JPH04112305A - Controller for driven object - Google Patents
Controller for driven objectInfo
- Publication number
- JPH04112305A JPH04112305A JP23280190A JP23280190A JPH04112305A JP H04112305 A JPH04112305 A JP H04112305A JP 23280190 A JP23280190 A JP 23280190A JP 23280190 A JP23280190 A JP 23280190A JP H04112305 A JPH04112305 A JP H04112305A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- microrobot
- coils
- control
- driven object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Manipulator (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
この発明はマイクロロボットその他の被駆動体の制御装
置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a control device for a microrobot or other driven object.
[従来の技術]
ミクロレベルの微小の歯車等の機械部品を加工する微小
のアクチュエータや生体内に入れてけがの治療や癌細胞
の切除等の作業を行う微小の医療用アクチュエータの開
発が望まれている。[Conventional technology] It is desired to develop microscopic actuators that process mechanical parts such as microscopic gears, and microscopic medical actuators that can be inserted into living organisms to perform tasks such as treating injuries and removing cancer cells. ing.
[発明が解決しようとする課題1
しかしその様な微小のアクチュエータの開発は未だ行な
われていない。[Problem to be Solved by the Invention 1] However, such a minute actuator has not yet been developed.
特にこのようなアクチュエータには被駆動体の位置検出
、被駆動体の回転及び姿勢制御、被駆動体の移動制御、
被駆動体との通信、被駆動体へのエネルギー供給の技術
を開発する必要があるが、これらの技術は未だ開発され
ていない。In particular, such actuators are capable of detecting the position of the driven body, controlling the rotation and posture of the driven body, controlling the movement of the driven body,
It is necessary to develop technologies for communicating with the driven object and for supplying energy to the driven object, but these technologies have not yet been developed.
この発明は上記の如き事情に鑑みてなされたものであっ
て、被駆動体の位置検出、被駆動体の回転及び姿勢制御
、被駆動体の移動制御、被駆動体との通信、被駆動体へ
のエネルギー供給を実現万ることができる被駆動体の制
御装置を提供することを目的とするものである。This invention has been made in view of the above circumstances, and includes detection of the position of a driven body, rotation and posture control of the driven body, movement control of the driven body, communication with the driven body, and communication with the driven body. The object of the present invention is to provide a control device for a driven body that can realize energy supply to a driven body.
[課題を解決するための手段]
この目的に対応して、この発明の被駆動体の制御装置は
、外部磁場の変化を一定の手順で行うように決められて
いる外部磁場を形成するインビーダンス可変の直交軸コ
イルと、前記外部磁場内に位置しインピーダンス可変の
直交軸コイルを有する被駆動体とを備える、ことを特徴
としている。[Means for Solving the Problem] Corresponding to this object, the control device for a driven object of the present invention includes an in-vehicle device that forms an external magnetic field that is determined to change the external magnetic field in a fixed procedure. It is characterized by comprising a variable-dance orthogonal-axis coil and a driven body located within the external magnetic field and having a variable-impedance orthogonal-axis coil.
[作用]
被駆動体が有する内側直交軸コイルには外側直交軸コイ
ルによって形成される外部磁界の影響を受けて起電力が
生じる。起電力の電流の周波数を周波数分離し、高周波
成分と低周波成分とに分離する。この高周波成分を復調
して検出することによって被駆動体に制御装置から通信
することができる。[Operation] An electromotive force is generated in the inner orthogonal axis coil of the driven body under the influence of the external magnetic field formed by the outer orthogonal axis coil. The frequency of the current of the electromotive force is separated into high frequency components and low frequency components. By demodulating and detecting this high frequency component, communication can be made from the control device to the driven object.
分離した低周波数成分を整流、レギュレーションして電
源として使用する。また、外部磁場を回転させることに
よって内側コイルつまり被駆動体の回転及び姿勢制御を
行うことができる。The separated low frequency components are rectified and regulated and used as a power source. Further, by rotating the external magnetic field, the rotation and posture of the inner coil, that is, the driven body can be controlled.
また、分離した低周波数成分を変調させることによって
磁場から受ける力の方向を選択し、被駆動体を移動させ
ることができる。また、外部磁界の強度の変化を検出し
て、内側コイルの位置を検出することができる。また、
内側コイルのインピーダンスを検出することによって、
内側コイルの位置、速度、向きその他の状態を検出する
ことができる。つまり、内側コイルから外側コイルへの
通信が可能となる。Furthermore, by modulating the separated low frequency components, the direction of the force received from the magnetic field can be selected and the driven object can be moved. Furthermore, the position of the inner coil can be detected by detecting changes in the strength of the external magnetic field. Also,
By detecting the impedance of the inner coil,
The position, speed, orientation, and other conditions of the inner coil can be detected. In other words, communication from the inner coil to the outer coil becomes possible.
[実施例]
以下、この発明の詳細を一実施例を示す図面について説
明する。[Example] Hereinafter, details of the present invention will be explained with reference to drawings showing an example.
第1図において、1は被駆動体の一例としてのマイクロ
ロボットの制御システムである。制御システム1は磁界
2を形成するインピーダンス可変の複数の外側コイル3
a、3b、3G、3d。In FIG. 1, reference numeral 1 denotes a control system for a microrobot as an example of a driven object. The control system 1 includes a plurality of outer coils 3 with variable impedance forming a magnetic field 2.
a, 3b, 3G, 3d.
3e、3f、3Q、3hを配冒している。磁界2内には
制御対象であるマイクロロボット4が位置する。マイク
ロロボット4は第2図に示すように直交2方向に形成さ
れたインピーダンス可変の内側コイル5a、5bを有す
る。It has 3e, 3f, 3Q, and 3h. A microrobot 4 to be controlled is located within the magnetic field 2 . As shown in FIG. 2, the microrobot 4 has variable impedance inner coils 5a and 5b formed in two orthogonal directions.
111111システムでは磁界を3次元方向に形成する
ことが望ましいが、この実施例では説明の便宜上、磁界
2を2次元方向に形成しており、従って、外側]イル3
a、3b、3e、3fと外側コイル3c、3d、3Q、
3hは直交方向に形成されている。従ってまた、マイク
ロロボット4における内側コイル5a、5bも直交方向
に形成されている。マイクロロボット4には第3図に示
す制御回路6が設けられている。制御回路6には共振回
路7、周波数分離器8、復調器11、整流器及びレギュ
レータ12、コンデンサ13、電圧測定器14及び制御
系15を備えている。制御系15としては例えばマイク
ロコンピュータを使用する。In the 111111 system, it is desirable to form the magnetic field in a three-dimensional direction, but in this example, for convenience of explanation, the magnetic field 2 is formed in a two-dimensional direction.
a, 3b, 3e, 3f and outer coils 3c, 3d, 3Q,
3h is formed in the orthogonal direction. Therefore, the inner coils 5a and 5b in the microrobot 4 are also formed in orthogonal directions. The microrobot 4 is provided with a control circuit 6 shown in FIG. The control circuit 6 includes a resonance circuit 7, a frequency separator 8, a demodulator 11, a rectifier and regulator 12, a capacitor 13, a voltage measuring device 14, and a control system 15. As the control system 15, for example, a microcomputer is used.
また、説明の便宜上、マイクロロボットは1台しか描か
れていないが実際には制御システム内において複数のマ
イクロロボットを同時に制御することが可能である。Further, for convenience of explanation, only one microrobot is depicted, but in reality, it is possible to control a plurality of microrobots simultaneously within the control system.
このような構成においてマイクロロボット4の制御は次
のようにしてなされる。In such a configuration, the microrobot 4 is controlled as follows.
まず、外側コイル38〜3hを駆動して磁界2を形成す
る。マイクロロボット4を並進させる場合には第4図に
示すように、同軸方向の外側コイル3a〜3fと3b〜
3eを切り変えることによって内側コイル5a、5bに
直接の力を作用させる。この磁界2は外側コイル3a〜
3hの駆1iII電流の周波数を変えて外側コイル3a
〜3hのインピーダンスを変えることによって変調可能
である。First, the magnetic field 2 is formed by driving the outer coils 38 to 3h. When translating the microrobot 4, as shown in FIG. 4, the outer coils 3a to 3f and 3b to
By switching 3e, a direct force is applied to the inner coils 5a, 5b. This magnetic field 2 is from the outer coil 3a to
By changing the frequency of the 3h driving current, the outer coil 3a
It can be modulated by changing the impedance of ~3h.
特にマイクロロボット4の動力とならない高い周波数に
よる変調は、その変調波をマイクロロボット4に対する
制御信号の通信に利用することができる。磁界2の変調
によって内側コイル5a。In particular, when modulating at a high frequency that does not serve as a motive force for the microrobot 4, the modulated wave can be used for communicating control signals to the microrobot 4. Inner coil 5a by modulation of magnetic field 2.
5bを通過する磁束が変化し、内側コイル5a。The magnetic flux passing through 5b changes and the inner coil 5a.
5bに起電力が生じる。内側コイル5a、5bに流れる
電流は共振回路7によって取出され、周波数分離器8に
よって周波数分離される。周波数分離された電流成分の
うち、高周波成分は復調器11で復調して制御系15に
対する制御信号の入力信号として利用する。An electromotive force is generated at 5b. The current flowing through the inner coils 5a, 5b is taken out by a resonance circuit 7 and frequency separated by a frequency separator 8. Among the frequency-separated current components, a high frequency component is demodulated by a demodulator 11 and used as an input signal of a control signal to a control system 15.
周波数分離された電流成分のうち、低周波成分は整流器
及びレギュレータ12によって整流され、コンデンサ1
3によって事情化されて制御系15の電源となる。一方
、低周波数成分の一部分は電圧測定器14によって電圧
が測定され、電圧測定器14の出力は制御系15に波形
または位相の情報を入力する。一方、内側コイル5a、
5bのインピーダンスは当初は磁場2の条件に対応した
値をとるが、このインピーダンスの値は内側コイル5a
、5bの状態、すなわち、内側コイル5a。Among the frequency-separated current components, the low frequency component is rectified by the rectifier and regulator 12, and the low frequency component is rectified by the rectifier and regulator 12.
3 and becomes the power source for the control system 15. On the other hand, the voltage of a portion of the low frequency component is measured by the voltage measuring device 14, and the output of the voltage measuring device 14 inputs waveform or phase information to the control system 15. On the other hand, the inner coil 5a,
The impedance of the inner coil 5b initially takes a value corresponding to the condition of the magnetic field 2, but the value of this impedance is different from that of the inner coil 5a.
, 5b, that is, the inner coil 5a.
5bの位置、速度、向きその他の状態が変化することに
よって変化する。It changes as the position, speed, direction, and other conditions of 5b change.
従って、内側コイル5a、5bのインピーダンスを測定
することによって、マイクロロボット4の状態変化を検
出することができる。つまり、マイクロロボット4から
外側コイルに通信が可能である。Therefore, by measuring the impedance of the inner coils 5a and 5b, changes in the state of the microrobot 4 can be detected. In other words, communication is possible from the microrobot 4 to the outer coil.
次に、マイクロロボット4を回転させる場合には、第5
図に示すように、同軸方向の外側コイル38〜3fを3
C〜3hに切り換えるように、順次外側コイル3a〜3
hの駆動を切り換えて磁場2を回転させる。Next, when rotating the microrobot 4, the fifth
As shown in the figure, the outer coils 38 to 3f in the coaxial direction are
The outer coils 3a to 3 are sequentially switched to C to 3h.
The magnetic field 2 is rotated by switching the drive of h.
この時、内側コイル5a、5bのインピーダンスを外側
コイル3a〜3hとの通信、電圧測定器14からの波形
、位相信号に基づいて同期をとって調整し、インピーダ
ンスの合成によって任意の方向に感度を持たせ、磁場2
への感受率を制御し、磁場から受ける力を制御して、マ
イクロロボット4の回転及び並進を行う。At this time, the impedance of the inner coils 5a and 5b is adjusted in synchronization based on the communication with the outer coils 3a to 3h, the waveform from the voltage measuring device 14, and the phase signal, and the sensitivity is adjusted in any direction by combining the impedances. Hold, magnetic field 2
The microrobot 4 is rotated and translated by controlling the susceptibility to the magnetic field and controlling the force received from the magnetic field.
[発明の効果]
このようにして、この発明では、微小な被駆動体へのエ
ネルギー供給、移動、回転、姿勢制御、位置検出を1つ
のシステムで実現することができる。[Effects of the Invention] In this way, according to the present invention, energy supply, movement, rotation, attitude control, and position detection to a minute driven body can be realized with one system.
第1図はこの発明の被駆動体の制御装置を示す構成説明
図、第2図はマイクロロボットの拡大構成説明図、第3
図はマイクロロボットに備えられる回路を示すブロック
図、第4図はマイクロロボットの並進の原理を示す説明
図、及び第5図はマイクロロボットの回転の原理を示す
説明図である。
1・・・制御システム、 2・・・磁界、3a〜3h・
・・外側コイル、
4・・・マイクロロボット、
5a〜5b・・・内側コイル、
6・・・制御回路、 7・・・共娠回路、8・・・周波
数分離器、 11・・・復調器、12・・・整流器及び
レギュレータ、
13・・・コンデンサ、 14・・・電圧測定器、15
・・・制御系、 16・・・コンデンサ第1図
佐藤壽芳
第
図
第
図
第
図
σ4
第
図FIG. 1 is a configuration explanatory diagram showing a control device for a driven body according to the present invention, FIG. 2 is an enlarged configuration explanatory diagram of a microrobot, and FIG.
4 is an explanatory diagram showing the principle of translation of the microrobot, and FIG. 5 is an explanatory diagram showing the principle of rotation of the microrobot. 1... Control system, 2... Magnetic field, 3a to 3h.
...Outer coil, 4...Micro robot, 5a-5b...Inner coil, 6...Control circuit, 7...Composition circuit, 8...Frequency separator, 11...Demodulator , 12... Rectifier and regulator, 13... Capacitor, 14... Voltage measuring device, 15
...Control system, 16...Capacitor Fig. 1 Hisayoshi Sato Fig. Fig. σ4 Fig.
Claims (1)
る外部磁場を形成するインピーダンス可変の直交軸コイ
ルと、前記外部磁場内に位置しインピーダンス可変の直
交軸コイルを有する被駆動体とを備える、ことを特徴と
する被駆動体の制御装置A variable-impedance orthogonal-axis coil that forms an external magnetic field that is determined to change the external magnetic field in a fixed procedure, and a driven body that is located within the external magnetic field and has a variable-impedance orthogonal-axis coil. A control device for a driven body, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2232801A JPH07101371B2 (en) | 1990-09-03 | 1990-09-03 | Driven body control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2232801A JPH07101371B2 (en) | 1990-09-03 | 1990-09-03 | Driven body control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04112305A true JPH04112305A (en) | 1992-04-14 |
JPH07101371B2 JPH07101371B2 (en) | 1995-11-01 |
Family
ID=16944977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2232801A Expired - Lifetime JPH07101371B2 (en) | 1990-09-03 | 1990-09-03 | Driven body control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07101371B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127749A (en) * | 1999-02-10 | 2000-10-03 | Nikon Corporation Of Japan | Two-dimensional electric motor |
KR100457752B1 (en) * | 2002-07-15 | 2004-12-08 | 경북대학교 산학협력단 | Remote Driving System Using Magnetic Field for Wireless Telemetry Capsule in Body |
JP2005334251A (en) * | 2004-05-26 | 2005-12-08 | Olympus Corp | Positional relation detector and positional relation detecting system |
WO2006025400A1 (en) * | 2004-08-30 | 2006-03-09 | Olympus Corporation | Position sensor and introduction-into-subject system |
JP2006061624A (en) * | 2004-08-30 | 2006-03-09 | Olympus Corp | Position detector and system to guide it into subject body |
JP2006075536A (en) * | 2004-09-13 | 2006-03-23 | Olympus Corp | Intra-patient introduction system |
KR100615881B1 (en) * | 2004-06-21 | 2006-08-25 | 한국과학기술연구원 | Capsule Type Endoscope Control System |
US8050738B2 (en) | 2004-08-30 | 2011-11-01 | Olympus Corporation | Position detecting apparatus using the magnetic field direction of the earth's magnetic field |
KR102291159B1 (en) * | 2021-07-02 | 2021-08-17 | 공주대학교 산학협력단 | Three-dimension eletromagnetic drive system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS607725A (en) * | 1983-06-10 | 1985-01-16 | エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド | Electromagnetic positioning device |
JPS60134917A (en) * | 1983-12-22 | 1985-07-18 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Precise x-y-o positioning apparatus |
JPH01134512A (en) * | 1987-11-20 | 1989-05-26 | Toshiba Corp | Non-contact positioning device |
-
1990
- 1990-09-03 JP JP2232801A patent/JPH07101371B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS607725A (en) * | 1983-06-10 | 1985-01-16 | エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド | Electromagnetic positioning device |
JPS60134917A (en) * | 1983-12-22 | 1985-07-18 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Precise x-y-o positioning apparatus |
JPH01134512A (en) * | 1987-11-20 | 1989-05-26 | Toshiba Corp | Non-contact positioning device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127749A (en) * | 1999-02-10 | 2000-10-03 | Nikon Corporation Of Japan | Two-dimensional electric motor |
US6455956B1 (en) | 1999-02-10 | 2002-09-24 | Nikon Corporation | Two-dimensional electric motor |
KR100457752B1 (en) * | 2002-07-15 | 2004-12-08 | 경북대학교 산학협력단 | Remote Driving System Using Magnetic Field for Wireless Telemetry Capsule in Body |
JP2005334251A (en) * | 2004-05-26 | 2005-12-08 | Olympus Corp | Positional relation detector and positional relation detecting system |
WO2005115219A1 (en) * | 2004-05-26 | 2005-12-08 | Olympus Corporation | Position information detecting device and position information detecting system |
KR100615881B1 (en) * | 2004-06-21 | 2006-08-25 | 한국과학기술연구원 | Capsule Type Endoscope Control System |
JP2006061624A (en) * | 2004-08-30 | 2006-03-09 | Olympus Corp | Position detector and system to guide it into subject body |
WO2006025400A1 (en) * | 2004-08-30 | 2006-03-09 | Olympus Corporation | Position sensor and introduction-into-subject system |
JP4554301B2 (en) * | 2004-08-30 | 2010-09-29 | オリンパス株式会社 | Position detection apparatus and in-subject introduction system |
US8050738B2 (en) | 2004-08-30 | 2011-11-01 | Olympus Corporation | Position detecting apparatus using the magnetic field direction of the earth's magnetic field |
US8195277B2 (en) | 2004-08-30 | 2012-06-05 | Olympus Corporation | Prospective position detecting magnetic field control based on a possible existence range of an object |
JP2006075536A (en) * | 2004-09-13 | 2006-03-23 | Olympus Corp | Intra-patient introduction system |
JP4505292B2 (en) * | 2004-09-13 | 2010-07-21 | オリンパス株式会社 | Intra-subject introduction system |
KR102291159B1 (en) * | 2021-07-02 | 2021-08-17 | 공주대학교 산학협력단 | Three-dimension eletromagnetic drive system |
WO2023277237A1 (en) * | 2021-07-02 | 2023-01-05 | 공주대학교 산학협력단 | Three-dimensional electromagnetic actuation system |
Also Published As
Publication number | Publication date |
---|---|
JPH07101371B2 (en) | 1995-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100450729C (en) | System for controlling micro robot movement and pose by outer magnetic field and its control method and use | |
CN107077161B (en) | Input-output operation device | |
JP4499861B2 (en) | Movement control system for movable micromachine and medical micromachine guidance system | |
CN100590963C (en) | Method for driving and controlling universal rotary magnetic field of the medical treatment miniature robot in the body | |
JPH04112305A (en) | Controller for driven object | |
JP5984522B2 (en) | Measuring system | |
US4634889A (en) | Electro-mechanical converter with several degrees of freedom | |
CN103237633A (en) | Master control input device and master-lave manipulator | |
WO2022198809A1 (en) | Ball joint drive-based puncture surgery robot master hand and system | |
CN103340640B (en) | Control device and control method for achieving C arm system follow-up motion | |
CN101169212A (en) | Permanent magnetism minisize robot | |
JPH11231925A (en) | Hand of direct teaching robot | |
CN102499616A (en) | Acceleration transducer based three-dimensional magnetic field positioning system and method of endoscope probe | |
Wang et al. | A novel magnetic tracking approach for intrabody objects | |
CN117323018A (en) | Input device and surgical robot | |
CN200963827Y (en) | System for controlling micro-robot movement and pose by outside magnetic field | |
US5321986A (en) | Polar loop implementation for a two degree of freedom gyro | |
CN211890850U (en) | Chip robot | |
CN109288549A (en) | Minimally Invasive Surgery auxiliary device and its control method | |
CN208496987U (en) | Manipulator assembly and control unit for controlling same | |
Tsai et al. | A flux-density-based electromagnetic servo system for real-time magnetic servoing/tracking | |
JPH11109847A (en) | Cell and multicellular robot | |
KR101831659B1 (en) | Active wire guide apparatus | |
KR102160729B1 (en) | Triaxial motion device | |
CN112735732B (en) | Mixed magnetic field device and mixed magnetic field system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |