JPH04131104A - Controlling method for para-moving bed way - Google Patents
Controlling method for para-moving bed wayInfo
- Publication number
- JPH04131104A JPH04131104A JP25075990A JP25075990A JPH04131104A JP H04131104 A JPH04131104 A JP H04131104A JP 25075990 A JP25075990 A JP 25075990A JP 25075990 A JP25075990 A JP 25075990A JP H04131104 A JPH04131104 A JP H04131104A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- outlet
- rich
- extracting
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000012530 fluid Substances 0.000 claims abstract description 30
- 239000003463 adsorbent Substances 0.000 claims abstract description 7
- 239000007787 solid Substances 0.000 claims abstract description 4
- 238000000605 extraction Methods 0.000 claims description 23
- 238000000926 separation method Methods 0.000 claims description 10
- 238000004587 chromatography analysis Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 239000003480 eluent Substances 0.000 claims description 3
- 238000004904 shortening Methods 0.000 claims description 2
- 239000002156 adsorbate Substances 0.000 claims 2
- 239000007788 liquid Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明はクロマトグラフィの擬似移動床方式において処
理液の成分の分離を制御する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a method for controlling separation of components of a processing liquid in a simulated moving bed system of chromatography.
(従来の技術)
従来、異性体混合物のような原料中に含まれる2以上の
成分を分離する方法としては、クロマトグラフィの手法
が広く行われている。この方法は、イオン交換樹脂、ゼ
オライト等の吸着剤を用い、これらの各成分の吸着剤に
対する吸着性能の差を利用して分離を行うものである。(Prior Art) Conventionally, chromatography has been widely used as a method for separating two or more components contained in raw materials such as isomer mixtures. This method uses an adsorbent such as an ion exchange resin or zeolite, and performs separation by utilizing the difference in adsorption performance of each component to the adsorbent.
この種のクロマトグラフィを用いる分離法としては、固
定床方式および移動床方式が知られている。固定床方式
は回分操作であって、大量の液を処理するのには不向き
である。連続操作で定常吸着分離を行う方法としては、
吸着固相と遊離液相を向流に移動し接触させる移動床方
式がある。しかし、固体の移動を連続的に行うのは実際
には困難である。そこで、シーケンス制御により多数の
弁を一定時間毎に切り替えて、あたかも固体が移動して
いるかのような動作を行わせる擬似移動床方式が、分離
効率、吸着剤の移動等の問題から、大量の液の分離に適
した方法として行なわれている。A fixed bed method and a moving bed method are known as separation methods using this type of chromatography. The fixed bed method is a batch operation and is not suitable for processing large amounts of liquid. As a method for performing steady-state adsorption separation in continuous operation,
There is a moving bed method in which the adsorbed solid phase and the free liquid phase are moved countercurrently and brought into contact. However, it is actually difficult to move solids continuously. Therefore, the pseudo moving bed method, which uses sequence control to switch a large number of valves at regular intervals to perform operations as if solids are moving, has been proposed due to problems such as separation efficiency and adsorbent movement. This method is suitable for separating liquids.
擬似移動床方式は、複数の吸着剤充填塔が直列にかつ無
端状に連結されて無端の充填塔群を形成しており、循環
ポンプにより流体の流れを作っている。第2図は8個の
充填塔からなる疑似移動床方式のシステムの作動を説明
する図である。充填塔群は、原料注入口、吸着されがた
い成分の抜出口、溶離液供給口、吸着されやすい成分の
抜出口の4区画で構成され、これら4本の流体の供給お
よび抜出口がこの順に設置されている。成分の分離は予
め定められた条件での流量を設定し、一定時間毎にすべ
ての供給および抜出口を1塔ずつ下流側に移行させるこ
とによって行う。このような系での制御技術としては、
特開昭63−20006号のように、圧力を計測し、そ
の変動に応じて各ポンプを制御することにより、正確な
流量制御を行い、目的成分を高効率で分離する方法が提
案がされている。In the simulated moving bed system, a plurality of adsorbent packed columns are connected in series in an endless manner to form an endless group of packed columns, and a circulation pump is used to create a fluid flow. FIG. 2 is a diagram illustrating the operation of a simulated moving bed system consisting of eight packed columns. The packed column group consists of four sections: a raw material inlet, an outlet for components that are difficult to adsorb, an eluent supply port, and an outlet for components that are easily adsorbed.These four fluid supply and extraction ports are arranged in this order. is set up. Separation of components is performed by setting flow rates under predetermined conditions and moving all the supply and extraction ports one tower at a time to the downstream side at fixed time intervals. Control technology for such systems is as follows:
As in Japanese Patent Application Laid-open No. 63-20006, a method has been proposed to accurately control the flow rate and separate target components with high efficiency by measuring the pressure and controlling each pump according to its fluctuations. There is.
(発明が解決しようとする問題点)
しかしながら、流量の制御だけでは、高純度の回収液の
品質の微少な変動を検知することはできない。例えば、
長期間の使用で起こる充填塔の劣化や何らかの原因に由
来する濃度変動に追従することはできないという問題点
がある。(Problems to be Solved by the Invention) However, by controlling the flow rate alone, it is not possible to detect minute fluctuations in the quality of the highly purified recovered liquid. for example,
There is a problem in that it is not possible to follow the deterioration of the packed tower that occurs during long-term use or concentration fluctuations due to some cause.
[発明の構成]
(問題点を解決するための手段)
本発明は上記問題点を解決するために、循環ポンプの流
量と抜出回収液の品質に大きな相関があるという新たな
知見を基に、少なくとも一方の抜出回収液の特定瞬間値
を計測して供給および抜出口の位置を変更する時間間隔
(ステップ時間)を変更することにより、系の安定化と
純度維持を可能にする方式を見出した。[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention is based on the new knowledge that there is a large correlation between the flow rate of the circulation pump and the quality of the extracted and recovered liquid. , a method that makes it possible to stabilize the system and maintain purity by measuring a specific instantaneous value of at least one of the extracted and recovered liquids and changing the time interval (step time) for changing the positions of the supply and extraction ports. I found it.
抜出回収液の特定瞬間値とは吸着力の弱い物質の抜出部
で監視する場合にはステップ時間切り替え直前付近にお
いて、また、吸着力の強い物質の抜出部で監視する場合
にはステップ時間切り替え直後付近において、吸着力の
弱い物質の抜出部では吸着力の強い物質が、吸着力の強
い物質の抜出部にあっては吸着力の弱い物質が、それぞ
れ多量に含まれている回収液を回収することが出来る時
間に相当する。この抜出回収液の特定瞬間値の少なくと
もいずれか一方を計測し、供給および抜出口の位置を変
更するステップ時間を変更することにより、系の安定化
と純度維持を図るものである。What is the specific instantaneous value of the extracted and recovered liquid? When monitoring at the extraction section of a substance with weak adsorption power, it is near the time just before the step time switch, and when monitoring at the extraction section of a substance with strong adsorption power, it is at the step. Immediately after the time change, a large amount of a substance with a strong adsorption force is contained in the extraction part of a substance with a weak adsorption force, and a large amount of a substance with a weak adsorption force is contained in a extraction part of a substance with a strong adsorption force. This corresponds to the time during which the collected liquid can be collected. The system is stabilized and purity maintained by measuring at least one of the specific instantaneous values of the extracted and recovered liquid and changing the step time for changing the positions of the supply and extraction ports.
(作用) 以下に本発明の制御システムの作用を説明する。(effect) The operation of the control system of the present invention will be explained below.
従来の一般的な擬似移動床の作動の説明図を第2図に示
す。この図では特定の時刻における供給および抜出口の
位置が示されている。このシステムにおいて安定的に分
離が行われている場合の充填塔内濃度分布を第3図に示
す。このとき流体抜出部は第4図(a)、(b)のよう
な濃度変動の繰り返しで回収されている。図中のA成分
とは吸着力の強い物質、B成分とは吸着力の弱い物質で
ある。A成分抜出口は第3図の3塔の右から左へ濃度分
布が移行するように流体が通過し、左端に到達すると同
時に抜出口が1塔下流に移りまた同様に右から左へ移行
するように通過する。そのためA成分抜出口での濃度変
動は第4図(a)に示すような繰り返しの濃度変動で進
行する。B成分抜出口は第2図の7塔の右から左へ移行
し、同様に繰り返しの濃度変動で第4図(b)に示すよ
うに進行する。従ってA成分抜出口であってはステップ
時間切り替え直後、B成分にあってはステップ時間切り
替え直前の瞬間値を分析することによって不純物成分の
分析値を比較的高濃度で得ることが出来ることがわかる
。An explanatory diagram of the operation of a conventional general simulated moving bed is shown in FIG. This figure shows the position of the supply and withdrawal ports at a particular time. Figure 3 shows the concentration distribution in the packed column when stable separation is performed in this system. At this time, the fluid is recovered from the fluid extraction portion by repeating the concentration fluctuations as shown in FIGS. 4(a) and 4(b). The A component in the figure is a substance with strong adsorption power, and the B component is a substance with weak adsorption power. The fluid passes through the A component extraction port so that the concentration distribution shifts from the right to the left of the three columns in Figure 3, and at the same time as it reaches the left end, the extraction port moves one column downstream and similarly shifts from the right to the left. to pass through. Therefore, the concentration fluctuation at the A component extraction port progresses as a repeated concentration fluctuation as shown in FIG. 4(a). The B component extraction port moves from the right to the left of the 7 towers in FIG. 2, and progresses as shown in FIG. 4(b) with repeated concentration fluctuations. Therefore, it can be seen that by analyzing the instantaneous value of the A component extraction port immediately after the step time change, and the B component immediately before the step time change, it is possible to obtain the analytical value of the impurity component at a relatively high concentration. .
測定のための特定瞬間値は一般にはステップ時間切り替
え後循環ライン中の流体が分析箇所に到達するまでの時
間を考慮して分析する必要があるが、その影響を考えな
い場合、ステップ時間Tの0.05T〜0.2T時間程
度を目安にして、その値での流体を分析することが望ま
しい。例えば、ステップ時間20分の場合、0.1T時
間ではステップ時間切り替え後または切り替え前2分で
分析することが望ましい。0.2Tより大きいと不純物
濃度が低下し検出精度が低下する。0.05Tより小さ
いとステップ時間切り替え後の流体濃度の影響を受は実
際より大きく分析する恐れがある。In general, it is necessary to analyze the specific instantaneous value for measurement by taking into account the time it takes for the fluid in the circulation line to reach the analysis point after switching the step time, but if this effect is not considered, It is desirable to analyze the fluid at approximately 0.05T to 0.2T time as a guideline. For example, when the step time is 20 minutes, it is desirable to perform analysis 2 minutes after or before switching the step time at 0.1T time. When it is larger than 0.2T, the impurity concentration decreases and the detection accuracy decreases. If it is smaller than 0.05T, there is a risk that the analysis will be influenced by the fluid concentration after the step time is changed to be larger than it actually is.
またステップ時間を一定のままで循環ポンプの流量にて
制御することも可能であるが、ポンプの流量調整はその
変動を別の制御で監視している場合にはかえって系の制
御の不安定を招くことが予測され、変動を与えて系が安
定化するまでの時間を考慮すると得策ではない。It is also possible to control the flow rate of the circulation pump while keeping the step time constant, but adjusting the pump flow rate may actually make the control of the system unstable if its fluctuations are monitored by another control. This is not a good idea considering the amount of time it takes for the system to stabilize after fluctuations.
測定装置に関してはUVモニターなどの連続的分析装置
を利用することもできるが、間欠的な分析装置(例えば
高速液体クロマトグラフィ)をラインに設置し自動分析
を行うこともできる。Concerning the measurement device, a continuous analysis device such as a UV monitor can be used, but an intermittent analysis device (for example, high performance liquid chromatography) can also be installed in the line to perform automatic analysis.
本発明の制御方式を第1図に示す。図に示すように、循
環ポンプの流量制御による系の安定化とは全く独立して
、回収液の濃度管理が可能である。The control method of the present invention is shown in FIG. As shown in the figure, it is possible to control the concentration of the recovered liquid completely independently of stabilizing the system by controlling the flow rate of the circulation pump.
ステップ時間は予め決められた時間に設定されているが
、抜出口での特定瞬間値での分析値の不純物量が許容値
を超えた場合、ステップ時間を一時的に短縮または延長
することにより調整する。このとき吸着力の強い抜出口
において、吸着力の弱い物質の含有量が増加した場合は
短縮し、吸着力の弱い抜出口において、吸着力の強い物
質の含有量が増加した場合は延長する。この動作を繰り
返して両波出口とも正常値に戻った場合、ステップ時間
を新しい条件で設定するか、様子を見て元の決められた
値に戻すことにより系の乱れを最小限に抑えることが出
来る。なお、通常は、系は予め10サイクル程度、決め
られた条件にて運転し、系内の濃度パターンを形成させ
ておいてから、上述の本発明の制御を行う。The step time is set to a predetermined time, but if the amount of impurities in the analysis value at a specific moment at the extraction port exceeds the allowable value, the step time can be adjusted by temporarily shortening or extending it. do. At this time, if the content of a substance with a weak adsorption force increases at an outlet with a strong adsorption force, the time period will be shortened, and if the content of a substance with a strong adsorption force increases in an outlet with a weak adsorption force, the time period will be lengthened. If both wave exits return to normal values after repeating this operation, it is possible to minimize the disturbance in the system by setting the step time under new conditions, or by monitoring the situation and returning it to the previously determined value. I can do it. Note that normally, the system is operated under predetermined conditions for about 10 cycles in advance to form a concentration pattern in the system, and then the above-described control of the present invention is performed.
[発明の効果コ
以上のように本発明では、流体の抜出口を間欠的に移動
させる時間間隔を調整することにより、系を調整維持す
るので、ポンプ流量などの系の構成機器に影響を与えず
に制御できる。また純度測定は1ステップ間を分画し平
均化したサンプルを測定する必要があるが、本発明の方
法では瞬間値を分析し、予め決められた値と対比する方
式を取っているので自動化が容易でかつ応答が速い。分
析装置は抜出ライン上に設置するので1個または2個の
設置で制御することが出来るなどの効果がある。[Effects of the Invention] As described above, in the present invention, the system is adjusted and maintained by adjusting the time interval for intermittently moving the fluid extraction port, so it does not affect the system components such as the pump flow rate. can be controlled without In addition, purity measurement requires measuring a sample that has been fractionated and averaged during each step, but the method of the present invention analyzes the instantaneous value and compares it with a predetermined value, so automation is not possible. Easy and quick response. Since the analyzer is installed on the extraction line, it has the advantage that control can be achieved by installing one or two analyzers.
第1図は本発明の制御決方法を示す流れ図、第2図は一
般的な擬似移動床方式の分離システムの説明図、第3図
は安定的に分離が行われている充填塔内の濃度分布を示
すグラフ、第4図は流体の抜出口における濃度変動を表
すグラフである。
第1図
吸着力の
原料
吸着力の
溶離液
抜出口
抜出口
第2図
塔
く−→
←
A成分抜出口
B成分抜出口
1ステツプ
1+1@
ネ
時間→
第4図Figure 1 is a flowchart showing the control method of the present invention, Figure 2 is an explanatory diagram of a general pseudo-moving bed type separation system, and Figure 3 is a diagram showing the concentration in the packed column where separation is stably performed. The graph showing the distribution, FIG. 4, is a graph showing the concentration fluctuation at the fluid outlet. Figure 1 Adsorption power of raw material adsorption power Eluent extraction outlet Extraction outlet Figure 2 Tower -→ ← A component extraction outlet B component extraction outlet 1 step 1+1@ne time → Figure 4
Claims (2)
連結し、循環ポンプを用いて充填塔内に流体を循環させ
、循環流路中に非処理液供給口、非吸着質に富む流体抜
出口、溶離液供給口および吸着質に富む流体抜出口を循
環流体の流れ方向に沿って順次配置し、その位置を流体
の流れ方向に間欠的に移動させる擬似移動床方式のクロ
マトグラフィの分離方法において、一方または両方の流
体抜出口の流体成分濃度を測定して前記供給口および抜
出口を間欠的に移動する時間を短縮あるいは延長するこ
とにより、予め定められた成分純度を調整、維持するこ
とを特徴とする擬似移動床方式の制御方法。(1) A plurality of packed towers filled with solid adsorbent are connected in an endless manner, and a circulation pump is used to circulate fluid within the packed tower. A pseudo-moving bed type chromatography system in which a fluid-rich extraction port, an eluent supply port, and an adsorbate-rich fluid withdrawal port are sequentially arranged along the flow direction of the circulating fluid, and their positions are moved intermittently in the fluid flow direction. In a separation method, a predetermined component purity is adjusted and maintained by measuring the concentration of a fluid component at one or both fluid outlet ports and shortening or extending the time of intermittent movement through the supply port and the outlet port. A method for controlling a pseudo moving bed system, characterized by:
に移動する時間Tに対して0.05T〜0.2Tの範囲
の任意の時間で、非吸着質に富む流体抜出口では間欠移
動前、吸着質に富む流体抜出口では間欠移動後に測定し
た流体成分濃度測定値を用いることを特徴とする請求項
1記載の擬似移動床方式の制御方法。(2) The fluid component concentration at the fluid outlet is measured at any time in the range of 0.05T to 0.2T with respect to the intermittent moving time T, and the fluid component concentration at the fluid outlet rich in non-adsorbent is measured intermittently. 2. The method of controlling a pseudo moving bed system according to claim 1, wherein a fluid component concentration measurement value measured after intermittent movement is used at the adsorbate-rich fluid extraction port before movement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25075990A JPH04131104A (en) | 1990-09-20 | 1990-09-20 | Controlling method for para-moving bed way |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25075990A JPH04131104A (en) | 1990-09-20 | 1990-09-20 | Controlling method for para-moving bed way |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04131104A true JPH04131104A (en) | 1992-05-01 |
Family
ID=17212623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25075990A Pending JPH04131104A (en) | 1990-09-20 | 1990-09-20 | Controlling method for para-moving bed way |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04131104A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001005482A1 (en) * | 1999-07-21 | 2001-01-25 | Organo Corporation | Intermittent moving layer type chromatographic separation device |
US6217774B1 (en) | 1995-01-12 | 2001-04-17 | Daicel Chemical Industries, Ltd. | Simulated moving bed separation apparatus |
-
1990
- 1990-09-20 JP JP25075990A patent/JPH04131104A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6217774B1 (en) | 1995-01-12 | 2001-04-17 | Daicel Chemical Industries, Ltd. | Simulated moving bed separation apparatus |
WO2001005482A1 (en) * | 1999-07-21 | 2001-01-25 | Organo Corporation | Intermittent moving layer type chromatographic separation device |
US6471859B1 (en) | 1999-07-21 | 2002-10-29 | Organo Corporation | Intermittent moving layer type chromatographic separation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4182633A (en) | Process of the operation of a simulated moving bed | |
EP0878222B1 (en) | Simulated moving bed separator | |
KR101737984B1 (en) | Chromatographic purification method | |
KR960010366B1 (en) | Method of choromatographic separation | |
DK2024049T3 (en) | PROCEDURE FOR SEPARATING FRACTIONS IN A MIXTURE | |
Balannec et al. | From batch elution to simulated countercurrent chromatography | |
US4359891A (en) | Repetitive chromatographic apparatus | |
JPS5949052B2 (en) | Isotope separation device | |
EP2812309B1 (en) | Method for continuous separation of valine | |
JPH04131104A (en) | Controlling method for para-moving bed way | |
CA1093340A (en) | Liquid column chromatographic separation | |
KR100375980B1 (en) | Simulated Moving Bed Separation Process of Chromatography Using Flow Rate Increase | |
CN111629802B (en) | Method for conditioning a separation mixture | |
WO1992016274A1 (en) | Enantiomer separating process on chiral separation phases by means of a continuous counter-current chromatography process | |
Engell et al. | Process control | |
CN111542379B (en) | Method for separating mixtures by detecting purity or yield in a tundish | |
JPS6214059A (en) | Separation refining system appatatus for substance by liquid chromatography | |
CN111565812A (en) | Method for detecting purity or yield of separation mixture by using on-line detector | |
JPH07328305A (en) | Method for monitoring separation of optical isomer in pseudo-moving bed type chromatic separator, apparatus and method for pseudo-moving bed type chromatic separation | |
JP7462058B2 (en) | Side chamber process monitor for adsorption separation processes. | |
Lee et al. | A theoretical model for the separation of glucose and fructose mixtures by using a semicontinuous chromatographic refiner | |
SU1518785A1 (en) | Method of chromatographic analysis of gas impurities in hydrogen | |
Buhlert et al. | Construction and development of a new single-column simulated moving bed system on the laboratory scale | |
JP2007033232A (en) | Enriched ion chromatograph measuring method and enriched ion chromatograph measuring device | |
Balannec et al. | I. EXPERIMENTAL DATA AND MODELS: WHAT ARE THE LINKS? |