Nothing Special   »   [go: up one dir, main page]

JPH04149512A - Integrated semiconductor optical amplifier - Google Patents

Integrated semiconductor optical amplifier

Info

Publication number
JPH04149512A
JPH04149512A JP27329290A JP27329290A JPH04149512A JP H04149512 A JPH04149512 A JP H04149512A JP 27329290 A JP27329290 A JP 27329290A JP 27329290 A JP27329290 A JP 27329290A JP H04149512 A JPH04149512 A JP H04149512A
Authority
JP
Japan
Prior art keywords
layer
optical
optical amplifier
inp
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27329290A
Other languages
Japanese (ja)
Inventor
Toshio Kirihara
桐原 俊夫
Kazuhisa Uomi
魚見 和久
Toshihiro Ono
智弘 大野
Koji Ishida
宏司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27329290A priority Critical patent/JPH04149512A/en
Publication of JPH04149512A publication Critical patent/JPH04149512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To keep amplification degree obtained for the amount of injected carrier high by intentionally causing side etching only in an optical amplification layer and burying a side etched part by utilizing a mass transport phenomenon. CONSTITUTION:An InGaAsP optical waveguide layer 5, an InP barrier layer 4, an InGaAsP optical amplification layer 3, an InP clad layer 2, and an InGaAsP cap layer 1 are multilayered and grow on an InP substrate 6, then a protective film is attached only to a part which is used as the optical amplifier thereafter and the upper four layers being the rest are removed. Next, the clad layer 2 and the InGaAsP1 are allowed to grow again on a part except the optical amplifier part to which the protective film is attached. Thereafter, the optical amplifier and the optical waveguide are formed with the ordinary technique of lithography and etching. Furthermore, in order to bury both side surfaces of the optical amplifier 3, selective etching is performed to the optical amplifier 3 and the etched part is buried by the mass transport. The buried part is an InP buried layer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積化光素子において、光スィッチもしくは光
導波路との集積化に好適な光増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical amplifier suitable for integration with an optical switch or an optical waveguide in an integrated optical device.

〔従来の技術〕[Conventional technology]

従来、集積化光増幅器の構造については、特願平1−1
7604において論じられている。
Conventionally, the structure of an integrated optical amplifier has been disclosed in Japanese Patent Application No. 1-1.
7604.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、光の進行方向と垂直な方向の光を光導
波路内に閉じ込めるためにリッジ型光導波路を採用して
いるが、増幅部での断面構造において、光を増幅するた
め、光増幅層が露出している点について配慮がされてお
らず、露出した光増幅層の部分で注入されたキャリア(
@子及び正孔)が表面準位のために非発光に失なわれ、
光の増幅に寄与する割合が減少してしまうという問題が
あった・ 本発明は、露出している光増幅層に注・入されたキャリ
アが非発光に失なわれる割合を減少させ、光増幅器の効
率を向上させること、即ち、注入キャリア量に対して、
得られる増幅度を大きくとれるようにすることを目的と
しており、さらに光導波路もしくはキャリア注入型光ス
イッチとの集積化に好適なりッジ型光増幅器を提供する
ことにある。
The above conventional technology uses a ridge-type optical waveguide to confine light in a direction perpendicular to the direction of propagation of the light within the optical waveguide. No consideration was given to the exposed layer, and the injected carriers (
electrons and holes) are lost to non-emission due to surface states,
There has been a problem in that the proportion contributing to light amplification decreases. The present invention reduces the proportion of carriers injected into the exposed optical amplification layer that are lost to non-emission, and improves the optical amplifier. To improve the efficiency of injection, that is, with respect to the amount of injected carriers,
The object of the present invention is to provide a wedge-type optical amplifier that can obtain a large amplification degree and is suitable for integration with an optical waveguide or a carrier injection type optical switch.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、光導波路との集積化に適し
た光増幅器の基本構造を変更することなく、光増幅層に
対してのみ選択的に働くエツチングを用いて意識的にサ
イドエッチを起こさせ、さらにマストランスポート現象
等を利用し、サイトエッチ部分を埋込んだものである。
In order to achieve the above objective, we consciously caused side etching using etching that selectively acts only on the optical amplification layer, without changing the basic structure of the optical amplifier, which is suitable for integration with optical waveguides. In addition, a site-etched portion is embedded by utilizing the mass transport phenomenon.

マストランスポート現象とは、InPカバーを基板とと
もに加熱すると結晶表面原子の移動により鋭角部分のな
まりが起こり、上記光増幅層のサイトエッチ部分のよう
な極小部分がInPにより埋込まれる現象である。
The mass transport phenomenon is a phenomenon in which when the InP cover is heated together with the substrate, acute angle portions are rounded due to the movement of atoms on the crystal surface, and extremely small portions such as the site-etched portions of the light amplification layer are buried with InP.

〔作用〕[Effect]

光増幅層の両側が半導体材料で埋込まれるために露出し
た光増幅層部分がなくなるため、表面準位と関係した非
発光過程で失なわれるキャリアがなくなり、光増幅器の
効率が向上する。埋込に使用される半導体材料は光増幅
層よりも、よりエネルギー禁制帯幅の大きなものを使用
するため、注入されたキャリアは、エネルギー禁制帯幅
の小さな光増幅層に流れ込み、埋込部分による問題は起
こらない。
Since both sides of the optical amplification layer are filled with semiconductor material, there are no exposed optical amplification layer parts, so there are no carriers lost in non-emission processes related to surface states, and the efficiency of the optical amplifier is improved. Since the semiconductor material used for embedding has a larger energy bandgap than the optical amplification layer, the injected carriers flow into the optical amplification layer, which has a small energy bandgap, and are No problems occur.

単にリッジ側面の露出を防ぐ目的であれば、リッジ側面
の埋込成長でも同じ結果が得られるが、空気の屈折率1
に対して屈折率がほぼ3である半導体材料を用いると、
光導波路の閉じ込め条件が変化してしまう。この欠点を
おぎなうために完全埋込型の光導波路と再設計した場合
においても、先導波層とクラッド層との屈折率差が大き
くとれないために、光は弱閉じ込めの条件となり、キャ
リア注入型光スイッチ部が有効に動作しなくなる。
If the purpose is simply to prevent exposure of the ridge sides, the same result can be obtained by buried growth on the ridge sides, but the refractive index of air is 1.
When using a semiconductor material with a refractive index of approximately 3,
The confinement conditions of the optical waveguide will change. Even if a fully buried optical waveguide is redesigned to compensate for this drawback, the difference in refractive index between the leading wave layer and the cladding layer cannot be made large, resulting in weak confinement of light, resulting in a carrier-injection type optical waveguide. The optical switch section no longer operates effectively.

即ち、キャリア注入型光スイッチと光導波路に集積可能
な光増幅器がリッジ型構造を持つことは必然性を持つ。
That is, it is inevitable that a carrier injection type optical switch and an optical amplifier that can be integrated into an optical waveguide have a ridge-type structure.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図(a)は集積化光増幅器の断面構造を示したもの
である。本実施例では、InP基板6上に、LPE法を
用い、InGaAsP光導波路層5(吸収端波長λg=
1.15μm)、In、P障壁層4、InGaAsP光
増幅層3(吸収端波長λg = 、1 、3 μm )
InPクラッド層2、InGaAsPキャップ層1.を
多層成長し、後に光増幅器として利用する部分のみに8
102保護膜を付けて残りの部分の上部4層、即ちIn
GaAsPキャップ層1、InPクラッド層2、InG
aAsP光増幅層3、InP障壁層4を、各々に対する
選択エツチングにより除去した。
FIG. 1(a) shows a cross-sectional structure of an integrated optical amplifier. In this example, an InGaAsP optical waveguide layer 5 (absorption edge wavelength λg=
1.15 μm), In, P barrier layer 4, InGaAsP optical amplification layer 3 (absorption edge wavelength λg = 1, 3 μm)
InP cladding layer 2, InGaAsP capping layer 1. is grown in multiple layers, and only the part that will be used as an optical amplifier later has 8
102 protective film and the remaining upper four layers, namely In
GaAsP cap layer 1, InP cladding layer 2, InG
The aAsP optical amplification layer 3 and the InP barrier layer 4 were removed by selective etching.

次に保護膜の付いている光増幅器部分を除いた部分にI
nPクラット層2、InGaAsP1を再成長させた。
Next, I
The nP crat layer 2, InGaAsP1, was regrown.

この後、通常のりソグラフィ技術とエツチング技術によ
り第1図(a)及び(b)に示す形状の光増幅器及び光
導波路を形成した。
Thereafter, an optical amplifier and an optical waveguide having the shapes shown in FIGS. 1(a) and 1(b) were formed by ordinary lithography and etching techniques.

さらに第1図に示すようにInGaAsP光増幅層3の
両側面を埋込むために+ InGaAsP光増幅層3に
のみ選択的に働く選択エツチングを行い、意識的なサイ
ドエッチ部分を形成した。このサイドエッチ部分をマス
トランスポートにより埋込む。この埋込まれた部分がI
nP埋込M7である。この部分が従側の第2図と異なる
Furthermore, as shown in FIG. 1, in order to bury both side surfaces of the InGaAsP optical amplification layer 3, selective etching was performed which selectively acts only on the +InGaAsP optical amplification layer 3 to form intentional side etched portions. This side etched portion is filled in by mass transport. This embedded part is I
It is nP embedded M7. This part differs from the slave side in FIG. 2.

第1図(a)の光増幅器と同図(b)の光導波路とは第
1回目の結晶成長において形成された共通の光導波路層
3によって接続されており、共通のリッジ構造を持つた
め接続部の損失が1dB以下に抑えることができた。さ
らに表面準位による非発光過程に流れるキャリアが少な
くなったため従来例に比べて同一利得を得るための注入
電流を減少させることができた。
The optical amplifier in FIG. 1(a) and the optical waveguide in FIG. 1(b) are connected by a common optical waveguide layer 3 formed in the first crystal growth, and are connected because they have a common ridge structure. We were able to suppress the loss to less than 1dB. Furthermore, fewer carriers flow through non-emission processes due to surface states, making it possible to reduce the injection current needed to obtain the same gain compared to the conventional example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば表面準位により非発光再結合に寄与する
キャリアの量を減らすことができるため光増幅器の効率
を上げることができる。また表面準位を流れる電流リー
クパスによって生ずる結晶欠陥の内部進行がなくなるた
め長期使用に対する信頼性を向上することができる。さ
らに共通のりッジ構造を持ち、共通の光導波路層を持つ
構造が作れるため簡便かつ接続損失の少ない光導波路と
光増幅器との集積が図れる。
According to the present invention, the efficiency of the optical amplifier can be increased because the amount of carriers contributing to non-radiative recombination can be reduced by surface states. In addition, since internal progress of crystal defects caused by current leakage paths flowing through surface states is eliminated, reliability for long-term use can be improved. Furthermore, since a structure having a common ridge structure and a common optical waveguide layer can be created, it is possible to easily integrate an optical waveguide and an optical amplifier with less connection loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例であるリッジ型光増幅
器の断面図、第1図(b)は第1図で示した光増幅器と
整合集積できる光導波路の断面図、第2図は従来例の光
素子の断面図である。 1 =4nGaAsPキャップ層、2 ・I n Pク
ラッド層、3 ・=InGaAsP光増幅層、4 ・=
 I n P障壁層、5・・InGaAsP光導波層、
6− I n P基板、7− I n P第1 図 (α) (b)
FIG. 1(a) is a cross-sectional view of a ridge-type optical amplifier which is an embodiment of the present invention, FIG. 1(b) is a cross-sectional view of an optical waveguide that can be integrated and integrated with the optical amplifier shown in FIG. The figure is a sectional view of a conventional optical element. 1 = 4nGaAsP cap layer, 2 ・InP cladding layer, 3 ・=InGaAsP optical amplification layer, 4 ・=
InP barrier layer, 5...InGaAsP optical waveguide layer,
6-InP substrate, 7-InP Figure 1 (α) (b)

Claims (1)

【特許請求の範囲】 1、リッジ構造を持つ進行波型半導体光増幅器において
、リッジ側面に露出した光増幅層のみを選択にサイドス
イッチせしめ、光増幅層よりも禁制帯幅の大きな半導体
材料でサイドエッチ部分のみを埋込むことを特徴とする
集積化半導体光増幅器。 2、請求項1記載の光増幅器を光導波路とキャリア注入
型光スイッチと完全モノリシックに集積したことを特徴
とする集積化半導体素子。
[Claims] 1. In a traveling wave semiconductor optical amplifier having a ridge structure, only the optical amplification layer exposed on the side surface of the ridge is selectively side-switched, and a semiconductor material having a larger forbidden band width than the optical amplification layer is used as a side switch. An integrated semiconductor optical amplifier characterized in that only the etched portion is buried. 2. An integrated semiconductor device characterized in that the optical amplifier according to claim 1 is completely monolithically integrated with an optical waveguide and a carrier injection type optical switch.
JP27329290A 1990-10-15 1990-10-15 Integrated semiconductor optical amplifier Pending JPH04149512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27329290A JPH04149512A (en) 1990-10-15 1990-10-15 Integrated semiconductor optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27329290A JPH04149512A (en) 1990-10-15 1990-10-15 Integrated semiconductor optical amplifier

Publications (1)

Publication Number Publication Date
JPH04149512A true JPH04149512A (en) 1992-05-22

Family

ID=17525822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27329290A Pending JPH04149512A (en) 1990-10-15 1990-10-15 Integrated semiconductor optical amplifier

Country Status (1)

Country Link
JP (1) JPH04149512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072557B2 (en) 2001-12-21 2006-07-04 Infinera Corporation InP-based photonic integrated circuits with Al-containing waveguide cores and InP-based array waveguide gratings (AWGs) and avalanche photodiodes (APDs) and other optical components containing an InAlGaAs waveguide core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072557B2 (en) 2001-12-21 2006-07-04 Infinera Corporation InP-based photonic integrated circuits with Al-containing waveguide cores and InP-based array waveguide gratings (AWGs) and avalanche photodiodes (APDs) and other optical components containing an InAlGaAs waveguide core

Similar Documents

Publication Publication Date Title
GB2294361A (en) Integrated waveguide device and fabricating method thereof
JPS643078B2 (en)
KR20020077567A (en) Spot-size-converter integrated semiconductor laser and fabricating the same
KR960027091A (en) Method of manufacturing semiconductor laser device and semiconductor laser device
JP2900824B2 (en) Method for manufacturing optical semiconductor device
JPH04149512A (en) Integrated semiconductor optical amplifier
US5249244A (en) Optical device with an optical coupler for effecting light branching/combining and a method for producing the same
KR20000010507A (en) Mask for forming selective area diffraction lattice and growing selective area and manufacturing method of semiconductor element using the same
JP2000228558A (en) Light modulator integrated semiconductor laser and its manufacture
US5581108A (en) Optical Switching device
JP2001237498A (en) Dopant diffusion barrier layer used with iii-v structure
JPS61102086A (en) Semiconductor laser
JPS5832794B2 (en) semiconductor laser
JPS6342871B2 (en)
JP2605650B2 (en) Optical isolator
US10969543B2 (en) Semiconductor integrated optical device, and method of fabricating semiconductor integrated optical device
JPH01129478A (en) Light-emitting diode
JP2605645B2 (en) Waveguide type optical isolator
JPH04369269A (en) Manufacture of optical integrated circuit
JPS5857770A (en) Semiconductor laser element
JPS5856489A (en) Semiconductor light emitting device
JPS56112786A (en) Manufacture of semiconductor laser
JPH05265055A (en) Integrated optical element, optical switch and optical switch array
JPS63311786A (en) Optical integrated element
JPS5857771A (en) Semiconductor laser