JPH0417043B2 - - Google Patents
Info
- Publication number
- JPH0417043B2 JPH0417043B2 JP63126711A JP12671188A JPH0417043B2 JP H0417043 B2 JPH0417043 B2 JP H0417043B2 JP 63126711 A JP63126711 A JP 63126711A JP 12671188 A JP12671188 A JP 12671188A JP H0417043 B2 JPH0417043 B2 JP H0417043B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- pot
- steel plate
- block
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052782 aluminium Inorganic materials 0.000 claims description 99
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 99
- 229910000831 Steel Inorganic materials 0.000 claims description 45
- 239000010959 steel Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 37
- 238000012546 transfer Methods 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 17
- 239000010935 stainless steel Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 238000005219 brazing Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000007718 adhesive strength test Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Cookers (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Description
〔産業上の利用分野〕
本発明は、アルミ伝熱底を有する鍋の製造法、
詳しくは、容易に剥離することがない強固なアル
ミ伝熱底を有する鍋を効率的に製造することがで
き、アルミ伝熱底鍋の品質向上と生産効率の向上
に役立てることが可能である。
〔従来の技術、および解決すべき技術的課題〕
鋼板製あるいはステンレス製の鍋の底部にアル
ミ材料を接合して伝熱性を改善したアルミ伝熱底
付の鍋は従来周知であり、熱効率が良好であると
ころから愛用者が徐々に増えてくる傾向にある。
ところで、従来、上記のようなアルミ伝熱底付
鍋を製造する方法としては、
鍋の底面にアルミ板をロウ付けして製造する
方法(以下、ロウ付法と称す)、
鍋の底面にアルミ板をスポツト熔接して製造
する方法(以下、スポツト熔接法と称す)、
鍋の底面にアルミ材料を鋳込むことによつて
アルミ層を形成して製造する方法(以下、鋳込
法と称す)、
といつた技術が汎用されている。
だが、伝熱底付鍋を上記のロウ付法によつて
製造する方法は、高価なロウ材および大掛かりな
ロウ付設備が必要になるところから、ランニング
コストも固定費用も共に上昇して製品価格が高価
にならざるを得ないうえに、ロウ材を介してアル
ミ板材を鍋底に接合する関係上、使用中に、もし
空焚きでもすると、ロウ材が溶出して伝熱底を形
成するアルミ板が剥離してしまうという欠点があ
り、
また、伝熱底付鍋を上記のスポツト熔接法に
よつて製造する方法には、鉄系金属材料に対して
アルミという非鉄金属系材料をスポツト熔接しよ
うとすると、非常に難度の高い熟練技術を必要と
することから加工費が頗る高くなるうえに、アル
ミ板が散点状にステンレス鍋底に接合されている
に過ぎないためにスポツト的に接合されていない
部分の熱伝導が阻害されて熱効率が上がらぬとい
う欠点があり、
さらに、伝熱底付ステンレス鍋を上記の鋳込
法によつて製造する方法にも、作業工程の複雑化
(前処理としての溶射加工、多様な鋳型の準備、
鋳込接合されたアルミ層の整形補正など)をもた
らすと共に、高温下で作業しなければならぬため
労働環境的にも問題があり、更に高温の熱履歴を
経るためアルミ層と鋼板との間に金属間化合物が
生じ易く接合力を弱体化せしめるうえに、また使
用する鋳型も度重なる高熱履歴によつて劣化され
てしまうところから、品質、製造コスト、および
生産性の面において難点が多かつたのである。
本発明は、伝熱底付鍋を製造する従来技術に前
述のごとき問題があつたことに鑑みて為されたも
のであり、従来のアルミ伝熱底付鍋に比較してア
ルミ層の接合強度が格段に強固で耐久性に秀れた
高品質のアルミ伝熱底付鍋を製造することを技術
的課題とするものである。
また、本発明の他の技術的課題は、従来方法に
比較して安価に、かつ、高能率に製造することが
できる新方法を提供するにある。
また、本発明の他の技術的課題は、鋼板のサイ
ズとアルミブロツクのサイズとを選択するだけ
で、所望する形状・底厚・サイズのアルミ伝熱底
付鍋を自由に製造することができる融通性の高い
方法を提供するにある。
さらに、本発明の他の技術的課題は、伝熱性の
良好な電磁鍋やホツトプレート鍋でも簡単に製造
できる技術を確立することである。
〔目的達成のために採用した手段〕
本発明者が上記目的を達成するために採用した
技術的手段を、添附図面を参照して説明すれば、
次のとおりである。
即ち、本発明は、鋼板1を深絞成形して成る従
来周知の鍋Pを技術的前提として、その鍋Pのボ
トム側に、アルミブロツク2を円板状にプレス潰
延して接合せしめるという手段を採用したことに
よつて接合強度が非常に優れたアルミ伝熱底を有
する鍋を実現するに成功したのであり、
かゝるアルミ伝熱底を有する鍋は、鋼板1およ
びアルミブロツク2を200〜500℃に加熱すると共
に、この温度条件下にあるアルミブロツク2を前
記鋼板1面に高速度でプレスすることによつて当
該ブロツク2のみを放射方向へ円板状に急速潰延
せしめ、その潰延の際に生ずる粘着性に富んだア
ルミ潰裂面にて前記両金属1,2を接合して鋼板
1面にアルミ層hを形成し、このアルミ層hをボ
トム側にして当該鋼板1を鍋の形状に深絞成形す
るという加工手段を採用することによつて効率的
に安価に製造することが可能である。
また、本発明に係るアルミ伝熱底を有する鍋
は、予じめ鍋形状に成形された鋼板1′およびア
ルミブロツク2を200〜500℃に加熱すると共に、
この温度条件下にあるアルミブロツク2を前記鋼
板1′のボトム側に高速度でプレスすることによ
つて当該ブロツク2のみを放射方向へ円板状に急
速潰延せしめ、その潰延の際に生ずる粘着性に富
んだアルミ潰裂面にて前記両金属1′,2を接合
してアルミ層hを形成するという加工手段を採用
することによつても同様に効率的に製造すること
ができる。この方法によれば、鋼板1′を鍋形に
深絞成形した際に当該鋼板に生ずる残留応力をア
ルミ圧潰の際に同時に除去することができる。言
い換えると、鋼板1′を深絞成形して鍋を作製す
る場合には、作製された鍋が事後的に変形した
り、時期割れ(season crack)を起したりする
ことがあるけれども、その原因は塑性加工の際の
不可避的な残留応力に起因しているのであるが、
予じめ鍋形状に鋼板1′を深絞成形しておいて後
でアルミブロツク2をプレス潰延すれば、そのと
き受ける熱間のプレス圧力が前記残留応力を消去
してしまうので、形態安定性の良好な鍋を高能率
に製造することが可能になるのである。
なお、上記のアルミ伝熱底鍋を製造する場合に
おいて、アルミブロツク2を鋼板1または鍋形鋼
板1′に上記のように潰延接合せしめる際に押し
型Cとアルミブロツク2との間に、カバー鋼板3
を介在させ、前記アルミブロツク2を鋼板1,3
に挟んでプレス潰延して三者1,2,3を一体に
接合せしめるという手段を採用することも可能で
あつて、この方法によれば、柔らかいアルミ層h
から成る伝熱層Hのスクラツチ傷が防止され、ま
たカバー鋼板3として磁性ステンレス材料(JIS
規格:SUS410、SUS430)を採択しておけば電
磁鍋としての機能を有するアルミ伝熱底鍋を製造
することも可能である。
また、アルミブロツク2をプレス潰延する際、
ないしはアルミ層hが形成された鋼板1を鍋形に
深絞成形する際に、押圧面に波形凹凸(例えば、
螺旋状あるいは同心円状)を刻設したものを用い
れば、ボトム面に波形凹凸のある伝熱底鍋を得る
ことができ、それによつて受熱面積が大きくな
り、熱効率が向上する。
〔実施例、および作用試験〕
以下、本発明を添附図面に示す実施例に基いて
説明すれば、次のとおりである。なお、第1図〜
第3図は本発明の第1実施例方法を工程的に表わ
した説明図、第4図〜第6図は本発明の第2実施
例方法を工程的に表わした説明図、第7図および
第8図は本発明の第3実施例方法を工程的に表わ
す説明図、第9図〜第12図は試験データを得る
ため試作したアルミ伝熱底鍋の製造工程を表わす
工程説明図、第13図は試験片を取り出した箇所
を示す同試作鍋の底面図、第14図は同試作鍋の
アルミ層の接合強度をT字形試験法によつて剥離
試験を行つている状態を表わす説明図である。
図面上、符号1で指示されるものは鋼板であ
り、符号2で指示されるものは円柱状に成形した
アルミブロツクであり、また第4図〜第6図に符
号3で指示されるものはカバー鋼板、符号Cは油
圧プレス装置の上型、符号Dは同下型である。そ
して、第1図、第4図、および第7図は、何れも
鋼板1,1′上でアルミブロツク2を熱間潰延し
て前記鋼板1,1′に層着せしめる状態を表わし
ている。なお、第2実施例方法では、潰延された
アルミブロツク2がカバー鋼板3とも接合するこ
とになる。
しかして、上記アルミブロツク2を熱間潰延す
るにあたつては、当該アルミブロツク2および鋼
板1を200〜500℃の加熱条件下で行うことを必要
とするが、アルミニユーム(アルミブロツク2)
界面の降伏応力とアルミの酸化速度の兼合いか
ら、第1〜第3実施例方法においては、450〜500
℃の温度範囲内で平均変形抵抗24Kg/mm2、平均下
降加圧速度100mm/minで油圧装置によりプレス
加工することにした。
アルミブロツク2は高温化するほど軟化し粘性
が増すのであるが、余り高温度まで昇温させる
と、表面における酸化皮膜の形成速度が速くな
り、折角、粘性アルミニユームが塑性流動しても
瞬時酸化して酸化皮膜を形成し鋼板への接合を阻
害する一方、上記のように450〜500℃の温度範囲
を選択してプレス手段でアルミブロツク2を急速
度にプレス潰延せしめれば、軟化した粘性アルミ
ニユームが酸化被膜を形成するよりも速く流動摩
擦を起しながら鋼板面上を展延流動し当該界面に
粘着接合することになるからである。尚、上記熱
間潰延処理に先立つて、ステンレス鋼板1,1′、
アルミブロツク2、およびカバー鋼鈑3の各接合
面をワイヤーバフ研摩や洗浄により清浄にしてお
くといつた前処理が施されることは当然である。
ついで、第1実施例方法および第2実施例方法
にあつては、上記熱間潰延処理によりアルミ層h
が設けられたステンレス鋼板1を空冷して常温に
冷却した後、アルミ層hがボトム側に位置するよ
うに深絞加工して鍋形状に成形する(第3図およ
び第6図参照)。この場合、第2実施例方法によ
つて得られる成形品は、鍋底のアルミ層hがカバ
ー・ステンレス鋼板3で被覆された構造になるの
で、アルミ層hのスクラツチ傷を防止できると共
に、カバー・ステンレス鋼板3として磁性ステン
レス材料(JIS規格:SUS410、SUS430)を採択
しておけば電磁鍋にもなる。
第3図および第6図のようにして鍋形状に深絞
成形された第1・第2実施例方法に係る成形物、
並びに第8図に示される第3実施例方法に係る成
形物は、研摩・柄付などの最終加工が施されてア
ルミ伝熱底を有するステンレス鍋として完成され
る。
次に、第9図〜第14図に示す試作試験例を引
用して、本発明方法によつて得られるアルミ伝熱
底ステンレス鍋の作用を検証する。
まず、450〜500℃に加熱されたJIS規格
SUS304(サイズ:厚さ0.8mm、幅335mm、奥行335
mm)のステンレス鋼板1を保温装置を備えた油圧
プレス装置の下型D上に載置し、その上へ同じく
450〜500℃に加熱されたJIS規格1050(サイズ:径
40φ、高さ81mm)円柱形アルミブロツク2を載置
して(第9図参照)、平均変形抵抗24Kg/mm2、平
均下降加圧速度1000mm/min(総圧下荷重:450t)
で上型Cを押下げた。すると、前記アルミブロツ
ク2は潰延されて前記ステンレス鋼板1に粘着接
合し、4mm厚のアルミ層hが形成された(第10
図参照)。そこで、前記ステンレス鋼板1に層着
されたアルミ層hの外形を施削加工して整形し
(第11図)、ついでアルミ層hがボトム側の中央
に位置するように位置決めして常法により深絞
し、直径190φ、高さ100mmのアルミ伝熱底ステン
レス鍋を得た(第12図参照)。
本試験では、上記のようにして作製したアルミ
伝熱底ステンレス鍋Pを350℃〜10℃の温度範囲
で急速加熱⇔急速冷却を50回繰り返してみたので
あるが、何処にも剥離・捩れなどの障害を起こさ
なかつた。そこで、第13図に示すように、当該
鍋底のA部分およびB部分を試験片(幅10mm、長
さ50mm)を切り取つて、オートグラフ万能試験機
(引張速度:5mm/min)によりT字形接着強度
試験をしてみたところ、A部分から切り取つた試
験片については31.0Kg/10幅mm、B部分から切り
取つた試験片については32.4Kg/10幅mmという結
果が得られた。しかして、この結果から見れば、
この試作アルミ伝熱底ステンレス鍋の性能は、一
般家庭における調理用鍋として十分であることは
もとよりのこと、業務用の鍋としても十分使用に
耐えるものである。
なお、本発明者は潰延時での加熱条件とアル
ミ・鋼板の接着強度との関係を検証すべく150℃、
200℃、300℃、350℃、400℃、450℃、500℃、
550℃、600℃の加熱潰延温度に対応するアルミの
接着強度を上記オートグラフ万能試験機を用いて
前述の第13図に準じた試験片によつてT字形接
着強度試験を行つたところ、次表のような結果が
得られた。
[Industrial Application Field] The present invention provides a method for manufacturing a pot having an aluminum heat transfer bottom;
Specifically, it is possible to efficiently manufacture a pot having a strong aluminum heat transfer bottom that does not easily peel off, and it is possible to use the method to improve the quality and production efficiency of aluminum heat transfer bottom pots. [Conventional technology and technical issues to be solved] Pots with aluminum heat transfer bottoms, which are made of steel or stainless steel and have an aluminum material bonded to the bottom to improve heat transfer properties, are well known and have good thermal efficiency. Since then, the number of users has gradually increased. By the way, the conventional methods of manufacturing the above-mentioned aluminum heat transfer bottom pot include a method of brazing an aluminum plate to the bottom of the pot (hereinafter referred to as the brazing method), a method of manufacturing by brazing an aluminum plate to the bottom of the pot, A method of manufacturing by spot welding plates (hereinafter referred to as spot welding method), a method of manufacturing by forming an aluminum layer by casting aluminum material on the bottom of a pot (hereinafter referred to as casting method) , and other technologies are widely used. However, the method of manufacturing heat transfer pots using the brazing method described above requires expensive brazing materials and large-scale brazing equipment, which increases both running costs and fixed costs, resulting in increased product prices. Not only is this expensive, but since the aluminum plate is bonded to the bottom of the pot via brazing metal, if the aluminum plate is left unheated during use, the brazing metal will dissolve and form the heat-transfer bottom of the aluminum plate. However, the spot welding method described above has the disadvantage of causing peeling of the heat-conducting pot, and the spot welding method involves spot welding aluminum, a non-ferrous metal material, to a ferrous metal material. This requires extremely difficult and skilled techniques, which increases processing costs, and since the aluminum plate is only sporadically joined to the bottom of the stainless steel pot, it is not joined in spots. There is a drawback that heat conduction in the parts is inhibited and thermal efficiency cannot be improved.Furthermore, the method of manufacturing a stainless steel pot with a heat transfer bottom by the above-mentioned casting method also has the disadvantage of complicating the work process (pre-treatment). Thermal spray processing, preparation of various molds,
(e.g., correcting the shape of the cast-jointed aluminum layer), it also poses a problem in terms of the working environment because the work must be done under high temperatures, and furthermore, due to the high temperature thermal history, the gap between the aluminum layer and the steel plate In addition, intermetallic compounds are likely to form in the process, weakening the bonding strength, and the molds used are also subject to deterioration due to repeated high heat histories, so there are many difficulties in terms of quality, manufacturing costs, and productivity. It was. The present invention was made in view of the above-mentioned problems in the conventional technology for manufacturing heat-conducting pots with a heat-conducting bottom. The technical challenge is to manufacture a high-quality aluminum heat-conducting pot with a bottom that is extremely strong and durable. Another technical object of the present invention is to provide a new method that can be manufactured at a lower cost and with higher efficiency than conventional methods. Another technical problem of the present invention is that by simply selecting the size of the steel plate and the size of the aluminum block, it is possible to freely manufacture an aluminum heat transfer bottom pot with a desired shape, bottom thickness, and size. The aim is to provide a highly flexible method. Furthermore, another technical object of the present invention is to establish a technology that allows easy production of electromagnetic pots and hot plate pots with good heat conductivity. [Means adopted to achieve the objective] The technical means adopted by the inventor to achieve the above objective will be explained with reference to the accompanying drawings.
It is as follows. That is, the present invention is based on the technical premise of a conventionally well-known pot P formed by deep-drawing a steel plate 1, and an aluminum block 2 is press-rolled into a disk shape and joined to the bottom side of the pot P. By adopting this method, they were able to successfully create a pot with an aluminum heat-conducting bottom with extremely high bonding strength, and such a pot with an aluminum heat-conducting bottom was made by combining the steel plate 1 and the aluminum block 2. By heating the aluminum block 2 under this temperature condition to 200 to 500°C and pressing it at high speed against the surface of the steel plate, only the block 2 is rapidly collapsed into a disk shape in the radial direction, The above-mentioned metals 1 and 2 are bonded together at the highly adhesive aluminum crushed surface generated during the crushing, and an aluminum layer h is formed on one side of the steel plate, and this aluminum layer h is placed on the bottom side of the steel plate. By employing a processing method of deep drawing 1 into the shape of a pot, it is possible to manufacture it efficiently and at low cost. In addition, the pot having an aluminum heat transfer bottom according to the present invention is produced by heating a steel plate 1' and an aluminum block 2, which have been formed into a pot shape in advance, to 200 to 500°C, and
By pressing the aluminum block 2 under this temperature condition against the bottom side of the steel plate 1' at high speed, only the block 2 is rapidly collapsed into a disk shape in the radial direction. Efficient production can be similarly achieved by employing a processing method in which the aluminum layer h is formed by bonding the two metals 1' and 2 on the resulting cracked aluminum surface, which is highly adhesive. . According to this method, the residual stress generated in the steel plate 1' when the steel plate 1' is deep-drawn into a pot shape can be removed at the same time as the aluminum is crushed. In other words, when producing a pot by deep drawing the steel plate 1', the produced pot may deform after the fact or cause season cracks. is caused by unavoidable residual stress during plastic working,
If the steel plate 1' is deep-drawn into the shape of a ladle in advance and then the aluminum block 2 is press-rolled, the hot press pressure received at that time will eliminate the residual stress, resulting in stable form. This makes it possible to manufacture pots with good properties with high efficiency. In the case of manufacturing the aluminum heat transfer bottom pot described above, when the aluminum block 2 is collapse-jointed to the steel plate 1 or the pot-shaped steel plate 1' as described above, between the press die C and the aluminum block 2, Cover steel plate 3
between the aluminum block 2 and the steel plates 1 and 3.
It is also possible to adopt a method of joining the three parts 1, 2, and 3 together by pressing and crushing them between the soft aluminum layers h.
Scratches on the heat transfer layer H consisting of
Standards: SUS410, SUS430), it is also possible to manufacture an aluminum heat transfer bottom pot that functions as an electromagnetic pot. Also, when pressing and rolling the aluminum block 2,
Alternatively, when deep-drawing the steel plate 1 on which the aluminum layer h is formed into a pot shape, the pressed surface is formed with wavy irregularities (for example,
By using a pot with a spiral or concentric circular pattern, it is possible to obtain a heat-conducting bottom pot with a corrugated bottom surface, which increases the heat receiving area and improves thermal efficiency. [Examples and Effect Tests] The present invention will be described below based on Examples shown in the accompanying drawings. In addition, Figure 1~
FIG. 3 is an explanatory diagram showing the method of the first embodiment of the present invention step by step, FIGS. 4 to 6 are explanatory diagrams showing the method of the second embodiment of the invention step by step, and FIGS. FIG. 8 is an explanatory diagram showing the method of the third embodiment of the present invention step by step; FIGS. Figure 13 is a bottom view of the prototype pot showing the location from which the test piece was taken out, and Figure 14 is an explanatory diagram showing the state in which a peel test is being conducted on the bonding strength of the aluminum layer of the prototype pot using the T-shaped test method. It is. In the drawings, what is designated by the symbol 1 is a steel plate, what is designated by the symbol 2 is an aluminum block formed into a cylindrical shape, and what is designated by the symbol 3 in Figures 4 to 6 is a steel plate. The cover steel plate, reference numeral C, is an upper die of a hydraulic press device, and reference numeral D is a lower die thereof. 1, 4, and 7 all show the state in which the aluminum block 2 is hot-rolled on the steel plates 1, 1' and layered on the steel plates 1, 1'. . In addition, in the method of the second embodiment, the crushed aluminum block 2 is also joined to the cover steel plate 3. Therefore, when hot rolling the aluminum block 2, it is necessary to heat the aluminum block 2 and the steel plate 1 at 200 to 500°C.
450 to 500 in the methods of the first to third embodiments, due to the balance between the yield stress of the interface and the oxidation rate of aluminum.
It was decided to perform press working using a hydraulic device within the temperature range of ℃ at an average deformation resistance of 24 Kg/mm 2 and an average downward pressing speed of 100 mm/min. The aluminum block 2 becomes softer and more viscous as the temperature increases, but if the temperature is raised too high, the rate of formation of an oxide film on the surface will increase, and even if the viscous aluminum flows plastically, it will not oxidize instantly. On the other hand, if the temperature range of 450 to 500°C is selected as described above and the aluminum block 2 is rapidly crushed and expanded using a press, the softened viscosity can be reduced. This is because aluminum spreads and flows on the steel plate surface while causing flow friction faster than the formation of an oxide film, and is adhesively bonded to the interface. Incidentally, prior to the above hot rolling treatment, the stainless steel plates 1, 1',
It is a matter of course that pretreatment such as cleaning the joint surfaces of the aluminum block 2 and the cover steel plate 3 by wire buffing or cleaning is performed. Next, in the method of the first embodiment and the method of the second embodiment, the aluminum layer h is
After cooling the stainless steel plate 1 provided with air to room temperature, it is formed into a pot shape by deep drawing so that the aluminum layer h is located on the bottom side (see FIGS. 3 and 6). In this case, the molded product obtained by the method of the second embodiment has a structure in which the aluminum layer h at the bottom of the pot is covered with the cover stainless steel plate 3, so that scratches on the aluminum layer h can be prevented, and the cover and If a magnetic stainless steel material (JIS standard: SUS410, SUS430) is used as the stainless steel plate 3, it can also be used as an electromagnetic pot. A molded product according to the method of the first and second embodiments, which is deep drawn into a pot shape as shown in FIGS. 3 and 6,
Further, the molded product according to the third embodiment method shown in FIG. 8 is subjected to final processing such as polishing and handle attachment, and is completed as a stainless steel pot having an aluminum heat transfer bottom. Next, referring to the prototype test examples shown in FIGS. 9 to 14, the function of the aluminum heat-conducting bottom stainless steel pot obtained by the method of the present invention will be verified. First, JIS standard heated to 450-500℃
SUS304 (Size: thickness 0.8mm, width 335mm, depth 335
mm) stainless steel plate 1 is placed on the lower die D of a hydraulic press equipped with a heat retention device, and the same is placed on top of it.
JIS standard 1050 (size: diameter) heated to 450-500℃
40φ, height 81mm) cylindrical aluminum block 2 (see Figure 9), average deformation resistance 24Kg/mm 2 , average downward pressure speed 1000mm/min (total rolling load: 450t)
Pressed down the upper mold C. Then, the aluminum block 2 was crushed and adhesively bonded to the stainless steel plate 1, and a 4 mm thick aluminum layer h was formed (10th
(see figure). Therefore, the outer shape of the aluminum layer h layered on the stainless steel plate 1 was shaped by machining (Fig. 11), and then the aluminum layer h was positioned at the center of the bottom side, and then processed using the usual method. By deep drawing, an aluminum heat transfer bottom stainless steel pot with a diameter of 190φ and a height of 100 mm was obtained (see Fig. 12). In this test, we repeated rapid heating and rapid cooling 50 times in the temperature range of 350°C to 10°C for the aluminum heat transfer bottom stainless steel pot P manufactured as described above, but no peeling, twisting, etc. were observed. did not cause any problems. Therefore, as shown in Fig. 13, test pieces (width 10 mm, length 50 mm) were cut from parts A and B of the pot bottom, and T-shaped adhesive was bonded using an autograph universal testing machine (pulling speed: 5 mm/min). When a strength test was performed, the test piece cut from part A had a strength of 31.0 kg/10 mm width, and the test piece cut from part B had a strength of 32.4 kg/10 mm width. However, from this result,
The performance of this prototype aluminum heat transfer bottom stainless steel pot is not only sufficient for use as a cooking pot for ordinary households, but also for commercial use. The inventors of the present invention investigated the relationship between the heating conditions during crushing and the adhesive strength of aluminum and steel sheets at 150°C.
200℃, 300℃, 350℃, 400℃, 450℃, 500℃,
A T-shaped adhesive strength test was conducted on the aluminum adhesive strength corresponding to heating and rolling temperatures of 550°C and 600°C using the above-mentioned Autograph universal testing machine using a test piece according to the above-mentioned Figure 13. The results shown in the following table were obtained.
以上実施例および試作試験例をもつて説明した
とおり、本発明方法によれば、従来アルミ伝熱底
ステンレス鍋に比較して、格段にアルミ層の接着
強度の強固で耐久性の秀れた製品を簡素な生産設
備で能率生産することができるのに加え、
生産すべきアルミ伝熱底鍋の形状・底厚・サイ
ズなど製品規格に多少の変更があつても、材料と
なる鋼板・アルミブロツクのサイズを置換するだ
けで設備的変更が殆ど必要でないので、ランニン
グコストのみならず固定費用も安価になり、製品
コストの低減化に大いに寄与することができる。
As explained above with examples and prototype test examples, the method of the present invention produces a product with significantly stronger adhesive strength and durability of the aluminum layer than conventional stainless steel pots with aluminum heat transfer bottoms. In addition to being able to efficiently produce aluminum heat transfer bottom pans with simple production equipment, even if there are slight changes in product specifications such as the shape, bottom thickness, and size of the aluminum heat transfer bottom pans to be produced, the steel plates and aluminum blocks used as materials can be Since there is almost no need to change the equipment simply by replacing the size, not only running costs but also fixed costs are reduced, which can greatly contribute to reducing product costs.
第1図〜第3図は本発明の第1実施例方法を工
程的に表わした説明図、第4図〜第6図は同第2
実施例方法を工程的に表わした説明図、第7図お
よび第8図は本発明の第3実施例方法を工程的に
表わす説明図、第9図〜第12図は試験データを
得るため試作したアルミ伝熱底ステンレス鍋の製
造工程を表わす工程説明図、第13図は試験片を
取り出した箇所を示す同試作鍋の底面図、第14
図は同試作鍋のアルミ層の接合強度をT字形試験
法によつて剥離試験を行つている状態を表わす説
明図である。
1……鋼板、2……アルミブロツク、3……カ
バー鋼板。H……アルミ伝熱底、P……鍋、h…
…アルミ層。
Figures 1 to 3 are explanatory diagrams showing the process of the first embodiment of the present invention, and Figures 4 to 6 are diagrams showing the second embodiment of the method.
Figures 7 and 8 are explanatory diagrams showing the process of the third embodiment of the present invention, and Figures 9 to 12 are diagrams showing prototypes for obtaining test data. Fig. 13 is a bottom view of the prototype pot showing the location from which the test piece was taken out;
The figure is an explanatory diagram showing a state in which a peel test is being conducted on the bonding strength of the aluminum layer of the prototype pot using the T-shaped test method. 1... Steel plate, 2... Aluminum block, 3... Cover steel plate. H...Aluminum heat transfer bottom, P...pan, h...
...Aluminum layer.
Claims (1)
鍋Pを作製するにあたり、 鋼鈑1およびアルミブロツク2を200〜500℃に
加熱すると共に、この温度条件下にあるアルミブ
ロツク2を前記鋼板1面に高速度でプレスするこ
とによつて当該ブロツク2のみを放射方向へ円板
状に急速潰延せしめ、その潰延の際に生ずる粘着
性に富んだアルミ潰裂面にて前記両金属1,2を
接合して鋼板1面にアルミ層hを形成し、放冷
後、このアルミ層hをボトム側にして当該鋼板1
を鍋の形状に深絞成形することを特徴とするアル
ミ伝熱底を有する鍋の製造法。 2 少なくともボトム部にアルミ伝熱層を有する
鍋Pを作製するにあたり、 鋼板1とカバー鋼鈑3との間にアルミブロツク
2を介在させて200〜500℃に加熱すると共に、こ
の温度条件下にあるアルミブロツク2を前記鋼板
1とカバー鋼鈑3との間で高速プレスすることに
より当該アルミブロツク2を挟圧状態に急速潰延
せしめ、その潰延の際に生ずるアルミの粘着性に
よつて前記金属1,2,3を一体に接合して鋼板
1とカバー鋼鈑3との間にアルミ層hをサンドウ
イツチ状に形成し、放冷後、カバー鋼鈑3をボト
ム側にして当該サンドウイツチ状金属鈑を鍋の形
状に深絞成形することを特徴としたアルミ伝熱底
を有する鍋の製造法。 3 少なくともボトム部にアルミ伝熱底を有する
鍋Pを作製するにあたり、 鍋形状に成形された鋼板1′およびアルミブロ
ツク2を200〜500℃に加熱すると共に、この温度
条件下にあるアルミブロツク2を前記鋼板1′の
ボトム側に高速度でプレスすることによつて当該
ブロツク2のみを放射方向へ円板状に急速潰延せ
しめ、その潰延の際に生ずる粘着性に富んだアル
ミ潰裂面にて前記両金属1′,2を接合してアル
ミ層hを形成した後、放冷して鍋Pを得ることを
特徴とした伝熱底を有する鍋の製造法。[Claims] 1. In producing the pot P having an aluminum heat transfer bottom at least in the bottom part, the steel plate 1 and the aluminum block 2 are heated to 200 to 500°C, and the aluminum block 2 under this temperature condition is heated. By pressing the block 2 against the steel plate 1 surface at high speed, only the block 2 is rapidly collapsed into a disk shape in the radial direction, and the highly adhesive aluminum crush surface generated during the crushing is Both metals 1 and 2 are joined to form an aluminum layer h on one side of the steel plate, and after cooling, the steel plate 1 is bonded with the aluminum layer h on the bottom side.
A method for manufacturing a pot with an aluminum heat transfer bottom, which is characterized by deep drawing into the shape of a pot. 2. In producing the pan P having an aluminum heat transfer layer at least on the bottom part, the aluminum block 2 is interposed between the steel plate 1 and the cover steel plate 3 and heated to 200 to 500°C, and under this temperature condition. By pressing an aluminum block 2 between the steel plate 1 and the cover steel plate 3 at high speed, the aluminum block 2 is rapidly collapsed into a compressed state, and due to the adhesiveness of the aluminum that occurs during the crushing. The metals 1, 2, and 3 are joined together to form an aluminum layer h in a sandwich shape between the steel plate 1 and the cover steel plate 3, and after cooling, the sandwich shape is formed with the cover steel plate 3 on the bottom side. A method for manufacturing a pot with an aluminum heat-conducting bottom, which is characterized by deep drawing a metal plate into the shape of a pot. 3. In producing the pot P having an aluminum heat transfer bottom at least in the bottom part, the steel plate 1' formed into the shape of a pot and the aluminum block 2 are heated to 200 to 500°C, and the aluminum block 2 under this temperature condition is heated. By pressing the block 2 against the bottom side of the steel plate 1' at high speed, only the block 2 is rapidly crushed and expanded in the radial direction into a disk shape, and the highly adhesive aluminum crushing that occurs during the crushing. A method for manufacturing a pot having a heat-conducting bottom, characterized in that a pot P is obtained by joining the metals 1' and 2 at their surfaces to form an aluminum layer h, and then cooling the pot P.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12671188A JPH01293813A (en) | 1988-05-23 | 1988-05-23 | Pot having heat-transmitting bottom of aluminum and manufacture of such pot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12671188A JPH01293813A (en) | 1988-05-23 | 1988-05-23 | Pot having heat-transmitting bottom of aluminum and manufacture of such pot |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01293813A JPH01293813A (en) | 1989-11-27 |
JPH0417043B2 true JPH0417043B2 (en) | 1992-03-25 |
Family
ID=14941968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12671188A Granted JPH01293813A (en) | 1988-05-23 | 1988-05-23 | Pot having heat-transmitting bottom of aluminum and manufacture of such pot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01293813A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2741553B1 (en) * | 1995-11-27 | 1998-01-30 | Seb Sa | METHOD FOR MANUFACTURING A COOKING CONTAINER AND CONTAINER OBTAINED |
JP7114029B2 (en) * | 2017-12-20 | 2022-08-08 | 富山県 | metal joining method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS453333Y1 (en) * | 1965-12-30 | 1970-02-14 | ||
JPS58169420A (en) * | 1982-03-31 | 1983-10-05 | アサヒ軽金属工業株式会社 | Kettle having good heat conductive surface and production thereof |
-
1988
- 1988-05-23 JP JP12671188A patent/JPH01293813A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS453333Y1 (en) * | 1965-12-30 | 1970-02-14 | ||
JPS58169420A (en) * | 1982-03-31 | 1983-10-05 | アサヒ軽金属工業株式会社 | Kettle having good heat conductive surface and production thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH01293813A (en) | 1989-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10478012B2 (en) | Method of making a plurality of bonded blank assemblies | |
JP4689040B2 (en) | Manufacturing method of five-layer composite metal cooking container | |
CN110421000B (en) | Method for preparing metal composite plate by cross rolling of double corrugated rollers | |
US2718690A (en) | Method of producing composite metals | |
CN101015892B (en) | Producing method of composite cooking-vessel and product thereof | |
US10717252B2 (en) | Cooking utensil having a graphite core | |
US5257717A (en) | Method of manufacturing a cooking utensil | |
US4029253A (en) | Method of heat and pressure bonding of plates of heat conductive metal onto stainless steel surfaces | |
US4511077A (en) | Cookware and method of making the same | |
CN1086161C (en) | High-frequency heating and pressurizing technology and equipment for soldering ring and planar parts made of different metals | |
US4782993A (en) | Process for manufacturing twin layer bottoms with filling of the hollow space | |
JPH0417043B2 (en) | ||
JPS59179246A (en) | Production of vessel for electromagnetic induction heating | |
TWI529019B (en) | Method of making a quick heat - conducting pot | |
CN115070350A (en) | Double-layer steel-aluminum pot brazing heat composite bottom forming method and steel-aluminum pot | |
KR100453548B1 (en) | Method for forming the kitchen cooker of induction heater | |
CN104625596A (en) | Method for manufacturing quick heat conduction pot | |
JPH02104422A (en) | Manufacture of al pan | |
TWI605889B (en) | Pot, pot body of the heating device combination method | |
CN1107761A (en) | Method for producing frying pan | |
TW202246040A (en) | Shaping device and shaping method wherein the shaping device includes a pot, a heater, and a clamping mold | |
CN111802899A (en) | Production method of stainless steel pot with rolled and sprayed inner surface | |
JPS609594A (en) | Production of composite articles | |
JP2004122154A (en) | Method for manufacturing vessel having vacuum part | |
CN113978057A (en) | Composite board and preparation method thereof |