JPH04182918A - Fixed magnetic disk and its production - Google Patents
Fixed magnetic disk and its productionInfo
- Publication number
- JPH04182918A JPH04182918A JP31351890A JP31351890A JPH04182918A JP H04182918 A JPH04182918 A JP H04182918A JP 31351890 A JP31351890 A JP 31351890A JP 31351890 A JP31351890 A JP 31351890A JP H04182918 A JPH04182918 A JP H04182918A
- Authority
- JP
- Japan
- Prior art keywords
- compounds containing
- organometallic compounds
- thin film
- fixed magnetic
- magnetic disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000010409 thin film Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 25
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 10
- 239000010941 cobalt Substances 0.000 claims abstract description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 6
- 239000011029 spinel Substances 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 6
- -1 manganese, organometallic compounds Chemical class 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 230000005389 magnetism Effects 0.000 claims description 3
- 150000002902 organometallic compounds Chemical class 0.000 claims 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 3
- 229910052793 cadmium Inorganic materials 0.000 claims 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims 3
- 239000011575 calcium Substances 0.000 claims 3
- 229910052791 calcium Inorganic materials 0.000 claims 3
- 229910052802 copper Inorganic materials 0.000 claims 3
- 239000010949 copper Substances 0.000 claims 3
- 229910052749 magnesium Inorganic materials 0.000 claims 3
- 239000011777 magnesium Substances 0.000 claims 3
- 229910052759 nickel Inorganic materials 0.000 claims 3
- 229910052758 niobium Inorganic materials 0.000 claims 3
- 239000010955 niobium Substances 0.000 claims 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 3
- 229910052712 strontium Inorganic materials 0.000 claims 3
- 239000010936 titanium Substances 0.000 claims 3
- 229910052719 titanium Inorganic materials 0.000 claims 3
- 229910052720 vanadium Inorganic materials 0.000 claims 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 3
- 229910052788 barium Inorganic materials 0.000 claims 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims 2
- 238000005229 chemical vapour deposition Methods 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 150000002736 metal compounds Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 238000009826 distribution Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 37
- 239000010410 layer Substances 0.000 description 24
- 229910000859 α-Fe Inorganic materials 0.000 description 24
- 229910000599 Cr alloy Inorganic materials 0.000 description 9
- 229910020630 Co Ni Inorganic materials 0.000 description 8
- 229910002440 Co–Ni Inorganic materials 0.000 description 7
- 239000006200 vaporizer Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 241000190020 Zelkova serrata Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、信頼性に優れ、高密度磁気記録対応を可能に
する固定磁気ディスクおよびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fixed magnetic disk that is highly reliable and compatible with high-density magnetic recording, and a method for manufacturing the same.
従来の技術
近年の高度情報社会において、記憶すべき情報の量は年
々増加の一途をたどり、記憶装置の大容量化、高密度化
に対する要望も高まっている。2. Description of the Related Art In the recent advanced information society, the amount of information to be stored continues to increase year by year, and the demand for larger capacity and higher density storage devices is also increasing.
このような状況のもと、コンピュータ周辺機器として用
いられる固定磁気ディスクに用いられる記憶媒体は、従
来のアルミディスク基板上にガンマ酸化鉄系の針状磁性
粉などを塗布した塗布型から、めっき法やスパッタ法な
どによるCo−Ni/ Cr合金の薄膜型へと変化し、
高密度化が図られてきた。Under these circumstances, the storage media used in fixed magnetic disks used as computer peripherals have changed from the conventional coating type, in which gamma iron oxide acicular magnetic powder is coated on an aluminum disk substrate, to the plating method. It changed to a thin film type of Co-Ni/Cr alloy by sputtering method, etc.
Efforts have been made to increase density.
発明が解決しようとする課題
しかし、Co−N i / Cr合金薄膜型はその構成
材料が合金であるため耐久性などに問題があり、固定磁
気ディスクの構造としては、(潤滑層/保護層/ Co
−N i磁性層/ Cr層/ N i −PめっきN
/アルミニウム基板)の5層構造になっており、製造工
程が複雑であるといった欠点がある。Problems to be Solved by the Invention However, since the Co-Ni/Cr alloy thin film type is composed of an alloy, there are problems with durability, etc.; Co
-Ni magnetic layer/Cr layer/Ni-P plating N
It has a five-layer structure of aluminum substrate and aluminum substrate, and has the drawback that the manufacturing process is complicated.
第4図は従来の固定磁気ディスクであるC0−N i
/ Cr合金の薄膜型の固定磁気ディスクの断面を示す
ものであり、図において、■はアルミニウム基板、2は
N1−Pめっき層、3はCr層、4はCo−Ni磁性層
、5は保護層、6は潤滑層である。Figure 4 shows a conventional fixed magnetic disk C0-N i
/ This shows a cross section of a thin-film type fixed magnetic disk made of Cr alloy. Layer 6 is a lubricating layer.
上記従来の固定磁気ディスクはCo−Ni磁性層4が面
内記録媒体であるため、さらに記録密度を上げるために
記録波長を短くしていくと減磁界の影響で記録が困難に
なってくる。Since the Co--Ni magnetic layer 4 of the above-mentioned conventional fixed magnetic disk is a longitudinal recording medium, if the recording wavelength is shortened to further increase the recording density, recording becomes difficult due to the influence of the demagnetizing field.
そこで、磁気記録方式の上で、上記欠点を改善した記録
方式である垂直記録を可能とする磁気記録媒体として、
磁気ヘッドとその媒体が接触状態となるものではあるが
、Co−Cr1膜媒体などの研究が盛んになされてきた
。しかし第4図に示すCo−N i / Cr合金の薄
膜型の記録媒体の場合と同様Co−Cr薄膜媒体にも合
金であるための信頼性に問題があり、Co−Cr薄膜の
表面にアモルファスカーボン膜やCO酸化物のような保
護層5を設けなくてはならないという課題がある。Therefore, as a magnetic recording medium that enables perpendicular recording, which is a recording method that improves the above drawbacks on the magnetic recording method,
Although the magnetic head and its medium are in contact with each other, research has been actively conducted on Co--Cr1 film media. However, as in the case of the Co-Ni/Cr alloy thin film type recording medium shown in Fig. 4, the Co-Cr thin film medium also has reliability problems because it is an alloy. There is a problem in that a protective layer 5 such as a carbon film or CO oxide must be provided.
一方、固定磁気ディスク装置において、磁気ヘッドの磁
気ディスクに対する走行高さ(フライングハイド)をで
きるだけ低くすることは、磁気ヘッドと磁気ディスクス
ペーシングによる出力の損失(スペーシング損失)を軽
減するため、記録密度向上につながるものであり、最近
では高記録密度を可能にするために、0.05〜0.1
μm程度のフライングハイド量での走行が必要とされて
いる。On the other hand, in fixed magnetic disk drives, it is important to reduce the running height (flying hide) of the magnetic head relative to the magnetic disk as much as possible in order to reduce the output loss (spacing loss) caused by the magnetic head and magnetic disk spacing. This leads to improved density, and recently, in order to enable high recording density, 0.05 to 0.1
It is necessary to run with a flying hide amount on the order of μm.
しかしながら、上記従来のCo −N i / Cr合
金の薄膜型記録媒体、Co−Cr薄膜型記録媒体いずれ
においても、耐久性などに問題があるため、信頼性確保
のため薄膜媒体の表面に保護層5(数100人)を形成
しなければならず、したがってどうしでもスペーシング
損失が増えてしまうという課題が残る。However, both the conventional Co-Ni/Cr alloy thin-film recording medium and the Co-Cr thin-film recording medium have problems with durability, so a protective layer is added to the surface of the thin-film medium to ensure reliability. 5 (several 100 people), and therefore the problem remains that the spacing loss increases.
本発明は上記課題を解決するものであり、信頼性に優れ
、かつ高密度磁気記録対応が可能である垂直磁気記録の
成分を有する固定磁気ディスクとその製造方法を提供す
ることを目的とするものである。The present invention solves the above problems, and aims to provide a fixed magnetic disk having a perpendicular magnetic recording component that is highly reliable and capable of supporting high-density magnetic recording, and a method for manufacturing the same. It is.
課題を解決するための手段
上記目的を達成するために本発明は、ディスク基板上に
X線的にアルモファスな酸化物薄膜を形成し、その酸化
物薄膜上にディスク基板表面に対して垂直方向に柱状構
造を有するコバルトを含むスピネル型結晶構造の酸化鉄
磁性薄膜を形成した3層構造を有する固定磁気ディスク
であり、またその固定磁気ディスクをプラズマの活性さ
とCVD反応を利用した製造方法により作製するもので
ある。Means for Solving the Problems In order to achieve the above objects, the present invention forms an X-ray amorphous oxide thin film on a disk substrate, and forms an amorphous oxide thin film on the oxide thin film in a direction perpendicular to the disk substrate surface. A fixed magnetic disk having a three-layer structure in which an iron oxide magnetic thin film with a spinel-type crystal structure containing cobalt having a columnar structure is formed, and the fixed magnetic disk is manufactured by a manufacturing method that utilizes plasma activation and CVD reaction. It is something.
作用
したがって本発明によれば、ディスク基板上にX線的に
アモルファスな酸化物薄膜上を形成させていることによ
りコラム径の分布が少なくなり、その結果固定磁気ディ
スクの角形性が向上し、耐久性や硬度などの信転性に優
れ、かつ高密度磁気記録ができる。Therefore, according to the present invention, by forming an X-ray amorphous oxide thin film on the disk substrate, the distribution of column diameters is reduced, and as a result, the squareness of the fixed magnetic disk is improved and its durability is improved. It has excellent reliability in terms of strength and hardness, and is capable of high-density magnetic recording.
実施例
以下、本発明の一実施例について図面を参照しながら説
明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例における固定磁気ディスクの
構成を示すものであり、図において7はディスク基板、
8はCoZnFe酸化物膜層、9はCOフェライト膜、
lOは潤滑層である。FIG. 1 shows the configuration of a fixed magnetic disk in an embodiment of the present invention, and in the figure, 7 is a disk substrate;
8 is a CoZnFe oxide film layer, 9 is a CO ferrite film,
lO is a lubricating layer.
第2図は本発明の一実施例において固定磁気ディスクの
製造に使用するプラズマCVD装置の概略図を示すもの
であり、図において11は反応チャンバー、12は電極
、13は反応チャンバー内を低圧に保つための排気系で
、14は高周波電源(13,56MHz) 、15.1
6.17は原料の入った気化器で、18.19.20は
キャリアガスの気化器内への導入の有無を制御するため
の第1のバルブ、21.22.23は原料ガスとキャリ
アガスの反応チャンバー内への導入の有無を制御するた
めの第2のバルブ、24はキャリアガスボンベ(窒素)
、25は反応ガスボンへ(酸素)、26は基板回転機構
のついた基板加熱ヒーターである。FIG. 2 shows a schematic diagram of a plasma CVD apparatus used for manufacturing a fixed magnetic disk in an embodiment of the present invention. In the figure, 11 is a reaction chamber, 12 is an electrode, and 13 is a device that maintains a low pressure inside the reaction chamber. 14 is a high frequency power supply (13,56MHz), 15.1 is an exhaust system to maintain
6.17 is the vaporizer containing the raw material, 18.19.20 is the first valve for controlling whether or not carrier gas is introduced into the vaporizer, and 21.22.23 is the raw material gas and carrier gas. 24 is a carrier gas cylinder (nitrogen);
, 25 is a reactant gas cylinder (oxygen), and 26 is a substrate heating heater equipped with a substrate rotation mechanism.
次に本実施例の固定磁気ディスクの製造方法を説明する
。Next, a method of manufacturing the fixed magnetic disk of this embodiment will be explained.
出発原料として、鉄アセチルアセトナート(Fe (c
s H70□)、〕、亜鉛アセチルアセトナート(Zn
(C5Hv Oz )z ・HtO)、:2パルドア
セチルアセトナート(Co (cs H,0□)3〕を
使用し、気化器15に脱水処理を行った亜鉛アセチルア
セトナート(空気中100°Cで2時間)、気化器16
にコバルトアセチルアセトナート、気化器17に鉄アセ
チルアセトナートを入れ、それぞれ80°C1130″
C1120″Cに加熱し保持しておく。第1のバルブ1
8〜20および第2のバルブ21〜23を開き窒素キャ
リア(気化器15.16.17にそれぞれ流量1010
5CCとともに上記亜鉛、コバルト、鉄のそれぞれアセ
チルアセトナートの蒸気と酸素(流量53CCM )と
を排気系13により減圧された反応チャンバー11内に
導入し、プラズマを発生(電力1.5W/d)させ、2
分間減圧下(0,08Torr)で反応を行い、400
°Cに加熱したガラス等よりなるディスク基板7 (1
20回転/分)上にCoZnFe酸化物膜8を成膜し、
第1のバルブ18、および第2のバルブ21を閉じた。Iron acetylacetonate (Fe (c
s H70□), ], Zinc acetylacetonate (Zn
(C5Hv Oz )z ・HtO), :2 pard acetylacetonate (Co (cs H,0□)3) was used, and dehydrated zinc acetylacetonate (in air at 100 2 hours), vaporizer 16
Cobalt acetylacetonate and iron acetylacetonate were placed in vaporizer 17 and heated to 80°C and 1130″ respectively.
Heat to C1120″C and hold. First valve 1
8 to 20 and second valves 21 to 23 are opened to supply nitrogen carrier (flow rate 1010 to vaporizer 15, 16, and 17, respectively).
5CC, the vapors of acetylacetonate of zinc, cobalt, and iron, respectively, and oxygen (flow rate: 53 CCM) were introduced into the reaction chamber 11, which was depressurized by the exhaust system 13, to generate plasma (power: 1.5 W/d). ,2
The reaction was carried out under reduced pressure (0.08 Torr) for 400
Disk substrate 7 (1
20 rotations/min), a CoZnFe oxide film 8 is formed on the
The first valve 18 and the second valve 21 were closed.
さらに引き続き、同様の成膜条件で9分間減圧下(0,
06Torr)で反応を行い、CoZnFe酸化物膜8
上にCoフェライト膜9を成膜し、Coフエライ)/C
oZnFe酸化物の2層膜を形成した。そして、その第
2層膜を形成したディスク基板7を反応チャンバー11
から取り出し、裏面にも同様の方法で、同じ構成の2層
膜を形成し、両面に磁性薄膜面をもつCoフェライト/
Co Z n Fe酸化物ディスクを作製し、次にこ
のディスクを300°Cの空気中で3時間熱処理を行っ
た後、フッソ系有機物の潤滑剤の入った液槽(図示せず
)に沈めて潤滑層10を塗布することによって、固定磁
気ディスクを作製した。Further, under the same film formation conditions for 9 minutes under reduced pressure (0,
06 Torr) to form a CoZnFe oxide film 8
A Co ferrite film 9 is formed on top of the Co ferrite film 9,
A two-layer film of oZnFe oxide was formed. Then, the disk substrate 7 on which the second layer film was formed is placed in the reaction chamber 11.
A two-layer film with the same structure was formed on the back side using the same method, and a Co ferrite/ferrite film with magnetic thin film surfaces on both sides was formed.
A CoZnFe oxide disk was prepared, and then this disk was heat-treated in air at 300°C for 3 hours, and then submerged in a liquid bath (not shown) containing a fluorine-based organic lubricant. A fixed magnetic disk was fabricated by applying a lubricating layer 10.
このようにして得られた本実施例の固定磁気ディスクは
、ギャップ長CGL、’)が0.25μm、トラック幅
(Tw)が10μmのMIGヘッドを用いて、50mA
のヘッド電流値を選んで電磁変換特性の評価を行った。The fixed magnetic disk of this example obtained in this manner was manufactured at 50 mA using a MIG head with a gap length CGL,') of 0.25 μm and a track width (Tw) of 10 μm.
The head current value was selected to evaluate the electromagnetic conversion characteristics.
固定磁気ディスクを360Or、p、−の速度で回転さ
せ、ディスクの中心から20.0■の円周トラックで評
価を行った。なお、固定磁気ディスクと磁気ヘッドの相
対速度は7.5/secであり、磁気ヘッドのフライン
グハイドは0.15μmであった。A fixed magnetic disk was rotated at a speed of 360 Or, p, -, and evaluation was performed on a circumferential track of 20.0 square meters from the center of the disk. Note that the relative speed between the fixed magnetic disk and the magnetic head was 7.5/sec, and the flying hide of the magnetic head was 0.15 μm.
次に比較のために、HC=1.0kOeで、Ms= 8
00emu / ccのCr層3とCo−Ni磁性層4
とからなる磁性層膜厚が800人で、その上に保護層5
としてカーボン膜を600人形成し、本発明と同様の潤
滑層6を設けた従来のCo−Ni/Cr合金の薄膜型の
固定磁気ディスク(アルミニウム基板で面内方向に磁化
配向したもの)と、ガラスディスク基板上に直接COフ
ェライト磁性膜(作成条件は2層膜の場合と同じ)を形
成した構造のCOフェライト薄膜固定磁気ディスクを用
意し、本実施例の固定磁気ディスクと同じ条件で電磁変
換特性を測定した。Next, for comparison, HC = 1.0 kOe, Ms = 8
00emu/cc Cr layer 3 and Co-Ni magnetic layer 4
The thickness of the magnetic layer consisting of is 800 mm, and a protective layer 5
A conventional Co-Ni/Cr alloy thin film type fixed magnetic disk (aluminum substrate with magnetization oriented in the in-plane direction) on which a carbon film was formed by 600 people and a lubricant layer 6 similar to the present invention was provided; A CO ferrite thin film fixed magnetic disk with a structure in which a CO ferrite magnetic film (preparation conditions are the same as for the two-layer film) was formed directly on a glass disk substrate was prepared, and electromagnetic conversion was performed under the same conditions as the fixed magnetic disk of this example. Characteristics were measured.
このようにして得られた本実施例の固定磁気ディスクと
従来のCo Ni/Cr合金薄膜の固定磁気ディスク
およびCOフェライトFjJ膜固定磁気ディスクの記録
密度または記録波長と再生出力との関係を比較して第3
図に示す。 ′第3図において、横軸が記録密度ま
たは記録波長で、縦軸が再生出力である。また、同図中
(a)が本実施例の固定磁気ディスク、(b)が比較の
ための従来のCo−Ni/Cr合金薄膜固定磁気ディス
ク、(C)が同じく他の従来のCoフェライト薄膜固定
磁気ディスク(Coフェライト単層膜)の特性をそれぞ
れ示している。The relationship between recording density or recording wavelength and reproduction output was compared between the fixed magnetic disk of this example obtained in this way, a conventional fixed magnetic disk with a Co Ni/Cr alloy thin film, and a fixed magnetic disk with a CO ferrite FjJ film. The third
As shown in the figure. 'In FIG. 3, the horizontal axis represents recording density or recording wavelength, and the vertical axis represents reproduction output. In the same figure, (a) is the fixed magnetic disk of this embodiment, (b) is a conventional Co-Ni/Cr alloy thin film fixed magnetic disk for comparison, and (C) is another conventional Co ferrite thin film fixed magnetic disk. The characteristics of the fixed magnetic disk (Co ferrite single layer film) are shown.
第3図から本実施例の固定磁気ディスクは従来のCo−
Ni/Cr合金薄膜固定磁気ディスクやCoフェライト
薄膜固定磁気ディスクより短波長域の高記録密度側で再
生磁気が高い値を示しており、本実施例の固定磁気ディ
スクが、高記録密度に対応できることが明らかである。From FIG. 3, it can be seen that the fixed magnetic disk of this embodiment is different from the conventional Co-
The reproduction magnetism shows a higher value on the high recording density side in the short wavelength range than the Ni/Cr alloy thin film fixed magnetic disk or the Co ferrite thin film fixed magnetic disk, and the fixed magnetic disk of this example can support high recording density. is clear.
なお、本実施例の固定磁気ディスクの記録信号の再生波
形をオシロスコープで観察すると、垂直磁気記録成分を
含むことの特徴であるダイパルス波形を示している。Note that when the reproduced waveform of the recording signal of the fixed magnetic disk of this embodiment is observed with an oscilloscope, it shows a dipulse waveform, which is characterized by including a perpendicular magnetic recording component.
!M1変換特性の測定終了後、本実施例の固定磁気ディ
スクを有機溶剤を用いて、その潤滑層10を取り除きC
oフェライト膜9のX線回折による結晶構造の解析を行
った。! After the measurement of the M1 conversion characteristics, the lubricating layer 10 of the fixed magnetic disk of this example was removed using an organic solvent.
The crystal structure of the o-ferrite film 9 was analyzed by X-ray diffraction.
その結果COフェライト層9はスピネル型の結晶構造を
しており、(100)に優先配向していることがわかっ
た。As a result, it was found that the CO ferrite layer 9 had a spinel type crystal structure and was preferentially oriented in (100).
また比較のために、ガラスディスク基板上に前記実施例
と同し成膜条件でCoZnFe酸化物膜8のみを成膜し
た試料を作製し、300”Cの空気中で3時間熱処理し
た後、X線回折により結晶構造の解析を行った結果、そ
のCoZnFe酸化物膜8はX線的にアモルファスであ
ることがわかった。For comparison, a sample was prepared in which only the CoZnFe oxide film 8 was formed on a glass disk substrate under the same film forming conditions as in the above example, and after heat treatment in air at 300"C for 3 hours, As a result of analyzing the crystal structure by line diffraction, it was found that the CoZnFe oxide film 8 was amorphous in terms of X-rays.
さらに本実施例の固定出来ディスクおよび従来のCoフ
ェライト薄膜固定磁気ディスク(単層膜)を破壊して高
分解能の走査型電子顕微鏡を用いて、その表面および破
断面を観察した結果、本実施例の固定磁気ディスクの2
層膜は柱状構造を有し、膜厚約3100人でコラム径は
450〜550人であること、また、従来のCoフェラ
イト薄膜固定磁気ディスク(単層膜)は柱状構造を有し
、膜厚約2500人でコラム径は200〜700人であ
ることがわかった。Furthermore, the fixed disk of this example and the conventional Co ferrite thin film fixed magnetic disk (single layer film) were broken and their surfaces and fractured surfaces were observed using a high-resolution scanning electron microscope. 2 fixed magnetic disks
The layer film has a columnar structure, and the film thickness is approximately 3100 mm, and the column diameter is 450 to 550 mm. It was found that there were about 2,500 people and the column diameter was 200-700 people.
次に、Coフェライト膜9、CoZnFe酸化物膜8お
よびCoフェライ)/CoZnFe酸化物固定磁気ディ
スクの磁気特性について振動試料型磁力計(VSM)に
より測定を行った。その結果、CoZnFe酸化物膜8
は磁性を示さなかったが、Coフェライ)/CoZnF
e酸化物固定磁気ディスクはCOフェライトll!!9
に比べすぐれた角形性を示した。また、Coフェライト
/ C。Next, the magnetic properties of the Co ferrite film 9, the CoZnFe oxide film 8, and the Co ferrite/CoZnFe oxide fixed magnetic disk were measured using a vibrating sample magnetometer (VSM). As a result, CoZnFe oxide film 8
showed no magnetism, but Co ferrite)/CoZnF
e-oxide fixed magnetic disk is CO ferrite! ! 9
It showed superior squareness compared to . Also, Co ferrite/C.
ZnFe酸化物固定磁気ディスクの保磁力はHc±=1
2000 e 、 Hc / = 7800 eであり
、Msは284emu/ccであった。The coercive force of the ZnFe oxide fixed magnetic disk is Hc±=1
2000 e, Hc/=7800 e, and Ms was 284 emu/cc.
これらのことから、本実施例の固定磁気ディスクが従来
のCoフェライト薄膜固定磁気ディスクより短波長域の
高記録密度側で再生出力が高い値を示す原因は、下地膜
としてアモルファスなC。From these facts, the reason why the fixed magnetic disk of this embodiment exhibits a higher reproduction output value than the conventional Co ferrite thin film fixed magnetic disk at the high recording density side in the short wavelength range is because the amorphous C is used as the base film.
ZnFe酸化物膜8を用いたことにより、Coフェライ
ト単層の場合よりコラム径の分布が少なくなり、その結
果Coフェライト/ Co Z n F e酸化物固定
磁気ディスクの角形性が向上したためと考えられる。This is thought to be due to the fact that by using the ZnFe oxide film 8, the distribution of column diameters became smaller than in the case of a single Co ferrite layer, and as a result, the squareness of the Co ferrite/Co Z n Fe oxide fixed magnetic disk was improved. .
なお、xVA的にアモルファス酸化物yiwXとして請
求項(2)に示した他の元素についても同様の検討を行
った結果、CoZnFe酸化物膜8の場合と同様の効果
が得られた。In addition, as a result of conducting similar studies on other elements shown in claim (2) as the amorphous oxide yiwX in terms of xVA, the same effects as in the case of the CoZnFe oxide film 8 were obtained.
このようにして上記実施例によれば、ディスク基板7上
にアモルファスなCoZnFe酸化物膜8を形成し、そ
の上にCoフェライト膜9を形成しているため、耐久性
や硬度などの信頼性に優れ、かつ高密度磁気記録が可能
な固定磁気ディスクを製造することができる。In this way, according to the above embodiment, since the amorphous CoZnFe oxide film 8 is formed on the disk substrate 7 and the Co ferrite film 9 is formed thereon, reliability such as durability and hardness is improved. It is possible to manufacture a fixed magnetic disk that is excellent and capable of high-density magnetic recording.
発明の効果
本発明は上記実施例より明らかなように、ディスク基板
上に下地層としてX線的にアモルファスな酸化物薄膜を
形成し、さらに磁性層として柱状構造を有するCoを含
むスピネル型酸化鉄磁性薄膜を形成した固定磁気ディス
クの構造であるため、高信顛性であり、かつ高記録密度
対応が可能となるものであり、またその製造方法にプラ
ズマCVD法を用いているため、簡単な原料供給の制御
を行うだけで、2層膜を簡単に、かつ連続的に製造でき
るという利点を有する。Effects of the Invention As is clear from the above embodiments, the present invention forms an X-ray amorphous oxide thin film as an underlayer on a disk substrate, and further forms a spinel iron oxide film containing Co having a columnar structure as a magnetic layer. Because it has a fixed magnetic disk structure with a magnetic thin film formed on it, it is highly reliable and can support high recording densities.Also, since the manufacturing method uses plasma CVD, it is easy to use. This method has the advantage that a two-layer film can be manufactured easily and continuously by simply controlling the supply of raw materials.
第1図は本発明の一実施例における固定磁気ディスクの
要部拡大断面図、第2図は同固定磁気ディスクの製造方
法を実施するために使用するプラズマCVD装置の概略
正面断面図、第3図は実施例および従来例の固定磁気デ
ィスクの記録密度または記録波長と再生出力との関係を
比較し示した特性図、第4図は従来の固定磁気ディスク
の要部拡大断面図である。
7・・・・・・ディスク基板、8・・・・・・CoZn
Fe酸化物膜(アモルファスな酸化物薄膜)、9・・・
・・・COフェライト膜(コバルトを含むスピネル型結
晶構造の酸化鉄磁性薄膜)。
7−m−テ ィ ス り 暮 毫に&j5島構
造の繭ブし鉄雀性1岬讃ノ
第 1 図
(C)÷は欅のCOO12イト!浦凹ズ眉「曝テイスク
2誼密1t(*FspOFIG. 1 is an enlarged sectional view of essential parts of a fixed magnetic disk according to an embodiment of the present invention, FIG. 2 is a schematic front sectional view of a plasma CVD apparatus used to carry out the method for manufacturing the fixed magnetic disk, and FIG. The figure is a characteristic diagram comparing and showing the relationship between recording density or recording wavelength and reproduction output of the fixed magnetic disks of the embodiment and the conventional example, and FIG. 4 is an enlarged sectional view of the main part of the conventional fixed magnetic disk. 7...Disc substrate, 8...CoZn
Fe oxide film (amorphous oxide thin film), 9...
...CO ferrite film (iron oxide magnetic thin film with spinel crystal structure containing cobalt). 7-m-tice ri kari ni & j 5-island structure cocooned iron mahjong sex 1 cape san no 1 Figure (C) ÷ keyaki's COO 12 lights! Ura Kozu eyebrows “Exposed Teisk 2 Density 1t (*FspO
Claims (4)
薄膜を形成し、その酸化物薄膜上にディスク基板表面に
対して垂直方向に柱状構造を有するコバルトを含むスピ
ネル型結晶構造の酸化鉄磁性薄膜を形成した固定磁気デ
ィスク。(1) Iron oxide magnetism with a spinel-type crystal structure containing cobalt, which is formed by forming an amorphous oxide thin film on the disk substrate in the direction of X-rays and having a columnar structure perpendicular to the disk substrate surface on the oxide thin film. A fixed magnetic disk with a thin film formed on it.
ウム、カルシウム、チタン、バナジウム、マンガン、鉄
、コバルト、ニッケル、銅、亜鉛、ストロンチウム、ニ
オブ、カドミウム、バリウムの元素群のうち少なくとも
一種の元素を含む請求項(1)記載の固定磁気ディスク
。(2) The X-ray amorphous oxide thin film contains at least one element from the element group of magnesium, calcium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, strontium, niobium, cadmium, and barium. The fixed magnetic disk according to claim 1, comprising:
を含む有機金属化合物、チタンを含む有機金属化合物、
バナジウムを含む有機金属化合物、マンガンを含む有機
金属化合物、鉄を含む有機金属化合物、コバルトを含む
有機金属化合物、ニッケルを含む有機金属化合物、銅を
含む有機金属化合物、亜鉛を含む有機金属化合物、スト
ロンチウムを含む有機金属化合物、ニオブを含む有機金
属化合物、カドミウムを含む有機金属化合物、バリウム
を含む有機金属化合物のうち少なくとも一種の有機金属
化合物の蒸気と酸素との混合ガスをプラズマを用いて反
応させ、ディスク基板上にX線的にアモルファスな酸化
物薄膜を化学蒸着し、さらに鉄を含む有機金属化合物の
蒸気とコバルトを含む有機金属化合物の蒸気と酸素との
混合ガスをプラズマを用いて反応させ、前記酸化物薄膜
上にコバルトを含むスピネル型結晶構造の酸化鉄磁性薄
膜を化学蒸着する固定磁気ディスクの製造方法。(3) Organometallic compounds containing magnesium, organometallic compounds containing calcium, organometallic compounds containing titanium,
Organometallic compounds containing vanadium, organometallic compounds containing manganese, organometallic compounds containing iron, organometallic compounds containing cobalt, organometallic compounds containing nickel, organometallic compounds containing copper, organometallic compounds containing zinc, strontium , an organometallic compound containing niobium, an organometallic compound containing cadmium, an organometallic compound containing barium, and a mixed gas of oxygen and a vapor of at least one organometallic compound, reacting using plasma, An amorphous oxide thin film is chemically vapor deposited on the disk substrate by X-rays, and a mixed gas of oxygen and organic metal compound vapor containing iron and cobalt is reacted using plasma. A method for manufacturing a fixed magnetic disk, comprising chemical vapor deposition of an iron oxide magnetic thin film having a spinel crystal structure containing cobalt on the oxide thin film.
を含む有機金属化合物、チタンを含む有機金属化合物、
バナジウムを含む有機金属化合物、マンガンを含む有機
金属化合物、鉄を含む有機金属化合物、コバルトを含む
有機金属化合物、ニッケルを含む有機金属化合物、銅を
含む有機金属化合物、亜鉛を含む有機金属化合物、スト
ロンチウムを含む有機金属化合物、ニオブを含む有機金
属化合物、およびカドミウムを含む有機金属化合物がβ
−ジケトン系金属錯体である請求項(3)記載の固定磁
気ディスクの製造方法。(4) Organometallic compounds containing magnesium, organometallic compounds containing calcium, organometallic compounds containing titanium,
Organometallic compounds containing vanadium, organometallic compounds containing manganese, organometallic compounds containing iron, organometallic compounds containing cobalt, organometallic compounds containing nickel, organometallic compounds containing copper, organometallic compounds containing zinc, strontium Organometallic compounds containing , organometallic compounds containing niobium, and organometallic compounds containing cadmium are
- The method for producing a fixed magnetic disk according to claim 3, wherein the diketone metal complex is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31351890A JPH04182918A (en) | 1990-11-19 | 1990-11-19 | Fixed magnetic disk and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31351890A JPH04182918A (en) | 1990-11-19 | 1990-11-19 | Fixed magnetic disk and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04182918A true JPH04182918A (en) | 1992-06-30 |
Family
ID=18042276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31351890A Pending JPH04182918A (en) | 1990-11-19 | 1990-11-19 | Fixed magnetic disk and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04182918A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59157830A (en) * | 1983-02-28 | 1984-09-07 | Konishiroku Photo Ind Co Ltd | Magnetic recording medium |
JPS62250625A (en) * | 1986-04-23 | 1987-10-31 | Matsushita Electric Ind Co Ltd | Manufacture of ferrite thin-film |
-
1990
- 1990-11-19 JP JP31351890A patent/JPH04182918A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59157830A (en) * | 1983-02-28 | 1984-09-07 | Konishiroku Photo Ind Co Ltd | Magnetic recording medium |
JPS62250625A (en) * | 1986-04-23 | 1987-10-31 | Matsushita Electric Ind Co Ltd | Manufacture of ferrite thin-film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5919581A (en) | Magnetic recording system and magnetic recording medium used therefor | |
CN100421155C (en) | Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus | |
JP4874526B2 (en) | Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus | |
US5378548A (en) | Magnetic recording medium and its manufacturing process | |
US6753077B2 (en) | Magnetic recording medium and process for producing the same | |
US20050106314A1 (en) | Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same | |
JPH04182918A (en) | Fixed magnetic disk and its production | |
US6045931A (en) | Magnetic recording medium comprising a cobalt-samarium magnetic alloy layer and method | |
JP2538124B2 (en) | Fixed magnetic disk and manufacturing method thereof | |
JP2538123B2 (en) | Fixed magnetic disk and manufacturing method thereof | |
JPH05166167A (en) | Stationary magnetic disk and production thereof | |
JPH04184709A (en) | Fixed magnetic disk and manufacture thereof | |
JP2004046928A (en) | Magnetic recording medium | |
JPH04332914A (en) | Manufacture of fixed magnetic disk | |
JPH0760768B2 (en) | Fixed magnetic disk and manufacturing method thereof | |
JPH04332912A (en) | Manufacture of fixed magnetic disk | |
JPH04305820A (en) | Production of stationary magnetic disk | |
JPH04332915A (en) | Manufacture of fixed magnetic disk | |
JPH05314455A (en) | Fixed magnetic disc | |
JPH0315254B2 (en) | ||
JPH04332913A (en) | Manufacture of fixed magnetic disk | |
JPH05166168A (en) | Stationary magnetic disk and production thereof | |
JPS62149024A (en) | Magnetic recording medium | |
JPH0444640A (en) | Stationary magnetic disk and production thereof | |
JPS6364623A (en) | Magnetic recording medium |