が採用されるが、本発明に基づき硬質膜の粒
径を0.4μm 以下に制御するにはイオンプレーティ
ング、プラズマCVD法、スパッタリングが望ましい。Next, a hard film containing Ti is formed on the surface of the cermet obtained as described above. Specifically, chemical vapor deposition methods (CVD methods) such as thermal CVD, plasma CVD, and laser CVD, physical vapor deposition methods (PDV methods) such as sputtering and ion plating, or vapor phase impregnation methods are employed. However, in order to control the particle size of the hard film to 0.4 μm or less based on the present invention, ion plating, plasma CVD, and sputtering are preferable.
【0034】また、鉄族金属の硬質膜中への混入量を1
00ppm以下に制限するとともに膜付着強度を考慮し
た場合、イオンプレーティング、プラズマCVD法が等
が望ましく、特にイオンプレーティング法によれば、成
膜温度が低いことに起因して膜の結晶粒の微細化制御が
容易であること、しかも母材からの鉄族金属の拡散が抑
制されるために膜中への混入を防止することができる。
また、成膜にあたっては、反応炉内の設備等において鉄
族金属製の部品を極力排除するように考慮することも必
要である。[0034] Also, the amount of iron group metal mixed into the hard film was reduced to 1
When limiting the amount to 00 ppm or less and considering the film adhesion strength, ion plating, plasma CVD, etc. are preferable.In particular, the ion plating method reduces the formation of crystal grains in the film due to the low film forming temperature. It is easy to control fineness, and since the diffusion of iron group metals from the base material is suppressed, mixing into the film can be prevented. Furthermore, during film formation, it is also necessary to consider eliminating parts made of iron group metals as much as possible in the equipment in the reactor.
【0035】[0035]
【実施例】原料粉末として平均粒径が1〜1.5μm
のTiC、TiCN、WC、NbC、VC、Niおよび
Coの各粉末を用いて最終焼結体の組成が表1の割合に
成るように秤量混合した後、1.5ton/cm2 の
圧力でTNGA160408用のチップ形状にプレス成
形した。なお試料中14、15については、比較例とし
てNbCおよびVCの代わりにMo2 C、TaCを用
いた。
その後、次に、これらの成形体を1400〜1600℃
の温度で真空雰囲気で1時間焼成した。[Example] Average particle size as raw material powder is 1 to 1.5 μm
TiC, TiCN, WC, NbC, VC, Ni, and Co powders were weighed and mixed so that the composition of the final sintered body would be in the proportions shown in Table 1, and then sintered for TNGA160408 at a pressure of 1.5 ton/cm2. It was press-molded into a chip shape. For samples 14 and 15, Mo2 C and TaC were used instead of NbC and VC as comparative examples. Thereafter, these molded bodies were heated to 1400 to 1600°C.
It was baked at a temperature of 1 hour in a vacuum atmosphere.
【0036】得られた焼結体に対して組織観察を行った
ところ、Ti、Wを主体とする複炭窒化物からなる硬質
相と、結合相から構成されており、いずれの試料にもT
iN相の析出は認められなかった。When the structure of the obtained sintered body was observed, it was found that it was composed of a hard phase consisting of a double carbonitride mainly composed of Ti and W, and a binder phase.
No precipitation of iN phase was observed.
【0037】硬質膜は、イオンプレーティング法により
母材温度を300〜700℃に設定して3μm の膜厚
になるようにTiN、TiCN、TiCNO膜を形成し
た。また、被膜における結晶の平均粒径をSEM観察に
より、膜中の鉄族金属の含有量をICP分析により測定
した。[0037] For the hard film, TiN, TiCN, and TiCNO films were formed to a thickness of 3 μm using the ion plating method with the base material temperature set at 300 to 700°C. Further, the average grain size of crystals in the film was measured by SEM observation, and the content of iron group metals in the film was measured by ICP analysis.
【0038】次に、各試料を用いて下記切削条件で摩耗
試験、欠損試験を行い、切削後のフランク摩耗量ならび
に非欠損コーナー数を調べた。結果は表2に示した。Next, each sample was subjected to a wear test and a chipping test under the following cutting conditions, and the amount of flank wear and the number of non- chipping corners after cutting were investigated. The results are shown in Table 2.
【0039】
(摩耗試験)
被削材 SCM435
切削速度 200m/min切り込み
2mm
送り 0.3mm/rev切削時間
10min(Wear test) Work material SCM435 Cutting speed 200 m/min depth of cut
2mm Feed 0.3mm/rev Cutting time 10min
【0040】
(欠損試験)
被削材 SCM435(4本溝入り)切
削速度 100m/min切り込み
2mm
送り 0.3mm/rev切削時間
1min(Defect test) Work material SCM435 (4 grooves) Cutting speed 100 m/min depth of cut
2mm Feed 0.3mm/rev Cutting time 1min
【0041】また、仕上面の評価として表面粗さ計を用
いて、被削材仕上げ面状態をRmaxにて表現する手法
にて行い、この値が10s以上のものを×、10s未満
のものを○として評価した。[0041] In addition, for evaluation of the finished surface, a surface roughness meter was used to express the condition of the finished surface of the workpiece as Rmax. It was evaluated as ○.
【0042】[0042]
【表1】[Table 1]
【0043】[0043]
【表2】[Table 2]
【0044】表1および表2によれば、従来から硬質相
成分として用いられていたMoやTaを含有するサーメ
ットを母材として用いた試料番号10、11の試料は、
いずれも摩耗量が大きく、耐欠損性も本発明品に比較し
て劣るものであった。According to Tables 1 and 2, samples Nos. 10 and 11, in which cermets containing Mo and Ta, which have been conventionally used as hard phase components, were used as base materials,
In both cases, the amount of wear was large, and the chipping resistance was also inferior to that of the products of the present invention.
【0045】これに対して本発明の試料はいずれも優れ
た切削性能を示すが、母材の組成においてTi、W、N
b、C、Nの組成が本発明の範囲を逸脱する試料はいず
れも満足すべき結果が得られなかった。On the other hand, all the samples of the present invention show excellent cutting performance, but the composition of the base material is Ti, W, and N.
No satisfactory results were obtained for any of the samples in which the compositions of b, C, and N deviated from the range of the present invention.
【0046】[0046]
【発明の効果】以上、詳述した通り、本発明の被覆Ti
CN基サーメットは、母材における硬質相成分としてM
oおよびTaを代わりにNbおよびVを選択し、さらに
表面に所定の被膜を形成することにより、優れた耐摩耗
性、耐欠損性を有するとともに被削材の切削加工後の仕
上面の品質を向上させることができ、工具用材料として
長寿命化を図ることができる。Effects of the Invention As detailed above, the coated Ti of the present invention
CN-based cermet has M as a hard phase component in the base material.
By selecting Nb and V instead of o and Ta and further forming a predetermined film on the surface, it has excellent wear resistance and chipping resistance, and improves the quality of the finished surface after cutting the work material. It is possible to increase the lifespan of the tool as a tool material.
Claims (2)
およびVを含有する硬質相と、鉄族金属からなる結合相
とから構成され、全体組成から前記鉄族金属および不可
避不純物を除く他の成分組成を〔 (Ti)a (Nb
, V)b (W)c〕(Cu Nv )z と表した
時、a+b+c=1、0.50≦a≦0.95、0.0
5≦b+c≦0.5、0.40≦b/b+c≦0.95
、0.40≦v≦0.60、0.80≦z≦1.0、u
+v=1を満足するとともに、前記NbとVとの原子比
(Nb/V)が1〜10の範囲にあるTiCN基サーメ
ットの表面に、該サーメットよりTiに富み、平均粒径
を0.4μm以下、鉄族金属含有量が100ppm以下
のTiを含有する硬質膜を被覆してなることを特徴とす
る被覆TiCN基サーメット。[Claim 1] Mainly composed of Ti, at least W and Nb
and a hard phase containing V and a binder phase consisting of an iron group metal, and the other components excluding the iron group metal and inevitable impurities from the overall composition are
, V)b (W)c](Cu Nv)z, a+b+c=1, 0.50≦a≦0.95, 0.0
5≦b+c≦0.5, 0.40≦b/b+c≦0.95
, 0.40≦v≦0.60, 0.80≦z≦1.0, u
+v=1 and the atomic ratio of Nb to V (Nb/V) is in the range of 1 to 10. On the surface of the TiCN-based cermet, the cermet is richer in Ti than the cermet and has an average particle size of 0.4 μm. Hereinafter, a coated TiCN-based cermet characterized by being coated with a hard film containing Ti with an iron group metal content of 100 ppm or less.
含有量がそれぞれ0.5重量%以下である請求項1記載
の被覆TiCN基サーメット。2. The coated TiCN-based cermet according to claim 1, wherein the contents of Mo and Ta in the cermet are each 0.5% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2416053A JP2766079B2 (en) | 1990-12-27 | 1990-12-27 | Coated TiCN-based cermet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2416053A JP2766079B2 (en) | 1990-12-27 | 1990-12-27 | Coated TiCN-based cermet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04231454A true JPH04231454A (en) | 1992-08-20 |
JP2766079B2 JP2766079B2 (en) | 1998-06-18 |
Family
ID=18524306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2416053A Expired - Fee Related JP2766079B2 (en) | 1990-12-27 | 1990-12-27 | Coated TiCN-based cermet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2766079B2 (en) |
-
1990
- 1990-12-27 JP JP2416053A patent/JP2766079B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2766079B2 (en) | 1998-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7794830B2 (en) | Sintered cemented carbides using vanadium as gradient former | |
US5310605A (en) | Surface-toughened cemented carbide bodies and method of manufacture | |
US5296016A (en) | Surface coated cermet blade member | |
EP0246211A2 (en) | Sintered body for chip forming machining | |
USRE35538E (en) | Sintered body for chip forming machine | |
US20030129456A1 (en) | Cemented carbide and cutting tool | |
JP2771337B2 (en) | Coated TiCN-based cermet | |
JP4351521B2 (en) | Surface coated cutting tool | |
JP4069749B2 (en) | Cutting tool for roughing | |
JP2771336B2 (en) | Coated TiCN-based cermet | |
JP2828511B2 (en) | Surface coated TiCN based cermet | |
JP2766079B2 (en) | Coated TiCN-based cermet | |
JPH06248385A (en) | Ticn based cermet | |
JP2828512B2 (en) | Coated TiCN-based cermet | |
US12103089B2 (en) | Coated tool | |
WO2018162558A1 (en) | A coated cutting tool | |
JP4484500B2 (en) | Surface coated cutting tool | |
JP2001162411A (en) | Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance | |
JP2578677B2 (en) | TiCN-based cermet | |
JPH0665671A (en) | Cemented carbide for cutting tool | |
JPS6245290B2 (en) | ||
JP3371823B2 (en) | Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer | |
JPS58120434A (en) | Thermet chip for cutting provided with surface reaction layer and manufacture thereof | |
JPH0413842A (en) | Ticn-base cermet | |
JP2005111623A (en) | Surface coated cermet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080403 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090403 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090403 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100403 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |