Nothing Special   »   [go: up one dir, main page]

JPH04171210A - Filter recycling device for internal combustion engine - Google Patents

Filter recycling device for internal combustion engine

Info

Publication number
JPH04171210A
JPH04171210A JP2297778A JP29777890A JPH04171210A JP H04171210 A JPH04171210 A JP H04171210A JP 2297778 A JP2297778 A JP 2297778A JP 29777890 A JP29777890 A JP 29777890A JP H04171210 A JPH04171210 A JP H04171210A
Authority
JP
Japan
Prior art keywords
filter
particulates
microwave
exhaust gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2297778A
Other languages
Japanese (ja)
Inventor
Tomotaka Nobue
等隆 信江
Masahiro Nitta
昌弘 新田
Yu Fukuda
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2297778A priority Critical patent/JPH04171210A/en
Publication of JPH04171210A publication Critical patent/JPH04171210A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/028Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To promote improvement in temperature rise property or enlargement of a burning area and assurance of high recycling performance by providing a microwave producing means to produce microwaves which are fed into a heating room installed in an exhaust pipe in an internal combustion engine and a specific filter to capture particulates. CONSTITUTION:A heating room 13 installed in an exhaust pipe 12, a magnetron 14 as a microwave producing means and a filter 16 to capture particulates existing in exhaust gas are provided. The filter is constructed of a structure with the opening ratio of 60% or more. A preset amount or more of particulates per cell in the filter can be captured to enhance heating capacity in microwave heating per cell and increase temperature promptly to a temperature zone where particulates can be burned. In addition, a high heating capacity of each cell allows prompt thermal diffusion to an adjacent cell and temperature rise in a temperature zone where particulates can be burned over a wide area inside the filter. It is thus possible to recycle the filter in a short time and at a high efficiency.

Description

【発明の詳細な説明】 産業上の利用分野・ 本発明はディーゼルエンジンから排出される排気ガス中
に含まれるパティキュレート(粒子状物質)を捕集する
内燃機関用フィルタの再生装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field - The present invention relates to a regeneration device for an internal combustion engine filter that collects particulate matter contained in exhaust gas discharged from a diesel engine. .

従来の技術 欧米および日本などのいわゆる先進国の高度な経済成長
は地球上の文明に大きく貢献してきた。
Conventional Technology The high economic growth of so-called developed countries such as Europe, America and Japan has greatly contributed to civilization on earth.

しかしながら、先進国の経済成長を中心とした化石燃料
エネルギーの浪費は地球の大気を汚染してきた。
However, the waste of fossil fuel energy centered on economic growth in developed countries has polluted the earth's atmosphere.

地球環境保全に関して、今日では地球温暖化対策すなわ
ちCO2低減対策が大きくクローズアップされているが
、森林破壊を招く酸性雨の対策も無視できない。
In terms of global environmental conservation, countermeasures against global warming, that is, measures to reduce CO2 emissions, are currently receiving a lot of attention, but countermeasures against acid rain, which can lead to deforestation, cannot be ignored.

酸性雨は硫黄酸化物や窒素酸化物等の大気汚染物質が汚
染源となって生じる自然現象であり、近年世界各国でこ
のような大気汚染物質の排出規制がコ・ジェネレーショ
ンなどの固定発生源や自動車などの移動発生源に対しで
強化される動きにある。とくに自動車の排気ガスに関す
る規制は従来の濃度規制から総量規制へ移行され規制値
自体も大幅な削減となっている。
Acid rain is a natural phenomenon caused by air pollutants such as sulfur oxides and nitrogen oxides, and in recent years many countries around the world have introduced regulations on the emission of air pollutants from fixed sources such as co-generation systems and automobiles. It is in the movement to be strengthened against mobile sources such as. In particular, regulations regarding automobile exhaust gas have been shifted from conventional concentration regulations to total volume regulations, and the regulatory values themselves have been significantly reduced.

自動車の中でもディーゼル車は窒素酸化物と同時に・パ
ティキュレートの排出規制の強化が行われる。燃料噴射
時期遅延などの燃焼改善による従来の排気ガス中の汚染
物質低減対策だけでは排出ガス蜆制値を達成することは
不可能とされ、現状では排気ガスの後処理装置の付設が
不可欠である。
Among automobiles, diesel vehicles are subject to stricter emission regulations for particulates as well as nitrogen oxides. It is considered impossible to achieve exhaust gas control values using conventional measures to reduce pollutants in exhaust gas by improving combustion such as delaying fuel injection timing, and it is currently essential to install an exhaust gas after-treatment device. .

この後処理装置はパティキュレートを捕集するフィルタ
を有するものである。
This post-processing device has a filter that collects particulates.

ところが、パティキュレートが捕集され続けるとフィル
タは目詰まりを起こし捕集能力が大幅に低下するととも
に排気ガスの流れが悪くなってエンジン出力の低下ある
いはエンジン停止といったことに至る。
However, if particulates continue to be collected, the filter becomes clogged and its collection ability is significantly reduced, and the flow of exhaust gas becomes poor, resulting in a reduction in engine output or engine stoppage.

したがって、現在世界中でフィルタの捕集能力を再生さ
せるための技術開発が進められているが、今だ実用には
至っていない。
Therefore, technological development to regenerate the collection ability of filters is currently underway all over the world, but it has not yet been put to practical use.

パティキュレートは600℃程度から燃焼することが知
られている。パティキュレートをこの高温度域に昇温す
るための熱源を発生する手段として、燃焼方式、電気ヒ
ータ一方式あるいはマイクロ波方式などが考えられてい
る。
It is known that particulates burn at temperatures of about 600°C. As means for generating a heat source to raise the temperature of the particulates to this high temperature range, combustion methods, one-way electric heaters, microwave methods, and the like are being considered.

燃焼方式による装置は燃焼熱をフィルタに送風してパテ
ィキュレートを加熱するものである。また、電気ヒータ
一方式による装置はヒーターをフィルタの入力端面に近
接して設けた構成からなり、ヒーターの輻射熱でパティ
キュレートを加熱するものである。さらにマイクロ波方
式による装置はフィルタを収納する加熱室にマイクロ波
を給電してパティキュレートの誘電損失を利用してパテ
ィキュレートを加熱するものである。
Combustion-based devices heat particulates by blowing combustion heat through a filter. Furthermore, a single electric heater type device has a configuration in which the heater is provided close to the input end face of the filter, and the particulates are heated by the radiant heat of the heater. Further, a microwave type device heats the particulates by feeding microwaves to a heating chamber housing the filter and utilizing the dielectric loss of the particulates.

これらの各装置は加熱手段を異にしているがフィルタ再
生に関する基本的なシステム構成はほぼ同様である。従
来の装置の構成をマイクロ波方式に代表させて説明する
。マイクロ波方式によるフィルタ再生装置は、たとえば
特開平1−290910号公報に提案されている。同公
報に開示されている装置を第5図に示す。同図において
、1はエンジン、2.3はT M o t pモードが
励振される円筒状の加熱室、4はマイクロ波放射アンテ
ナ、5は導波管、6はマイクロ波発生手段、7はフィル
タ、8は排気ガス流の切換弁である。
Although each of these devices uses a different heating means, the basic system configuration regarding filter regeneration is almost the same. The configuration of a conventional device will be explained using a microwave system as a representative example. A microwave-based filter regeneration device is proposed in, for example, Japanese Patent Laid-Open No. 1-290910. The device disclosed in the publication is shown in FIG. In the figure, 1 is an engine, 2.3 is a cylindrical heating chamber in which T M o t p mode is excited, 4 is a microwave radiation antenna, 5 is a waveguide, 6 is a microwave generation means, and 7 is a Filter 8 is a switching valve for exhaust gas flow.

このような構成において、フィルタは加熱室の管軸方向
の略中央部に配設され加熱室の管軸方向の両端面とフィ
ルタの端面との間に空間’9.10が作られている。マ
イクロ波発生手段6が発生するマイクロ波は導波管5を
通って上記空間9,1o内に突出した放射アンテナ4よ
り加熱室2または3に給電される。フィルタ7に捕集さ
れているパティキュレートは給電されたマイクロ波によ
って誘電加熱され600℃以上に加熱される。一方、適
当な量をもって供給される空気により加熱されたパティ
キュレートは燃焼しフィルタの再生が進行する。
In such a configuration, the filter is disposed approximately at the center of the heating chamber in the tube axis direction, and a space '9.10 is created between both end surfaces of the heating chamber in the tube axis direction and the end surfaces of the filter. The microwave generated by the microwave generating means 6 passes through the waveguide 5 and is fed to the heating chamber 2 or 3 from the radiation antenna 4 which projects into the spaces 9 and 1o. The particulates collected in the filter 7 are dielectrically heated by the supplied microwaves and heated to 600° C. or higher. On the other hand, the particulates heated by the air supplied in an appropriate amount are combusted and regeneration of the filter progresses.

C以下余白) 発明が解決しようとする課題 しかしながら従来のマイクロ波方式による再生装置はフ
ィルタの構造に対しての詳細な検討がなされておらず適
当なフィルタに対して強引に加熱を実行するというもの
であった。このため、再生装置としてのマイクロ波加熱
方式とフィルタ構造との相性に対する検討が不十分であ
り、再生性能を向上させる手段はマイクロ波発生手段お
よび加熱室構成の改良に重きがおかれ、装置の総合的な
性能向上が達成できなかった。
Problems to be Solved by the Invention However, conventional microwave-based regenerators do not have a detailed study of the filter structure, and forcibly heat a suitable filter. Met. For this reason, there has been insufficient consideration of the compatibility between the microwave heating method used as a regenerator and the filter structure, and the means to improve regeneration performance have focused on improving the microwave generation means and heating chamber configuration. Overall performance improvement could not be achieved.

本発明はかかる従来の課題を解消するものであり、基本
的な目的はマイクロ波加熱方式を用いたフィルタ再生装
置の総合的な性能向上をはかる装置構成とすることであ
る。
The present invention is intended to solve such conventional problems, and its basic purpose is to provide a device configuration that improves the overall performance of a filter regeneration device using a microwave heating method.

課題を解決するための手段 上記課題を解決するために本発明の内燃機関用フィルタ
再生装置は、内燃機関の排気管に設けられた加熱室と、
この加熱室に給電するマイクロ波を発生するマイクロ波
発生手段と、加熱室内に収納され排気ガス中のパティキ
ュレートを捕集する開孔率が60%以上の構造体からな
るフィルラダとを備えた構成からなる。
Means for Solving the Problems In order to solve the above problems, a filter regeneration device for an internal combustion engine according to the present invention includes a heating chamber provided in an exhaust pipe of an internal combustion engine;
A configuration that includes a microwave generating means that generates microwaves to supply power to the heating chamber, and a fill ladder that is housed in the heating chamber and is made of a structure with a porosity of 60% or more that collects particulates in the exhaust gas. Consisting of

さらにフィルタはセル数が200セル/inch’以下
の構造体からなる。
Furthermore, the filter is composed of a structure with a cell count of 200 cells/inch' or less.

作用 本発明は上記した構成によって、フィルタの各セル当た
りに所定の量以上のパティキュレートを捕集する。これ
により各セル当たりのマイクロ波加熱による発熱容量を
高めパティキュレートが燃焼する温度域まですばやく昇
温させることができる。さらに、各セルの高い発熱容量
により隣接するセルへの熱拡散を促進させフィルタ内部
の広範囲にわたってパティキュレートが燃焼する温度域
に昇温を行わせることができる。従ってフィルタ全域で
のパティキュレート燃焼を促進させることができフィル
タ再生を短時間でかつ高効率に行うことができる。
Effect of the Invention With the above-described configuration, the present invention collects a predetermined amount or more of particulates in each cell of the filter. This increases the heat generation capacity of each cell by microwave heating and allows the temperature to be quickly raised to a temperature range where particulates are combusted. Further, the high heat generation capacity of each cell promotes heat diffusion to adjacent cells, and the temperature within the filter can be raised to a temperature range where particulates are combusted over a wide area. Therefore, particulate combustion can be promoted in the entire area of the filter, and filter regeneration can be performed in a short time and with high efficiency.

実施例 以下、本発明の実施例を添付図面に基づいて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

 第1図において、11はエンジン(内燃機関)、12
は排気管、13は排気管に設けられた加熱室、14はマ
イクロ波発生手段であるマグネトロン、15はマグネト
ロンが発生したマイクロ波を加熱室に伝送する導波管、
I6は排気ガス中のパティキュレートを捕集するフィル
タ、17はフィルタの再生時にエンジンの排気ガスをバ
イパスする排気ガスバイパス管である。
In FIG. 1, 11 is an engine (internal combustion engine), 12
13 is an exhaust pipe, 13 is a heating chamber provided in the exhaust pipe, 14 is a magnetron that is a microwave generating means, 15 is a waveguide that transmits the microwave generated by the magnetron to the heating chamber,
I6 is a filter that collects particulates in exhaust gas, and 17 is an exhaust gas bypass pipe that bypasses engine exhaust gas during filter regeneration.

フィルタ16はたとえばムライトやコージライトなどの
多硬質セラミックを担体としハニカム形状で構成されて
いる。このフィルタはその開孔率が60%以上の構造体
あるいはセル数が200セル/inch”以下の構造体
で構成されている。
The filter 16 is configured in a honeycomb shape using a polyhard ceramic such as mullite or cordierite as a carrier. This filter is composed of a structure with a porosity of 60% or more or a structure with a cell count of 200 cells/inch" or less.

加熱室13は蜂の巣状あるいはパンチング状の形状によ
る所定の開孔を持たせて排気ガスの流路を形成するとと
もに電波遮蔽機能を持つ金属部材18゜19によってそ
の両端壁面が限定されている。また、フィルタと加熱室
の壁面との間には断熱材20を設けている。
The heating chamber 13 has predetermined openings in the shape of a honeycomb or punching to form a flow path for exhaust gas, and both end wall surfaces are limited by metal members 18 and 19 having a radio wave shielding function. Further, a heat insulating material 20 is provided between the filter and the wall surface of the heating chamber.

21、22は排気ガスの流路を開閉する手段であるバル
ブであり図はフィルタ16に排気ガスを導く状態を示し
ている。23.24は圧力検出手段であり、フィルタの
排気ガス流入側およびフィルタの排気ガス流出側の排気
管内圧力を検出する。25は温度検出手段であり、フィ
ルタの排気ガス流出側の排気温度を検出する。26はマ
グネトロン14の駆動電源、27は検出された圧力信号
、温度信号に基づいてバルブ21.22および駆動電源
26を制御しフィルタ再生を実行させる制御部である。
Reference numerals 21 and 22 indicate valves which are means for opening and closing the exhaust gas flow path, and the figure shows a state in which the exhaust gas is introduced to the filter 16. 23 and 24 are pressure detection means, which detect the pressure inside the exhaust pipe on the exhaust gas inflow side of the filter and on the exhaust gas outflow side of the filter. 25 is a temperature detecting means, which detects the exhaust gas temperature on the exhaust gas outflow side of the filter. 26 is a drive power source for the magnetron 14, and 27 is a control unit that controls the valves 21, 22 and the drive power source 26 based on the detected pressure signal and temperature signal to execute filter regeneration.

このような構成からなるフィルタ再生装置において、排
気ガスの流れ、パティキュレート捕集のプロセスおよび
再生プロセスを以下に説明する。
In the filter regeneration device having such a configuration, the flow of exhaust gas, the particulate collection process, and the regeneration process will be described below.

内燃機関の排気ガスは通常はバルブ21が開放状態、バ
ルブ22が閉止状態になっているので排気管12を通り
フィルタ16に導かれる。このフィルタ内を流れる間に
パティキュレートが除去される。浄化された排気ガスは
大気へ放出される。
Exhaust gas from the internal combustion engine is normally guided to the filter 16 through the exhaust pipe 12 because the valve 21 is open and the valve 22 is closed. Particulates are removed while flowing through this filter. The purified exhaust gas is released into the atmosphere.

フィルタはパティキュレートを捕集しつづけると目詰ま
りを生じるので適当な時期にフィルタの再生を行わなけ
ればならない。この時期は排気管に設けられた圧力検出
手段23.24の出力の差圧力値があらかじめ設定され
た圧力値に到達するタイミングで判断される。
If the filter continues to collect particulates, it will become clogged, so the filter must be regenerated at an appropriate time. This timing is determined at the timing when the differential pressure value of the outputs of the pressure detection means 23 and 24 provided in the exhaust pipe reaches a preset pressure value.

この適当な時期に至るとバルブ21.22が制御され排
気ガスは排気バイパス管17に導かれる。その後、フィ
ルタ16は再生が開始される。制御部27の再生開始指
示によって駆動電源26が作動しマグネトロン14を動
作させる。マグネトロン14が発生するマイクロ波は導
波管15、金属管体の外周側壁に設けられた結合孔28
を通って加熱室内に給電される。このマイクロ波により
フィルタ16に捕集されたパティキュレートは誘電加熱
されて昇温し赤熱する。
At this appropriate time, the valves 21 and 22 are controlled and the exhaust gas is guided to the exhaust bypass pipe 17. Thereafter, the filter 16 begins to regenerate. In response to a regeneration start instruction from the control section 27, the drive power source 26 is activated to operate the magnetron 14. The microwave generated by the magnetron 14 is transmitted through a waveguide 15 and a coupling hole 28 provided on the outer peripheral side wall of the metal pipe body.
Power is supplied to the heating chamber through the heating chamber. The particulates collected by the filter 16 are dielectrically heated by the microwaves, and the temperature rises to become red-hot.

ところでこの結合位置はフィルタ16の一端面側に片寄
って設けているので排気ガス流入口側の領域に存在する
パティキュレートが他の領域と比べて強く誘電加熱され
早く昇温して赤熱する。
By the way, since this coupling position is biased toward one end surface of the filter 16, the particulates present in the region on the exhaust gas inlet side are dielectrically heated more strongly than in other regions, and the temperature rises quickly and becomes red-hot.

赤熱したパティキュレートが燃焼するには空気が必要で
あるが、空気をフィルタに導く前に5〜10分間パティ
キュレートを予熱する。そののちバルブ21が制御され
排気ガスの一部がフィルタ16に導かれる。この空気に
より高温になっているパティキュレートはすみやかに燃
焼状態へ移る。この燃焼状態はマイクロ波加熱をともな
ってフィルタの排気ガス下流方向に移動する。この間、
温度検出手段25はフィルタ下流の排気温度を検出して
いる。
Air is required for red-hot particulates to burn, but preheat the particulates for 5-10 minutes before introducing the air to the filter. Thereafter, the valve 21 is controlled and a portion of the exhaust gas is guided to the filter 16. The particulates, heated by this air, quickly move into a combustion state. This combustion state is accompanied by microwave heating and moves downstream of the exhaust gas from the filter. During this time,
The temperature detection means 25 detects the exhaust gas temperature downstream of the filter.

この排気温度の温度上昇が飽和に達した時点でパティキ
ュレート燃焼がフィルタの末端まで実行されたことを判
断しフィルタの再生が完了したことを識別する。燃焼完
了が確認されるとバルブ21゜22は元の状態、すなわ
ちバルブ21は開放、バルブ22は閉止の状態に制御さ
れ排気ガスは再びフィルタI6に導かれる。これでフィ
ルタの再生に関する一連の動作が完了する。
When the temperature rise in the exhaust gas reaches saturation, it is determined that particulate combustion has been performed to the end of the filter, and it is determined that the filter regeneration has been completed. When the completion of combustion is confirmed, the valves 21 and 22 are controlled to their original states, that is, the valve 21 is opened and the valve 22 is closed, and the exhaust gas is guided to the filter I6 again. This completes a series of operations related to filter regeneration.

ところでこの再生プロセスの実行によるフィルタ再生を
完全なものにするにはパティキュレート燃焼を効果的に
実行させる必要がある。これを行うための手段が本発明
のフィルタ構造体である。
By the way, in order to complete filter regeneration by executing this regeneration process, it is necessary to effectively perform particulate combustion. A means for doing this is the filter structure of the present invention.

第2図は各セルに捕集されたパティキュレートの量とセ
ル数との関係を開孔率をパラメータとして図示したもの
である。フィルタ全体に捕集されたパティキュレートの
総量は一定としている。
FIG. 2 illustrates the relationship between the amount of particulates collected in each cell and the number of cells using the aperture ratio as a parameter. The total amount of particulates collected throughout the filter is assumed to be constant.

第3図はフィルタに捕集されたパティキュレートの総量
とフィルタ再生率との関係をセル数をパラメータとして
求めたものである。フィルタの総捕集量が少ない領域で
はセル数が多くなると再生率が低下した。この理由は各
セル当たりのパティキュレート捕集量がセル数が増すと
減少するため各セル当たりのマイクロ波加熱による発熱
が減少するためと考えられる。なお、総捕薬量がある程
度多くなるとセル数による再生率への影響はほと認めら
れなくなる。これは各セル当たりの発熱容量が隣接する
セルに対して熱拡散を行うのに十分な容量になるためと
考えられる。
FIG. 3 shows the relationship between the total amount of particulates collected by the filter and the filter regeneration rate, using the number of cells as a parameter. In regions where the total amount of filter capture was small, the regeneration rate decreased as the number of cells increased. The reason for this is thought to be that the amount of particulates trapped per each cell decreases as the number of cells increases, and therefore the heat generated by microwave heating per cell decreases. Note that when the total amount of trapped particles increases to a certain extent, the influence of the number of cells on the regeneration rate becomes almost unrecognizable. This is considered to be because the heat generation capacity of each cell is sufficient to diffuse heat to adjacent cells.

捕集量の広い範囲で高い再生率を保つことはフィルタ再
生装置のシステム性能保証の観点からも重要である。こ
のため、本発明は各セル当たりのパティキュレート捕集
量を高いするためにフィルタの開孔率を60%以上ある
いはセル数を200セル/inch”以下とする構造体
としている。
Maintaining a high regeneration rate over a wide range of trapped amounts is also important from the perspective of guaranteeing the system performance of the filter regeneration device. Therefore, in the present invention, in order to increase the amount of particulates collected per cell, the filter has a structure in which the porosity of the filter is 60% or more or the number of cells is 200 cells/inch or less.

第4図はマイクロ波加熱方式と電気ヒーター加熱方式に
おけるフィルタ再生の過程を比較した図である。本発明
のフィルタ構造体を利用すれば電気ヒータ一方式におい
てもその効用が期待できる。
FIG. 4 is a diagram comparing the filter regeneration process in the microwave heating method and the electric heater heating method. If the filter structure of the present invention is used, it can be expected to be effective even in a single electric heater type.

しかしながら、フィルタの端面部近傍に対しての昇温特
性および燃焼領域は図示したようにほぼ同様であるが、
フィルタ端面近傍に存在するパティキュレートが燃焼に
より無くなった後の再生進行において図示したようなマ
イクロ波方式の高い性能保証が認められる。すなわち、
マイクロ波方式においては、端面近傍とほぼ同様の昇温
および燃焼進行が認められるが、電気ヒータ一方式では
パティキュレートの存在する領域がヒーター源から遠ざ
かったことにより昇温か端面領域はど進まず燃焼領域が
縮小傾向になってしまい、最終的には燃焼が消滅してし
まう。従って、マイクロ波加熱方式との相性を最適化し
た本発明のフィルタ構造体はフィルタ再生装置の再生性
能を総合的に向上させたものである。
However, the temperature rise characteristics and combustion area near the end face of the filter are almost the same as shown in the figure;
The microwave method guarantees high performance as shown in the diagram in the progress of regeneration after the particulates present near the end face of the filter are eliminated by combustion. That is,
In the microwave method, almost the same temperature rise and combustion progress as near the end face is observed, but with the electric heater type, the area where particulates exist moves away from the heater source, so the heating temperature does not progress in the end face area and combustion progresses. The area tends to shrink, and eventually combustion disappears. Therefore, the filter structure of the present invention, which is optimized for compatibility with the microwave heating method, has a comprehensive improvement in the regeneration performance of the filter regeneration device.

なお、マイクロ波の給電は排気温度が最高値に達するま
で続ける必要はなくそれ以前の適当な時期に給電を停止
させることができる。この停止時期と予熱時間はパティ
キュレートの捕集量で決めることができる。
Note that it is not necessary to continue the microwave power supply until the exhaust gas temperature reaches the maximum value, and the power supply can be stopped at an appropriate time before that. The stop timing and preheating time can be determined based on the amount of particulates collected.

さらには上記説明では燃焼用の空気として排気ガスの一
部を利用する方式を述べたが専用のエアーポンプなどを
付加してその発生空気を利用しても構わない。
Furthermore, although the above explanation describes a system in which part of the exhaust gas is used as combustion air, a dedicated air pump or the like may be added and the generated air may be used.

さらにまた、パティキュレートの加熱および燃焼に関す
る各部の制御内容は再生装置に設けられた各検出手段の
信号とともにエンジンの動作状態を知らせる信号も含め
て総合的に決定させることもできる。
Furthermore, the content of control of each part related to heating and combustion of particulates can be determined comprehensively, including signals from each detection means provided in the regenerator and a signal indicating the operating state of the engine.

発明の効果 以上のように本発明の内燃機関用フィルタ再生装置によ
れば次の効果が得られる。
Effects of the Invention As described above, the filter regeneration device for an internal combustion engine of the present invention provides the following effects.

(11フイルタの構造体を最適化することにより発熱容
量を高くして昇温特性の改薯あるいは熱拡散による燃焼
領域の拡大を促進し高い再生性能を保証させることがで
きる。
(11) By optimizing the structure of the filter, it is possible to increase the heat generation capacity, improve the temperature rise characteristics, or promote expansion of the combustion area through heat diffusion, thereby ensuring high regeneration performance.

(2)マイクロ波加熱方式に対して最適なフィルタ構造
体を提供することにより再生装置全体の総合的な再生性
能の向上を可能にすることができる。
(2) By providing an optimal filter structure for the microwave heating method, it is possible to improve the overall regeneration performance of the entire regeneration device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す内燃機関用フィルタ再
生装置の構成図、第2図はフィルタ構造とパティキュレ
ート捕集量との関係を示す図、第3図はフィルタ構造に
対する再生特性図、第4図は本発明のフィルタによるマ
イクロ波加熱方式と電気ヒーター加熱方式の再生進行比
較図、第5図は従来の内燃機関用フィルタ再生装置の構
成図であ名。 11−−・内燃機関、13・−・加熱室、14・−マイ
クロ波発生手段、16・・・フィルタ。 代理人の氏名 弁理士 小機治 明ほか28晃11♂ J’lt  牟°  (うイ・ン tル説 第41 F!l訳ヒータ方式 マイクロ、−に方式 笛516
Fig. 1 is a configuration diagram of a filter regeneration device for an internal combustion engine showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between filter structure and particulate collection amount, and Fig. 3 is a diagram showing regeneration characteristics for the filter structure. 4 is a comparison diagram of regeneration progress between a microwave heating method and an electric heater heating method using the filter of the present invention, and FIG. 5 is a block diagram of a conventional filter regeneration device for an internal combustion engine. 11--Internal combustion engine, 13--Heating chamber, 14--Microwave generating means, 16--Filter. Name of agent Patent attorney Akira Kokiharu et al. 28 Akira 11♂ J'lt 剟°

Claims (2)

【特許請求の範囲】[Claims] (1)内燃機関の排気管に設けられた加熱室と、前記加
熱室に給電されるマイクロ波を発生するマイクロ波発生
手段と、前記加熱室内に収納され排気ガス中のパティキ
ュレートを捕集する開孔率が60%以上の構造体からな
るフィルタとを備えた内燃機関用フィルタ再生装置。
(1) A heating chamber provided in an exhaust pipe of an internal combustion engine, a microwave generating means for generating microwaves to be supplied with electricity to the heating chamber, and a microwave generator housed in the heating chamber to collect particulates in the exhaust gas. A filter regeneration device for an internal combustion engine, comprising a filter made of a structure having a porosity of 60% or more.
(2)内燃機関の排気管に設けられた加熱室と、前記加
熱室に給電されるマイクロ波を発生するマイクロ波発生
手段と、前記加熱室内に収納され排気ガス中のパティキ
ュレートを捕集するセル数が200セル/inch^2
以下の構造体からなるフィルタとを備えた内燃機関用フ
ィルタ再生装置。
(2) A heating chamber provided in an exhaust pipe of an internal combustion engine, a microwave generating means for generating microwaves to be supplied with electricity to the heating chamber, and a microwave generator housed in the heating chamber to collect particulates in the exhaust gas. Number of cells is 200 cells/inch^2
A filter regeneration device for an internal combustion engine, comprising a filter consisting of the following structure.
JP2297778A 1990-11-02 1990-11-02 Filter recycling device for internal combustion engine Pending JPH04171210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297778A JPH04171210A (en) 1990-11-02 1990-11-02 Filter recycling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297778A JPH04171210A (en) 1990-11-02 1990-11-02 Filter recycling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04171210A true JPH04171210A (en) 1992-06-18

Family

ID=17851058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297778A Pending JPH04171210A (en) 1990-11-02 1990-11-02 Filter recycling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04171210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212945A (en) * 1993-01-20 1994-08-02 Matsushita Electric Ind Co Ltd Filter reprocessing apparatus for internal combustion engine
EP3543490A1 (en) 2018-03-22 2019-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126021A (en) * 1983-01-07 1984-07-20 Mitsubishi Electric Corp Filter regenerating apparatus ror internal-combustion engine
JPS61129017A (en) * 1984-11-27 1986-06-17 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH02146212A (en) * 1988-11-25 1990-06-05 Asahi Glass Co Ltd Particulate trap device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126021A (en) * 1983-01-07 1984-07-20 Mitsubishi Electric Corp Filter regenerating apparatus ror internal-combustion engine
JPS61129017A (en) * 1984-11-27 1986-06-17 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH02146212A (en) * 1988-11-25 1990-06-05 Asahi Glass Co Ltd Particulate trap device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212945A (en) * 1993-01-20 1994-08-02 Matsushita Electric Ind Co Ltd Filter reprocessing apparatus for internal combustion engine
EP3543490A1 (en) 2018-03-22 2019-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
US20190292957A1 (en) 2018-03-22 2019-09-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
KR20190111806A (en) 2018-03-22 2019-10-02 도요타 지도샤(주) Exhaust gas control system for internal combustion engine
JP2019167852A (en) * 2018-03-22 2019-10-03 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
US10871094B2 (en) 2018-03-22 2020-12-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2871299B2 (en) Filter regeneration device for internal combustion engine
JPH04171210A (en) Filter recycling device for internal combustion engine
JP2819850B2 (en) Filter regeneration device for internal combustion engine
JP2819848B2 (en) Filter regeneration device for internal combustion engine
JP2689722B2 (en) Filter regeneration device for internal combustion engine
JP2827554B2 (en) Filter regeneration device for internal combustion engine
JP3109092B2 (en) Filter regeneration device for internal combustion engine
JP2833270B2 (en) Filter regeneration device for internal combustion engine
JPH04259619A (en) Regenerating device for filter of internal combustion engine and regeneration controlling method
JP2871342B2 (en) Filter regeneration device for internal combustion engine and control method thereof
JP2689723B2 (en) Filter regeneration device for internal combustion engine
JP2827780B2 (en) Filter regeneration device for internal combustion engine
JP2705340B2 (en) Filter regeneration device for internal combustion engine
JPH04301125A (en) Filter renovator for internal combustion engine
JP2910430B2 (en) Filter regeneration device for internal combustion engine
JPH06264712A (en) Filter regenerative apparatus for internal combustion engine
JP2785659B2 (en) Filter regeneration device for internal combustion engine
JP2792264B2 (en) Filter regeneration device for internal combustion engine
JPH05231127A (en) Regeneration of filter for internal combustion engine and device therefor
JPH05141221A (en) Filter regenerating device for internal combustion engine
JP2789833B2 (en) Filter regeneration device for internal combustion engine
JP2893985B2 (en) Filter regeneration device for internal combustion engine
JP2819849B2 (en) Filter regeneration device for internal combustion engine
JPH04301120A (en) Filter renovator for internal combustion engine
JP2819895B2 (en) Filter regeneration device for internal combustion engine