Nothing Special   »   [go: up one dir, main page]

JPH04218267A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH04218267A
JPH04218267A JP3082305A JP8230591A JPH04218267A JP H04218267 A JPH04218267 A JP H04218267A JP 3082305 A JP3082305 A JP 3082305A JP 8230591 A JP8230591 A JP 8230591A JP H04218267 A JPH04218267 A JP H04218267A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte layer
solid electrolyte
ion
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3082305A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3082305A priority Critical patent/JPH04218267A/en
Publication of JPH04218267A publication Critical patent/JPH04218267A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To realize an operating temperature of 200 deg.C or more and enable the application for example, to an on-site fuel cell by maintaining sufficiently excellent characteristics such as high output density and compact structure possessed by a solid electrolyte type fuel cell. CONSTITUTION:An ion conductive solid electrolyte layer 1 is sandwiched between a pair of gas diffusing electrodes 2 and 3 having a porous catalytic layer. The ion conductive solid electrolyte layer 1 is constituted of an inorganic matrix which is filled with ion exchange resin and consists substantially of electronically non-conductive SiC, and further of an inorganic matrix which is substantially electronically non-conductive and consists of proton conductive NH4NbWO6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、イオン伝導性固体電解
質層を有する燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell having an ionically conductive solid electrolyte layer.

【0003】0003

【従来の技術】近年、高効率のエネルギー変換装置とし
て、燃料電池が注目を集めている。燃料電池は、一般に
電極反応に寄与するイオン種を含む電解質層を、電極反
応で変質しないで電子の授受が行え、かつ反応物質が移
行できる正負 2種類の電極によって挟持することによ
り素電池を形成し、この素電池の複数を集電板を介して
積層することによって構成される。上記電極は、起電反
応を生じさせる場所を提供するものであることから、通
常、多孔質体によって構成されており、かつ起電反応に
寄与する触媒を含む触媒電極として使用されている。
2. Description of the Related Art In recent years, fuel cells have attracted attention as highly efficient energy conversion devices. In general, a fuel cell forms a unit cell by sandwiching an electrolyte layer containing ionic species that contribute to electrode reactions between two types of electrodes, positive and negative, that can exchange electrons without being altered by electrode reactions and that allow the transfer of reactants. However, it is constructed by stacking a plurality of these unit cells with a current collector plate in between. Since the above-mentioned electrode provides a place where an electromotive reaction occurs, it is usually made of a porous material and is used as a catalytic electrode containing a catalyst that contributes to the electromotive reaction.

【0004】このような燃料電池における反応系のフロ
ーは、イオン種が酸性かアルカリ性かで異なり、例えば
酸性の場合には、以下に示すフローによって反応が進み
、(+)極側で生成物(水)が生ずる。
The flow of the reaction system in such a fuel cell differs depending on whether the ion species is acidic or alkaline. For example, in the case of acidity, the reaction proceeds according to the flow shown below, and the product ( water) is produced.

【0005】[0005]

【化1】[Chemical formula 1]

【0006】ところで、上記したような燃料電池のうち
、電解質層をプロトン伝導性の固体高分子電解質(So
lid Polymer Electrolyte)と
した燃料電池(以下、PE燃料電池と記す)は、コンパ
クトな構造で高出力密度であり、かつ簡略なシステムで
運転が可能なことから、宇宙用や車両用の移動用電源と
して注目されている。
By the way, in the above-mentioned fuel cell, the electrolyte layer is made of a proton-conducting solid polymer electrolyte (So
Fuel cells (hereinafter referred to as PE fuel cells) with a lid polymer electrolyte (PE fuel cell) have a compact structure, high output density, and can be operated with a simple system, so they are used as mobile power sources for space applications and vehicles. It is attracting attention as

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
たようなPE燃料電池は、そのイオン伝導性固体電解質
層が有機系の高分子膜(イオン交換樹脂膜)であるため
、電池の作動温度を高々100℃程度にしかできないと
いう難点があった。
[Problems to be Solved by the Invention] However, in the above-mentioned PE fuel cell, the ion-conducting solid electrolyte layer is an organic polymer membrane (ion exchange resin membrane), so the operating temperature of the battery is high. The drawback was that it could only be heated to about 100°C.

【0008】一方、燃料電池の発電に伴って発生する排
熱を回収して利用する、コジェネレーションシステムと
して適用できるオンサイト用燃料電池の開発が進められ
ているが、吸収式冷凍機の作動を考慮すると、排熱温度
として 170℃以上が望まれる。このため、燃料電池
の作動温度は約 200℃以上が必要となり、現在はリ
ン酸型燃料電池を主に対象として開発されている。
On the other hand, the development of on-site fuel cells that can be applied as a cogeneration system that recovers and utilizes the exhaust heat generated during power generation by fuel cells is progressing, but the operation of an absorption chiller is Considering this, it is desirable that the exhaust heat temperature be 170°C or higher. For this reason, the operating temperature of fuel cells must be approximately 200°C or higher, and currently, phosphoric acid fuel cells are being developed primarily.

【0009】このようなオンサイト用燃料電池にPE燃
料電池を適用しようとした場合、上述したようにPE燃
料電池の作動温度は、電解質層の劣化(分解)等を考慮
して 100℃程度にしかできないため、 200℃以
上の作動温度が必要なオンサイト用燃料電池には適用で
きないのが現状である。そこで、オンサイト用燃料電池
においても、優れた特性を有するPE燃料電池(コンパ
クトな構造で高出力密度であり、かつ簡略なシステムで
運転が可能)の適用を可能にすることが強く望まれてい
る。
[0009] When attempting to apply a PE fuel cell to such an on-site fuel cell, as mentioned above, the operating temperature of the PE fuel cell should be approximately 100°C, taking into account deterioration (decomposition) of the electrolyte layer, etc. Currently, it cannot be applied to on-site fuel cells that require an operating temperature of 200°C or higher. Therefore, it is strongly desired to enable the application of PE fuel cells with excellent characteristics (compact structure, high output density, and can be operated with a simple system) in on-site fuel cells as well. There is.

【0010】本発明は、このような課題に対処するため
になされたもので、上述したPE燃料電池の持つ優れた
特性を十分に維持した上で、作動温度を 200℃以上
にすることが可能な固体電解質型燃料電池を提供するこ
とを目的としている。
[0010] The present invention was made to address these problems, and it is possible to increase the operating temperature to 200°C or higher while sufficiently maintaining the excellent characteristics of the PE fuel cell described above. The purpose of this research is to provide a solid oxide fuel cell.

【0011】[発明の構成][Configuration of the invention]

【0012】0012

【課題を解決するための手段】すなわち本発明の固体電
解質型燃料電池は、多孔質触媒層を有する一対のガス拡
散電極と、これら一対のガス拡散電極によって挟持され
たイオン伝導性固体電解質層とを具備する固体電解質型
燃料電池において、前記イオン伝導性固体電解質層は、
イオン交換樹脂を充填した無機質マトリックスからなる
ことを特徴としている。
[Means for Solving the Problems] That is, the solid oxide fuel cell of the present invention comprises a pair of gas diffusion electrodes having a porous catalyst layer, and an ion conductive solid electrolyte layer sandwiched between the pair of gas diffusion electrodes. In the solid electrolyte fuel cell comprising:
It is characterized by consisting of an inorganic matrix filled with ion exchange resin.

【0013】本発明におけるイオン伝導性固体電解質層
は、実質的に非電子伝導性の無機質マトリックス内にイ
オン交換樹脂を充填したものである。上記イオン交換樹
脂としては、通常、種々の電気化学装置(燃料電池、水
電解槽、食塩電解槽等)にイオン交換樹脂膜として用い
られている各種のものを使用することができ、耐アルカ
リ性、耐酸性、耐熱性に富むものが好ましい。その中で
も特に、含フッ素高分子を骨格とするイオン交換樹脂、
例えばパーフルオロカーボンスルフォン酸樹脂等が好適
である。
The ion-conducting solid electrolyte layer of the present invention has an ion-exchange resin filled in a substantially non-electron-conducting inorganic matrix. As the above-mentioned ion exchange resin, various kinds of resins that are normally used as ion exchange resin membranes in various electrochemical devices (fuel cells, water electrolyzers, salt electrolyzers, etc.) can be used, and they have alkali resistance, Those with high acid resistance and heat resistance are preferred. Among them, ion exchange resins with fluorine-containing polymer skeletons,
For example, perfluorocarbon sulfonic acid resin is suitable.

【0014】また、上記イオン交換樹脂を充填する無機
質マトリックスとしては、耐熱性、耐薬品性を有する気
孔率50%以上の多孔体が用いられ、具体的には実質的
に非電子伝導性のセラミックス微粉末を用いた圧粉体、
焼結体および樹脂による結合シート等が例示される。上
記セラミックス微粉末としては、Al2 O 3 、 
ZrO2 、SiC 、 LiAlO2 等が例示され
る。また、燃料電池の出力を考慮した場合、NH4 N
bWO6 、NH4 TaWO6 等のパイロクロア化
合物、α− Zr(HPO4 ) 2 ・2H2 O 
、α− Zr(HPO4 ) 2 ・ H2 O 、α
− [Zr(PO4 )2 ]H2 ・ H2 O 等
のα−ZrP化合物、NH4 − β− Al2 O 
3 、NH4 − β’’− Al2 O 3 、 N
2 H 6 SO4 、N(CH3 )4  HSO4
 等のプロトン伝導性を有し、かつ実質的に非電子伝導
性のセラミックス材料を用いることが好ましい。
Further, as the inorganic matrix filled with the above-mentioned ion exchange resin, a porous body having a porosity of 50% or more and having heat resistance and chemical resistance is used. Specifically, a substantially non-electron conductive ceramic material is used. Green compact using fine powder,
Examples include a sintered body and a bonded sheet made of resin. As the ceramic fine powder, Al2O3,
Examples include ZrO2, SiC, LiAlO2, and the like. Also, when considering the output of the fuel cell, NH4 N
Pyrochlore compounds such as bWO6, NH4TaWO6, α-Zr(HPO4)2・2H2O
, α-Zr(HPO4) 2 ・H2O, α
- α-ZrP compounds such as [Zr(PO4)2]H2/H2O, NH4-β-Al2O
3, NH4-β''-Al2O3, N
2H6SO4, N(CH3)4HSO4
It is preferable to use a ceramic material which has proton conductivity and is substantially non-electron conductive.

【0015】上記したような無機質マトリックスにイオ
ン交換樹脂を充填する方法としては、イオン交換樹脂を
溶液化し、これを真空含浸する方法が一般的であり、か
つ簡便である。また、無機質マトリックスとして、セラ
ミックス微粉末の圧粉体を用いる場合には、セラミック
ス微粉末とイオン交換樹脂との混合物を圧縮成形するこ
とによって得られる。この場合、イオン交換樹脂がバイ
ンダ的に作用し、実用上強度的に十分なものが得られる
。さらに、セラミックス微粉末、イオン交換樹脂および
有機溶媒を含むスラリーをドクターブレードで展開した
後に乾燥させ、柔軟性を持たせたシートとすることもで
きる。また、上記シートに可撓性を付与するために、ポ
リイミド樹脂、ポリスルホン樹脂、ポリフェニレンサル
ファイド樹脂、フッ素樹脂等の耐熱性を有する樹脂を混
合して用いてもよい。この際、上記耐熱性樹脂の添加量
は、プロトン伝導の通路を阻害しない程度に、イオン交
換樹脂に対して10体積%以下程度とすることが好まし
い。またさらに、このイオン伝導性固体電解質層をガス
拡散電極と一体化する際には、両者のなじみをよくする
ために、プロトン伝導性および耐熱性を有する材料を介
在させてもよい。
[0015] As a method of filling the above-mentioned inorganic matrix with an ion exchange resin, it is common and simple to turn the ion exchange resin into a solution and vacuum impregnate it. Further, when a green compact of fine ceramic powder is used as the inorganic matrix, it can be obtained by compression molding a mixture of fine ceramic powder and ion exchange resin. In this case, the ion exchange resin acts as a binder, and a material with sufficient strength for practical use can be obtained. Furthermore, a flexible sheet can be obtained by spreading a slurry containing fine ceramic powder, an ion exchange resin, and an organic solvent using a doctor blade and then drying the slurry. Further, in order to impart flexibility to the sheet, heat-resistant resins such as polyimide resin, polysulfone resin, polyphenylene sulfide resin, and fluororesin may be mixed and used. At this time, the amount of the heat-resistant resin added is preferably about 10% by volume or less based on the ion exchange resin so as not to inhibit the proton conduction path. Furthermore, when this ion-conductive solid electrolyte layer is integrated with a gas diffusion electrode, a material having proton conductivity and heat resistance may be interposed to improve compatibility between the two.

【0016】[0016]

【作用】本発明の固体電解質型燃料電池においては、イ
オン伝導体であるイオン交換樹脂が、耐熱性、耐薬品性
を有する無機質マトリックス中に充填されて安定化され
ているため、電解質層に要求される機能、すなわち正負
極間の短絡防止、一定の間隔の維持、酸化剤ガスと燃料
ガスの交差混合の防止等の主要部分を無機質マトリック
スが担い、イオン交換樹脂は主にイオン伝導性のみを担
えばよいので、比較的高温で作動させることができるよ
うになる。よって、例えば 200℃以上での運転が可
能となる。さらに、無機質マトリックスとして、プロト
ン伝導性を有する材料を用いることによって、イオン伝
導性を無機質マトリックスとイオン交換樹脂との混合体
である電解質層そのものが担うため、電池出力の向上が
期待できる。
[Operation] In the solid electrolyte fuel cell of the present invention, the ion exchange resin, which is an ion conductor, is stabilized by being filled in an inorganic matrix that has heat resistance and chemical resistance. The inorganic matrix is responsible for the main functions such as preventing short circuits between positive and negative electrodes, maintaining a constant distance, and preventing cross-mixing of oxidant gas and fuel gas, while ion exchange resins mainly have only ionic conductivity. Since it only needs to be carried, it can be operated at relatively high temperatures. Therefore, it is possible to operate at a temperature of 200° C. or higher, for example. Furthermore, by using a material with proton conductivity as the inorganic matrix, the electrolyte layer itself, which is a mixture of the inorganic matrix and ion exchange resin, is responsible for ionic conductivity, so it is expected that the battery output will be improved.

【0017】[0017]

【実施例】以下、本発明の固体電解質型燃料電池の実施
例について図面を参照して説明する。
[Embodiments] Hereinafter, embodiments of the solid oxide fuel cell of the present invention will be described with reference to the drawings.

【0018】図1は、本発明の一実施例の固体電解質型
燃料電池の要部を示す断面図である。同図において、1
はイオン伝導性の固体電解質層である。このイオン伝導
性の固体電解質層1は、例えば多孔質の SiC焼結体
や SiC圧粉体等の無機質マトリックス、さらにはN
H4 NbWO6 焼結体やNH4 NbWO6 圧粉
体等のプロトン伝導性を有する無機質マトリックスを有
しており、これら無機質マトリックス内に、パーフルオ
ロカーボンスルフォン酸樹脂・ナフィオン(商品名、デ
ュポン社製)等のプロトン伝導性イオン交換樹脂が充填
されて構成されている。
FIG. 1 is a sectional view showing essential parts of a solid oxide fuel cell according to an embodiment of the present invention. In the same figure, 1
is an ionically conductive solid electrolyte layer. This ion-conductive solid electrolyte layer 1 is made of, for example, an inorganic matrix such as a porous SiC sintered body or a SiC powder compact, or an N
It has an inorganic matrix with proton conductivity such as H4 NbWO6 sintered body or NH4 NbWO6 green compact, and within these inorganic matrices, protons such as perfluorocarbon sulfonic acid resin Nafion (trade name, manufactured by DuPont) etc. It is filled with conductive ion exchange resin.

【0019】上記固体電解質層1の両表面上には、(−
)側触媒電極2と(+)側触媒電極3とが一体的に形成
されており、これらによって素電池4が構成されている
。これら触媒電極2、3は、多孔質状態のガス拡散電極
であり、多孔質触媒層とガス拡散層の両方の機能を兼ね
備えるものである。これら触媒電極2、3は、白金、パ
ラジウムあるいはこれらの合金等の触媒を担持した導電
性微粒子、例えばカーボン微粒子をポリテトラフルオロ
エチレンのような疎水性樹脂結合剤により保持した多孔
質体によって構成されている。
On both surfaces of the solid electrolyte layer 1, (-
) side catalyst electrode 2 and (+) side catalyst electrode 3 are integrally formed, and constitute a unit cell 4. These catalyst electrodes 2 and 3 are gas diffusion electrodes in a porous state, and have the functions of both a porous catalyst layer and a gas diffusion layer. These catalyst electrodes 2 and 3 are composed of a porous body in which conductive fine particles, such as carbon fine particles, carrying a catalyst such as platinum, palladium, or an alloy thereof are held by a hydrophobic resin binder such as polytetrafluoroethylene. ing.

【0020】また、(−)側触媒電極2の他方の面には
、多孔質カーボン支持体5を介して、燃料ガス例えば水
素ガスの通路となる溝6aが形成された導電性物質、例
えばカーボンからなる集電板6が配置されている。また
、(+)側触媒電極3の他方の面には、多孔質導電性撥
水層7を介して、酸化剤ガス例えば酸素ガスの通路とな
る溝8aが形成された導電性物質、例えばカーボンから
なる集電板8が配置されている。さらに、(+)側触媒
電極3に酸化剤ガスを供給すると、反応生成物例えば水
が(+)側触媒電極3側に生じるため、必要に応じて電
解液や液状反応生成物の移動通路となるウィック9が、
(+)側触媒電極3側の集電板8に設けられた溝8a内
に形成されている。
Further, on the other surface of the (-) side catalyst electrode 2, a conductive material, such as carbon, is formed with grooves 6a, which serve as passages for fuel gas, such as hydrogen gas, through a porous carbon support 5. A current collecting plate 6 consisting of the following is arranged. Further, on the other surface of the (+) side catalyst electrode 3, a conductive material, such as carbon, is formed with grooves 8a, which serve as passages for an oxidizing gas, such as oxygen gas, through a porous conductive water-repellent layer 7. A current collecting plate 8 consisting of the following is arranged. Furthermore, when an oxidant gas is supplied to the (+) side catalyst electrode 3, reaction products such as water are generated on the (+) side catalyst electrode 3, so if necessary, a passage for moving the electrolyte and liquid reaction products may be formed. Wick 9 becomes
It is formed in a groove 8a provided in the current collector plate 8 on the (+) side catalyst electrode 3 side.

【0021】そして、固体電解質層1、(+)側および
(−)側触媒電極2、3および集電板6、8等によって
、燃料電池の電池ユニット10が構成されている。なお
、図中11は上記燃料電池の電池ユニット10を直列に
積層してスタックを構成する際の電池の作動温度を制御
するための冷却媒体通路である。
A fuel cell unit 10 is constituted by the solid electrolyte layer 1, (+) side and (-) side catalyst electrodes 2, 3, current collector plates 6, 8, etc. In the figure, reference numeral 11 denotes a cooling medium passage for controlling the operating temperature of the cells when the fuel cell units 10 are stacked in series to form a stack.

【0022】次に、上記構成の固体電解質型燃料電池の
具体例について説明する。
Next, a specific example of the solid oxide fuel cell having the above structure will be explained.

【0023】実施例1 まず、無機質マトリックスとして、気孔率50%の S
iC焼結体を用意した。次いで、この SiC焼結体中
に、パーフルオロカーボンスルフォン酸樹脂の一つであ
るナフィオン117 (商品名、デュポン社製)を溶液
状にしたナフィオン溶液(ナフィオン117 を低級ア
ルコールと水の混合溶媒に溶かしたもの)約 5重量%
を真空含浸法により含浸させて、本発明に係わるイオン
伝導性固体電解質層1を得た。得られた上記イオン伝導
性固体電解質層の伝導性をナフィオンと共に図2に示す
。図2から明らかなように、上記ナフィオンを SiC
焼結体中に含浸させた固体電解質層は、 200℃以上
でも安定したイオン伝導性を示した。
Example 1 First, S with a porosity of 50% was used as an inorganic matrix.
An iC sintered body was prepared. Next, in this SiC sintered body, a Nafion solution (Nafion 117, which is a solution of Nafion 117 (trade name, manufactured by DuPont), which is one of the perfluorocarbon sulfonic acid resins, was dissolved in a mixed solvent of lower alcohol and water. Approximately 5% by weight
was impregnated by a vacuum impregnation method to obtain the ion conductive solid electrolyte layer 1 according to the present invention. The conductivity of the obtained ion-conductive solid electrolyte layer is shown in FIG. 2 together with Nafion. As is clear from Fig. 2, the above Nafion is SiC
The solid electrolyte layer impregnated into the sintered body showed stable ionic conductivity even at temperatures above 200°C.

【0024】次に、触媒としての白金が10重量%添加
されたカーボンブラック60重量部と、疎水性樹脂結合
剤としてポリテトラフルオロエチレン樹脂を分散液で4
0重量部とに対し、この分散液の約10倍の水を添加し
、これを充分に混合した後、濾過、乾燥して疎水性樹脂
結合剤と触媒担持炭素微粒子とが均一に混合された混合
物を得た。次いで、上記混合物をさらに充分に混練して
、ポリテトラフルオロエチレン樹脂を繊維化させて全体
が餅状をなす餅状物を作製した。次に、この餅状物をロ
ーラでシート化して多孔質状態の触媒層シートを作製し
た。この後、この触媒層シートを 320℃の窒素ガス
中で熱処理してガス拡散電極を得た。
Next, 60 parts by weight of carbon black to which 10% by weight of platinum as a catalyst was added and polytetrafluoroethylene resin as a hydrophobic resin binder were mixed in a dispersion of 4 parts by weight.
About 10 times as much water as this dispersion was added to 0 parts by weight, and the mixture was thoroughly mixed, filtered, and dried to uniformly mix the hydrophobic resin binder and the catalyst-supported carbon particles. A mixture was obtained. Next, the above mixture was further sufficiently kneaded to fiberize the polytetrafluoroethylene resin to produce a rice cake-like product having a rice cake shape as a whole. Next, this cake-like material was formed into a sheet using a roller to produce a porous catalyst layer sheet. Thereafter, this catalyst layer sheet was heat treated in nitrogen gas at 320°C to obtain a gas diffusion electrode.

【0025】このようにして得たガス拡散電極に、さら
に上記したナフィオン溶液を塗布して、これを含有させ
た後、これを(+)側および(−)側触媒電極2、3と
して用い、これら 2枚の触媒電極2、3で上述したナ
フィオンをSiC焼結体中に含浸させたイオン伝導性固
体電解質層1を挟み込み、温度120℃〜 130℃、
圧力60kg/cm2 の条件でホットプレスして一体
化することにより、電極・電解質層複合体を得た。この
ようにして得た電極・電解質層複合体を素電池4として
用いて、上記構成の燃料電池を組立てた。
[0025] The above-described Nafion solution was further coated on the gas diffusion electrode thus obtained to contain it, and then used as the (+) side and (-) side catalyst electrodes 2 and 3. An ion conductive solid electrolyte layer 1 in which the above-mentioned Nafion is impregnated into a SiC sintered body is sandwiched between these two catalyst electrodes 2 and 3, and the temperature is 120°C to 130°C.
An electrode/electrolyte layer composite was obtained by hot pressing and integrating under a pressure of 60 kg/cm2. The electrode/electrolyte layer composite thus obtained was used as a unit cell 4 to assemble a fuel cell having the above configuration.

【0026】また、本発明との比較として、イオン伝導
性固体電解質層1に通常のナフィオン膜を使用した以外
は上記実施例1と同様にして作製した電極・電解質層複
合体(比較例1)を用い、実施例1と同様にして燃料電
池を組立てた。
In addition, as a comparison with the present invention, an electrode/electrolyte layer composite (Comparative Example 1) was prepared in the same manner as in Example 1 except that an ordinary Nafion membrane was used for the ion-conductive solid electrolyte layer 1. A fuel cell was assembled in the same manner as in Example 1 using the following.

【0027】これら実施例1および比較例1の燃料電池
特性を評価するために、それぞれ運転試験を行った。な
お、試験条件は、温度 200℃、圧力5atm、燃料
ガス/水素、酸化剤ガス/空気、電流密度 400mA
/cm2 とした。 その結果を、セル電圧の経時変化として図3に示す。
[0027] In order to evaluate the fuel cell characteristics of these Example 1 and Comparative Example 1, operational tests were conducted for each. The test conditions were: temperature 200°C, pressure 5 atm, fuel gas/hydrogen, oxidant gas/air, current density 400 mA.
/cm2. The results are shown in FIG. 3 as a change in cell voltage over time.

【0028】図3から明らかなように、実施例1による
燃料電池は、比較例1による燃料電池に比べて寿命特性
に優れ、 200℃という作動温度下で安定して作動さ
せることが可能であることが分る。これは、固体電解質
層1として、イオン伝導体であるイオン交換樹脂を、耐
熱性、耐薬品性を有する無機質マトリックス中に充填さ
せて安定化したイオン伝導性固体電解質層を用いている
ため、電解質層の耐熱性が向上し、温度 200℃にお
いても運転が可能となったものである。
As is clear from FIG. 3, the fuel cell according to Example 1 has superior life characteristics compared to the fuel cell according to Comparative Example 1, and can be stably operated at an operating temperature of 200°C. I understand. This is because the solid electrolyte layer 1 uses an ion-conducting solid electrolyte layer stabilized by filling an ion-exchange resin, which is an ion conductor, into an inorganic matrix that has heat resistance and chemical resistance. The heat resistance of the layer has been improved, and operation is now possible even at temperatures of 200°C.

【0029】実施例2 まず、平均粒径 5μm の SiC粉末と、実施例1
で使用したナフィオン溶液とを、重量比で3:2 の割
合で混合し(ナフィオンは固体分重量として)、この混
合物をシート状に成形した後、温度 120℃〜130
℃、圧力300kg/cm2 の条件でホットプレス成
形し、本発明に係わるイオン伝導性固体電解質層1を得
た。
Example 2 First, SiC powder with an average particle size of 5 μm and Example 1 were prepared.
The Nafion solution used in the above was mixed at a weight ratio of 3:2 (Nafion as a solid weight), and this mixture was formed into a sheet shape, and then heated at a temperature of 120°C to 130°C.
C. and a pressure of 300 kg/cm2 to obtain an ion conductive solid electrolyte layer 1 according to the present invention.

【0030】次に、上記イオン伝導性固体電解質層1を
実施例1と同様にして作製した 2枚の触媒電極2、3
で挟み込み、実施例1と同一条件でホットプレスして一
体化することにより、電極・電解質層複合体を得た。そ
して、この電極・電解質層複合体を素電池4として用い
て、実施例1と同様に燃料電池を組立てた。この実施例
2による燃料電池の特性を実施例1と同一条件下で評価
したところ、実施例1の燃料電池とほぼ同等の優れた特
性が得られた。
Next, the ion conductive solid electrolyte layer 1 was prepared in the same manner as in Example 1, and two catalyst electrodes 2 and 3 were prepared.
An electrode/electrolyte layer composite was obtained by sandwiching the electrode and electrolyte layer composite by hot pressing and integrating under the same conditions as in Example 1. Then, using this electrode/electrolyte layer composite as the unit cell 4, a fuel cell was assembled in the same manner as in Example 1. When the characteristics of the fuel cell according to Example 2 were evaluated under the same conditions as in Example 1, excellent characteristics almost equivalent to those of the fuel cell of Example 1 were obtained.

【0031】なお、無機質マトリックスとして、この実
施例2のように、焼結していない圧粉体を用いた場合、
マトリックス中に存在するイオン交換樹脂が電解質層に
少々の流動性を与えるため、素電池4を挟み込む 2枚
の多孔質カーボン支持体5の表面の凹凸を吸収し、素電
池〜多孔質カーボン間の接触を良好にすると共に、多孔
質カーボン板と素電池の熱膨脹率の差や、平面方向の温
度分布に伴う熱応力を緩和する効果も示す。
Note that when an unsintered green compact is used as the inorganic matrix as in Example 2,
The ion exchange resin present in the matrix gives a little fluidity to the electrolyte layer, so it absorbs the unevenness of the surfaces of the two porous carbon supports 5 that sandwich the unit cell 4, and creates a gap between the unit cell and the porous carbon. In addition to improving the contact, it also shows the effect of alleviating the difference in thermal expansion coefficient between the porous carbon plate and the unit cell, as well as the thermal stress caused by the temperature distribution in the planar direction.

【0032】実施例3 実施例1で作製した疎水性樹脂結合剤と触媒担持炭素微
粒子とが均一に混合された混合物 100重量部に、さ
らに造孔剤として炭酸水素アンモニウムを60重量部添
加し均一に混合した。次いで、この混合物を用いて実施
例1と同様にして触媒層シートを作製し、この触媒層シ
ートに一旦 100℃で熱処理を施して造孔剤を気化さ
せた後、 320℃の窒素ガス中で熱処理してガス拡散
電極を得た。
Example 3 To 100 parts by weight of the homogeneous mixture of the hydrophobic resin binder and catalyst-supported carbon fine particles produced in Example 1, 60 parts by weight of ammonium hydrogen carbonate as a pore-forming agent was further added and the mixture was uniformly mixed. mixed with. Next, a catalyst layer sheet was prepared using this mixture in the same manner as in Example 1, and this catalyst layer sheet was once heat-treated at 100°C to vaporize the pore-forming agent, and then heated in nitrogen gas at 320°C. A gas diffusion electrode was obtained by heat treatment.

【0033】そして、このようにして得たガス拡散電極
を用いて実施例1と同一条件で電極・電解質層複合体を
作製し、同様に燃料電池を組立てた。このようにして作
製した燃料電池の特性を実施例1と同一条件下で評価し
たところ、実施例1の燃料電池とほぼ同じ優れた特性が
得られた。
[0033] Using the gas diffusion electrode thus obtained, an electrode/electrolyte layer composite was prepared under the same conditions as in Example 1, and a fuel cell was assembled in the same manner. When the characteristics of the fuel cell thus produced were evaluated under the same conditions as in Example 1, almost the same excellent characteristics as the fuel cell of Example 1 were obtained.

【0034】実施例4 プロトン伝導性を有する無機質マトリックスとして、気
孔率50%のNH4 NbWO6 焼結体を用意した。 次いで、このNH4 NbWO6 焼結体中に、実施例
1と同様のナフィオン溶液約 5重量%を真空含浸法に
より含浸させて、本発明に係わるイオン伝導性固体電解
質層1を得た。得られた上記イオン伝導性固体電解質層
の伝導性をナフィオンと共に図4に示す。図4から明ら
かなように、上記ナフィオンをNH4 NbWO6 焼
結体中に含浸させた固体電解質層は、 200℃以上で
も良好でかつ安定したイオン伝導性を示した。また、実
施例1(図2)と比較して、この実施例4(図4)の方
が 200℃以上でのイオン伝導性がより良好であるこ
とが分かる。
Example 4 An NH4NbWO6 sintered body with a porosity of 50% was prepared as an inorganic matrix having proton conductivity. Next, about 5% by weight of the same Nafion solution as in Example 1 was impregnated into this NH4NbWO6 sintered body by a vacuum impregnation method to obtain the ion conductive solid electrolyte layer 1 according to the present invention. The conductivity of the obtained ion-conductive solid electrolyte layer is shown in FIG. 4 together with Nafion. As is clear from FIG. 4, the solid electrolyte layer in which Nafion was impregnated into the NH4NbWO6 sintered body exhibited good and stable ionic conductivity even at temperatures above 200°C. Furthermore, it can be seen that, compared to Example 1 (FIG. 2), Example 4 (FIG. 4) has better ionic conductivity at temperatures of 200° C. or higher.

【0035】次に、上記ナフィオンをNH4 NbWO
6 焼結体中に含浸させたイオン伝導性固体電解質層1
を、実施例1と同様にして作製した 2枚の触媒電極2
、3で挟み込み、実施例1と同一条件でホットプレスし
て一体化することにより、電極・電解質層複合体を作製
し、さらにこの電極・電解質層複合体を素電池として用
いて燃料電池を組立てた。この燃料電池の運転試験結果
を図5に示す。試験方法は、実施例1と同様とした。
Next, the above Nafion was converted into NH4NbWO
6 Ion conductive solid electrolyte layer 1 impregnated into sintered body
Two catalyst electrodes 2 were prepared in the same manner as in Example 1.
, 3 and hot-pressed and integrated under the same conditions as in Example 1 to prepare an electrode/electrolyte layer composite, and then use this electrode/electrolyte layer composite as a unit cell to assemble a fuel cell. Ta. The operational test results of this fuel cell are shown in FIG. The test method was the same as in Example 1.

【0036】図5から明らかなように、実施例4による
燃料電池は、比較例1による燃料電池に比べて寿命特性
に優れ、 200℃という作動温度下で安定して、かつ
良好な出力で作動させることが可能であることが分る。 これは、固体電解質層1としてイオン交換樹脂を、耐熱
性、耐薬品性を有しかつプロトン伝導性を有する無機質
マトリックス中に充填させて安定化したイオン伝導性固
体電解質層を用いているため、電解質層の耐熱性が向上
すると共に、良好なプロトン伝導性を付与することがで
き、よって 200℃においても良好な出力で運転が可
能となったものである。 実施例5 まず、平均粒径 5μm のNH4 NbWO6 粉末
と、実施例1で使用したナフィオン溶液とを、重量比で
3:2 の割合で混合し(ナフィオンは固体分重量とし
て)、この混合物をシート状に成形した後、温度 12
0℃〜 130℃、圧力300kg/cm2 の条件で
ホットプレス成形し、本発明に係わるイオン伝導性固体
電解質層1を得た。
As is clear from FIG. 5, the fuel cell according to Example 4 has superior life characteristics compared to the fuel cell according to Comparative Example 1, and operates stably and with good output at an operating temperature of 200°C. It turns out that it is possible to do so. This is because the solid electrolyte layer 1 is an ion-conductive solid electrolyte layer stabilized by filling an ion-exchange resin into an inorganic matrix that has heat resistance, chemical resistance, and proton conductivity. The heat resistance of the electrolyte layer is improved, and good proton conductivity can be imparted, making it possible to operate with good output even at 200°C. Example 5 First, NH4NbWO6 powder with an average particle size of 5 μm and the Nafion solution used in Example 1 were mixed at a weight ratio of 3:2 (Nafion is the solid weight), and this mixture was formed into a sheet. After forming into a shape, the temperature is 12
Hot press molding was carried out under conditions of 0°C to 130°C and a pressure of 300 kg/cm 2 to obtain an ion conductive solid electrolyte layer 1 according to the present invention.

【0037】次に、上記イオン伝導性固体電解質層1を
実施例1と同様にして作製した 2枚の触媒電極2、3
で挟み込み、実施例1と同一条件でホットプレスして一
体化することにより、電極・電解質層複合体を得た。そ
して、この電極・電解質層複合体を素電池4として用い
て、実施例4と同様に燃料電池を組立てた。この実施例
5による燃料電池の特性を実施例4と同一条件下で評価
したところ、実施例4の燃料電池とほぼ同等の優れた特
性が得られた。
Next, the ion conductive solid electrolyte layer 1 was prepared in the same manner as in Example 1, and two catalyst electrodes 2 and 3 were prepared.
An electrode/electrolyte layer composite was obtained by sandwiching the electrode and electrolyte layer composite by hot pressing and integrating under the same conditions as in Example 1. Then, a fuel cell was assembled in the same manner as in Example 4 using this electrode/electrolyte layer composite as the unit cell 4. When the characteristics of the fuel cell according to Example 5 were evaluated under the same conditions as in Example 4, excellent characteristics almost equivalent to those of the fuel cell of Example 4 were obtained.

【0038】実施例6 実施例3と同様にして作製したガス拡散電極を用いて、
実施例4と同一条件で電極・電解質層複合体を作製し、
同様に燃料電池を組立てた。このようにして作製した燃
料電池の特性を実施例4と同一条件下で評価したところ
、実施例4の燃料電池とほぼ同じ優れた特性が得られた
Example 6 Using a gas diffusion electrode prepared in the same manner as in Example 3,
An electrode/electrolyte layer composite was produced under the same conditions as in Example 4,
A fuel cell was assembled in the same way. When the characteristics of the fuel cell thus produced were evaluated under the same conditions as in Example 4, almost the same excellent characteristics as the fuel cell of Example 4 were obtained.

【0039】なお、上記した各実施例では触媒として白
金を用いたが、Pd、 Pt−Pd合金、Pt−Cr合
金、Pt−Cr−Co合金、Pt−V合金、 Pt−M
n合金、 Pt−Mo合金等を用いた系についても同様
な効果が得られた。また、図1における冷却媒体通路1
1は、各セル毎ではなく複数セルに 1つとしてもよい
。冷却媒体としては、水、水蒸気、イオン伝導性をもた
ない有機溶媒等が例示され、またメタノール蒸気を流通
させてもよい。メタノールの場合には、その改質反応(
吸熱反応)を利用した熱除去が可能となる。さらに、集
電板6、8の材質は、カーボン、金属のいずれでもよい
[0039] Although platinum was used as the catalyst in each of the above examples, Pd, Pt-Pd alloy, Pt-Cr alloy, Pt-Cr-Co alloy, Pt-V alloy, Pt-M
Similar effects were obtained with systems using n alloys, Pt-Mo alloys, and the like. In addition, the cooling medium passage 1 in FIG.
1 may be set to one for multiple cells instead of for each cell. Examples of the cooling medium include water, steam, and organic solvents that do not have ion conductivity, and methanol vapor may also be passed. In the case of methanol, its reforming reaction (
This makes it possible to remove heat using an endothermic reaction. Furthermore, the material of the current collector plates 6 and 8 may be either carbon or metal.

【0040】[0040]

【発明の効果】以上説明したように、本発明の固体電解
質型燃料電池によれば、イオン伝導性固体電解質層とし
て、イオン伝導体であるイオン交換樹脂を耐熱性、耐薬
品性を有する無機質マトリックス中に充填させて安定化
した電解質層を用いているため、電解質層の骨格を成す
無機質マトリックスによって電解質層の耐熱性が向上し
、温度 200℃においても運転が可能となる。
As explained above, according to the solid electrolyte fuel cell of the present invention, the ion exchange resin, which is an ion conductor, is used as an ion conductive solid electrolyte layer in an inorganic matrix having heat resistance and chemical resistance. Since a stabilized electrolyte layer is used, the heat resistance of the electrolyte layer is improved by the inorganic matrix forming the skeleton of the electrolyte layer, and operation is possible even at temperatures of 200°C.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の燃料電池の要部を示す断面
図である。
FIG. 1 is a sectional view showing essential parts of a fuel cell according to an embodiment of the present invention.

【図2】本発明の一実施例の燃料電池に使用したイオン
伝導性固体電解質層のイオン伝導特性を示す図である。
FIG. 2 is a diagram showing ion conductive characteristics of an ion conductive solid electrolyte layer used in a fuel cell according to an example of the present invention.

【図3】本発明の一実施例による燃料電池の電池特性を
従来例と比較して示す図である。
FIG. 3 is a diagram illustrating cell characteristics of a fuel cell according to an embodiment of the present invention in comparison with a conventional example.

【図4】本発明の他の実施例の燃料電池に使用したイオ
ン伝導性固体電解質層のイオン伝導特性を示す図である
FIG. 4 is a diagram showing ion conductive characteristics of an ion conductive solid electrolyte layer used in a fuel cell according to another example of the present invention.

【図5】本発明の他の実施例による燃料電池の電池特性
を従来例と比較して示す図である。
FIG. 5 is a diagram showing cell characteristics of a fuel cell according to another embodiment of the present invention in comparison with a conventional example.

【符号の説明】[Explanation of symbols]

1……イオン伝導性固体電解質層 2……(−)側触媒電極 3……(+)側触媒電極 4……素電池 5……多孔質カーボン支持体 6、8…集電板 7……多孔質導電性撥水層 1...Ion conductive solid electrolyte layer 2... (-) side catalyst electrode 3... (+) side catalyst electrode 4...Battery 5...Porous carbon support 6, 8... Current collector plate 7...Porous conductive water repellent layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  多孔質触媒層を有する一対のガス拡散
電極と、これら一対のガス拡散電極によって挟持された
イオン伝導性固体電解質層とを具備する固体電解質型燃
料電池において、前記イオン伝導性固体電解質層は、イ
オン交換樹脂を充填した無機質マトリックスからなるこ
とを特徴とする固体電解質型燃料電池。
1. A solid oxide fuel cell comprising a pair of gas diffusion electrodes having a porous catalyst layer and an ion conductive solid electrolyte layer sandwiched between the pair of gas diffusion electrodes, wherein the ion conductive solid A solid electrolyte fuel cell characterized in that the electrolyte layer is composed of an inorganic matrix filled with an ion exchange resin.
【請求項2】  請求項1記載の固体電解質型燃料電池
において、前記無機質マトリックスは、プロトン伝導性
を有することを特徴とする固体電解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the inorganic matrix has proton conductivity.
JP3082305A 1990-05-31 1991-04-15 Solid electrolyte type fuel cell Withdrawn JPH04218267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082305A JPH04218267A (en) 1990-05-31 1991-04-15 Solid electrolyte type fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-142961 1990-05-31
JP14296190 1990-05-31
JP3082305A JPH04218267A (en) 1990-05-31 1991-04-15 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH04218267A true JPH04218267A (en) 1992-08-07

Family

ID=26423329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082305A Withdrawn JPH04218267A (en) 1990-05-31 1991-04-15 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH04218267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029752A1 (en) * 1995-03-20 1996-09-26 E.I. Du Pont De Nemours And Company Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
EP0818841A1 (en) * 1996-07-09 1998-01-14 Automobiles Peugeot Protonically conducting material, its use for manufacturing a protonically conducting membrane for fuel cells and supercapacitors
KR100446662B1 (en) * 2002-03-22 2004-09-04 주식회사 엘지화학 Polymer composite electrolyte membrane for fuel battery and method for preparing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029752A1 (en) * 1995-03-20 1996-09-26 E.I. Du Pont De Nemours And Company Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
EP0818841A1 (en) * 1996-07-09 1998-01-14 Automobiles Peugeot Protonically conducting material, its use for manufacturing a protonically conducting membrane for fuel cells and supercapacitors
FR2751119A1 (en) * 1996-07-09 1998-01-16 Commissariat Energie Atomique PROTONIC CONDUCTION MATERIAL, USE THEREOF FOR THE PRODUCTION OF A PROTONIC CONDUCTION MEMBRANE FOR FUEL CELLS AND SUPERCAPACITIES
KR100446662B1 (en) * 2002-03-22 2004-09-04 주식회사 엘지화학 Polymer composite electrolyte membrane for fuel battery and method for preparing the same

Similar Documents

Publication Publication Date Title
US7993791B2 (en) Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
JP3558134B2 (en) Flow field structure for membrane electrode assembly in fuel cells
US7183017B2 (en) Composite polymer electrolytes for proton exchange membrane fuel cells
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
US5521020A (en) Method for catalyzing a gas diffusion electrode
JP4233208B2 (en) Fuel cell
JPH06188008A (en) Fuel battery
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
US8257825B2 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
US20030003348A1 (en) Fuel cell
EP1323205A2 (en) Improved membrane electrode assemblies using ionic composite membranes
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JP2001006708A (en) Solid high polymer fuel cell
JP4349826B2 (en) Fuel cell and fuel cell
JPH03184266A (en) Fuel cell with solid electrolyte
KR100900130B1 (en) Fuel cell
JP2001076742A (en) Solid polymer fuel cell
JP2001236976A (en) Fuel cell
JPH10334922A (en) Solid high polymer fuel cell and its manufacture
JP2003115299A (en) Solid polymer fuel cell
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
KR100708489B1 (en) Manufacturing method of proton-conducting electrolyte membrane and fuel cell using the same
JP2003151564A (en) Electrode for solid high polymer fuel cell
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711