JPH04152004A - Cutting tool - Google Patents
Cutting toolInfo
- Publication number
- JPH04152004A JPH04152004A JP27747490A JP27747490A JPH04152004A JP H04152004 A JPH04152004 A JP H04152004A JP 27747490 A JP27747490 A JP 27747490A JP 27747490 A JP27747490 A JP 27747490A JP H04152004 A JPH04152004 A JP H04152004A
- Authority
- JP
- Japan
- Prior art keywords
- cutting tool
- cutting
- group
- tac
- moc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 8
- 239000000956 alloy Substances 0.000 abstract description 8
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- 229910003470 tongbaite Inorganic materials 0.000 abstract 1
- 239000000463 material Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 239000002994 raw material Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910000997 High-speed steel Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はドリル、エンドミル、リーマ等の切削工具に関
し、詳細には、異種材料の複合化により耐摩耗性1耐チ
ッピング性、耐折損性の向上が図られた切削工具に関す
るものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to cutting tools such as drills, end mills, and reamers, and in particular, by combining different materials, it has improved wear resistance, chipping resistance, and breakage resistance. This invention relates to an improved cutting tool.
[従来の技術]
WC系やTiC系の硬質合金は一般に粉末冶金法で製造
され、ドリル、エンドミル、リーマ等の切削工具やビッ
ト、ロール等の耐摩耗性工具、鉱山用工具として広(利
用されている。[Prior art] WC-based and TiC-based hard alloys are generally produced by powder metallurgy, and are widely used as cutting tools such as drills, end mills, and reamers, wear-resistant tools such as bits and rolls, and mining tools. ing.
上記硬質合金は鉄、岩石等の高硬度材を対象にした切削
工具、耐摩・?#撃工具として用いられるので著しく高
い耐摩耗性が要求されており、ビッカース硬度にして1
000を超える高硬度材料となっている。The above hard alloys are used as cutting tools for high-hardness materials such as iron and rocks, and are wear-resistant and? # Since it is used as a hammer tool, extremely high wear resistance is required, and it has a Vickers hardness of 1.
It is a high hardness material with a hardness exceeding 0.000.
但し一般に硬度が高くなるほど材料は脆くなる性質を有
するものであり、耐摩耗性切削工具として一般に利用さ
れている高速度鋼(以下ハイスという)に比べ上記硬質
材料は靭性に劣るという難点を有していた。一方粉末冶
金法の難点であったボアーを完全消滅できるHIP法が
開発され、また超微粒子超硬合金の発明などにより、ハ
イスに近い靭性を持つ硬質材料が商品化された。その結
果、従来ハイス工具が主流であったドリル、エンドミル
なとの転削工具においても、WC系硬質材料が普及し始
め、硬さおよび耐熱性に優れることや、高剛性である特
性を活かし高速切削による加工能率の向上や高精度化な
ど高性能加工の最近のニーズに答えられるようになって
きている。However, in general, the higher the hardness, the more brittle the material becomes, and the above hard materials have the disadvantage of being inferior in toughness compared to high-speed steel (hereinafter referred to as high-speed steel), which is commonly used as a wear-resistant cutting tool. was. On the other hand, the HIP method was developed to completely eliminate the bore, which was a drawback of powder metallurgy, and with the invention of ultrafine cemented carbide, hard materials with toughness close to that of high speed steel were commercialized. As a result, WC-based hard materials have begun to become popular even in milling tools such as drills and end mills, where high-speed steel tools have traditionally been the mainstream. It has become possible to meet recent needs for high-performance machining, such as improved machining efficiency and higher precision through cutting.
しかしながら上記硬質材料であっても使用条件によって
は突発的な折れ、欠は等が発生して工具寿命がばらつく
という問題が生じており、信頼性の向上が残された課題
となっている。However, even with the above-mentioned hard materials, there is a problem in that the tool life varies due to sudden breakage, chipping, etc. depending on the usage conditions, and improvement of reliability remains an issue.
以下切削工具のうち代表的にドリルを取り上げて説明す
る。Below, a drill will be explained as a typical cutting tool.
硬質材料で製作されるドリルの欠け、折れという問題は
形状、材質の双方に左右されることが知られている。形
状面ではチゼル部の形状を工夫することによって欠けの
問題を解消しドリルが開発されている。また材質面から
欠け、折れの向上を図るには、−船釣に抗折力を高め靭
性を向上することが有効な手段である。It is known that the problem of chipping and breaking of drills made of hard materials is affected by both the shape and the material. In terms of shape, drills have been developed that solve the problem of chipping by devising the shape of the chisel part. In addition, in order to improve the resistance to chipping and breaking from the viewpoint of material quality, an effective means for boat fishing is to increase the transverse rupture strength and improve the toughness.
しかしながら耐摩耗性と靭性は相反する性質であり、靭
性の優れた超微粒合金についても例外ではない。そこで
現在汎用されている超硬ドリルは材質の面から工夫がな
され工具材料に比較的靭性の高いP30相当の超硬材料
を用いると共に、刃先にTiN等のコーティングを施す
ことにより、切削寿命を実用可能なレベルまで高めてい
るが、コーティング部が剥離しやすいという難点があり
、やはり寿命のばらつきが問題となっている。However, wear resistance and toughness are contradictory properties, and ultrafine grained alloys with excellent toughness are no exception. Therefore, the currently widely used carbide drills have been devised from the material standpoint, using a relatively tough P30 equivalent carbide material as the tool material, and coating the cutting edge with TiN etc. to extend the cutting life to practical use. Although this has been improved to the level that is possible, there is a problem in that the coating part easily peels off, and variations in lifespan are still a problem.
[発明が解決しようとする課題]
本発明は上記事情に着目してなされたものであって、耐
折損性、耐チッピング性が問題となる硬質材料において
、異種材料の複合化により、耐摩耗性と耐チッピング性
、耐折損性を同時に高め信頼性に優れた切削工具を提供
しようとするものである。[Problems to be Solved by the Invention] The present invention has been made focusing on the above-mentioned circumstances, and it is possible to improve wear resistance by combining different materials in hard materials where breakage resistance and chipping resistance are problematic. The aim is to provide a cutting tool with excellent reliability by simultaneously increasing chipping resistance and breakage resistance.
[ff題を解決するための手段]
上記目的を達成した本発明の切削工具における第1発明
とは長さしの溝部を有する刃先部とシャンク部で異なる
組成からなる切削工具であって、工具最先端から0.1
L〜1.0Lの範囲をA部、シャンク部を8部としたと
き、A部及び8部の各組成を下記の範囲に定めたもので
あることを要旨とするものである。[Means for solving the ff problem] The first invention of the cutting tool of the present invention that achieves the above object is a cutting tool having a long groove and having different compositions in a cutting edge portion and a shank portion, the tool 0.1 from the cutting edge
When the range of L to 1.0L is defined as part A and the shank part is defined as 8 parts, the gist is that the compositions of parts A and 8 are defined in the following ranges.
[A部コ
WCおよび/またはMOC:5〜40%COおよび/ま
たはNi :5〜3o%TaCおよび/または(Ta、
Nb)C:0.1〜10%
残部:TiC,TiN、Ti (C,N)よりなる群か
ら選択される1種以上及び不可避不純物。[Part A WC and/or MOC: 5-40% CO and/or Ni: 5-3o% TaC and/or (Ta,
Nb) C: 0.1-10% Balance: one or more selected from the group consisting of TiC, TiN, Ti (C, N) and inevitable impurities.
[B部]
Coおよび/またはNi:5〜30%
Crs C2,VC,MoC,TaCよりなる群から選
択される1種以上=0.1〜2.0%残部:平均粒径3
μm以下のWC及び不可避不純物。[Part B] Co and/or Ni: 5 to 30% Crs One or more selected from the group consisting of C2, VC, MoC, and TaC = 0.1 to 2.0% Balance: Average particle size 3
WC and unavoidable impurities below μm.
また上記A部の組成に、V(C,N)、Cr(C,N)
、Hf (C,N)、B (C,N)。In addition, the composition of part A above includes V(C,N), Cr(C,N)
, Hf (C,N), B (C,N).
Nb (C,N)、Zr (C,N)よりなる群から選
択される1種以上二0.1〜5%を含有させてもよく、
或は/及び上記B部の組成が更にTiC。One or more selected from the group consisting of Nb (C, N) and Zr (C, N) may be contained in an amount of 0.1 to 5%,
Or/and the composition of part B is further TiC.
TaC,(Ta、Nb)Cよりなる群から選択される1
種以上=30%以下、および/またはHf(C,N)、
B (C,N)、Nb (C,N)。1 selected from the group consisting of TaC, (Ta, Nb)C
Species or more = 30% or less, and/or Hf (C, N),
B (C,N), Nb (C,N).
Zr (C,N)の炭窒化物とTiN、TaNよりなる
群から選択される1種以上=0.1〜5%を含有させて
も良い。It may contain 0.1 to 5% of one or more selected from the group consisting of Zr (C, N) carbonitride, TiN, and TaN.
[作用コ
本発明に係る切削工具先端側のA部の組成は、切削工具
寿命の向上を目的とするものであり、Ti系炭窒化物を
主体とした組成を採用することによって、耐熱性、耐摩
耗性を高め、切削工具の高寿命化を図ったものである。[Function] The composition of part A on the tip side of the cutting tool according to the present invention is intended to improve the life of the cutting tool, and by adopting a composition mainly composed of Ti-based carbonitride, heat resistance, This is designed to improve wear resistance and extend the life of cutting tools.
以下に各成分の限定理由について説明する。The reasons for limiting each component will be explained below.
WCおよび/またはMoCは耐熱性の向上を目的として
添加されるが、5%未満では効果が十分得られず、一方
多過ぎると耐摩耗性が低くなり所望の切削工具寿命が達
成できないので40%を上限とした。WC and/or MoC are added for the purpose of improving heat resistance, but if it is less than 5%, the effect will not be sufficiently obtained, while if it is too much, wear resistance will be low and the desired cutting tool life cannot be achieved, so 40% was set as the upper limit.
COおよび/またはNiが5%未満の場合刃先に欠けを
生じるので5%以上添加するが、多過ぎると耐摩耗性が
劣化して所望の切削工具寿命を達成できないので30%
を上限とした。If CO and/or Ni is less than 5%, chipping will occur on the cutting edge, so add 5% or more, but if it is too much, the wear resistance will deteriorate and the desired cutting tool life cannot be achieved, so add 30%.
was set as the upper limit.
TaCおよび/または(Ta、Nb)Cは耐熱性の向上
を目的として添加するが、0.1%未満では十分な効果
が発揮されず、15%を超えると欠けが問題となり所望
の寿命を達成できないのでTaCの含有量は0.1〜1
5%とした。TaC and/or (Ta, Nb)C are added for the purpose of improving heat resistance, but if it is less than 0.1%, sufficient effect will not be exhibited, and if it exceeds 15%, chipping will become a problem and the desired life will not be achieved. Since it is not possible, the TaC content is 0.1 to 1.
It was set at 5%.
尚焼結時における微粒炭窒化物の粒成長の抑制を目的と
して、上記以外にV、Cr、Hf、B。In addition to the above, V, Cr, Hf, and B are added for the purpose of suppressing grain growth of fine carbonitrides during sintering.
Nb、Zrよりなる群から選択される1種以上の元素の
炭窒化物を0.1%以上含有させてもよいが、多過ぎる
と靭性に悪影響を及ぼすので5%を上限とすることが望
ましい。Carbonitride of one or more elements selected from the group consisting of Nb and Zr may be contained in an amount of 0.1% or more, but if it is too large, it will have a negative effect on toughness, so it is desirable to keep the upper limit at 5%. .
次に本発明の切削工具において根元側にあたるB部の組
成は、切削工具の耐折損性向上を目的とするものであり
、微粒W系炭化物を主体とした組成を採用することによ
って靭性の向上を図ったものである。Next, in the cutting tool of the present invention, the composition of part B, which is the root side, is intended to improve the breakage resistance of the cutting tool, and by adopting a composition mainly composed of fine W-based carbide, the toughness can be improved. It was planned.
Coおよび/またはNiが5%未満の場合、靭性が不十
分であり耐折損性に効力を発揮できない。一方30%を
超えても靭性が低下するのでCOやNiの含有量は5〜
30%とした。If the Co and/or Ni content is less than 5%, the toughness will be insufficient and the breakage resistance will not be effective. On the other hand, even if it exceeds 30%, the toughness decreases, so the content of CO and Ni should be 5 to 5%.
It was set at 30%.
Cr、C2,VC,MoC及びTaCは焼結時の粒成長
抑制剤として作用する化合物であり、その1f!以上が
0.1%未満の場合は粒成長を抑制する効果が発揮され
ず、焼結によりWCの平均粒径が3μmを超え、若しく
は異常成長粒子が形成されて靭性が低下し、耐折損性に
効果を発揮できない。一方2%を超えると粒成長抑制効
果は発揮できるものの、添加量が多いことから焼結や冷
却時の温度によっては靭性を損う晶析物が生じ効力を発
揮できないので2%を上限とした。Cr, C2, VC, MoC and TaC are compounds that act as grain growth inhibitors during sintering, and their 1f! If the above content is less than 0.1%, the effect of suppressing grain growth will not be exhibited, and the average grain size of WC will exceed 3 μm or abnormally grown grains will be formed due to sintering, resulting in decreased toughness and breakage resistance. cannot be effective. On the other hand, if the amount exceeds 2%, grain growth suppressing effects can be exhibited, but due to the large amount added, depending on the temperature during sintering and cooling, crystallized substances may be formed that impair toughness, making it impossible to demonstrate the effect, so 2% was set as the upper limit. .
WCの平均粒径は3μmを超えると、靭性が劣化し耐折
損性に威力を発揮できないので3μmを上限とした。If the average particle diameter of WC exceeds 3 μm, the toughness will deteriorate and the breakage resistance will not be effective, so the upper limit was set at 3 μm.
尚切削加工時において溝を通じて排出される切屑の熱的
破損防止と耐熱性の向上、さらには粒成長の抑制を目的
として、上記以外にTiCTaC,(Ta、Nb)Cよ
りなる群から選択される1種以上を含有させてもよい。In addition to the above, for the purpose of preventing thermal damage of chips discharged through the groove during cutting, improving heat resistance, and suppressing grain growth, in addition to the above, a material selected from the group consisting of TiCTaC and (Ta, Nb)C is used. One or more types may be contained.
但し多過ぎると靭性が劣化するので30%を上限とする
のが望ましい。However, if it is too large, the toughness will deteriorate, so it is desirable that the upper limit is 30%.
また粒成長の抑制を目的として、Hf、B。In addition, Hf and B are added for the purpose of suppressing grain growth.
Nb、Zrの炭窒化物とTi、Taの窒化物よりなる群
から選択される1種以上を0.1%以上含有させてもよ
い、但し多過ぎると靭性に悪影響を及ぼすので、5%以
下であることが好ましい。One or more selected from the group consisting of carbonitrides of Nb and Zr and nitrides of Ti and Ta may be contained in an amount of 0.1% or more; however, if it is too large, it will have a negative effect on toughness, so it should not exceed 5%. It is preferable that
尚上記A部とB部の一体性を高めることを目的として、
A部とB部の接合部はA部とB部の混合組成にすること
が好ましい。In addition, for the purpose of increasing the integrity of the above A part and B part,
It is preferable that the joint between parts A and B has a mixed composition of parts A and B.
[実施例〕 まず第1発明を実施例に基づいて説明する。[Example〕 First, the first invention will be explained based on examples.
実施例I
A部の原料粉末(以下A粉末ということがある)として
は0.8μmのTi (C,N)。Example I The raw material powder for part A (hereinafter sometimes referred to as A powder) was 0.8 μm Ti (C,N).
T i C,WC,1,3μmのMoC,TaC,1,
0μmのCo、Niを用い、B部の原料粉末(以下B粉
末ということもある)としては0.6〜1.5μmのW
C,1,3μm1のTaC,VC。T i C, WC, 1, 3 μm MoC, TaC, 1,
Co and Ni of 0 μm are used, and W of 0.6 to 1.5 μm is used as the raw material powder for part B (hereinafter also referred to as B powder).
C, 1.3 μm 1 of TaC, VC.
Crs C2,1,0μtaのCOを用い、上記A部。Part A above using Crs C2, 1,0 μta of CO.
B部の原料粉末の夫々について下記処理を施した。Each of the raw material powders in Part B was subjected to the following treatments.
まず、第1表に示される最終組成となる様に上記原料粉
末を配合し、有機溶剤中アトライタで8時間混合した後
乾燥造粒を行なった。First, the above raw material powders were blended to have the final composition shown in Table 1, mixed in an organic solvent for 8 hours using an attritor, and then dried and granulated.
得られた混合粉末を用いて、まずホッパーに蓄積されて
いるA粉末を所定量成形金型に投入後、所定量のB粉末
を投入して1.5ton/cm”で圧粉成形を行った。Using the obtained mixed powder, first a predetermined amount of A powder accumulated in a hopper was put into a molding die, and then a predetermined amount of B powder was put into the mold and compaction was performed at 1.5 ton/cm''. .
この様にして得られた成形体について脱ろう・半焼きを
施した後、ドリル形状素材にするための半焼加工を行な
った。この半焼量を約I Torrの真空雰囲気中14
00℃で1時間焼結後、Ar雰囲気下1000気圧で1
350℃、1時間のHIP処理を施し焼結体を得た。該
焼結体を機械加工し、刃先から20+mまでがA組成そ
れ以外がB組成からなる6、0 amφと10.0ma
+φのドリルを製作して、従来の超硬コーティング(T
iN)ドリルと穴明は可能な個数により性能を比較した
。その結果を第2表に示す。After dewaxing and semi-baking the thus obtained molded body, it was subjected to a semi-baking process to form a drill-shaped material. This half-baked amount is approximately 14 in a vacuum atmosphere of I Torr.
After sintering at 00℃ for 1 hour, sintering at 1000 atm under Ar atmosphere
A sintered body was obtained by performing HIP treatment at 350°C for 1 hour. The sintered body is machined, and the area from the cutting edge to 20+m is A composition, and the rest is B composition, 6.0 amφ and 10.0ma.
A +φ drill was manufactured and the conventional carbide coating (T
iN) The performance of drills and hole-cutters was compared based on the number of possible holes. The results are shown in Table 2.
実施例2 出発原料粉末は、0.8μ重のTi (C,N)。Example 2 The starting raw material powder was 0.8μ Ti (C,N).
T i C,WC,1,3μmのMoC,TaC,1,
0μm0のCo、Niを粉末として用い、0.5〜0.
8μmのWC,1,3μmのTaC,Cr、C2,1,
0μ獄のCoをB粉末として用いた。上記A。T i C, WC, 1, 3 μm MoC, TaC, 1,
Co and Ni of 0 μm0 are used as powder, and 0.5 to 0.
8μm WC, 1.3μm TaC, Cr, C2,1,
0μ Co was used as B powder. A above.
B粉末をそれぞれ第3表に示される最終組成が得られる
様に配合した以外は実施例1と同様な製法によりエンド
ミル素材を得た。End mill materials were obtained by the same manufacturing method as in Example 1, except that the B powders were blended so as to obtain the final compositions shown in Table 3.
これを機械加工し、刃部22IIIIIlがA組成であ
ってそれ以外がB組成からなり、直径110l1φ、ね
じれ角30° 4枚刃のエンドミルを製作し、下記の
条件により切削加工を行ない、総切削長と切削長8mに
おける面粗さを測定した。This was machined, and a 4-flute end mill with a diameter of 110l1φ and a helix angle of 30° was manufactured, with the blade part 22III having composition A and the rest having composition B. Cutting was performed under the following conditions, and the total cutting The length and surface roughness at a cutting length of 8 m were measured.
尚比較材には超微粒子超硬エンドミルを用いた。An ultrafine particle carbide end mill was used as a comparison material.
切削速度=70■m/分 送 リ : 0.07ma+/刃 切込み二手径方向−〇、OFvmφ 軸方向−15a+m 被削剤:555C(H8=190) 切削方式:ダウンカット、湿式 結果は第4表に示す。Cutting speed = 70 m/min Feed: 0.07ma+/blade Depth of cut 2nd radial direction −〇, OFvmφ Axial direction -15a+m Cutting material: 555C (H8=190) Cutting method: down cut, wet method The results are shown in Table 4.
第
表
実施例3
実施例2で用いた原料粉末を、最終組成が第3表の発明
合金1′ELび比較合金1になるように配合し、実施例
1と同様な製法でリーマ素材を得た。Table 3: Example 3 The raw material powders used in Example 2 were blended so that the final composition would be Invention Alloy 1'EL and Comparative Alloy 1 shown in Table 3, and a reamer material was obtained using the same manufacturing method as Example 1. Ta.
これらを機械加工し、本発明材は刃先部がA組成であっ
てそれ以外がB組成になるような20■φのリーマを製
作し、下記の条件でリーマ加工を行った。These were machined to produce a 20 mm diameter reamer in which the cutting edge of the material of the present invention had composition A and the rest had composition B, and reaming was performed under the following conditions.
切削速度:1500++m/分
送 リ : 0.4a+m /刃
被削長:25ma+貫通
リーマ化: 0.2a+m
被削材:550C(Ha ”179)
切削方式:湿式
1.5,50,500穴目で測定した面粗さルび真円度
の範囲を第5表に示す。Cutting speed: 1500++m/minute feed Re: 0.4a+m/Blade cutting length: 25ma+Through reaming: 0.2a+m Work material: 550C (Ha "179) Cutting method: Wet 1.5, 50, 500th hole Table 5 shows the measured ranges of surface roughness, roughness, and roundness.
第
表
本発明材を用いたり−マは面粗さ及び真円度の値が比較
材より非常に小さく、耐摩耗性に優れていることがわか
る。It can be seen that the surface roughness and roundness values of the tires using the materials of the present invention in Table 1 are much smaller than those of the comparative materials, indicating that they have excellent wear resistance.
[発明の効果]
本発明は以上の様に構成されているので、耐摩耗性、耐
チッピング性、耐折損性に優れた切削工具が提供できる
こととなった。[Effects of the Invention] Since the present invention is configured as described above, a cutting tool having excellent wear resistance, chipping resistance, and breakage resistance can be provided.
さらにTiC系単独合金で問題となる研削性の問題も根
元側に研削性の良好な微粒WC系合金を用いているので
、月切加工も従来の超硬合金なみに行なうことが可能で
ある。Furthermore, since a fine-grained WC alloy with good grindability is used on the root side to solve the problem of grindability that occurs with TiC-based single alloys, it is possible to perform moon cutting on the same level as with conventional cemented carbide.
Claims (2)
る組成からなる切削工具であって、刃先部最先端から0
.1L〜1.0Lの範囲をA部、シャンク部をB部とし
たとき、A部及びB部の各組成を下記の範囲に定めたも
のであることを特徴とする切削工具。 [A部] WCおよび/またはMoC:5〜40%(重量%の意味
、以下同じ) Coおよび/またはNi:5〜30% TaCおよび/または(Ta、Nb)C:0.1〜10
% 残部:TiC、TiN、Ti(C、N)よりなる群から
選択される1種以上及び不可避不純物。 [B部] Coおよび/またはNi:5〜30% Cr_3、C_2、VC、MoC、TaCよりなる群か
ら選択される1種以上:0.1〜2% 残部:平均粒径3μm以下のWC及び不可避不純物。(1) A cutting tool having a groove of length L and having different compositions in the cutting edge and the shank, the cutting tool having a groove with a length L, the cutting tool having a groove having a length L and having different compositions in the cutting edge and the shank.
.. A cutting tool characterized in that the compositions of parts A and B are defined in the following ranges, where part A is the range of 1L to 1.0L, and part B is the shank part. [Part A] WC and/or MoC: 5 to 40% (meaning of weight %, same below) Co and/or Ni: 5 to 30% TaC and/or (Ta, Nb)C: 0.1 to 10
% Remainder: one or more selected from the group consisting of TiC, TiN, Ti (C, N) and unavoidable impurities. [Part B] Co and/or Ni: 5-30% One or more selected from the group consisting of Cr_3, C_2, VC, MoC, TaC: 0.1-2% Remaining part: WC with an average particle size of 3 μm or less and Unavoidable impurities.
成が、更にV(C、N)、Cr(C、N)、Hf(C、
N)、B(C、N)、Nb(C、N)、Zr(C、N)
よりなる群から選択される1種以上:0.1〜5%を含
有するものであるか/および、 B部の組成が、更にTiC、TaC、(Ta、Nb)C
よりなる群から選択される1種以上:30%以下、およ
び/またはHf(C、N)、B(C、N)、Nb(C、
N)、Zr(C、N)、TiN、TaNよりなる群から
選択される1種以上:0.1〜5%を含有してなる切削
工具。(2) The cutting tool according to claim (1), wherein the composition of part A further comprises V(C,N), Cr(C,N), Hf(C,
N), B (C, N), Nb (C, N), Zr (C, N)
One or more selected from the group consisting of: 0.1 to 5%/And the composition of part B further includes TiC, TaC, (Ta, Nb)C
One or more selected from the group consisting of: 30% or less, and/or Hf (C, N), B (C, N), Nb (C,
A cutting tool containing 0.1 to 5% of one or more selected from the group consisting of N), Zr (C, N), TiN, and TaN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27747490A JPH04152004A (en) | 1990-10-15 | 1990-10-15 | Cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27747490A JPH04152004A (en) | 1990-10-15 | 1990-10-15 | Cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04152004A true JPH04152004A (en) | 1992-05-26 |
Family
ID=17584100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27747490A Pending JPH04152004A (en) | 1990-10-15 | 1990-10-15 | Cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04152004A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138692A (en) * | 1993-11-10 | 1995-05-30 | Kobe Steel Ltd | Shaft or the like cutting tool and sintered hard alloy for the same |
CN103817357A (en) * | 2014-02-26 | 2014-05-28 | 苏州市凯业金属制品有限公司 | Alloy boring cutter |
CN107442819A (en) * | 2017-09-19 | 2017-12-08 | 张家港钻通设备有限公司 | A kind of high-wear-resistant alloy drill bit |
CN114231815A (en) * | 2021-12-31 | 2022-03-25 | 技锋精密刀具(马鞍山)有限公司 | Metal ceramic sheet circular knife material and manufacturing process thereof |
-
1990
- 1990-10-15 JP JP27747490A patent/JPH04152004A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138692A (en) * | 1993-11-10 | 1995-05-30 | Kobe Steel Ltd | Shaft or the like cutting tool and sintered hard alloy for the same |
CN103817357A (en) * | 2014-02-26 | 2014-05-28 | 苏州市凯业金属制品有限公司 | Alloy boring cutter |
CN107442819A (en) * | 2017-09-19 | 2017-12-08 | 张家港钻通设备有限公司 | A kind of high-wear-resistant alloy drill bit |
CN114231815A (en) * | 2021-12-31 | 2022-03-25 | 技锋精密刀具(马鞍山)有限公司 | Metal ceramic sheet circular knife material and manufacturing process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7179319B2 (en) | Fine grained sintered cemented carbide, process for manufacturing and use thereof | |
JP4680932B2 (en) | Surface coated cutting tool | |
KR100186288B1 (en) | High toughness cermet and process for preparing the same | |
US20090028741A1 (en) | Insert for metal cutting | |
US6634837B1 (en) | Ceramic cutting insert of polycrystalline tungsten carbide | |
US7297176B2 (en) | Cemented carbide body | |
JP3016703B2 (en) | Coated hard member | |
JP2010234519A (en) | Cermet and coated cermet | |
US20140037395A1 (en) | Sintered Cemented Carbide Body, Use And Process For Producing The Cemented Carbide Body | |
JP3331220B2 (en) | Materials for shaft cutting tools | |
JP3441808B2 (en) | Cemented carbide for nail manufacturing tools | |
JP2004315903A (en) | Fine-grain cemented carbide | |
JP3606527B2 (en) | Shaft cutting tool | |
JPH04152004A (en) | Cutting tool | |
JP3952209B2 (en) | WC-base cemented carbide member | |
WO2023042777A1 (en) | Coated ultrafine grain cemented carbide, and cutting tool or abrasion-resistant member using same | |
JPH0346538B2 (en) | ||
EP0495101A1 (en) | Hard alloy | |
JP3460571B2 (en) | Milling tool with excellent wear resistance | |
KR20040044153A (en) | Ti(C,N)-(Ti,Nb,W)(C,N)-Co ALLOY FOR MILLING CUTTING TOOL APPLICATIONS | |
JP2006239792A (en) | Hard film coated cemented carbide member | |
JPH10324942A (en) | Ultra-fine cemented carbide, and its manufacture | |
JP3618183B2 (en) | Cemented carbide end mill for cutting hard materials | |
KR200336499Y1 (en) | Tungsten carbide end mill of solid type for increasing tool life | |
JP5058553B2 (en) | Manufacturing method of surface coated cemented carbide end mill for high feed cutting |