JPH04133270A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH04133270A JPH04133270A JP2256011A JP25601190A JPH04133270A JP H04133270 A JPH04133270 A JP H04133270A JP 2256011 A JP2256011 A JP 2256011A JP 25601190 A JP25601190 A JP 25601190A JP H04133270 A JPH04133270 A JP H04133270A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- exhaust pipe
- gas passage
- cathode gas
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 15
- 239000003792 electrolyte Substances 0.000 claims description 8
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 238000013459 approach Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 124
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000486679 Antitype Species 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04104—Regulation of differential pressures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野コ 本発明は、燃料電池に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to fuel cells.
[従来の技術] 以下、従来の燃料電池を第3図を用いて説明する。[Conventional technology] Hereinafter, a conventional fuel cell will be explained using FIG. 3.
図中1は燃料電池本体であって、スタック2と、該スタ
ック2を一定圧力の窒素ガス中に封入するスタック容器
3とにより構成されている。In the figure, reference numeral 1 denotes a fuel cell main body, which is composed of a stack 2 and a stack container 3 that encloses the stack 2 in nitrogen gas at a constant pressure.
スタック2は溶融炭酸塩から成る電解質4の両面(第3
図では上下面)を多孔質材がら成るアノード5(負極)
とカソード6(正極)で挟み、アノード5の反型解質4
側にアノードガス通路7を形成し、且つ、カソード6の
反型解質4側にカソードガス通路8を形成したものであ
る。The stack 2 has two sides of an electrolyte 4 (third
Anode 5 (negative electrode) made of porous material (upper and lower surfaces in the figure)
and the cathode 6 (positive electrode), and the anti-type solute 4 of the anode 5
An anode gas passage 7 is formed on the side, and a cathode gas passage 8 is formed on the side of the anti-mold solute 4 of the cathode 6.
9はアノードガス通路7に石炭ガスや天然ガスやメタノ
ール等の水素や一酸化炭素を含むアノードガス10(燃
料ガス)を供給するアノードガス供給管、11はアノー
ドガス供給管9の途中に設けられた流量調節弁、12は
アノードガス供給管9の流量を検出し流量調節弁11を
調節する流量調節計である。9 is an anode gas supply pipe that supplies an anode gas 10 (fuel gas) containing hydrogen and carbon monoxide such as coal gas, natural gas, or methanol to the anode gas passage 7; 11 is provided in the middle of the anode gas supply pipe 9; The flow rate control valve 12 is a flow rate controller that detects the flow rate of the anode gas supply pipe 9 and adjusts the flow rate control valve 11.
13はカソードガス通路8にカソードガス14(酸素を
含む空気等のガスに二酸化炭素を加えた酸化剤ガス)を
供給するカソードガス供給管、15はカソードガス供給
管13の途中に設けられた流量調節弁、16はカソード
ガス供給管I3の流量を検出し流量調節弁15を調節す
る流量調節計、17はカソードガス供給管13の流量調
節弁15とカソードガス通路8との間に設けられた触媒
燃焼器である。13 is a cathode gas supply pipe that supplies cathode gas 14 (oxidant gas obtained by adding carbon dioxide to gas such as air containing oxygen) to cathode gas passage 8; 15 is a flow rate provided in the middle of cathode gas supply pipe 13; A control valve 16 is a flow rate controller that detects the flow rate of the cathode gas supply pipe I3 and adjusts the flow control valve 15, and 17 is provided between the flow control valve 15 of the cathode gas supply pipe 13 and the cathode gas passage 8. It is a catalytic combustor.
18はアノードガス通路7から排出されたアノードガス
10を触媒燃焼器17へ導(アノードガス排気管、19
はアノードガス排気管18の途中に設けられた圧力調節
弁、20はスタック容器3内部の圧力とアノードガス排
気管18の圧力とを検出すると共に、スタック容器3内
部の圧力とアノードガス排気管18の圧力との差圧を取
り、該差圧がゼロとなるよう圧力調節弁19を調節する
圧力調節計である。18 guides the anode gas 10 discharged from the anode gas passage 7 to the catalytic combustor 17 (anode gas exhaust pipe, 19
20 is a pressure control valve provided in the middle of the anode gas exhaust pipe 18; 20 detects the pressure inside the stack container 3 and the pressure in the anode gas exhaust pipe 18; This is a pressure regulator that measures the pressure difference between the two pressures and adjusts the pressure regulating valve 19 so that the differential pressure becomes zero.
21はカソードガス通路8がらカソードガス14を排出
するカソードガス排気管、22はカソードガス排気管2
1の途中に設けられた圧力調節弁、23はスタック容器
3内部の圧力とカソードガス排気管21の圧力を検出す
ると共に、スタック容器3内部の圧力とカソードガス排
気管2工の圧力との差圧を取り、該差圧がゼロとなるよ
う圧力調節弁22を調節する圧力調節計、24はカソー
ドガス排気管21の圧力調節弁22出側と触媒燃焼器1
7を接続するカソードガスリサイクル管、25はカソー
ドガスリサイクル管24の途中に設けられたカソードガ
スリサイクルブロワである。21 is a cathode gas exhaust pipe for discharging the cathode gas 14 from the cathode gas passage 8; 22 is a cathode gas exhaust pipe 2;
A pressure regulating valve 23 provided in the middle of the stack container 3 detects the pressure inside the stack container 3 and the pressure in the cathode gas exhaust pipe 21, and also detects the difference between the pressure inside the stack container 3 and the pressure in the cathode gas exhaust pipe 2. A pressure regulator 24 takes the pressure and adjusts the pressure regulating valve 22 so that the differential pressure becomes zero, and 24 is connected to the outlet side of the pressure regulating valve 22 of the cathode gas exhaust pipe 21 and the catalytic combustor 1.
A cathode gas recycle pipe 25 is connected to the cathode gas recycle pipe 7, and a cathode gas recycle blower 25 is provided in the middle of the cathode gas recycle pipe 24.
発電を行なう場合には、アノードガス供給管9に流量調
節弁11で流量を調節させつつアノードガス10 (水
素や一酸化炭素を含む燃料ガス)を供給し、同時に、カ
ソードガス供給管13に流量調節弁15で流量を調節さ
せつつ酸素を含む空気等のガスをカソードガス14とし
て(後述するように触媒燃焼器17で二酸化炭素が加え
られて酸化剤ガスとされる)を供給する。When generating electricity, the anode gas 10 (fuel gas containing hydrogen and carbon monoxide) is supplied to the anode gas supply pipe 9 while adjusting the flow rate with the flow control valve 11, and at the same time, the flow rate is adjusted to the cathode gas supply pipe 13. A gas such as air containing oxygen is supplied as the cathode gas 14 (as described later, carbon dioxide is added to the catalytic combustor 17 to form an oxidizing gas) while adjusting the flow rate using the regulating valve 15 .
すると、カソードガス14は、触媒燃焼器17を経由し
てスタック2のカソードガス通路8へ入り、ここでカソ
ード6(正極)から電子を受取ることによってカソード
ガス14中の二酸化炭素と酸素が反応して炭酸イオンが
生成される。未反応のカソードガス14はカソードガス
通路8からカソードガス排気管21を通って外部へ排出
され、そのうちの一部がカソードガスリサイクルブロワ
25によってカソードガスリサイクル管24がら触媒燃
焼器17へと送られる。Then, the cathode gas 14 enters the cathode gas passage 8 of the stack 2 via the catalytic combustor 17, where carbon dioxide and oxygen in the cathode gas 14 react by receiving electrons from the cathode 6 (positive electrode). carbonate ions are generated. Unreacted cathode gas 14 is discharged from the cathode gas passage 8 to the outside through the cathode gas exhaust pipe 21, and a portion of it is sent to the catalytic combustor 17 through the cathode gas recycle pipe 24 by the cathode gas recycle blower 25. .
そして、カソード6側で生成された炭酸イオンは電解質
4をアノード5(負極)側へ移動し、アノード5でアノ
ードガス供給管9がらアノードガス通路7へ通されたア
ノードガス供給管の水素や一酸化炭素と反応して、水と
二酸化炭素と電子が生成される。このようにして電気が
発生され、同時に生成された水と二酸化炭素はアノード
ガス通路7からアノードガス排気管18を通って触媒燃
焼器17へ送られる。Then, the carbonate ions generated on the cathode 6 side move the electrolyte 4 to the anode 5 (negative electrode) side, and at the anode 5, hydrogen and hydrogen in the anode gas supply pipe passed from the anode gas supply pipe 9 to the anode gas passage 7 are transferred. Reacts with carbon oxide to produce water, carbon dioxide, and electrons. In this way, electricity is generated, and water and carbon dioxide generated at the same time are sent from the anode gas passage 7 to the catalytic combustor 17 through the anode gas exhaust pipe 18.
触媒燃焼器17では、アノードガス排気管18がらの反
応後のアノードガス1oに含まれる未反応の水素とカソ
ードガスリサイクル管24からの反応後のカソードガス
14に含まれる未反応の酸素とを触媒の存在下にて燃焼
させ、アノードガス10に含まれる二酸化炭素をカソー
ドガス14中に供給させる。In the catalytic combustor 17, unreacted hydrogen contained in the anode gas 1o after the reaction from the anode gas exhaust pipe 18 and unreacted oxygen contained in the cathode gas 14 after the reaction from the cathode gas recycle pipe 24 are catalyzed. The carbon dioxide contained in the anode gas 10 is supplied to the cathode gas 14.
そして、アノードガス通路7の圧力は、圧力調節計20
がスタック容器3内部の圧力とアノードガス排気管18
の圧力を検出し、スタック容器3内部の圧力とアノード
ガス排気管18の圧力との差圧を取り、該差圧がゼロと
なるよう圧力調節弁19を調節することによってスタッ
ク容器3内部と等しい圧力に保たせ、カソードガス通路
8の圧力は、圧力調節計23がスタック容器3内部の圧
力とカソードガス排気管21の圧力を検出し、スタック
容器3内部の圧力とカソードガス排気管21の圧力との
差圧を取り、該差圧がゼロとなるよう圧力調節弁22を
調節することによってスタック容器3内部と等しい圧力
に保たせる。その結果、アノードガス通路7とカソード
ガス通路8は等しい圧力に保たれ、アノードガス通路7
とカソードガス通路8との間の差圧によって、極く薄い
層から成っているアノード5やカソード6や電解質4が
破れるのが防止される。The pressure in the anode gas passage 7 is controlled by a pressure regulator 20.
is the pressure inside the stack container 3 and the anode gas exhaust pipe 18.
Detect the pressure inside the stack container 3, take the pressure difference between the pressure inside the stack container 3 and the pressure in the anode gas exhaust pipe 18, and adjust the pressure regulating valve 19 so that the pressure difference becomes zero, so that the pressure is equal to the pressure inside the stack container 3. The pressure in the cathode gas passage 8 is determined by the pressure regulator 23 detecting the pressure inside the stack container 3 and the pressure in the cathode gas exhaust pipe 21. The pressure difference between the stack container 3 and the stack container 3 is maintained at the same pressure as the inside of the stack container 3 by adjusting the pressure regulating valve 22 so that the pressure difference becomes zero. As a result, the anode gas passage 7 and the cathode gas passage 8 are kept at the same pressure, and the anode gas passage 7
The pressure difference between the anode 5, the cathode 6 and the electrolyte 4, which are made of extremely thin layers, is prevented from breaking due to the pressure difference between the anode 5 and the cathode gas passage 8.
[発明が解決しようとする課題]
しかしながら、上記従来の燃料電池には、以下のような
問題があった。[Problems to be Solved by the Invention] However, the conventional fuel cell described above has the following problems.
即ち、アノードガス通路7とカソードガス通路8との間
に差圧が生じてアノード5やカソード6や電解質4が破
れるのを防止するため、アノードガス排気管18やカソ
ードガス排気管21に高価な圧力調節弁19.22や圧
力調節計20.23を用いていたので、設備全体のコス
ト高を招いていた。That is, in order to prevent the anode 5, cathode 6, and electrolyte 4 from being ruptured due to a pressure difference between the anode gas passage 7 and the cathode gas passage 8, an expensive gas exhaust pipe 18 and cathode gas exhaust pipe 21 are installed. Since pressure regulating valves 19.22 and pressure regulators 20.23 were used, the cost of the entire equipment increased.
本発明は、上述の実情に鑑み、高価な圧力調節弁や圧力
調節計を用いずにアノード側とカソード側の圧力を等し
く保つことにより、極く薄い層から成っているアノード
やカソードや電解質が差圧によって破れるのを防止し得
るようにした燃料電池を提供することを目的とするもの
である。In view of the above-mentioned circumstances, the present invention has been developed to maintain the same pressure on the anode and cathode sides without using expensive pressure control valves or pressure regulators. It is an object of the present invention to provide a fuel cell that can be prevented from being ruptured due to differential pressure.
[課題を解決するための手段]
本発明は、電解質をアノードとカソードで挟み、アノー
ド側に燃料から成るアノードガスを供給可能なアノード
ガス通路を設けると共にカソード側に酸化剤から成るカ
ソードガスを供給可能なカソードガス通路を設けた燃料
電池において、アノードガス通路出側に接続されたアノ
ードガス排気管にカソードガス通路内部の圧力に応じて
開閉する均圧弁を設け、カソードガス通路出側に接続さ
れたカソードガス排気管にアノードガス通路内部の圧力
に応じて開閉する均圧弁を設けたことを特徴とする燃料
電池にかかるものである。[Means for Solving the Problems] The present invention sandwiches an electrolyte between an anode and a cathode, provides an anode gas passage capable of supplying an anode gas consisting of fuel on the anode side, and supplies a cathode gas consisting of an oxidizing agent on the cathode side. In a fuel cell equipped with a possible cathode gas passage, the anode gas exhaust pipe connected to the outlet side of the anode gas passage is provided with a pressure equalizing valve that opens and closes depending on the pressure inside the cathode gas passage; The present invention relates to a fuel cell characterized in that a pressure equalizing valve that opens and closes depending on the pressure inside the anode gas passage is provided in the cathode gas exhaust pipe.
[作 用]
本発明によれば、アノードガス排気管に設けられた均圧
弁が、カソードガス通路内部の圧力に応じて開閉し、カ
ソードガス排気管に設けられた均圧弁が、アノードガス
通路内部の圧力に応じて開閉するので、アノードガス通
路内部の圧力とカソードガス通路内部の圧力が常に等し
い圧力に保たれる。[Function] According to the present invention, the pressure equalizing valve provided in the anode gas exhaust pipe opens and closes depending on the pressure inside the cathode gas passage, and the pressure equalizing valve provided in the cathode gas exhaust pipe opens and closes depending on the pressure inside the anode gas passage. The pressure inside the anode gas passage and the pressure inside the cathode gas passage are always maintained at the same pressure.
[実 施 例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.
第1図・第2図は、本発明の一実施例である。FIGS. 1 and 2 show an embodiment of the present invention.
又、図中、燃料電池の基本構成や各構成部分の詳細の中
には、第3図に示すものと同様のものが含まれているた
め、同一の構成部分については同一の符号を付すことに
より説明を省略するものとし、以下、本発明に特有の構
成についてのみ説明して行く。In addition, the basic structure of the fuel cell and the details of each component in the figure include those similar to those shown in FIG. 3, so the same components are denoted by the same reference numerals. Therefore, the explanation will be omitted, and only the configuration specific to the present invention will be explained below.
アノードガス排気管18の途中に弁座26を設け、アノ
ードガス排気管18の弁座26に対してアノードガス1
0出側に弁座26を開閉可能な弁体27を配設し、該弁
体27を弁座開閉方向28に移動可能な中空のベローズ
29を用いてアノードガス排気管18に支持し、該ベロ
ーズ29内部とカソードガス7排気管21とをパイロッ
ト管30を介して連通し、自立平衡式の均圧弁31を構
成する。A valve seat 26 is provided in the middle of the anode gas exhaust pipe 18, and the anode gas 1
A valve body 27 that can open and close the valve seat 26 is disposed on the zero outlet side, and the valve body 27 is supported on the anode gas exhaust pipe 18 using a hollow bellows 29 that is movable in the valve seat opening and closing direction 28. The interior of the bellows 29 and the cathode gas 7 exhaust pipe 21 are communicated via a pilot pipe 30 to form a self-balancing pressure equalizing valve 31.
カソードガス排気管21の前記パイロット管30接続位
置よりカソードガス14流れ方向下流側に弁座32を設
け、アノードガス排気管18の弁座32に対してカソー
ドガス14出側に弁座32を開閉可能な弁体33を配設
し、該弁体33を弁座開閉方向34に移動可能な中空の
ベローズ35を用いてカソードガス排気管21に支持し
、該ベローズ35内部とアノードガス排気管18の前記
均圧弁31よりアノードガス10流れ方向上流側とをパ
イロット管36を介して連通し、自立平衡式の均圧弁3
7を構成する。A valve seat 32 is provided on the downstream side of the cathode gas 14 flow direction from the pilot pipe 30 connection position of the cathode gas exhaust pipe 21, and the valve seat 32 is opened and closed on the cathode gas 14 outlet side with respect to the valve seat 32 of the anode gas exhaust pipe 18. The valve body 33 is supported on the cathode gas exhaust pipe 21 using a hollow bellows 35 movable in the valve seat opening/closing direction 34, and the interior of the bellows 35 and the anode gas exhaust pipe 18 are The pressure equalizing valve 31 is connected to the upstream side of the anode gas 10 in the flow direction through a pilot pipe 36, and a self-balancing type pressure equalizing valve 3 is formed.
7.
次に、作用について説明する。Next, the effect will be explained.
燃料電池本体lで電気が発生される過程については、第
3図のものと同様なので説明を省略する。The process by which electricity is generated in the fuel cell main body 1 is the same as that shown in FIG. 3, so a description thereof will be omitted.
そして、アノードガス排気管18では、以下のようにし
て均圧弁37が開閉され、アノードガス通路7の圧力が
調整される。In the anode gas exhaust pipe 18, the pressure equalizing valve 37 is opened and closed in the following manner, and the pressure in the anode gas passage 7 is adjusted.
即ち、均圧弁31では、ベローズ29内部が、パイロッ
ト管30を介して連通されるカソードガス排気管21の
均圧弁37より上流側と等しい圧力に保たれているので
、アノードガス通路7の圧力がカソードガス排気管21
の圧力よりも低い場合には、ベローズ29が差圧により
延びてベローズ29が支持する弁体27が弁座26に近
接し、均圧弁31を絞る。これにより、アノードガス通
路7の圧力が上昇してカソードガス排気管21の圧力と
等しくなる。That is, in the pressure equalizing valve 31, the inside of the bellows 29 is maintained at the same pressure as the pressure on the upstream side of the pressure equalizing valve 37 of the cathode gas exhaust pipe 21 communicated via the pilot pipe 30, so that the pressure in the anode gas passage 7 is Cathode gas exhaust pipe 21
When the pressure is lower than , the bellows 29 expands due to the pressure difference, and the valve element 27 supported by the bellows 29 approaches the valve seat 26, thereby throttling the pressure equalizing valve 31. As a result, the pressure in the anode gas passage 7 increases and becomes equal to the pressure in the cathode gas exhaust pipe 21.
反対にアノードガス通路7の圧力がカソードガス排気管
z1の圧力よりも高い場合には、ベローズ29が差圧に
より縮んでベローズ29が支持する弁体27が弁座26
から離反し、均圧弁31を開く。On the other hand, when the pressure in the anode gas passage 7 is higher than the pressure in the cathode gas exhaust pipe z1, the bellows 29 contracts due to the pressure difference, and the valve body 27 supported by the bellows 29 moves toward the valve seat 26.
The pressure equalizing valve 31 is opened.
これにより、アノードガス通路7の圧力が下降してカソ
ードガス排気管21の圧力と等しくなる。As a result, the pressure in the anode gas passage 7 decreases and becomes equal to the pressure in the cathode gas exhaust pipe 21.
一方、均圧弁37では、ベローズ35内部が、パイロッ
ト管36を介して連通されるアノードガス排気管18の
均圧弁31より上流側と等しい圧力に保たれているので
、カソードガス通路8の圧力がアノードガス排気管18
の圧力よりも低い場合には、ベローズ35が差圧により
延びてベローズ35が支持する弁体33が弁座32に近
接し、均圧弁37を絞る。これにより、カソードガス通
路8の圧力が上昇してアノードガス排気管18の圧力と
等しくなる。On the other hand, in the pressure equalizing valve 37, the inside of the bellows 35 is maintained at the same pressure as the pressure on the upstream side of the pressure equalizing valve 31 of the anode gas exhaust pipe 18 communicated via the pilot pipe 36, so that the pressure in the cathode gas passage 8 is maintained. Anode gas exhaust pipe 18
When the pressure is lower than , the bellows 35 expands due to the pressure difference, and the valve element 33 supported by the bellows 35 approaches the valve seat 32, thereby throttling the pressure equalizing valve 37. As a result, the pressure in the cathode gas passage 8 increases to become equal to the pressure in the anode gas exhaust pipe 18.
反対にカソードガス通路8の圧力がアノードガス排気管
18の圧力よりも高い場合には、ベローズ35が差圧に
より縮んでベローズ35が支持する弁体33が弁座32
に離反し、均圧弁37を開く。On the other hand, when the pressure in the cathode gas passage 8 is higher than the pressure in the anode gas exhaust pipe 18, the bellows 35 contracts due to the pressure difference, and the valve body 33 supported by the bellows 35 moves toward the valve seat 32.
The pressure equalizing valve 37 is opened.
これにより、カソードガス通路8の圧力が下降してアノ
ードガス排気管18の圧力と等しくなる。As a result, the pressure in the cathode gas passage 8 decreases and becomes equal to the pressure in the anode gas exhaust pipe 18.
従って、アノードガス通路7内部の圧力と、カソードガ
ス通路8内部の圧力は常に等しい圧力に保たれる。Therefore, the pressure inside the anode gas passage 7 and the pressure inside the cathode gas passage 8 are always maintained at the same pressure.
尚、本発明は、上述の実施例にのみ限定されるものでは
なく、均圧弁の構造は任意であること、その他、本発明
の要旨を逸脱しない範囲内において種々変更を加え得る
ことは勿論である。It should be noted that the present invention is not limited only to the above-described embodiments, and it goes without saying that the structure of the pressure equalizing valve is arbitrary, and that various other changes can be made without departing from the gist of the present invention. be.
[発明の効果]
以上説明したように、本発明の燃料電池によれば、液封
管による均圧装置を用いたので、高価な圧力調節弁や圧
力調節計を用いずにアノード側とカソード側の圧力を等
しくすることができ、極く薄い層から成るアノードやカ
ソードや電解質が差圧によって破れるのを防止し得ると
いう優れた効果を奏し得る。[Effects of the Invention] As explained above, according to the fuel cell of the present invention, since a pressure equalizing device using a liquid seal tube is used, the anode side and cathode side can be connected without using an expensive pressure regulating valve or pressure regulator. This has the excellent effect of making it possible to equalize the pressures of the two layers, and preventing the anode, cathode, and electrolyte, which are made of extremely thin layers, from being ruptured due to differential pressure.
第1図は本発明の一実施例の全体系統図、第2図は第1
図の部分拡大図、第3図は従来例の全体系統図である。
図中4は電解質、5はアノード、6はカソード、7はア
ノードガス通路、8はカソードガス通路、10はアノー
ドガス、14はカソードガス、18はアノードガス排気
管、21はカソードガス排気管、31.37は均圧弁を
示す。FIG. 1 is an overall system diagram of one embodiment of the present invention, and FIG.
A partially enlarged view of the figure, and FIG. 3 is an overall system diagram of a conventional example. In the figure, 4 is an electrolyte, 5 is an anode, 6 is a cathode, 7 is an anode gas passage, 8 is a cathode gas passage, 10 is an anode gas, 14 is a cathode gas, 18 is an anode gas exhaust pipe, 21 is a cathode gas exhaust pipe, 31.37 indicates a pressure equalization valve.
Claims (1)
燃料から成るアノードガスを供給可能なアノードガス通
路を設けると共にカソード側に酸化剤から成るカソード
ガスを供給可能なカソードガス通路を設けた燃料電池に
おいて、アノードガス通路出側に接続されたアノードガ
ス排気管にカソードガス通路内部の圧力に応じて開閉す
る均圧弁を設け、カソードガス通路出側に接続されたカ
ソードガス排気管にアノードガス通路内部の圧力に応じ
て開閉する均圧弁を設けたことを特徴とする燃料電池。1) In a fuel cell in which an electrolyte is sandwiched between an anode and a cathode, an anode gas passage capable of supplying an anode gas consisting of fuel is provided on the anode side, and a cathode gas passage capable of supplying a cathode gas consisting of an oxidizing agent is provided on the cathode side. , a pressure equalizing valve that opens and closes depending on the pressure inside the cathode gas passage is installed in the anode gas exhaust pipe connected to the outlet side of the anode gas passage, and a pressure equalizing valve that opens and closes depending on the pressure inside the cathode gas passage A fuel cell characterized by being equipped with a pressure equalizing valve that opens and closes depending on pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256011A JPH04133270A (en) | 1990-09-26 | 1990-09-26 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256011A JPH04133270A (en) | 1990-09-26 | 1990-09-26 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04133270A true JPH04133270A (en) | 1992-05-07 |
Family
ID=17286672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2256011A Pending JPH04133270A (en) | 1990-09-26 | 1990-09-26 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04133270A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001065619A2 (en) * | 2000-02-28 | 2001-09-07 | Atecs Mannesmann Ag | Membrane fuel cell |
-
1990
- 1990-09-26 JP JP2256011A patent/JPH04133270A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001065619A2 (en) * | 2000-02-28 | 2001-09-07 | Atecs Mannesmann Ag | Membrane fuel cell |
WO2001065619A3 (en) * | 2000-02-28 | 2002-04-18 | Atecs Mannesmann Ag | Membrane fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4904547A (en) | Fuel-cell device | |
US5397656A (en) | Differential pressure controlling method and apparatus for plate reformer of fuel cell power generation system | |
JP4894481B2 (en) | Fuel cell system | |
US8343680B2 (en) | Fuel cell system | |
US8053129B2 (en) | Fuel cell system, fuel cell valve system, and fuel cell gas supply device | |
JP4338914B2 (en) | Fuel circulation fuel cell system | |
JP5040411B2 (en) | Fuel cell system | |
US4226919A (en) | Hydrogen/oxygen fuel cell | |
JPH04133270A (en) | Fuel cell | |
US6821664B2 (en) | Method and apparatus for a combined fuel cell and hydrogen purification system | |
US11289719B2 (en) | Fuel cell arrangement having differential pressure control for an H2/O2 fuel cell | |
US9523440B2 (en) | Fuel cell system | |
JPS6224910B2 (en) | ||
JPH04144065A (en) | Fuel cell | |
JP5746062B2 (en) | Fuel cell system | |
US3525642A (en) | Fuel reactor with control system | |
JPS61176077A (en) | Fuel battery equipment | |
JPH02223155A (en) | Fuel cell | |
JPH0389466A (en) | Feed gas flow control device for fuel cell | |
JP2007113641A (en) | Fuel gas supply device | |
JPS60157163A (en) | Fuel cell system | |
JPS60130060A (en) | Method of controlling gas pressure of fuel cell | |
JPH0349185B2 (en) | ||
JP2928583B2 (en) | Fuel cell generator | |
JP2000081158A (en) | Differential pressure control valve and fuel cell system |