JPH0420781B2 - - Google Patents
Info
- Publication number
- JPH0420781B2 JPH0420781B2 JP58148809A JP14880983A JPH0420781B2 JP H0420781 B2 JPH0420781 B2 JP H0420781B2 JP 58148809 A JP58148809 A JP 58148809A JP 14880983 A JP14880983 A JP 14880983A JP H0420781 B2 JPH0420781 B2 JP H0420781B2
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- group
- coating
- water
- polyfluorinated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 claims description 149
- 239000010408 film Substances 0.000 claims description 147
- 239000011248 coating agent Substances 0.000 claims description 146
- 150000001875 compounds Chemical class 0.000 claims description 59
- -1 silane compound Chemical class 0.000 claims description 42
- 229910000077 silane Inorganic materials 0.000 claims description 40
- 239000010409 thin film Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 33
- 239000007795 chemical reaction product Substances 0.000 claims description 31
- 239000005871 repellent Substances 0.000 claims description 27
- 229920003002 synthetic resin Polymers 0.000 claims description 16
- 239000000057 synthetic resin Substances 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 8
- 150000007974 melamines Chemical class 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 125000003636 chemical group Chemical group 0.000 claims 1
- 239000010410 layer Substances 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- 239000011521 glass Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 28
- 238000003786 synthesis reaction Methods 0.000 description 27
- 239000000047 product Substances 0.000 description 21
- 239000003921 oil Substances 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 239000002904 solvent Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 150000004756 silanes Chemical class 0.000 description 10
- 239000004033 plastic Substances 0.000 description 9
- 230000002940 repellent Effects 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- 239000006087 Silane Coupling Agent Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 229920000877 Melamine resin Polymers 0.000 description 5
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229920000193 polymethacrylate Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 239000004640 Melamine resin Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- 239000004908 Emulsion polymer Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910003594 H2PtCl6.6H2O Inorganic materials 0.000 description 2
- 229910004721 HSiCl3 Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 2
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- 229920005497 Acrypet® Polymers 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- AUEXTLUUHCZFSX-UHFFFAOYSA-N alumane;silane Chemical compound [AlH3].[SiH4] AUEXTLUUHCZFSX-UHFFFAOYSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 230000002794 monomerizing effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Description
本発明は、各種基材の表面に処理されることに
よつて形成される撥水撥油性塗膜に関し、さらに
詳しくは少なくとも2層からなる塗膜であつて、
上層はポリフルオロ化基含有化合物の薄膜からな
る優れた撥水撥油性能及び耐久性を有する撥水撥
油性塗膜に関するものである。
各種基材、例えばガラス,セラミツクス,金
属,プラスチツク,木材などの表面は、大気中の
湿度及び温度の影響によつて水分が凝縮したり、
水によつて濡らされた場合、これら水分によつて
成分が溶出したり、変質されることによつて損な
われることは周知のことである。例えば、ガラス
において、水分はガラス成分を溶出してアルカリ
性となり、そのアルカリ性水分はガラスを浸蝕し
て、所謂“やけ”を生ぜしめたり、鉄や合金にお
いて、それら表面の物理的及び化学的不均一さに
よつて、水分は局部的な電位差を生ぜしめて腐
食、即ち湿食を進行せしめたり、プラスチツクに
おいて、水分は電気的性質、機械的性質、寸法あ
るいは外観などの諸性質に影響を与え、さらに木
材においては収縮、膨張などにより多くの性質を
変化せしめるなど、実用上の欠点を誘引する原因
となつている。
かかる状況において、各種基材の表面に処理す
ることによつて該基材に撥水撥油性能を付与し得
る撥水撥油剤として、フツ素系,シリコン系,ジ
ルコニア系,金属石けんなど種々のタイプのもの
が知られている。フツ素化された固体は、自由表
面エネルギーが低ために最も濡れ難いものである
ことから、各種基材の表面に含フツ素化合物ある
いは該化合物の重合体からなる塗膜を形成される
ことによつて撥水撥油性能を付与し得ることは知
られている。かかる含フツ素化合物において、ポ
リフルオロ化基含有化合物は、ポリフルオロ化基
の臨界表面張力が20dyn/cm2と低く、水はもとよ
り油類のそれより低いため、基材表面を被覆する
ことによつて撥水撥油性能を付与し得る好ましい
撥水撥油剤として挙げることができる。
各種基材の表面に処理して、撥水撥油性能を付
与せしめる処理方法としては、上記撥水撥油剤を
塗布あるいは撥水撥油剤に基材を浸漬するなどし
て基材と接触あるいは反応させることによつて形
成される塗膜を硬化する方法によつて行なわれ
る。しかるに上記撥水撥油剤は、一般に基材への
凝集力は強いが、自由表面エネルギーが低い故に
基材に対する接着力は弱く、そのために撥水撥油
性能を永く維持することが困難であつて耐久性に
問題がある。したがつて、既知の処理方法におい
て、被処理基材の表面に撥水撥油剤の塗膜を強固
に接着させるために、撥水撥油剤の塗布あるいは
浸漬などの処理前に基材の表面を粗面化したり、
特殊な処理を施こしたりすることを必要としてい
る。又、被処理基材の表面への撥水撥油剤の直接
塗布あるいは浸漬による塗膜の形成においては、
撥水撥油剤の塗布ムラ、不均質化を生じ易く、形
成された塗膜は撥水撥油性能の劣つたものとな
り、耐久性も低いという問題がある。特に、被処
理基材の表面に、既知の処理方法によつてポリフ
ルオロ化基含有化合物からなる撥水撥油剤の塗膜
を形成させても、形成された塗膜は硬度が低く、
容易に傷が付き、これが塗膜の耐久性を低下させ
る一因となつている。ポリフルオロ化基含有化合
物からなる塗膜の硬度は塗膜の膜厚に依存し、膜
厚を増加することによつて硬度の向上を図ること
ができるが、硬度の膜厚への依存関係には限界が
認められ、膜厚を増加することによつて耐久性を
維持するに十分な硬度を得ることには限界があ
る。しかも塗膜の硬度を高めるために膜厚を増加
することはコスト的に不利となることは免れな
い。
本発明者は、上記の如き問題点の認識に基づい
て、被処理基材の表面に塗布、吹き付け、あるい
は浸漬など既知の方法によつて該基材の表面に形
成される撥水撥油性塗膜に関し、優れた撥水撥油
性能と耐久性を有するポリフルオロ化基含有化合
物からなる塗膜について種々研究、検討を行なつ
た。
その結果、優れた撥水撥油性能を有するポリフ
ルオロ化基含有化合物からなる塗膜において、塗
膜の耐久性を維持せしめるための塗膜強度の向上
には、被処理基材の表面に接着力及び硬度の高い
材料からなる塗膜を形成させ、該塗膜上にポリフ
ルオロ化基含有化合物の薄膜を形成せしめること
により撥水撥油性能及び塗膜硬度の優れた撥水撥
油性塗膜が得られるという知見が得られた。
本発明者はかかる知見から、被処理基材の表面
に強固に接着し、硬度が高い塗膜を形成し得る材
料としてシラン化合物、又は合成樹脂材料が適し
ていて、これらの下層塗膜を形成せしめ、該塗膜
上にポリフルオロ化基含有化合物の薄膜を形成し
てなる少なくとも2層からなる塗膜は上層のポリ
フルオロ化基含有化合物が薄膜であつても硬度が
高く、したがつて耐久性を有する撥水撥油性塗膜
を得ることができるという事実を見出し本発明を
完成したものである。
本発明は、被処理基材の表面に形成されてなる
撥水撥油性多層膜において、該多層膜は少くとも
2層からなり、該多層膜の基材側の下層膜は下記
ポリフルオロ化基含有シラン化合物以外のシラン
化合物の塗布により形成された塗膜、又は合成樹
脂材料の厚さ0.1μ以上の塗膜からなり、上層膜は
ポリフルオロ化基含有シラン化合物の塗布により
形成された塗膜、ポリフルオロ化基含有化合物の
プラズマ重合により形成された薄膜、又はポリフ
ルオロアルキル基含有アルコールとメラミン誘導
体との反応物からなる塗膜からなることを特徴と
する撥水撥油性多層膜である。
本発明において、被処理基材とは、ガラス、セ
ラミツクス、金属、プラスチツク、木材などであ
つて、例えば有機材料と無機材料との複合体であ
つてもよく、全体あるいは部分的であつても、そ
れらに撥水撥油性能を付与せしめる目的で塗膜を
形成せしめるために処理され得るものであれば限
定されない。而して、本発明の撥水撥油性塗膜は
ガラス、プラスチツク、金属などの被処理基材に
対し、とくに有効な効果を与えるものである。
被処理基材側の下層塗膜の材料としてのシラン
化合物又は合成樹脂材料において、シラン化合物
は、その分子中にガラス、セラミツクス、金属な
どの無機質と化学的に結合する反応基とを併有す
るシランカツプリング剤が好適に使用し得る。か
かるシランカツプリング剤において、好ましいの
は一般式
{X(A)c}aSi(Z)bY4-a-b
で表わされるシランカツプリング剤である。上記
一般式において、Xは
The present invention relates to a water- and oil-repellent coating film formed by treating the surface of various base materials, and more specifically to a coating film consisting of at least two layers,
The upper layer relates to a water- and oil-repellent coating film comprising a thin film of a compound containing a polyfluorinated group and having excellent water- and oil-repellency performance and durability. The surfaces of various base materials, such as glass, ceramics, metals, plastics, and wood, are susceptible to moisture condensation due to the influence of atmospheric humidity and temperature.
It is well known that when wetted with water, components are eluted or deteriorated by the moisture, thereby causing damage. For example, in glass, water elutes the glass components and becomes alkaline, and this alkaline water corrodes the glass, causing so-called "scorching", and in iron and alloys, it causes physical and chemical non-uniformity on the surface. Depending on the situation, moisture can cause local potential differences that promote corrosion, or wet corrosion.In plastics, moisture can affect various properties such as electrical properties, mechanical properties, dimensions, or appearance; In wood, many properties change due to shrinkage, expansion, etc., which causes practical disadvantages. Under such circumstances, various water and oil repellents such as fluorine-based, silicon-based, zirconia-based, and metal soaps are used as water- and oil-repellent agents that can be applied to the surface of various base materials to impart water- and oil-repellent properties to the base materials. type is known. Fluorinated solids are the most difficult to wet due to their low free surface energy, so coatings made of fluorine-containing compounds or polymers of these compounds are formed on the surfaces of various substrates. It is known that this can impart water and oil repellency. Among such fluorine-containing compounds, polyfluorinated group-containing compounds have a low critical surface tension of 20 dyn/cm 2 , which is lower than that of water as well as oil. Therefore, it can be mentioned as a preferred water and oil repellent that can impart water and oil repellency. Treatment methods for imparting water and oil repellency to the surface of various base materials include applying the water and oil repellent described above or immersing the base material in the water and oil repellent to contact or react with the base material. This method is performed by curing the coating film formed by the process. However, although the above-mentioned water and oil repellents generally have a strong cohesive force to the base material, their adhesion to the base material is weak due to their low free surface energy, making it difficult to maintain water and oil repellency for a long time. There is a problem with durability. Therefore, in known treatment methods, in order to firmly adhere the coating film of the water and oil repellent to the surface of the substrate to be treated, the surface of the substrate is coated with the water and oil repellent before treatment such as coating or dipping. roughened or
It requires special treatment. In addition, when forming a coating film by directly applying or dipping a water and oil repellent onto the surface of the substrate to be treated,
There are problems in that the water and oil repellent agent tends to be unevenly applied and becomes non-uniform, and the formed coating film has poor water and oil repellency and low durability. In particular, even if a coating film of a water- and oil-repellent agent made of a polyfluorinated group-containing compound is formed on the surface of a substrate to be treated by a known treatment method, the formed coating film has low hardness;
It is easily scratched, which is one of the reasons for reducing the durability of the paint film. The hardness of a coating film made of a polyfluorinated group-containing compound depends on the thickness of the coating film, and the hardness can be improved by increasing the film thickness. However, there are limits to obtaining sufficient hardness to maintain durability by increasing the film thickness. Moreover, increasing the film thickness in order to increase the hardness of the coating film is inevitably disadvantageous in terms of cost. Based on the recognition of the above-mentioned problems, the present inventor has developed a water- and oil-repellent coating that is formed on the surface of a substrate to be treated by a known method such as coating, spraying, or dipping. Regarding films, we conducted various studies and studies on coating films made of polyfluorinated group-containing compounds that have excellent water and oil repellency and durability. As a result, in coating films made of polyfluorinated group-containing compounds that have excellent water and oil repellency, in order to maintain the durability of the coating film, it is necessary to adhere to the surface of the substrate to be treated. A water- and oil-repellent coating film with excellent water- and oil-repellent performance and coating hardness by forming a coating film made of a material with high strength and hardness, and forming a thin film of a polyfluorinated group-containing compound on the coating film. We found that it is possible to obtain Based on this knowledge, the present inventor found that silane compounds or synthetic resin materials are suitable as materials that can firmly adhere to the surface of the substrate to be treated and form a coating film with high hardness, and form the underlying coating film of these materials. Therefore, a coating film consisting of at least two layers formed by forming a thin film of a polyfluorinated group-containing compound on the coating film has high hardness and is therefore durable even if the upper layer of the polyfluorinated group-containing compound is a thin film. The present invention was completed by discovering the fact that it is possible to obtain a water- and oil-repellent coating film having properties. The present invention provides a water- and oil-repellent multilayer film formed on the surface of a substrate to be treated, wherein the multilayer film consists of at least two layers, and the lower layer film on the base material side of the multilayer film has the following polyfluorinated group. A coating film formed by coating a silane compound other than the containing silane compound, or a coating film of synthetic resin material with a thickness of 0.1μ or more, and the upper layer is a coating film formed by coating a silane compound containing a polyfluorinated group. , a water- and oil-repellent multilayer film characterized by comprising a thin film formed by plasma polymerization of a compound containing a polyfluorinated group, or a coating film made of a reaction product of an alcohol containing a polyfluoroalkyl group and a melamine derivative. In the present invention, the substrate to be treated is glass, ceramics, metal, plastic, wood, etc., and may be a composite of an organic material and an inorganic material, for example, even if it is wholly or partially, There are no limitations as long as they can be treated to form a coating film for the purpose of imparting water and oil repellency to them. Therefore, the water- and oil-repellent coating film of the present invention has a particularly effective effect on substrates to be treated such as glass, plastic, and metal. In the silane compound or synthetic resin material used as the material for the lower coating film on the side of the substrate to be treated, the silane compound is a silane compound that has a reactive group in its molecule that chemically bonds with an inorganic substance such as glass, ceramics, or metal. Coupling agents can be suitably used. Among such silane coupling agents, a silane coupling agent represented by the general formula {X(A) c } a Si(Z) b Y 4-ab is preferred. In the above general formula, X is
【式】NH2
−,NH2CH2CH2NH−,HS−,Cl−,CH2=
CH−,[Formula] NH 2 −, NH 2 CH 2 CH 2 NH−, HS−, Cl−, CH 2 =
CH−,
【式】NCO−,Aはアルキレ
ン基、Zは炭素数1〜4の低級アルキル基、Yは
ハロゲン、アルコキシ基から選定され、aは1〜
3の整数、bは0,1〜2の整数(ただし、a+
bは1〜3の整数)、cは0又は1の整数である。
上記一般式で表わされるシランカツプリング剤
を例示すると、
[Formula] NCO-, A is an alkylene group, Z is a lower alkyl group having 1 to 4 carbon atoms, Y is selected from a halogen or an alkoxy group, and a is selected from 1 to 4.
An integer of 3, b is an integer of 0, 1 to 2 (however, a+
b is an integer of 1 to 3), and c is an integer of 0 or 1. Examples of silane coupling agents represented by the above general formula are:
【式】
NH2(CH2)2NH(CH2)3Si(OCH3)3,
NH2(CH2)3Si(OCH3)3, CH2=CHSi
(OCH3)3,
CH2=CHSi(OC2H5)3, CH2=CHSiCl3,[Formula] NH 2 (CH 2 ) 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 , NH 2 (CH 2 ) 3 Si (OCH 3 ) 3 , CH 2 =CHSi
( OCH3 ) 3 , CH2 =CHSi( OC2H5 ) 3 , CH2 = CHSiCl3 ,
【式】HS (CH2)3Si(OCH3)3, NCO(CH2)3Si(OC2H5)3,Cl(CH2)3Si(OCH3)3, [Formula] HS (CH 2 ) 3 Si (OCH 3 ) 3 , NCO (CH 2 ) 3 Si (OC 2 H 5 ) 3 , Cl (CH 2 ) 3 Si (OCH 3 ) 3 ,
【式】を挙げるこ
とができる。シランカツプリング剤の他に、テト
ラアルコキシシラン,アルキルアルコキシシラ
ン,アリルアルコキシシラン類の加水分解物であ
つてもよい。かかるシラン化合物は2種以上を併
用してもよく、又接着性、耐久性などの物性の向
上、あるいは染色性を付与させる目的で他の添加
剤、例えば微粒子状のシリカゾルなどを併用組合
わせてもよい。シラン化合物は、ガラス,セラミ
ツクス,金属,プラスチツク,木材などの被処理
基材に好適に用いることができる。
又、合成樹脂材料としては熱可塑性樹脂系及び
熱硬化性樹脂系いづれでもよく、塗膜が形成され
得るものであれば特に限定されない。かかる合成
樹脂材料としては、例えば、ポリアクリレート、
ポリメタクリレート、ポリアミド、ポリウレタン
などの熱可塑性樹脂、エポキシ樹脂、メラミン樹
脂、尿素樹脂などの熱硬化性樹脂を挙げることが
でき。而して、合成樹脂材料において、好ましい
のは硬化後、高い硬度を有するものである。合成
樹脂材料において、必要によつて、諸物性を向
上、あるいは付加する目的から、他の添加剤、例
えばシリカ、チタニアなどの微粒子状物を添加す
ることができる。合成樹脂材料は、ガラス、金
属、木材などの被処理基材に好適に用い得る。
上層薄膜は下記のポリフルオロ化基含有化合物
の塗膜や薄膜からなる。その第1はポリフルオロ
化基含有シラン化合物を塗布して形成された塗膜
であり、第2ポリフルオロ化基含有化合物のプラ
ズマ重合により形成された薄膜であり、第3はポ
リフルオロ化基含有アルコールとメラミン誘導体
との反応物からなる塗膜である。これら上層薄膜
を形成するポリフルオロ化基含有化合物は、好ま
しくはフツ素含有率20重量%以上のものである。
なお、前記下層の塗膜におけるシラン化合物は下
記のようなポリフルオロ化基含有シラン化合物と
は異なるものであり、特にフツ素原子を有しない
ものである。
ポリフルオロ化基含有シラン化合物としては、
例えば
Rf(CH2)2SiCl3,Rf(CH2)2Si(CH3)Cl2,
(RfCH2CH2)2SiCl2,Rf(CH2)2Si(OCH3)3,
RfCONH(CH2)3Si(OC2H5)3,
RfCONH(CH2)2NH(CH2)3Si(OC2H5)3,
RfSO2N(CH3)(CH2)2CONH(CH2)3Si
(OC2H5)3,
Rf(CH2)2OCO(CH2)2S(CH2)3Si(OCH3)3,
Rf(CH2)2OCONH(CH2)3Si(OC2H5)3,
Rf(CH2)2NH(CH2)2Si(OCH3)3,
Rf(CH2)2NH(CH2)2Si(OCH2CH2OCH3)3,
(ただし、Rfは炭素数4〜16のポリフルオロ
アルキル基、mは1以上の整数)
などのポリフルオロアルキル基含有シラン化合
物、あるいはポリフルオロアルキル基がエーテル
結合を有するシラン化合物、及びかかるシラン化
合物と他のシラン化合物との混合物、
Cl3Si(CH2)2(CF2)o(CH2)2SiCl3,
(H3CO)3Si(CH2)2(CF2)o(CH2)2Si(OCH3)3,
(ただし、nは4〜16の整数、以下同)
などのポリフルオロアルキレン基含有シラン化合
物などがある。プラズマ重合により形成される薄
膜は、例えばC8H17CH=CH2,CF3−C≡C−
CF3,C8F18などのプラズマ重合性のポリフルオ
ロ化基含有化合物をプラズマ重合して形成される
薄膜がある。ポリフルオロアルキル基含有アルコ
ールとメラミン誘導体との反応物からなる塗膜と
しては、両者の混合物を塗布して反応させて得ら
れる塗膜があり、それらの反応物としては、例え
ば
Rf(CH2)2OHと
のようなポリフルオロアルキル基含有アルコール
とメラミン誘導体との反応物が挙げられる。
本発明の撥水撥油性塗膜は、被処理基材の表面
に形成されてなる少なくとも2層の塗膜からなる
が、下層塗膜の厚さは0.1μ以上であることが必要
である。下層塗膜の厚さは0.1μ以下であると塗膜
材料の分子の絡み合いが不十分となり、塗膜強度
が維持されず、そのため下層塗膜上に形成される
上層薄膜であるポリフルオロ化基含有化合物の薄
膜の硬度の向上は得られなくなる。下層塗膜の厚
さは増加するに従い、該塗膜上に形成されるポリ
フルオロ化基含有化合物の薄膜の硬度は向上する
が、下層薄膜形成の作業性あるいはコストの点か
ら必要以上に厚くするのは適当でない。被処理基
材表面への通常の塗布、吹付け、あるいは浸漬な
ど(以下、これらの方法を総称して塗布と称す
る)によつて形成される塗膜の膜厚であれば必要
硬度が得られる。その膜厚は0.1μ以上、好ましく
は0.5〜5μの範囲である。
被処理基材表面への下層塗膜の形成方法は特に
限定されない。しかしながら、用いられる下層塗
膜材料によつて、それら材料の調整法を異にす
る。シラン化合物を用いる場合は、シラン化合物
を例えばアセトン,テトラヒドロフラン,低級ア
ルコールなどの有機溶媒に溶解し、5〜50重量
%、好ましくは15〜40重量%溶液に調整する。し
かる後、調整溶液を被処理基材表面に通常の塗布
方法によつて塗布し、室温あるいは必要に応じて
加熱することによつて硬化させる。しかしなが
ら、シラン化合物が部分的に硬化した塗膜状態に
おいて該塗膜上に上層薄膜のポリフルオロ化基含
有化合物を塗布し薄膜を形成せしめるのが、ポリ
フルオロ化基含有化合物の接着性、及び薄膜の硬
度の点から好ましい。シラン化合物を2種以上併
用、あるいは他の添加物、例えばシリカゾルなど
を併用する場合は、それらを混合撹拌して反応さ
せた後、有機溶媒を加えて粘度を調整し、前記と
同様に塗布し、硬化、好ましくは部分硬化状態の
塗膜を形成させる。合成樹脂材料を用いる場合
は、単量体を塗布して重合させる方法、プレポリ
マーを塗布して重合させる方法、あるいは重合体
を溶解する有機溶剤に重合体を溶解した溶剤溶液
を塗布して乾燥させる方法などいずれの方法も採
ることができる。熱可塑性樹脂において、例えば
ポリアクリレート、又はポリメタクリレートは単
量体を溶解する有機溶剤に溶解し、過酸化ベンゾ
イルを重合触媒として添加して、、加熱重合せし
める溶液重合によつて得られる比較的低重合の重
合物、あるいは単量体を乳化剤で水中で乳化し、
過酸化ベンゾイルを添加して、加熱重合せしめる
乳化重合によつて得られる乳化重合物、などを粘
度調整して被処理基材の表面に塗布した後、室温
あるいは加熱して重合を促進することによつて塗
膜を形成させる。又、ポリアクリレート、ポリメ
タクリレート、ポリアミドなどは、それらの重合
体を溶解する有機溶剤で溶解し、粘度を調整した
溶剤溶液を塗布した後、室温にて有機溶剤を蒸発
させることによつて塗膜を形成させる。ポリウレ
タンはウレタン塗料グレードの1液タイプ及び2
液タイプいずれでも用いることができる。2液タ
イプにおいて、ポリイソシアネートと水酸基含有
ポリエステル、又はポリエーテルからなる2成分
ポリオール硬化型、あるいはポリウレタンプレポ
リマーとポリアミンやポリオールなどの鎖延長剤
とからなる2成分鎖延長剤硬化型などは使用直前
に混合して粘度が適当に向上したところで被処理
基材の表面に塗布し、室温あるいは加熱して塗膜
を形成させる。1液タイプにおいて、湿気硬化型
は塗布後、空気中の湿分により硬化させて塗膜を
形成させる。熱硬化性樹脂においては、例えばエ
ポキシ樹脂は常温硬化タイプ、加熱硬化タイプい
ずれも用いることができる。常温硬化タイプは液
状汎用エポキシ樹脂に脂肪族アミン系触媒を混
合、調整し、被処理基材の表面に塗布した後、室
温にて硬化させ塗膜を形成させる。加熱硬化タイ
プは芳香族アミン系触媒を混合、調整し、塗布
後、加熱することによつて硬化させ塗膜を形成さ
せる。メラミン誘導体、尿素樹脂などはプレポリ
マーを調整し、被処理基材の表面に塗布した後、
加熱して硬化させ塗膜を形成させる。かかる合成
樹脂材料を用いて、形成される塗膜は、硬化処理
において、部分硬化あるいは部分重合の塗膜状態
において、該塗膜上に上層薄膜材料のポリフルオ
ロ化基含有化合物を塗布するのが好ましい。完全
な硬化状態では、上層薄膜のポリフルオロ化基含
有化合物の接着力、及び形成される薄膜の硬度が
低くなり、特に被処理基材がプラスチツクにおい
て、同種の合成樹脂材料を用いる場合は、被処理
基材のプラスチツク表面にポリフルオロ化基含有
化合物を直接塗布することと同様となることか
ら、2層塗膜による効果は低いものとなる。被処
理基材は特に制限されるものではないが、被処理
基材がプラスチツクであつて、下層塗膜を合成樹
脂材料を用いる場合は、特に下層塗膜を部分硬化
状態とすることが必要である。
本発明において、下層塗膜は1層のみに限定さ
れない。例えば合成樹脂材料の塗膜を形成し、該
塗膜にシラン化合物の塗膜を形成せしめ、その塗
膜上にポリフルオロ化基含有化合物の薄膜を形成
させてもよく、又例えば帯電防止性などの機能を
付与する塗膜を形成させ、その塗膜上にシラン化
合物又は合成樹脂材料の塗膜が形成されていても
よい。
本発明において、下層塗膜上に形成される上層
薄膜のポリフルオロ化基含有化合物の薄膜の形成
方法は、既知の塗布方法によつて行なうことがで
きる。しかしながら、該化合物の塗布に好適な該
化合物の調整方法は用いる化合物によつて異な
る。即ち塗布の作業性及び塗膜の厚さの調整を容
易とならしむるために各種の揮発性溶媒に希釈さ
れた溶媒溶液とするのが好ましい。例えば前記ポ
リフルオロアルキル基含有シラン化合物、ポリフ
ルオロアルキル基がエーテル結合を有するシラン
化合物、かかるシラン化合物と他のシラン化合物
との硬合物、及びポリフルオロアルキレン基含有
シラン化合物の場合は、該化合物又は混合物をア
セトン、テトラヒドロフラン、塩素系あるいはフ
ツ素系などの有機溶剤の1種又は2種以上の混合
溶剤を用いて1〜15重量%溶剤溶液、好ましくは
3〜10重量%溶剤溶液として、下層塗膜上に塗布
する。塗布後は加熱してキユアリングするが、段
階的に加熱することができる。加熱方法としては
熱風赤外線などで行なうことが可能である。加熱
温度は上記ポリフルオロ化基含有化合物及び被処
理基材の種類によつて決定されるが、通常は100
℃以上の温度で20分以上の加熱条件で行なわれ
る。好ましくは120℃〜160℃の温度であるが、必
要以上の高温においてはポリフルオロ化基含有化
合物が熱分解したり、又、被処理基材が変形した
りするので好ましくない。ポリフルオロアルキル
基含有アルコールとメラミン誘導体との反応物
は、固形成分に対して1重量%のP−トルエンス
ルホン酸を触媒成分として加え、加熱して反応生
成物を得。かかる反応生成物は前記の化合物と同
様に溶剤によつて溶剤溶液として、下層塗膜上に
塗布した後、前記と同様の条件でキユアリングす
ることによつて薄膜を形成せしめる。又、プラズ
マ重合性化合物は下層塗膜上に、プラズマ重合装
置を使用して装置内で重合反応を行なうことによ
つて薄膜を形成させることができる。
ポリフルオロ化基含有化合物の使用形態は上記
の如き溶剤溶液に限定されることなく、溶媒分散
液、乳濁液、エアゾールなど任意の形態に調整さ
れたものであつてもよい。又、ポリフルオロ化基
含有化合物に無機フイラー、帯電防止剤、架橋剤
などの添加剤が適宜添加されてもよい。
上記の方法によつて形成される上層薄膜の厚さ
は1μ以下において実用上十分な撥水撥油性能及
び塗膜硬度が得得られる。上層薄膜のポリフルオ
ロ化基含有化合物は厚くなるにしたがい硬度は向
上するが、それには限度があり、下層塗膜の硬度
を超え難く、例えば1μ以上であつても撥水撥油
性能及び塗膜硬度の格段の向上は得られない。本
発明の撥水撥油性塗膜の硬度は下層塗膜が有効に
利用されることにあり、上層薄膜は薄膜であつて
も塗膜硬度が維持され、しかもコスト的に有利と
なるものである。
本発明の塗膜の厚さは、下層塗膜及び上層薄膜
の調整条件及び塗布条件によつて調整することが
できる。
本発明の撥水撥油性塗膜は、被処理基材の種
類、下層塗膜及び上層薄膜材料によつて種々の組
合せが可能である。而して撥水撥油性能、塗膜硬
度、塗膜形成の作業性及びコストなどの点から、
最も好ましい組合せを例示すると被処理基材−下
層塗膜−上層塗膜において、ガラス−シランカツ
プリング剤−ポリフルオロアルキル基含有シラン
化合物、ガラス−合成樹脂材料(エポキシ樹脂、
メラミン樹脂、ポリウレタンの1種)−ポリフル
オロアルキル基含有シラン化合物、プラスチツク
(ポリカーボネート、ポリメタクリレートなど)
又は金属(アルミニウム)−シランカツプリング
剤−ポリフルオロアルキル基含有シラン化合物が
挙げられる。これら組合せにおいて、シランカツ
プリング剤は2種の混合物、又はシリカゾルとの
混合物であるのが好ましく、又、ポリフルオロア
ルキル基シラン化合物は、2種の混合物、あるい
はポリフルオロアルキル基がエーテル結合を有す
るシラン化合物などがある。
本発明の撥水撥油性塗膜において、基材に形成
せしめた塗膜の撥水撥油性能は塗膜上に水、又は
ヘキサデカンを滴下して、それらの接触角を測定
することによつて求められる。例えばガラスに形
成せしめた塗膜の水の接触角は70゜〜112゜、ヘキ
サデカンの接触角は42゜〜62゜であつて、未処理ガ
ラスの水及びヘキサデカンの接触角が30゜以下で
あることから優れた効果が認められる。更に基材
に形成せしめた塗膜の硬度は鉛筆引かき試験機
(JIS−K5401)を使用して鉛筆硬度を求めたが、
例えばガラスに形成せしめた塗膜は2B〜5H以上
を示し、ガラスに形成されたポリフルオロ化基含
有化合物のみからなる塗膜の4Bに対し硬度の向
上が顕著であることが認められる。
以下に、本発明を実施例により具体的に説明す
るが、塗膜の厚さは被処理基材の表面に形成され
た塗膜の膜厚(下層塗膜と上層薄膜の合計)を
“タリステツプ”(Rank Taylor Hobson社製)
を使用して測定し、下層塗膜の厚さは、その塗膜
が部分硬化状態において上層薄膜のポリフルオロ
化基含有化合物を塗布したので、実施例ごとに測
定していない。しかし、下層塗膜の厚さは実施例
と同一条件にてて完全硬化せしめた状態におい
て、あらかじめ0.1〜2μであることを確認してい
る。なお、本発明はこれら実施例のみに限定され
るものではない。
合成例 1
RfCH=CH2(但し、Rf:CoF2o+1、n:6,8,
10,12の混合物で平均値9.0)49.6g(0.1モル)、
HSiCl315.9g(0.12モル)、H2PtCl6・6H2Oの50
%イソプロパノール溶液0.2gを内容積100mlのガ
ラス製耐圧アンプルに入れ、振盪しながら85℃で
20時間反応させた。反応終了後、減圧蒸留をする
ことによつて反応生成物を得た。反応生成物はガ
スクロマトグラフイーで分析するとRf
(CH2)2SiCl3(b.p.85℃〜100℃/3〜5mmHg)で
あり、それへの転化率は95%であつた。
合成例 2
合成例1の反応生成物Rf(CH2)2SiCl350.3g
(0.08モル)、メタノール15gを混合し、乾燥窒素
をバブリングして生成するHClを除去しながら反
応させた。この反応の終点は生成したHClを定量
して確認した。反応終了後、過剰のメタノールを
留去して反応生成物を得た。反応生成物はガスク
ロマトグラフイーで分析するとRf(CH2)2Si
(OCH3)3であり、それへの転化率は100%であつ
た。
合成例 3
RfCOOCH(CH3)2(但し、Rf:CoF2o+1、n:
6,8,10,12の混合物で平均値9.0)111.2g
(0.2モル)、H2N(CH2)3Si(OC2H5)344.2g(0.2
モル)、乾燥テトラヒドロフラン150gを温度計、
撹拌機、冷却管を装着した内容積300mlの四つ口
フラスコに入れ、乾燥窒素気流下にゆつくり撹拌
しながら還流温度(約80℃)で5時間反応させ
た。テトラヒドロフランを留去し反応生成物を得
た。反応生成物はガスクロマトグラフイーで分析
するとRfCONH(CH2)3Si(OC2H5)3でありそれへ
の転化率は100%であつた。
合成例 4
69.0g(0.1モル)、H2N(CH2)3Si(OC2H5)322.1
g(0.1モル)、乾燥テトラヒドロフラン150gを
合成例3と同様の方法で反応させた。反応生成物
はガスクロマトグラフイーで分析すると
であり、それへの転化率は1000%であつた。
合成例 5
CH2=CHC6F12CH=CH2 22.6g(0.06モル)、
HSiCl3 25.9(0.19モル)、H2PtCl6・6H2Oの50%
イソプロパノール溶液0.2gを合成例1と同様の
方法で反応させた。反応終了後、フロン(R−
113:旭硝子社製品、以下同)30gを加え、過
し、液から低沸点物を留去して反応生成物を得
た。反応生成物はガスクロマトグラフイーで分析
するとCl3Si(CH2)2C6F12(CH2)2SiCl3であり、そ
れへの転化率は97%であつた。
合成例 6
合成例5の反応生成物Cl3Si(CH2)2C6F12
(CH2)2SiCl335g(0.056モル)、メタノール15g
を混合し、合成例2と同様の方法で反応させ、反
応生成物を得た。反応生成物はガスクロマトグラ
フイーで分析すると(H3CO)3Si(CH2)2C6F12
(CH2)2Si(OCH3)3であり、それへの転化率は100
%であつた。
合成例 7
13g(0.33モル)
RfC2H4OH(但し、Rf:CoF2o+1、n:6,8,
10,12の混合物で平均値9.0)34.3g(0.67モル)
を100mlの三つ口フラスコに入れ、120℃に加熱
し、生成するメタノールを留去しながら22時間反
応させてRfC2H4OHとの反応生成物及びメラミン
が部分的に縮合した混合物を得た。
合成例 8[Formula] can be mentioned. In addition to the silane coupling agent, it may also be a hydrolyzate of tetraalkoxysilane, alkylalkoxysilane, or allylalkoxysilane. Such silane compounds may be used in combination of two or more, or in combination with other additives, such as fine particulate silica sol, for the purpose of improving physical properties such as adhesion and durability, or imparting dyeability. Good too. Silane compounds can be suitably used for substrates to be treated such as glass, ceramics, metals, plastics, and wood. The synthetic resin material may be either a thermoplastic resin or a thermosetting resin, and is not particularly limited as long as it can form a coating film. Such synthetic resin materials include, for example, polyacrylate,
Examples include thermoplastic resins such as polymethacrylate, polyamide, and polyurethane, and thermosetting resins such as epoxy resins, melamine resins, and urea resins. Therefore, the synthetic resin material preferably has high hardness after curing. In the synthetic resin material, other additives such as fine particulate materials such as silica and titania can be added, if necessary, for the purpose of improving or adding various physical properties. Synthetic resin materials can be suitably used for substrates to be treated such as glass, metal, and wood. The upper layer thin film consists of a coating film or thin film of the following polyfluorinated group-containing compound. The first is a coating film formed by applying a polyfluorinated group-containing silane compound, the second is a thin film formed by plasma polymerization of a polyfluorinated group-containing compound, and the third is a coating film formed by applying a polyfluorinated group-containing compound. It is a coating film made of a reaction product of alcohol and melamine derivative. The polyfluorinated group-containing compound forming these upper thin films preferably has a fluorine content of 20% by weight or more.
The silane compound in the lower coating film is different from the polyfluorinated group-containing silane compound described below, and particularly does not have a fluorine atom. As polyfluorinated group-containing silane compounds,
For example, R f (CH 2 ) 2 SiCl 3 , R f (CH 2 ) 2 Si (CH 3 ) Cl 2 , (R f CH 2 CH 2 ) 2 SiCl 2 , R f (CH 2 ) 2 Si (OCH 3 ) 3 , R f CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , R f CONH (CH 2 ) 2 NH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , R f SO 2 N (CH 3 )(CH 2 ) 2 CONH(CH 2 ) 3 Si
(OC 2 H 5 ) 3 , R f (CH 2 ) 2 OCO (CH 2 ) 2 S (CH 2 ) 3 Si (OCH 3 ) 3 , R f (CH 2 ) 2 OCONH (CH 2 ) 3 Si (OC 2 H5 ) 3 , R f (CH 2 ) 2 NH (CH 2 ) 2 Si (OCH 3 ) 3 , R f (CH 2 ) 2 NH (CH 2 ) 2 Si (OCH 2 CH 2 OCH 3 ) 3 , (However, R f is a polyfluoroalkyl group having 4 to 16 carbon atoms, and m is an integer of 1 or more.) A silane compound containing a polyfluoroalkyl group, or a silane compound in which the polyfluoroalkyl group has an ether bond, and such silane mixture of the compound with other silane compounds, Cl3Si ( CH2 ) 2 ( CF2 ) o ( CH2 ) 2SiCl3 , (H 3 CO) 3 Si(CH 2 ) 2 (CF 2 ) o (CH 2 ) 2 Si(OCH 3 ) 3 , (However, n is an integer of 4 to 16, the same applies hereinafter.) There are polyfluoroalkylene group-containing silane compounds such as. The thin film formed by plasma polymerization is, for example, C 8 H 17 CH=CH 2 , CF 3 −C≡C−
There is a thin film formed by plasma polymerizing a plasma polymerizable polyfluorinated group-containing compound such as CF 3 or C 8 F 18 . As a coating film made of a reaction product of a polyfluoroalkyl group-containing alcohol and a melamine derivative, there is a coating film obtained by applying and reacting a mixture of the two . ) 2 OH and Examples include reaction products of polyfluoroalkyl group-containing alcohols and melamine derivatives. The water- and oil-repellent coating film of the present invention consists of at least two coating layers formed on the surface of the substrate to be treated, and the thickness of the lower coating film must be 0.1 μm or more. If the thickness of the lower layer coating is less than 0.1μ, the entanglement of the molecules of the coating material will be insufficient, and the strength of the coating will not be maintained. It is no longer possible to improve the hardness of the thin film containing the compound. As the thickness of the lower layer coating increases, the hardness of the thin film of the polyfluorinated group-containing compound formed on the coating increases; however, from the viewpoint of workability or cost in forming the lower layer thin film, it is made to be thicker than necessary. is not appropriate. The required hardness can be obtained as long as the thickness of the coating film formed by normal coating, spraying, dipping, etc. (hereinafter these methods are collectively referred to as coating) on the surface of the substrate to be treated is applied. . The film thickness is 0.1μ or more, preferably in the range of 0.5 to 5μ. The method of forming the lower layer coating film on the surface of the substrate to be treated is not particularly limited. However, the preparation method for these materials differs depending on the underlying coating material used. When using a silane compound, the silane compound is dissolved in an organic solvent such as acetone, tetrahydrofuran, lower alcohol, etc., and the solution is adjusted to 5 to 50% by weight, preferably 15 to 40% by weight. Thereafter, the adjustment solution is applied to the surface of the substrate to be treated using a conventional coating method, and cured at room temperature or by heating if necessary. However, when the silane compound is partially cured, the polyfluorinated group-containing compound of the upper thin layer is applied onto the coating film to form a thin film, which is difficult due to the adhesive properties of the polyfluorinated group-containing compound and the thin film. preferred from the viewpoint of hardness. When using two or more silane compounds together or other additives such as silica sol, mix and stir them to react, then add an organic solvent to adjust the viscosity, and apply in the same manner as above. , forming a cured, preferably partially cured coating film. When using synthetic resin materials, methods include applying a monomer and polymerizing, applying a prepolymer and polymerizing, or applying a solvent solution of the polymer dissolved in an organic solvent that dissolves the polymer and drying. Any method can be used, such as the method of In thermoplastic resins, for example, polyacrylate or polymethacrylate is a relatively low-temperature resin obtained by solution polymerization, in which the monomer is dissolved in an organic solvent, benzoyl peroxide is added as a polymerization catalyst, and the mixture is heated and polymerized. Emulsify the polymerized product or monomer in water with an emulsifier,
After adjusting the viscosity of an emulsion polymer obtained by adding benzoyl peroxide and polymerizing it by heating, the emulsion polymer is applied to the surface of the substrate to be treated, and then the polymerization is accelerated at room temperature or by heating. A coating film is formed. In addition, polyacrylate, polymethacrylate, polyamide, etc. are dissolved in an organic solvent that dissolves these polymers, and a coating film is formed by applying a solvent solution whose viscosity is adjusted, and then evaporating the organic solvent at room temperature. to form. Polyurethane is urethane paint grade 1-component type and 2-component type.
Any liquid type can be used. Among the two-component types, two-component polyol-curing types consisting of polyisocyanate and hydroxyl group-containing polyester or polyether, or two-component chain extender-curing types consisting of polyurethane prepolymer and a chain extender such as polyamine or polyol, etc. are cured immediately before use. When the viscosity has been appropriately increased, it is applied to the surface of the substrate to be treated, and a coating film is formed at room temperature or by heating. Among the one-component types, the moisture-curing type is applied and then cured by moisture in the air to form a coating film. As for the thermosetting resin, for example, epoxy resin can be either a room temperature curing type or a heat curing type. For the room temperature curing type, an aliphatic amine catalyst is mixed and adjusted with a liquid general-purpose epoxy resin, applied to the surface of the substrate to be treated, and then cured at room temperature to form a coating film. For the heat curing type, an aromatic amine catalyst is mixed and adjusted, and after application, it is cured by heating to form a coating film. For melamine derivatives, urea resins, etc., prepare a prepolymer and apply it to the surface of the substrate to be treated.
It is heated and cured to form a coating film. The coating film formed using such a synthetic resin material is obtained by applying the polyfluorinated group-containing compound of the upper layer thin film material onto the coating film in a partially cured or partially polymerized state during the curing process. preferable. In a completely cured state, the adhesive strength of the polyfluorinated group-containing compound of the upper layer thin film and the hardness of the formed thin film will be low. Especially when the substrate to be treated is plastic and the same type of synthetic resin material is used, Since this is similar to applying the polyfluorinated group-containing compound directly to the plastic surface of the treated substrate, the effect of the two-layer coating is low. The substrate to be treated is not particularly limited, but if the substrate to be treated is plastic and a synthetic resin material is used for the lower layer coating, it is particularly necessary to bring the lower layer coating into a partially cured state. be. In the present invention, the lower coating film is not limited to only one layer. For example, a coating film of a synthetic resin material may be formed, a coating film of a silane compound may be formed on the coating film, and a thin film of a polyfluorinated group-containing compound may be formed on the coating film. A coating film imparting the function may be formed, and a coating film of a silane compound or a synthetic resin material may be formed on the coating film. In the present invention, the thin film of the polyfluorinated group-containing compound, which is the thin upper layer formed on the lower coating film, can be formed by any known coating method. However, methods for preparing the compound suitable for coating the compound vary depending on the compound used. That is, in order to facilitate coating workability and adjustment of coating film thickness, it is preferable to use a solvent solution diluted with various volatile solvents. For example, in the case of the polyfluoroalkyl group-containing silane compound, a silane compound in which the polyfluoroalkyl group has an ether bond, a hardened product of such a silane compound and another silane compound, and a polyfluoroalkylene group-containing silane compound, the compound Alternatively, the mixture is made into a 1 to 15% by weight solvent solution, preferably a 3 to 10% by weight solvent solution using one or more mixed organic solvents such as acetone, tetrahydrofuran, chlorine-based or fluorine-based solvents, and the lower layer is prepared. Apply on the paint film. After application, curing is performed by heating, but heating can be done in stages. As a heating method, hot air infrared rays or the like can be used. The heating temperature is determined by the above-mentioned polyfluorinated group-containing compound and the type of substrate to be treated, but is usually 100°C.
It is carried out under heating conditions of 20 minutes or more at a temperature of ℃ or higher. The temperature is preferably 120°C to 160°C, but higher temperatures than necessary are not preferred because the polyfluorinated group-containing compound may thermally decompose or the substrate to be treated may be deformed. To the reaction product of the polyfluoroalkyl group-containing alcohol and the melamine derivative, 1% by weight of P-toluenesulfonic acid was added as a catalyst component based on the solid component, and the mixture was heated to obtain a reaction product. Similar to the above-mentioned compounds, such a reaction product is applied to the lower coating film as a solvent solution using a solvent, and then cured under the same conditions as above to form a thin film. Further, the plasma polymerizable compound can be formed into a thin film on the lower coating film by performing a polymerization reaction within the apparatus using a plasma polymerization apparatus. The form in which the polyfluorinated group-containing compound is used is not limited to the above-mentioned solvent solution, but may be prepared in any form such as a solvent dispersion, emulsion, or aerosol. Further, additives such as inorganic fillers, antistatic agents, crosslinking agents, etc. may be added to the polyfluorinated group-containing compound as appropriate. Practically sufficient water and oil repellency and coating hardness can be obtained when the thickness of the upper thin film formed by the above method is 1 μm or less. The hardness of the polyfluorinated group-containing compound in the upper layer thin film improves as it becomes thicker, but there is a limit to this, and it is difficult to exceed the hardness of the lower layer coating. No significant improvement in hardness can be obtained. The hardness of the water- and oil-repellent coating film of the present invention is achieved by effectively utilizing the lower coating film, and even if the upper coating film is thin, the coating hardness is maintained, and it is advantageous in terms of cost. . The thickness of the coating film of the present invention can be adjusted by adjusting and coating conditions for the lower coating film and the upper thin film. The water- and oil-repellent coating film of the present invention can be combined in various ways depending on the type of substrate to be treated, the lower layer coating material, and the upper layer thin film material. Therefore, from the viewpoints of water and oil repellency, coating hardness, workability of coating film formation, cost, etc.
To illustrate the most preferable combination, in the substrate to be treated - lower coating film - upper coating film, glass - silane coupling agent - polyfluoroalkyl group-containing silane compound, glass - synthetic resin material (epoxy resin,
melamine resin, a type of polyurethane) - polyfluoroalkyl group-containing silane compound, plastic (polycarbonate, polymethacrylate, etc.)
Alternatively, a metal (aluminum)-silane coupling agent-polyfluoroalkyl group-containing silane compound may be mentioned. In these combinations, the silane coupling agent is preferably a mixture of two types, or a mixture with silica sol, and the polyfluoroalkyl group silane compound is preferably a mixture of two types, or the polyfluoroalkyl group has an ether bond. Examples include silane compounds. In the water- and oil-repellent coating film of the present invention, the water- and oil-repellency performance of the coating film formed on the base material is determined by dropping water or hexadecane onto the coating film and measuring the contact angle thereof. Desired. For example, the contact angle of water in a coating film formed on glass is 70° to 112°, the contact angle of hexadecane is 42° to 62°, and the contact angle of water and hexadecane on untreated glass is 30° or less. Therefore, excellent effects are recognized. Furthermore, the hardness of the coating film formed on the base material was determined by pencil hardness using a pencil scratch tester (JIS-K5401).
For example, the coating film formed on glass shows 2B to 5H or more, and it is recognized that the hardness is significantly improved compared to 4B, which is a coating film formed on glass and consisting only of a polyfluorinated group-containing compound. The present invention will be specifically explained below with reference to Examples. The thickness of the coating film is defined as the thickness of the coating film formed on the surface of the substrate to be treated (the sum of the lower coating film and the upper thin film). ” (Manufactured by Rank Taylor Hobson)
The thickness of the lower coating film was not measured in each example because the polyfluorinated group-containing compound of the upper layer thin film was applied while the coating film was in a partially cured state. However, the thickness of the lower coating film was confirmed in advance to be 0.1 to 2 μm when completely cured under the same conditions as in the examples. Note that the present invention is not limited only to these examples. Synthesis example 1 R f CH=CH 2 (However, R f :C o F 2o+1 , n: 6, 8,
A mixture of 10 and 12 has an average value of 9.0) 49.6 g (0.1 mol),
HSiCl3 15.9g ( 0.12 mol), H2PtCl6.6H2O 50
Pour 0.2 g of % isopropanol solution into a 100 ml glass pressure-resistant ampoule and heat at 85°C while shaking.
The reaction was allowed to proceed for 20 hours. After the reaction was completed, a reaction product was obtained by distillation under reduced pressure. When the reaction product is analyzed by gas chromatography, the R f
(CH 2 ) 2 SiCl 3 (bp 85°C to 100°C/3 to 5 mmHg), and the conversion rate thereto was 95%. Synthesis Example 2 Reaction product of Synthesis Example 1 R f (CH 2 ) 2 SiCl 3 50.3g
(0.08 mol) and 15 g of methanol were mixed, and the mixture was reacted while bubbling dry nitrogen to remove generated HCl. The end point of this reaction was confirmed by quantifying the amount of HCl produced. After the reaction was completed, excess methanol was distilled off to obtain a reaction product. When the reaction product is analyzed by gas chromatography, it is found to be R f (CH 2 ) 2 Si
(OCH 3 ) 3 and the conversion rate thereto was 100%. Synthesis example 3 R f COOCH(CH 3 ) 2 (where, R f :C o F 2o+1 , n:
A mixture of 6, 8, 10, 12 with an average value of 9.0) 111.2g
(0.2 mol), H 2 N (CH 2 ) 3 Si (OC 2 H 5 ) 3 44.2 g (0.2
mole), 150 g of dry tetrahydrofuran with a thermometer,
The mixture was placed in a 300 ml four-necked flask equipped with a stirrer and a condenser, and reacted at reflux temperature (approximately 80°C) for 5 hours with gentle stirring under a stream of dry nitrogen. Tetrahydrofuran was distilled off to obtain a reaction product. The reaction product was analyzed by gas chromatography to be R f CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 and the conversion rate thereto was 100%. Synthesis example 4 69.0g (0.1 mol), H 2 N (CH 2 ) 3 Si (OC 2 H 5 ) 3 22.1
(0.1 mol) and 150 g of dry tetrahydrofuran were reacted in the same manner as in Synthesis Example 3. The reaction products are analyzed using gas chromatography. The conversion rate was 1000%. Synthesis Example 5 CH 2 =CHC 6 F 12 CH=CH 2 22.6g (0.06 mol),
HSiCl3 25.9 (0.19 mol), 50 % of H2PtCl6.6H2O
0.2 g of isopropanol solution was reacted in the same manner as in Synthesis Example 1. After the reaction is completed, Freon (R-
113: a product of Asahi Glass Co., Ltd. (hereinafter the same) was added, filtered, and low boiling point substances were distilled off from the liquid to obtain a reaction product. The reaction product was analyzed by gas chromatography to be Cl 3 Si (CH 2 ) 2 C 6 F 12 (CH 2 ) 2 SiCl 3 and the conversion rate thereto was 97%. Synthesis Example 6 Reaction product of Synthesis Example 5 Cl 3 Si (CH 2 ) 2 C 6 F 12
(CH 2 ) 2 SiCl 3 35g (0.056 mol), methanol 15g
were mixed and reacted in the same manner as in Synthesis Example 2 to obtain a reaction product. When analyzed by gas chromatography, the reaction product is (H 3 CO) 3 Si (CH 2 ) 2 C 6 F 12
(CH 2 ) 2 Si(OCH 3 ) 3 and the conversion rate to it is 100
It was %. Synthesis example 7 13g (0.33 mol) R f C 2 H 4 OH (However, R f :C o F 2o+1 , n: 6, 8,
A mixture of 10 and 12 with an average value of 9.0) 34.3g (0.67 mol)
was placed in a 100 ml three-necked flask, heated to 120°C, and reacted for 22 hours while distilling off the methanol produced to form a mixture in which the reaction product with R f C 2 H 4 OH and melamine were partially condensed. I got it. Synthesis example 8
【式】83.4g、
H2N(CH2)2NH(CH2)3Si(OCH3)366.6gを温度
計、撹拌機、冷却管を装着した内容積500mlの四
つ口フラスコに入れ、80℃で2時間反応させた
後、室温に冷却し、テトラヒドロフラン170gを
加えて、粘度6.7cpのシランカツプリング剤から
なるシラン化合物溶液を調整した。
合成例 9[Formula] 83.4 g and 66.6 g of H 2 N (CH 2 ) 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 were placed in a 500 ml four-necked flask equipped with a thermometer, stirrer, and cooling tube. After reacting at 80° C. for 2 hours, the mixture was cooled to room temperature, and 170 g of tetrahydrofuran was added to prepare a silane compound solution containing a silane coupling agent with a viscosity of 6.7 cp. Synthesis example 9
【式】139g、
0.1N−HCl27gを撹拌機を装着した内容積500ml
の四つ口フラスコに入れ、室温で48時間反応させ
た後、シリカゾルのメタノール30%容液150g、
メタノール51gを加えて、粘度3.5cpのシランカ
ツプリング剤からなるシラン化合物溶液を調整し
た。
実施例 1
合成例2の反応生成物Rf(CH2)2Si(OCH3)325
gをフロン:アセトン=3:1(重量比)の混合
溶媒に希釈して500gとしたポリフルオロ化基含
有化合物の溶媒溶液を調整した。別に洗剤で洗浄
し、2%フツ酸溶液に浸漬して水洗後、乾燥した
ガラス板(ソーダ石灰ガラス5×5cm)を用意
し、合成例8のシラン化合物に浸漬し、引上速度
5cm/分で引上げた後、室温で乾燥して下層塗膜
を形成した。次に、このように処理されたガラス
板を先きに調整したポリフルオロ化基含有化合物
の溶媒溶液中に浸漬し、引上速度4.5cm/分で引
上げた後、160℃でキユアリングして上層薄膜を
形成した。かかる処理方法によつてガラス板表面
に形成された塗膜の膜厚は1.1μ、水の接触角は
110.5゜、ヘキサデカンの接触角は64.0゜、鉛筆硬度
は2Bであつた。
実施例 2〜4
実施例1のポリフルオロ化基含有化合物を合成
例1の反応生成物Rf(CH2)2SiCl3C、合成例3の
反応生成物RfCONH(CH2)3Si(OC2H5)3及び合成
例4の反応生成物
に変えた他は実施例1と同様の処理方法でガラス
板表面に塗膜を形成した後、膜厚、接触角、及び
鉛筆硬度を測定した。
測定結果を第1表に示した。[Formula] 139g, 0.1N-HCl 27g with a stirrer, inner volume 500ml
After reacting at room temperature for 48 hours, add 150 g of 30% methanol solution of silica sol,
51 g of methanol was added to prepare a silane compound solution consisting of a silane coupling agent with a viscosity of 3.5 cp. Example 1 Reaction product R f (CH 2 ) 2 Si(OCH 3 ) 3 25 of Synthesis Example 2
A solvent solution of the polyfluorinated group-containing compound was prepared by diluting 500 g of the polyfluorinated compound in a mixed solvent of chlorofluorocarbon:acetone=3:1 (weight ratio). Prepare a glass plate (soda lime glass 5 x 5 cm) that was washed separately with a detergent, immersed in a 2% hydrofluoric acid solution, washed with water, and dried, and immersed in the silane compound of Synthesis Example 8 at a pulling rate of 5 cm/min. After pulling it up, it was dried at room temperature to form a lower coating film. Next, the glass plate treated in this way was immersed in the solvent solution of the polyfluorinated group-containing compound prepared earlier, pulled up at a pulling speed of 4.5 cm/min, and then cured at 160°C to remove the upper layer. A thin film was formed. The film thickness of the coating film formed on the glass plate surface by this treatment method is 1.1μ, and the contact angle of water is
The contact angle of hexadecane was 64.0°, and the pencil hardness was 2B. Examples 2 to 4 The polyfluorinated group-containing compound of Example 1 was combined with the reaction product R f (CH 2 ) 2 SiCl 3 C of Synthesis Example 1, and the reaction product R f CONH (CH 2 ) 3 Si of Synthesis Example 3. (OC 2 H 5 ) 3 and reaction product of Synthesis Example 4 A coating film was formed on the surface of a glass plate using the same treatment method as in Example 1, except that the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 1.
【表】
実施例 5
合成例5の反応生成物Cl3Si(CH2)2C6F12
(CH2)2SiCl321.2g、アセトン150g、フロン128
g、1%酢酸水溶液0.6gを室温で12時間混合撹
拌してポリフルオロ化基含有化合物溶液を調整し
た。別に実施例1と同様の方法でシラン化合物が
下層塗膜として形成されたガラス板を用意し、実
施例1と同様の方法で上記ポリフルオロ化基含有
化合物溶液に浸漬、引上げた後、キユアリングし
て上層薄膜を形成した。かかる処理後、膜厚、接
触角、及び鉛筆硬度を測定した。
測定結果を第2表に示した。
実施例 6
合成例6の反応生成物(H3CO)3Si
(CH2)2C6F12(CH2)2Si(OCH3)3を用いた他は実
施例5と同様の方法でガラス板に処理して塗膜を
形成した後、膜厚、接触角及び鉛筆硬度を測定し
た。
測定結果を第2表に示した。
実施例 7
合成例6の反応生成物(H3CO)3Si
(CH2)2C6F12(CH2)2Si(OCH3)317.0g、及びRf
(CH2)2Si(OCH3)33.4g(但し、RfはCoF2o+1、n
は6,8,10,12の混合物で平均値9.0)を用い
た他は実施例5と同様の方法でガラス板に処理し
て塗膜を形成した後、膜厚、接触角、及び鉛筆硬
度を測定した。
測定結果を第2表に示した。
実施例 8
合成例6の反応生成物(H3CO)3Si
(CH2)2C6F12(CH2)2Si(OCH3)319.1g及び
[Table] Example 5 Reaction product of Synthesis Example 5 Cl 3 Si (CH 2 ) 2 C 6 F 12
(CH 2 ) 2 SiCl 3 21.2g, acetone 150g, Freon 128
g and 0.6 g of a 1% acetic acid aqueous solution were mixed and stirred at room temperature for 12 hours to prepare a polyfluorinated group-containing compound solution. Separately, a glass plate on which a silane compound was formed as a lower coating film was prepared in the same manner as in Example 1, immersed in the polyfluorinated group-containing compound solution, pulled up, and then cured in the same manner as in Example 1. Then, an upper thin film was formed. After such treatment, film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 2. Example 6 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si
A glass plate was treated to form a coating film in the same manner as in Example 5 except that (CH 2 ) 2 C 6 F 12 (CH 2 ) 2 Si(OCH 3 ) 3 was used. Corner and pencil hardness were measured. The measurement results are shown in Table 2. Example 7 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si
(CH 2 ) 2 C 6 F 12 (CH 2 ) 2 Si(OCH 3 ) 3 17.0g, and R f
(CH 2 ) 2 Si (OCH 3 ) 3 3.4g (However, R f is C o F 2o+1 , n
was a mixture of 6, 8, 10, and 12 with an average value of 9.0). After forming a coating film on a glass plate in the same manner as in Example 5, the film thickness, contact angle, and pencil hardness were measured. was measured. The measurement results are shown in Table 2. Example 8 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si
(CH 2 ) 2 C 6 F 12 (CH 2 ) 2 Si(OCH 3 ) 3 19.1g and
【式】2.5gを
用いた他は実施例5と同様の方法でガラス板に処
理して塗膜を形成した後、膜厚、接触角、及び鉛
筆硬度を測定した。
測定結果を第2表に示した。A coating film was formed on a glass plate in the same manner as in Example 5, except that 2.5 g of the formula was used, and the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 2.
【表】【table】
【表】
実施例 9
合成例7の混合物に対し、1%のP−トルエン
スルホン酸を加え、さらにフロン:アセトン=
3:1重量比の混合溶媒で希釈して5重量%のポ
リフルオロ化基含有化合物の溶媒溶液を調整し
た。この溶媒溶液を実施例1と同様の方法でガラ
ス板に処理して塗膜を形成した後、膜厚、接触角
及び鉛筆硬度を測定した。
測定結果を第3表に示した。[Table] Example 9 To the mixture of Synthesis Example 7, 1% P-toluenesulfonic acid was added, and Freon:acetone=
A 5% by weight solvent solution of the polyfluorinated group-containing compound was prepared by diluting with a mixed solvent at a weight ratio of 3:1. A glass plate was treated with this solvent solution in the same manner as in Example 1 to form a coating film, and then the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 3.
【表】
実施例 10〜12
実施例1と同様の方法でシラン化合物の下層塗
膜を形成したガラス板を用意し、ポリフルオロ化
基含有化合物としてCF3−C≡C−CF3,
C8F17CH=CH,C8F18をそれぞれアルゴンで希
釈した気体をプラズマ重合して薄膜を形成した
後、膜厚、接触角、及び鉛筆硬度を測定した。
測定結果を第4表に示した。[Table] Examples 10 to 12 A glass plate on which a lower coating film of a silane compound was formed in the same manner as in Example 1 was prepared, and polyfluorinated group-containing compounds such as CF 3 -C≡C-CF 3 ,
After forming a thin film by plasma polymerization of C 8 F 17 CH=CH and C 8 F 18 diluted with argon, the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 4.
【表】
実施例 13〜18
実施例1においてガラス板に処理して形成せし
めた下層塗膜のシラン化合物を合成例9のシラン
化合物に変えて、ガラス板を浸漬、引上後、100
℃で10分間乾燥し、下層塗膜を形成した。この下
層塗膜上に、実施例1〜4及び6〜7と同様のポ
リフルオロ化基含有化合物を同様に処理して薄膜
を形成した後、膜厚、接触角、及び鉛筆硬度を測
定した。
測定結果を第5表に示した。[Table] Examples 13 to 18 The silane compound of the lower coating film formed by treating the glass plate in Example 1 was changed to the silane compound of Synthesis Example 9, and the glass plate was immersed and pulled up.
It was dried at ℃ for 10 minutes to form a lower coating film. After forming a thin film on this lower coating film by treating the same polyfluorinated group-containing compound as in Examples 1 to 4 and 6 to 7 in the same manner, the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 5.
【表】【table】
【表】
実施例 19〜23
実施例1においてガラス板に処理して形成せし
めた下層塗膜のシラン化合物を第6表のシラン化
合物に変え、それぞれ75gをテトラヒドロフラン
に希釈して500gとした溶液を用いて、実施例1
と同様の方法で下層塗膜を形成した。この下層塗
膜上に、実施例7のポリフルオロ化基含有化合物
を同様に処理して薄膜を形成した後、膜厚、接触
角、及び鉛筆硬度を測定した。
測定結果を第6表に示した。[Table] Examples 19 to 23 The silane compounds in the lower coating film formed by treating the glass plate in Example 1 were changed to the silane compounds shown in Table 6, and 75 g of each was diluted with tetrahydrofuran to make 500 g of the solution. Example 1
A lower coating film was formed in the same manner as above. A thin film was formed on this lower coating film by treating the polyfluorinated group-containing compound of Example 7 in the same manner, and then the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 6.
【表】
実施例 24〜26
実施例1においてガラス板に処理して形成せし
めた下層塗膜のシラン化合物を、エポキシ樹脂
“エピコート1001”(商品名:油化シエル社製
品):トリエチレンテトラミン=90:10(重量比)、
メラミン樹脂“サイメル−35”(商品名:三井東
圧化学社製品):“キヤタリスト6000”(商品名:
三井東圧化学製品)=99:1(重量比)を100℃に
て10分間加熱した部分重合体、及びポリウレタン
“オレスターM75−50E”(商品名:三井東圧化学
社製品)のそれぞれ75gをテトラヒドロフランに
希釈して500gとした溶液に変えて、実施例1と
同様の方法で下層塗膜を形成した。この下層塗膜
上に実施例7のポリフルオロ化基含有化合物を同
様に処理して上層薄膜を形成した後、膜厚、接触
角、及び鉛筆硬度を測定した。
測定結果を第7表に示した。[Table] Examples 24 to 26 The silane compound of the lower coating film formed by treating the glass plate in Example 1 was mixed with epoxy resin "Epicote 1001" (trade name: Yuka Ciel Co., Ltd. product): triethylenetetramine = 90:10 (weight ratio),
Melamine resin “Cymel-35” (product name: Mitsui Toatsu Chemical Co., Ltd. product): “Catalyst 6000” (product name:
75g each of a partial polymer heated at 100℃ for 10 minutes (weight ratio) = 99:1 (weight ratio) and polyurethane "Olestar M75-50E" (product name: Mitsui Toatsu Chemicals product) A lower coating film was formed in the same manner as in Example 1 except that the solution was diluted with tetrahydrofuran to make 500 g. After forming an upper layer thin film by treating the polyfluorinated group-containing compound of Example 7 on this lower layer coating film in the same manner, the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 7.
【表】
実施例 27
実施例1においてガラス板に処理して形成せし
めた下層塗膜のシラン化合物をポリメタクリレー
ト“アクリペツト”(商品名:三菱レイヨン社製
品)をアセトンで溶解して5重量%とした溶剤溶
液に変えて、実施例1と同様の方法で下層塗膜を
形成した。この下層塗膜上に実施例7のポリフル
オロ化基含有化合物を同様に処理して上層薄膜を
形成した。この塗膜の膜厚は0.5μ、水の接触角は
100.3゜、ヘキサデカンの接触角は53.1、鉛筆硬度
は3Hであつた。
実施例 28〜31
合成例6の反応生成物(H3CO)3Si
(CH2)2C6F12(CH2)2Si(OCH3)317.0g及びRf
(CH2)2Si(OCH3)33.4g、アセトン150g、フロ
ン128g、1%酢酸水溶液0.6gを室温で12時間混
合撹拌してポリフルオロ化基含有化合物溶液を調
整した。別に洗剤で洗浄し、水洗後、乾燥したア
ルミニウム板、ポリカーボネート板(旭硝子社製
品、以下同)、ポリメチルメタクリレート板(三
菱レイヨン社製品、以下同)、桧板(いずれも5
×5cm)を用意し、合成例10のシラン化合物に浸
漬し、引上速度9cm/分で引上げ後、室温で乾燥
して下層塗膜を形成した。次にこのように処理さ
れた各板を先きに調整したポリフルオロ化基含有
化合物の溶液中に浸漬し、引上速度4.5cm/分で
仕上げ、110℃でキユアリングして上層薄膜を形
成した後、膜厚、接触角、及び鉛筆硬度を測定し
た。
測定結果を第8表に示した。[Table] Example 27 The silane compound of the lower coating film formed by treating the glass plate in Example 1 was dissolved to 5% by weight by dissolving polymethacrylate "Acrypet" (product name: Mitsubishi Rayon Co., Ltd. product) in acetone. A lower coating film was formed in the same manner as in Example 1, except for using the solvent solution obtained above. On this lower layer coating film, the polyfluorinated group-containing compound of Example 7 was treated in the same manner to form an upper layer thin film. The thickness of this coating film is 0.5μ, and the contact angle of water is
The contact angle of hexadecane was 53.1, and the pencil hardness was 3H. Examples 28-31 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si
(CH 2 ) 2 C 6 F 12 (CH 2 ) 2 Si (OCH 3 ) 3 17.0g and R f
A polyfluorinated group-containing compound solution was prepared by mixing and stirring 3.4 g of (CH 2 ) 2 Si(OCH 3 ) 3 , 150 g of acetone, 128 g of Freon, and 0.6 g of a 1% acetic acid aqueous solution at room temperature for 12 hours. Separately wash with detergent, rinse with water, and then dry aluminum plate, polycarbonate plate (Asahi Glass Co., Ltd. product, hereinafter the same), polymethyl methacrylate plate (Mitsubishi Rayon Co., Ltd. product, hereinafter the same), cypress board (all 5
x 5 cm) was prepared, immersed in the silane compound of Synthesis Example 10, pulled up at a pulling rate of 9 cm/min, and dried at room temperature to form a lower coating film. Next, each plate treated in this way was immersed in the solution of the polyfluorinated group-containing compound prepared earlier, finished at a pulling speed of 4.5 cm/min, and cured at 110°C to form an upper thin film. Afterwards, the film thickness, contact angle, and pencil hardness were measured. The measurement results are shown in Table 8.
【表】
面硬度が低いことによる。
実施例 32〜34
実施例28〜31と同様のポリフルオロ化基含有化
合物溶液を調整し、別に洗剤で洗浄し、水洗後、
乾燥したポリカーボネート板(5×5cm)を用意
し、エポキシ樹脂“エピコート1001”(商品名:
油化シエル社製品):トリエチレンテトラミン=
90:10(重量比)、メラミン樹脂“サイメル−35”
(商品名:三井東圧化学社製品):“キヤタリスト
6000”(商品名:三井東圧化学社製品)=99:1
(重量比)を100℃にて10分間加熱した部分重合
体、及びポリウレタン“オレスターM75−50E”
(商品名:三井東圧化学社製品)のそれぞれ75g
をテトラヒドロフランに希釈して500gとした溶
液を実施例1と同様の方法で処理して下層塗膜を
形成した。この下層塗膜上に、先きに調整したポ
リフルオロ化基含有化合物溶液を実施例28〜31と
同様に処理して上層薄膜を形成した後、膜厚、接
触角、及び鉛筆硬度を測定した。
測定結果を第9表に示した。[Table] Due to low surface hardness.
Examples 32-34 A polyfluorinated group-containing compound solution similar to Examples 28-31 was prepared, separately washed with a detergent, and after washing with water,
Prepare a dry polycarbonate plate (5 x 5 cm) and coat it with epoxy resin “Epicote 1001” (product name:
Yuka Ciel Co., Ltd. product): Triethylenetetramine =
90:10 (weight ratio), melamine resin "Cymel-35"
(Product name: Mitsui Toatsu Chemical Co., Ltd. product): “Catalyst
6000” (Product name: Mitsui Toatsu Chemical Co., Ltd. product) = 99:1
Partial polymer (weight ratio) heated at 100℃ for 10 minutes, and polyurethane "Orestar M75-50E"
(Product name: Mitsui Toatsu Chemical Co., Ltd. product) 75g each
A solution of 500 g of diluted with tetrahydrofuran was treated in the same manner as in Example 1 to form a lower coating film. On this lower layer coating film, the polyfluorinated group-containing compound solution prepared earlier was treated in the same manner as in Examples 28 to 31 to form an upper layer thin film, and then the film thickness, contact angle, and pencil hardness were measured. . The measurement results are shown in Table 9.
【表】
比較例 1〜8
実施例において使用したと同様のガラス板、ア
ルミニウム板、ポリカーボネート板、ポリメチル
メタクリレート板の水及びヘキサデカンの接触角
を第10表に示した。
実施例1,4,7及び9において、下層塗膜の
形成を行なわない他は同様の方法でポリフルオロ
化基含有化合物の薄膜のみを形成した後、膜厚、
接触角、及び鉛筆硬度を測定した。その測定結果
を第10表に示した。[Table] Comparative Examples 1 to 8 Table 10 shows the contact angles of water and hexadecane on glass plates, aluminum plates, polycarbonate plates, and polymethyl methacrylate plates similar to those used in Examples. In Examples 1, 4, 7, and 9, only a thin film of the polyfluorinated group-containing compound was formed by the same method except that the lower coating film was not formed.
Contact angle and pencil hardness were measured. The measurement results are shown in Table 10.
【表】【table】
Claims (1)
性多層膜において、該多層膜は少くとも2層から
なり、該多層膜の基材側の下層膜は下記ポリフル
オロ化基含有シラン化合物以外のシラン化合物の
塗布により形成された塗膜、又は合成樹脂材料の
厚さ0.1μ以上の塗膜からなり、上層膜はポリフル
オロ化基含有シラン化合物の塗布により形成され
た塗膜、ポリフルオロ化基含有化合物のプラズマ
重合により形成された薄膜、又はポリフルオロア
ルキル基含有アルコールとメラミン誘導体との反
応物からなる塗膜からなることを特徴とする撥水
撥油性多層膜。1. In a water- and oil-repellent multilayer film formed on the surface of a substrate to be treated, the multilayer film consists of at least two layers, and the lower layer film on the substrate side of the multilayer film is made of the following polyfluorinated group-containing silane compound. The upper layer is a coating film formed by coating a silane compound containing a polyfluorinated group, or a coating film of synthetic resin material with a thickness of 0.1μ or more, and the upper layer is a coating film formed by coating a silane compound containing a polyfluorinated group, or a coating film formed by coating a silane compound containing a polyfluorinated group. A water- and oil-repellent multilayer film comprising a thin film formed by plasma polymerization of a chemical group-containing compound, or a coating film made of a reaction product of a polyfluoroalkyl group-containing alcohol and a melamine derivative.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58148809A JPS6040254A (en) | 1983-08-16 | 1983-08-16 | Water-repellent oil-repellent film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58148809A JPS6040254A (en) | 1983-08-16 | 1983-08-16 | Water-repellent oil-repellent film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6040254A JPS6040254A (en) | 1985-03-02 |
JPH0420781B2 true JPH0420781B2 (en) | 1992-04-06 |
Family
ID=15461191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58148809A Granted JPS6040254A (en) | 1983-08-16 | 1983-08-16 | Water-repellent oil-repellent film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6040254A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998040323A1 (en) * | 1997-03-11 | 1998-09-17 | Nippon Sheet Glass Co., Ltd. | A substrate having a treatment surface |
JP2010214654A (en) * | 2009-03-13 | 2010-09-30 | Fujifilm Corp | Liquid repellent treatment method, nozzle plate, inkjet head, and electronic apparatus |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1329341C (en) * | 1988-10-19 | 1994-05-10 | Rosemary Bridget Albinson | Method of forming adherent fluorosilane layer on a substrate and ink jet recording head containing such a layer |
JP2500824B2 (en) * | 1990-10-25 | 1996-05-29 | 松下電器産業株式会社 | Fluorocarbon coating film and method for producing the same |
JP2501248B2 (en) * | 1991-01-23 | 1996-05-29 | 松下電器産業株式会社 | Monomolecular coating object and method of manufacturing the same |
JPH0791402B2 (en) * | 1991-01-28 | 1995-10-04 | 松下電器産業株式会社 | Method for producing polymer composition |
USRE38752E1 (en) | 1990-10-25 | 2005-07-05 | Matsushita Electric Industrial Co., Ltd | Method of manufacturing a fluorocarbon-based coating film |
JP2500149B2 (en) * | 1991-01-23 | 1996-05-29 | 松下電器産業株式会社 | Water- and oil-repellent coating and method for producing the same |
JP2690876B2 (en) * | 1995-05-01 | 1997-12-17 | 松下電器産業株式会社 | Translucent substrate |
JP2004002187A (en) * | 1991-01-23 | 2004-01-08 | Matsushita Electric Ind Co Ltd | Water repellent and oil repellent coating film |
JP3444524B2 (en) * | 1991-01-23 | 2003-09-08 | 松下電器産業株式会社 | Article and glass article having water- and oil-repellent coating |
JP2622316B2 (en) * | 1991-06-04 | 1997-06-18 | 松下電器産業株式会社 | Water / oil repellent film and method for producing the same |
JPH0786146B2 (en) * | 1991-02-05 | 1995-09-20 | 松下電器産業株式会社 | Water- and oil-repellent antifouling coating and method for producing the same |
JPH0786147B2 (en) * | 1991-02-20 | 1995-09-20 | 松下電器産業株式会社 | Method for manufacturing plastic vehicle parts |
JPH0786148B2 (en) * | 1991-02-25 | 1995-09-20 | 松下電器産業株式会社 | Manufacturing method of plastic office supplies |
JP2951736B2 (en) * | 1991-03-13 | 1999-09-20 | 松下電器産業株式会社 | Home appliances |
JP2898426B2 (en) * | 1991-03-13 | 1999-06-02 | 松下電器産業株式会社 | Sports equipment |
JPH0786149B2 (en) * | 1991-04-30 | 1995-09-20 | 松下電器産業株式会社 | Water repellent / fouling resistant building material manufacturing method |
JPH04342444A (en) * | 1991-05-17 | 1992-11-27 | Asahi Glass Co Ltd | Article having treated surface for teansportation equipment |
JP3210045B2 (en) * | 1991-11-20 | 2001-09-17 | 旭硝子株式会社 | Surface treated substrate |
JPH0827564B2 (en) * | 1992-04-22 | 1996-03-21 | 松下電器産業株式会社 | Electrophotographic apparatus and manufacturing method thereof |
JPH0827563B2 (en) * | 1992-04-22 | 1996-03-21 | 松下電器産業株式会社 | Electrophotographic apparatus and manufacturing method thereof |
JP2774743B2 (en) * | 1992-09-14 | 1998-07-09 | 松下電器産業株式会社 | Water repellent member and method of manufacturing the same |
JPH08337654A (en) * | 1995-06-14 | 1996-12-24 | Matsushita Electric Ind Co Ltd | Production of chemisorption film, and chemisorption fluid used therefor |
JPH09209158A (en) * | 1996-02-07 | 1997-08-12 | Toyo Metallizing Co Ltd | Cvd continuous working device and cvd continuous working method for film |
US6119626A (en) * | 1996-11-14 | 2000-09-19 | Canon Kabushiki Kaisha | Vacuum apparatus for forming a thin-film and method for forming thin-film |
US6001485A (en) * | 1996-11-18 | 1999-12-14 | Nippon Sheet Glass Co., Ltd. | Water repellant glass plate and method for manufacturing the same |
JPH10314669A (en) * | 1997-03-19 | 1998-12-02 | Dow Corning Asia Ltd | Forming method for low surface energy coating |
US6649272B2 (en) * | 2001-11-08 | 2003-11-18 | 3M Innovative Properties Company | Coating composition comprising fluorochemical polyether silane polycondensate and use thereof |
CA2421538C (en) | 2002-03-18 | 2007-11-20 | Hoya Corporation | Optical member and process for producing it and thin films |
KR100543222B1 (en) | 2002-08-02 | 2006-01-20 | 호야 가부시키가이샤 | Optical member and process of producing the same |
JP2012097267A (en) * | 2003-09-17 | 2012-05-24 | Kazufumi Ogawa | Water and oil repellency composite film-forming solution, manufacturing method of water and oil repellency composite film using the solution, and water and oil repellency composite film using the method |
JP4517761B2 (en) * | 2004-07-30 | 2010-08-04 | パナソニック株式会社 | Heat-resistant and antifouling substrate and cooking device using the same |
WO2010125964A1 (en) * | 2009-04-30 | 2010-11-04 | コニカミノルタホールディングス株式会社 | Water-repelling member, and glass for vehicles |
JPWO2018207811A1 (en) * | 2017-05-12 | 2020-05-21 | Agc株式会社 | Antifouling article and method for producing antifouling article |
-
1983
- 1983-08-16 JP JP58148809A patent/JPS6040254A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998040323A1 (en) * | 1997-03-11 | 1998-09-17 | Nippon Sheet Glass Co., Ltd. | A substrate having a treatment surface |
JP2010214654A (en) * | 2009-03-13 | 2010-09-30 | Fujifilm Corp | Liquid repellent treatment method, nozzle plate, inkjet head, and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6040254A (en) | 1985-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0420781B2 (en) | ||
JP4683567B2 (en) | Polyurethane-polymer hybrid dispersion with improved surface properties, process for its production and use thereof | |
CA1315450C (en) | Compositions and processes for producing scratch resistant polysiloxane coatings | |
JP5768805B2 (en) | Perfluoropolyether-modified polysilazane, method for producing the same, surface treatment agent, and article treated with the surface treatment agent | |
EP1326902B1 (en) | Degradable, amorphous, fluoroacrylate polymers | |
JP2877616B2 (en) | Hydrophilic oil repellent treatment agent | |
JP2005508433A (en) | Coating compositions comprising partial condensates of fluorochemical polyether silanes and their use | |
JP2010043251A (en) | Perfluoropolyether-modified polysilazane and surface treatment agent using the same | |
JPS62187772A (en) | Lacquer or forming composition and method of rendering non-tackiness properties and improving lubricancy to composition | |
KR20010072747A (en) | Abrasion and stain resistant curable fluorinated coating | |
JP2008542449A5 (en) | ||
JP2007518854A (en) | Composition for aqueous delivery of fluorinated oligomeric silanes | |
JP2912018B2 (en) | Optically transparent hydrophobic coating composition | |
JP6645575B2 (en) | Aqueous paint composition and painted article | |
WO2019131872A1 (en) | Substrate for polymer brush formation, production method for substrate for polymer brush formation, and precursor liquid for use in production method for substrate for polymer brush formation | |
EP0789050A2 (en) | Composite coating film comprising silane compound and method for forming the same | |
US4015057A (en) | Abrasion resistant fluoroolefin coating composition | |
JP2021095474A (en) | Perfluoropolyether modified polysilazane and method for producing the same, surface treatment agent, cured coat and article | |
JPH08337754A (en) | Aqueous coating composition and outdoor article | |
JP2011111509A (en) | Water- and oil-repellent resin composition and coated product | |
JPH02274766A (en) | Curable silicone composition | |
JPH0330492B2 (en) | ||
EP3894486A1 (en) | Surface coating compositions | |
JPH0339804B2 (en) | ||
JP7352810B2 (en) | Fluorine-containing polymer, coating composition, method for producing coated articles, and coated articles |