Nothing Special   »   [go: up one dir, main page]

JPH04110639A - Particle fractionating apparatus - Google Patents

Particle fractionating apparatus

Info

Publication number
JPH04110639A
JPH04110639A JP2229679A JP22967990A JPH04110639A JP H04110639 A JPH04110639 A JP H04110639A JP 2229679 A JP2229679 A JP 2229679A JP 22967990 A JP22967990 A JP 22967990A JP H04110639 A JPH04110639 A JP H04110639A
Authority
JP
Japan
Prior art keywords
time
liquid droplets
liquid
droplets
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2229679A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azumaya
良行 東家
Yoshito Yoneyama
米山 好人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2229679A priority Critical patent/JPH04110639A/en
Priority to DE69025256T priority patent/DE69025256T2/en
Priority to EP90119423A priority patent/EP0422616B1/en
Priority to US07/596,083 priority patent/US5180065A/en
Publication of JPH04110639A publication Critical patent/JPH04110639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • G01N15/1492Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties within droplets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1481Optical analysis of particles within droplets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To ensure the fractionation of particles with a simple structure by discharging particle floating liquid through an opening, measuring the property of the particles, and discharging the fluid to a passing path so that the discharged liquid droplets are displaced in response to the result of measurement. CONSTITUTION:Discharged liquid droplets containing cells undergo inelastic collision by the discharge of the fractionating liquid droplets from discharge nozzles 18. The falling direction is changed. Thus, the liquid droplets are dropped not into a chamber E but into a chamber C in a separate pickup container 19 and sampled. At this time, when there is dispersion in masses of the cell liquid droplets, the dropped position is deviated to the right and left directions. The droplets are fractionated and sampled in five kinds of A - E in response to the properties of the cells. The time period from the time point when the liquid droplets which are discharged from a discharging nozzle 1 pass a part to be measured to the time point when the droplets reach the fractionating point is considered to be the constant specified time when the discharging speed is stable. Therefore, the specified time obtained by subtracting the time until the liquid reaches the fractionating point from the nozzle 18 from this time is stored. When the stored time is elapsed from the detection of the light, the nozzles 18 are driven. Thus, the discharged liquid can be made hit on the liquid droplets containing the cells accurately.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明はサンプル液中の個々の検体粒子を分離して測定
を行ない、この結果に基づいて検体粒子を分別する粒子
分別装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a particle sorting device that separates and measures individual analyte particles in a sample liquid, and sorts the analyte particles based on the results.

[従来の技術] 従来の粒子分別装置の一例として、第4図に示すような
装置がセルソータの呼称で実用化されている。
[Prior Art] As an example of a conventional particle sorting device, a device as shown in FIG. 4 has been put into practical use under the name of cell sorter.

細胞浮遊液であるサンプル液及びシース液をそれぞれサ
ンプル容器1及びシース容器2に蓄え、コンプレッサ又
は窒素ガスボンベとレギュレータ等により加圧してノズ
ル5へ導き、ここから大気中に細流6として噴出させる
。ノズル5に取り付けられた振動子7の振動によって細
流6は後に液滴8となって落下する。細流6にはレーザ
光源9からのレーザ光が照射され、細流中の細胞から発
する散乱光強度及び蛍光強度を光検出器14.17にて
測光する。この結果からリアルタイムに細胞の性状を解
析し、その結果に応じて不図示のチャージング手段によ
り流体に対して正又は負又は0のいずれかの荷電電圧を
かけることにより、液滴8は正又は負又は0に帯電され
る。液滴の落下軌道には高電圧の静電偏向板26a、2
6bが対向して配置されており、落下する細胞fimは
その電荷に応じた向きに偏向され、異なる容器2728
.29内に落下して採取される。こうして、細胞をその
性状に応して分別し採取することかてきる。
A sample liquid and a sheath liquid, which are cell suspension liquids, are stored in a sample container 1 and a sheath container 2, respectively, and are pressurized by a compressor or a nitrogen gas cylinder and a regulator, etc., and guided to a nozzle 5, from which they are ejected into the atmosphere as a trickle 6. Due to the vibration of the vibrator 7 attached to the nozzle 5, the trickle 6 later turns into droplets 8 and falls. The trickle 6 is irradiated with laser light from a laser light source 9, and the intensity of scattered light and fluorescence emitted from the cells in the trickle are measured by photodetectors 14 and 17. From this result, the properties of the cells are analyzed in real time, and depending on the results, a charging means (not shown) applies a positive, negative, or zero charging voltage to the fluid, so that the droplet 8 is positively or negatively charged. Charged negatively or to zero. High-voltage electrostatic deflection plates 26a and 2 are placed on the falling trajectory of the droplet.
6b are arranged facing each other, and the falling cells fim are deflected in a direction according to their electric charge, and are placed in different containers 2728.
.. 29 and was collected. In this way, cells can be sorted and collected according to their properties.

しかしながら上記従来の粒子分別装置では、目的とする
細胞が液滴になる寸前に帯電させなければならず、微妙
な調整か必要とされ、常に安定した動作を保つことは難
しかった。
However, in the conventional particle sorting device described above, the target cells must be charged just before they become droplets, requiring delicate adjustments and making it difficult to maintain stable operation at all times.

又、高電圧を扱わなければならず、危険性か伴なう問題
点がある。
In addition, high voltage must be handled, which poses the problem of danger.

又、基本的には正に帯電したもの、負に帯電したもの、
どちらにも帯電していないものの3種類にしか分別でき
ない。荷電電圧を強弱の2種類に変化させ、帯電の強弱
による偏向量の大小を利用し5種類に分けることも考え
られるが、帯電を正確に行なえたとしても、液滴の大き
さ即ち質量が常に一定とは限らず、これにより偏向量が
変化してしまい、必ずしも正確な分別は行なえないとい
う問題点がある。
Also, basically positively charged things, negatively charged things,
It can only be separated into three types, although they are not charged in either direction. It is possible to change the charging voltage into two types, strong and weak, and divide it into five types using the magnitude of the deflection depending on the strength of the charge, but even if charging can be performed accurately, the size of the droplet, that is, the mass, will always be the same. There is a problem that the amount of deflection is not necessarily constant, and as a result, the amount of deflection changes, and accurate classification cannot always be performed.

そこで本願出願人は特願平1−264553号において
これらの問題点を解決すべく、多くの種類の粒子分別を
簡単な構成で確実に行なうことかできる新規な粒子分別
装置を提案した。
Therefore, in order to solve these problems, the applicant of the present invention proposed a new particle sorting device that can reliably separate many types of particles with a simple configuration in Japanese Patent Application No. 1-264553.

[発明の目的] 本発明の目的は上記提案の装置を更に改良し、加圧機構
等の大掛かりな機構を用いることなく、より簡単な構成
で同様の作用が得られる装置の提供を目的とする。
[Object of the Invention] The object of the present invention is to further improve the device proposed above, and to provide a device that can obtain the same effect with a simpler structure without using a large-scale mechanism such as a pressurizing mechanism. .

[目的を達成するための手段] この目的を達成する本発明の粒子分別装置は、粒子厚i
!i!液中の個々の粒子をその性状に応して分別する粒
子分別装置において、吐出エネルギの作用により個々の
粒子を含む微量の粒子浮遊液を開口から吐出させる手段
、前記個々の粒子の性状を測定する手段と、前記測定の
結果に応して、前記吐出液滴を変移させるように前記液
滴の通過経路に向けて流体を吐8させる手段を有するこ
とを特徴とする。
[Means for achieving the object] The particle sorting device of the present invention that achieves this object has a particle thickness i
! i! In a particle sorting device that separates individual particles in a liquid according to their properties, means for discharging a small amount of particle suspension containing individual particles from an opening by the action of discharge energy, and measuring the properties of the individual particles. and a means for ejecting fluid 8 toward a path through which the ejected droplet passes so as to displace the ejected droplet, depending on the result of the measurement.

[実施例] 以下本発明の実施例を図面を用いて詳細に説明する。第
1図は本発明の実施例の構成図を表わす図である。なお
先の従来例の第4図と同一の符号は同−又は同様の部材
を表わす。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing a configuration diagram of an embodiment of the present invention. Note that the same reference numerals as in FIG. 4 of the prior art example represent the same or similar members.

なお、本実施例では分別する粒子浮遊液を血液等の細胞
浮遊液としたが、対象物はこれに限定されるものでは無
い。
In this example, the particle suspension to be separated is a cell suspension such as blood, but the target object is not limited to this.

第1図で粒子浮遊液か液滴吐出ノズル1に導かれ、該液
滴吐出ノズル1によって個々の粒子を含む液滴8か下方
に向けて吐出され落下する。第2図は吐出ノズル1の内
部の吐出機構の詳細を示し、同図(a)〜(d)に、ヒ
ーター2によって熱エネルギを与えて気泡3を発生させ
、細胞Sを含む液滴4が吐出するまでの様子を示す。な
お、より詳細な説明は本願出願人による特願平1−26
0707号に記載されている。
In FIG. 1, the particle suspension liquid is guided to a droplet discharge nozzle 1, and by the droplet discharge nozzle 1, droplets 8 containing individual particles are discharged downward and fall. FIG. 2 shows the details of the discharge mechanism inside the discharge nozzle 1, and (a) to (d) of the same figure show that heat energy is applied by the heater 2 to generate air bubbles 3, and droplets 4 containing cells S are formed. The process up to discharge is shown. A more detailed explanation is provided in Japanese Patent Application No. 1-26 filed by the applicant.
No. 0707.

液滴8の落下経路には測定光学系か配置され、更にその
下方の経路の周囲には、上言己吐出ノズル1と同様の原
理の吐出ノズル18a〜18dが四方向に点対称に設け
られている。各吐出ノズルから吐出された分別用の液体
か細胞を含む液滴の落下経路の軸と一地点(以下分別地
点と言う)て交差するように各吐出口か分別地点に向け
て設置されている。なお、各吐出ノズルは分別地点に向
けてやや下方向に向けらね、対向するノズルに吐出液か
かかるのを防止すると共に、採取の安定性を高めている
A measuring optical system is arranged on the falling path of the droplet 8, and around the path below it, ejection nozzles 18a to 18d, which have the same principle as the above-mentioned ejection nozzle 1, are provided point-symmetrically in four directions. ing. It is installed facing each discharge port or sorting point so that it intersects at one point (hereinafter referred to as the "sorting point") the axis of the fall path of the droplet containing the sorting liquid or cells discharged from each discharge nozzle. . Note that each discharge nozzle is directed slightly downward toward the separation point to prevent the discharged liquid from splashing onto the opposing nozzle and to improve sampling stability.

吐出ノズル18の下方には円形の分取容器】9か配置さ
れている。分取容器19は5部屋に分割され、中心に小
口の部屋Eかあり、その周りの円環が4部屋A、B、C
,Dに分割されている。
A circular sorting container]9 is arranged below the discharge nozzle 18. The preparative container 19 is divided into five chambers, with a small chamber E in the center and four chambers A, B, and C in a circular ring around it.
, D.

これら4部屋は前記4木の吐出ノズル18a〜18dの
向きに対応している。
These four chambers correspond to the directions of the four discharge nozzles 18a to 18d.

レーザ光源9から出射されたレーザ光はシリンドリカル
レンズ10及び11て楕円形状に絞られ被検部を通過す
る個々の細胞を含む液滴に照射される。ここ時、液滴の
通過によって細胞から散乱光及び蛍光が発生する。この
散乱光及び蛍光は受光レンズ13及び15で集められ、
光検出器14及び17で各々強度か検圧される。受光レ
ンズ13の手前にはビームストッパ12か設けられ、レ
ーザ光源からの直接光を遮断するようになっており、散
乱光のみか光検出器14て検出される。
The laser light emitted from the laser light source 9 is focused into an elliptical shape by cylindrical lenses 10 and 11, and is irradiated onto droplets containing individual cells passing through the test area. At this time, scattered light and fluorescence are generated from the cells due to the passage of the droplet. This scattered light and fluorescence are collected by light receiving lenses 13 and 15,
The intensity or pressure is detected by photodetectors 14 and 17, respectively. A beam stopper 12 is provided in front of the light receiving lens 13 to block direct light from the laser light source, and only scattered light is detected by the photodetector 14.

又、受光レンズ15の後方には蛍光波長のみを透過させ
る光学フィルタ16か置かれ、蛍光のみか光検出器17
で検出される。
Further, an optical filter 16 that transmits only fluorescence wavelengths is placed behind the light receiving lens 15, and a photodetector 17 that transmits only fluorescence wavelengths is placed.
Detected in

次に本実施例の装置の動作の説明を行なう。Next, the operation of the apparatus of this embodiment will be explained.

不図示の演算回路においては、各細胞の通過毎に得られ
る検出値からリアルタイムで細胞のサイズ、種類、性質
等の細胞性状の解析を行なう。解析方法の例としては、
散乱光強度に応して細胞の大きさを判断したり、あるい
は細胞を予め蛍光試薬で染色しておき蛍光の発生を見る
ことで細胞の性質や種類を判別する方法等が一般的であ
る。
In an arithmetic circuit (not shown), cell properties such as cell size, type, and properties are analyzed in real time from detected values obtained each time each cell passes. Examples of analysis methods include:
Common methods include determining the size of cells according to the intensity of scattered light, or staining cells in advance with a fluorescent reagent and observing the generation of fluorescence to determine the nature and type of cells.

前記演算回路においてリアルタイムでなされる解析の結
果に基つき判別される細胞のサイズや種類、あるいは性
質等の所望の性状の条件に応じて、不図示の制御回路で
4種類の内、所定の吐出ノズルを駆動、あるいはとれも
駆動しないように制御する。
A control circuit (not shown) selects a predetermined discharge rate among the four types according to the desired property conditions such as the size, type, or properties of the cells determined based on the results of analysis performed in real time by the arithmetic circuit. Control the nozzle to drive or not to drive at all.

細胞を含む吐出液滴はそのまま落下すれば分取容器19
の部屋E内に落下するか、吐出ノズル18から分別用の
液滴か吐出されると、第2図に示すように、目的とする
細胞を含む液滴に対して完全非弾性衝突して、細胞液層
の落下方向を変える。これにより液滴は分取容器19の
部屋Eては無く部屋C内に落下して採取される。この際
、細胞液滴の質量にばらつきかあると落下位置は紙面左
右方向に多少すれるか、分取容器19の周囲の部屋A、
B、C,Dは広い面積をもっているため確実に分別され
る。こうして細胞の性状に応してA−Eの5種類に分別
採取することかできる。
If the ejected droplet containing cells falls as it is, it will fall into the sorting container 19.
When a droplet falls into the chamber E or is discharged from the discharge nozzle 18, as shown in FIG. 2, it collides completely inelastically with the droplet containing the target cells, Change the falling direction of the cell fluid layer. As a result, the droplets fall into the chamber C of the separation container 19 instead of the chamber E and are collected. At this time, if there is some variation in the mass of the cell droplets, the dropping position may shift slightly in the horizontal direction of the page, or the cell droplet may be placed in the room A around the sorting container 19.
Since B, C, and D have a large area, they can be reliably separated. In this way, cells can be collected into five types, A to E, according to their properties.

吐出ノズル1から吐出された個々の細胞を含む液滴が被
検部を通過した時点、即ち散乱光又は蛍光か発生してそ
れらか検出された時点から、その液滴か分別地点に達す
るまでの時間は、吐出速度が安定していれは一定の所定
時間T1と考えられる。よってこのT1から、吐出ノズ
ル18を駆動してから吐出された液体か分別地点に達す
るまでの時間T2を差し引いた一定の所定時間T3 (
=TI  72)を記憶させておき、光か検出されてか
ら時間T3か経過たら吐出ノズル18を駆動するように
なっている。これにより狙った細胸を含む液滴に正確に
吐出液を命中させることかできる。
From the time when a droplet containing individual cells discharged from the discharge nozzle 1 passes through the test area, that is, when scattered light or fluorescence is generated and detected, until the droplet reaches the sorting point. The time is considered to be a constant predetermined time T1 as long as the ejection speed is stable. Therefore, from this T1, a certain predetermined time T3 (
=TI 72) is stored, and the discharge nozzle 18 is driven when a time T3 has elapsed since light was detected. This allows the ejected liquid to accurately hit the droplet containing the targeted narrow chest.

なお、以上の実施例では分別用の吐出ノズル18を4本
設けて、5種類の分別を行なったか、吐出ノズルの数は
これに限定されるものではなく、n本(nは1以上の整
数)のノズルによってn+1種類の分別を行なうことが
できる。
In addition, in the above embodiment, four discharge nozzles 18 for sorting were provided to perform five types of sorting, but the number of discharge nozzles is not limited to this, but n (n is an integer of 1 or more). ) can perform classification of n+1 types.

又、液滴吐出ノズル1あるいは18として、上述のよう
な熱エネルギを利用して吐出させるものではなく、電歪
振動子を使ったオンデマント型液滴吐田ノズルを用いて
も良い。
Further, as the droplet discharge nozzle 1 or 18, an on-demand type droplet discharge nozzle using an electrostrictive vibrator may be used instead of one that discharges the droplet using thermal energy as described above.

[発明の効果] 以上本発明のよれば、加圧機構等の大掛かりな装置用い
ることなく簡単な構成で確実に粒子分別を行なうことが
てきる。
[Effects of the Invention] According to the present invention, particle separation can be reliably performed with a simple configuration without using a large-scale device such as a pressure mechanism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、 第2図は分別の原理の説明図、 第3図は液滴吐出の原理の説明図、 第4図は従来装置の構成図、 てあり、図中の主な符号は、 1・・・・粒子浮遊液の吐出ノズル、 9・・・・レーザ光源、 18・・・・分別用の吐出ノズル、 19・・・・分取容器 (C) (b) (d) FIG. 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is an explanatory diagram of the principle of separation. Figure 3 is an explanatory diagram of the principle of droplet ejection, Figure 4 is a configuration diagram of the conventional device. The main symbols in the diagram are: 1... Particle suspension liquid discharge nozzle, 9... Laser light source, 18...discharge nozzle for separation, 19...Preparative container (C) (b) (d)

Claims (1)

【特許請求の範囲】[Claims] (1)粒子浮遊液中の個々の粒子をその性状に応じて分
別する粒子分別装置において、 吐出エネルギの作用により個々の粒子を 含む微量の粒子浮遊液を開口から吐出させる手段、 前記個々の粒子の性状を測定する手段と、 前記測定の結果に応じて、前記吐出液滴を 変移させるように前記液滴の通過経路に向けて流体を吐
出させる手段、 を有することを特徴とする粒子分別装置。
(1) In a particle sorting device that separates individual particles in a particle suspension according to their properties, means for discharging from an opening a minute amount of a particle suspension containing individual particles by the action of discharge energy; A particle sorting device comprising: means for measuring the properties of the liquid; and means for ejecting a fluid toward a path through which the ejected droplets move so as to shift the ejected droplets according to the measurement results. .
JP2229679A 1989-10-11 1990-08-30 Particle fractionating apparatus Pending JPH04110639A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2229679A JPH04110639A (en) 1990-08-30 1990-08-30 Particle fractionating apparatus
DE69025256T DE69025256T2 (en) 1989-10-11 1990-10-10 Apparatus and method for separating particles from liquid suspended particles in connection with their properties
EP90119423A EP0422616B1 (en) 1989-10-11 1990-10-10 Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof
US07/596,083 US5180065A (en) 1989-10-11 1990-10-11 Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229679A JPH04110639A (en) 1990-08-30 1990-08-30 Particle fractionating apparatus

Publications (1)

Publication Number Publication Date
JPH04110639A true JPH04110639A (en) 1992-04-13

Family

ID=16895994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229679A Pending JPH04110639A (en) 1989-10-11 1990-08-30 Particle fractionating apparatus

Country Status (1)

Country Link
JP (1) JPH04110639A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234559A (en) * 2005-02-24 2006-09-07 Mitsui Eng & Shipbuild Co Ltd Flow site meter
JP2010216985A (en) * 2009-03-17 2010-09-30 Mitsui Eng & Shipbuild Co Ltd Cell sorter, and sample sorting method
JP2010216992A (en) * 2009-03-17 2010-09-30 Mitsui Eng & Shipbuild Co Ltd Cell sorter, and sample sorting method
JP2011502763A (en) * 2007-11-09 2011-01-27 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー Droplet selection mechanism
JP2013195208A (en) * 2012-03-19 2013-09-30 Sony Corp Fine particle measuring instrument
JP2015078927A (en) * 2013-10-17 2015-04-23 ソニー株式会社 Particle sorter, particle sorting method and program
CN113302470A (en) * 2019-02-08 2021-08-24 贝克顿·迪金森公司 Droplet sorting decision module, system and method of use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234559A (en) * 2005-02-24 2006-09-07 Mitsui Eng & Shipbuild Co Ltd Flow site meter
JP2011502763A (en) * 2007-11-09 2011-01-27 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー Droplet selection mechanism
JP2010216985A (en) * 2009-03-17 2010-09-30 Mitsui Eng & Shipbuild Co Ltd Cell sorter, and sample sorting method
JP2010216992A (en) * 2009-03-17 2010-09-30 Mitsui Eng & Shipbuild Co Ltd Cell sorter, and sample sorting method
JP2013195208A (en) * 2012-03-19 2013-09-30 Sony Corp Fine particle measuring instrument
JP2015078927A (en) * 2013-10-17 2015-04-23 ソニー株式会社 Particle sorter, particle sorting method and program
CN113302470A (en) * 2019-02-08 2021-08-24 贝克顿·迪金森公司 Droplet sorting decision module, system and method of use thereof
JP2022519644A (en) * 2019-02-08 2022-03-24 ベクトン・ディキンソン・アンド・カンパニー Droplet sorting decision module, system, and how to use it

Similar Documents

Publication Publication Date Title
US5180065A (en) Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof
JP5175105B2 (en) Method and apparatus for hydraulically sorting particles
US5275787A (en) Apparatus for separating or measuring particles to be examined in a sample fluid
EP3036521B1 (en) Particle fractionation apparatus, particle fractionation method and particle fractionation program
US6372506B1 (en) Apparatus and method for verifying drop delay in a flow cytometer
US7880108B2 (en) Deflection plate
US4347935A (en) Method and apparatus for electrostatically sorting biological cells
US4325483A (en) Method for detecting and controlling flow rates of the droplet forming stream of an electrostatic particle sorting apparatus
EP2258169B1 (en) Method for isolating X-chromosome bearing and Y-chromosome bearing populations of spermatozoa
EP3343200B1 (en) Image processing device, microparticle separation device, and image processing method
US4498766A (en) Light beam focal spot elongation in flow cytometry devices
US5464581A (en) Flow cytometer
GB1380756A (en) Multisensor particle sorter
EP0025296A2 (en) Apparatus and method for positioning the point of droplet formation in the jetting fluid of an electrostatic sorting device
US7125518B2 (en) Aerosol particle analyzer for measuring the amount of analyte in airborne particles
JP2010216992A (en) Cell sorter, and sample sorting method
US7153475B2 (en) Aerosol particle analyzer for measuring the amount of analyte in airborne particles
JPH04110639A (en) Particle fractionating apparatus
EP0421406B1 (en) Apparatus and method for separating or measuring particles to be examined in a sample fluid
JPH0526799A (en) Method for separating particle
JP2749906B2 (en) Particle measurement device
JPH03125944A (en) Particle classifying apparatus
JPH0448245A (en) Particle measuring instrument
Asano et al. Spherical particle sorting by using droplet deflection technology
WO2005030400A2 (en) Systems and methods for sorting aerosols