JPH04118032A - Jet flow type filter - Google Patents
Jet flow type filterInfo
- Publication number
- JPH04118032A JPH04118032A JP23640190A JP23640190A JPH04118032A JP H04118032 A JPH04118032 A JP H04118032A JP 23640190 A JP23640190 A JP 23640190A JP 23640190 A JP23640190 A JP 23640190A JP H04118032 A JPH04118032 A JP H04118032A
- Authority
- JP
- Japan
- Prior art keywords
- filtration
- membrane
- fluid
- ejecting
- cake layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 claims abstract description 59
- 239000012530 fluid Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 238000001914 filtration Methods 0.000 claims description 50
- 239000007787 solid Substances 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 15
- 238000000926 separation method Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 5
- 238000011084 recovery Methods 0.000 abstract description 4
- 230000005494 condensation Effects 0.000 abstract 1
- 238000009833 condensation Methods 0.000 abstract 1
- 238000000151 deposition Methods 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- 238000007790 scraping Methods 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 20
- 239000010419 fine particle Substances 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 6
- 238000009295 crossflow filtration Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 238000011001 backwashing Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、特に大きい膜透過流束を維持するジェット流
型濾過器に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a jet stream filter that maintains a particularly high membrane permeation flux.
本発明のジェット流型濾過器は、種々の高分子、微生物
、酵母、微粒子を含有あるいは懸濁する流体の分離、精
製、回収、濃縮などに適用され、特に濾過を必要とする
微細な微粒子を含有する流体からその微粒子を分離する
必要のあるあらゆる場合に適用することができ、例えば
微粒子を含有する各種の懸濁液、発酵液あるいは培養液
などの他、顔料の懸濁液などから微粒子を分離する場合
にも適用され、また微粒子を含む懸濁気体から微粒子を
分離、除去して気体を精製する、例えば医薬用アンプル
へ充填する無菌化窒素ガス、超純水製造装置への陽圧用
ガスとして充填する無塵、無菌のガスあるいはIC製造
ラインにおける空調陽無塵、無菌の空気などの製造のた
めにも適用される。The jet stream type filter of the present invention is applied to the separation, purification, recovery, concentration, etc. of fluids containing or suspending various polymers, microorganisms, yeast, and fine particles. It can be applied in any case where it is necessary to separate fine particles from a fluid containing them, such as in various suspensions containing fine particles, fermentation liquids or culture liquids, as well as suspensions of pigments, etc. It is also applied in the case of separation, and purifies the gas by separating and removing fine particles from suspended gas containing fine particles.For example, sterilizing nitrogen gas to be filled into pharmaceutical ampoules, positive pressure gas for ultrapure water production equipment. It can also be applied to the production of dust-free, sterile gas for filling as well as dust-free, sterile air for air conditioning in IC manufacturing lines.
(従来の技術)
従来、膜を用いて懸濁物質を含有する原流体から懸濁物
質を分離する技術としては、例えば圧力を駆動力とする
逆浸透法、限外濾過法、精密濾過法、電位差を駆動力と
する電気透析法、濃度差を駆動力とする拡散透析法等が
ある。これらの方法は、連続操作が可能であり、分離操
作中に温度やpHの条件を大きく変化させることなく分
離、精製あるいは濃縮ができ、粒子、分子、イオン等の
広範囲にわたって分離が可能であり、小型プラント処理
能力を大きく保つことができるので経済的であり、分離
操作に要するエネルギーが小さく、かつ他の分離方法で
は難しい低濃度原流体の処理が可能であるなどの理由に
より広範囲に実施されている。そしてこれらの分離技術
に用いられる膜としては、酢酸セルロース、硝酸セルロ
ース、再生セルロース、ポリスルホン、ポリアクリロニ
トリル、ポリアミド、ポリイミド等の有機高分子等を主
体とした高分子膜や耐熱性、耐薬品性などの耐久性に優
れている多孔質セラミック膜などがあり、主としてコロ
イドの濾過を対象とする場合は限外濾過膜が使用され、
微細な粒子の濾過を対象とする精密濾過ではそれに適し
た微孔を有する精密濾過膜が使用されている。(Prior Art) Conventionally, techniques for separating suspended solids from a raw fluid containing suspended solids using a membrane include, for example, reverse osmosis, ultrafiltration, microfiltration, which uses pressure as a driving force. There are electrodialysis methods that use a potential difference as a driving force, and diffusion dialysis methods that use a concentration difference as a driving force. These methods can be operated continuously, can separate, purify, or concentrate without significantly changing temperature or pH conditions during the separation operation, and can separate a wide range of particles, molecules, ions, etc. It is economical because it can maintain a large processing capacity in a small plant, requires little energy for separation operations, and can process low-concentration raw fluids that are difficult to use with other separation methods, so it has been widely implemented. There is. The membranes used in these separation techniques include polymer membranes mainly made of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, and polyimide, as well as those with heat resistance, chemical resistance, etc. There are porous ceramic membranes that have excellent durability, and ultrafiltration membranes are used when the main purpose is colloid filtration.
In precision filtration aimed at filtering fine particles, a precision filtration membrane having micropores suitable for the purpose is used.
ところで近年、バイオテクノロジーの進歩に伴い、高純
度化、高性能化、高精密化が要求されるようになり、精
密濾過あるいは限外濾過技術の応用分野が拡大しつつあ
る。しかしながら、精密濾過あるいは限外濾過において
は膜を用いて微粒子を分離する場合に、濃度分極の影響
によりケーク層が生して透過流体の流れに抵抗が生じ、
また膜の目詰まりによる抵抗が大きくなって膜透過流束
が急激にかつ著しく低下してしまうという問題かあり、
これが精密濾過あるいは限外濾過の実用化を妨げる最大
の原因であった。またそれに用いられる膜は汚染されや
すく、その防止対策が必要である。濾過方法としては、
濾過されるべき全ての流体が濾材(濾布や膜など)とケ
ーク層を通過して流体中に含まれている微粒子を分離す
るいわゆるデッドエンド型濾過方式がある。このデッド
エンド型濾過方式では流体か通過して懸濁物質が分離さ
れるためには濾材とケーク層が含有する流体の流れを妨
げる抵抗に打ち勝つ圧力が必要であり、このため精密濾
過あるいは限外濾過においては、このようなデッドエン
ド濾過を行うと膜透過流束が小さくなってしまうのであ
る。このため、クロスフロー型濾過方式をすることが考
えられた。このクロスフロー型濾過方式は、濾過膜の膜
表面に平行に濾過すべき原流体を流し、流体は濾過膜を
通って反対側へ透過し、この原流体と透過流体の流れが
直交しているためにこのように称されていこのクロスフ
ロー型濾過方法は、膜に平行な原流体の流れによって膜
面上に形成されたケーク層がはぎ取られるので従来のデ
ッドエンド型濾過方式に比べて膜透過流束が大きく、大
量の原流体を直接連続的に分離、精製、濃縮が可能であ
り、濾過性向上のためのフロック生成剤を必要とせず、
そのため捕集された懸濁物質に助剤が混入せず、膜の微
孔径と目的物質との相互作用をコントロールすることに
よりきわめて純粋な濾過流体が得られる等の特徴を有す
る。In recent years, with the progress of biotechnology, higher purity, higher performance, and higher precision have been required, and the fields of application of microfiltration or ultrafiltration technology are expanding. However, when separating fine particles using a membrane in precision filtration or ultrafiltration, a cake layer forms due to the influence of concentration polarization, creating resistance to the flow of the permeate fluid.
There is also the problem that the resistance due to membrane clogging increases and the membrane permeation flux suddenly and significantly decreases.
This was the biggest reason for preventing the practical application of precision filtration or ultrafiltration. Furthermore, the membrane used therein is easily contaminated, and measures to prevent this are required. As for the filtration method,
There is a so-called dead-end filtration system in which all the fluid to be filtered passes through a filter medium (filter cloth, membrane, etc.) and a cake layer to separate particulates contained in the fluid. In this dead-end filtration system, in order for the fluid to pass through and the suspended solids to be separated, pressure must be applied to overcome the resistance of the filter medium and cake layer that impedes the flow of the fluid. In filtration, if such dead-end filtration is performed, the membrane permeation flux becomes small. For this reason, a cross-flow type filtration method was considered. In this cross-flow filtration system, the raw fluid to be filtered is passed parallel to the membrane surface of the filtration membrane, the fluid passes through the filtration membrane to the opposite side, and the flow of the raw fluid and the permeated fluid are perpendicular to each other. Therefore, this cross-flow filtration method is called as such because the flow of the raw fluid parallel to the membrane strips off the cake layer formed on the membrane surface, making the membrane thinner than the traditional dead-end filtration method. It has a large permeation flux and can directly and continuously separate, purify, and concentrate a large amount of raw fluid, and does not require a flocculation agent to improve filtration.
Therefore, no auxiliary agent is mixed into the collected suspended matter, and by controlling the interaction between the membrane's micropore size and the target substance, an extremely pure filtration fluid can be obtained.
しかし、クロスフロー型濾過方式は原理的には高度な分
離技術であるが、最大の問題である膜透過流束は、デッ
ドエンド型濾過方式に比べて大きいが、精密濾過方法と
してこのクロスフロ一方式を採用しても十分高い膜透過
流束が得られないという問題があった。However, although the cross-flow filtration method is an advanced separation technology in principle, the biggest problem is the membrane permeation flux, which is larger than that of the dead-end filtration method. There was a problem that a sufficiently high membrane permeation flux could not be obtained even if this method was adopted.
また、特開平1−307414のごとく、回転する円筒
型の濾過膜に対して、高圧でスラリー液を噴射する方法
では、噴射したスラリー液が濾過膜に直接あたる部分で
は、濾過膜面上に堆積しているケークをはぎとる効果が
あるが、直接あたら流束は低ぐなるという問題点があっ
た。In addition, in the method of injecting slurry liquid at high pressure to a rotating cylindrical filtration membrane as in JP-A-1-307414, in the part where the injected slurry liquid directly hits the filtration membrane, it accumulates on the surface of the filtration membrane. Although it has the effect of stripping off the remaining cake, there is a problem in that the direct contact flux is low.
(発明が解決しようとする課題)
上述のように、スラリー液を噴射する方法では、濾過膜
面上のケーク層をはぎとり、透過流束を高られないとい
う問題点があった。(Problems to be Solved by the Invention) As described above, the method of injecting a slurry liquid has the problem that the cake layer on the filtration membrane surface cannot be peeled off and the permeation flux cannot be increased.
また従来から行われている懸濁物質と流体との分離の具
体的な例を見ても、例えば発酵液から菌体を分離する場
合には、従来遠心分離法、ケーキ濾過法、珪藻土濾過法
などの一次濾過と精密濾過法等の二次濾過が併用されて
いるが、菌体等の分離ではプロセスの連続化が困難であ
り、酵素などの生成物が濾過助剤に強く吸着することに
より回収率が低下し、二次濾過である精密濾過による菌
体の収集の際には、膜面上に形成されたケーク層や目詰
まりによって濾過時間の経過と共に膜透過流束が低下し
、さらに遠心分離法により菌体の活性が失われるという
問題があった。In addition, looking at specific examples of conventional separation of suspended solids and fluids, for example, when separating bacterial cells from fermentation liquid, conventional centrifugation, cake filtration, and diatomaceous earth filtration methods are used. Primary filtration, such as filtration, and secondary filtration, such as precision filtration, are used together, but it is difficult to make the process continuous when separating bacterial cells, etc., and products such as enzymes strongly adsorb to the filter aid. The recovery rate decreases, and when bacterial cells are collected by secondary filtration, the membrane permeation flux decreases as the filtration time passes due to the cake layer and clogging formed on the membrane surface. There was a problem in that the centrifugation method resulted in loss of bacterial activity.
膜の透過流体側の弁を閉止することにより、濾過膜の膜
面に垂直にかかる圧力を断続的になくすあるいは減少さ
せたり、また濾過膜の透過液側から圧力を加え透過液側
から原流体側へ流体を流すことによって、濾過膜の原流
体側の膜面上に堆積しているケーク層や付着層を断続的
に取り除く 「逆洗」と称する試みがなされている。し
かし、これら逆洗が行われた場合、ケーク層、付着層と
膜との吸着力、結合力が小さい剛体粒子等の場合には「
逆洗」の後、透過流束が濾過開始初期の透過流束まで回
復するが、酵母や微生物等の高吸着性、高圧縮性の懸濁
物質の場合「逆洗」を行っても、ケーク層や付着層が十
分取り除けないため、透過流束は回復せず徐々に低下し
て結果として経済的な透過流束を得ることができなかっ
た。By closing the valve on the permeate side of the membrane, the pressure applied perpendicular to the membrane surface of the filtration membrane can be intermittently eliminated or reduced, or pressure can be applied from the permeate side of the filtration membrane to remove the raw fluid from the permeate side. An attempt has been made to intermittently remove the cake layer and adhesion layer deposited on the raw fluid side of the filtration membrane by flowing fluid to the side, which is called "backwashing." However, when such backwashing is performed, in the case of rigid particles, etc., which have a small adsorption force or bonding force between the cake layer, adhesion layer and the membrane,
After "backwashing", the permeation flux recovers to the permeation flux at the beginning of filtration, but in the case of highly adsorbent and highly compressible suspended substances such as yeast and microorganisms, even if "backwashing" is performed, Since the layers and adhesion layers could not be removed sufficiently, the permeation flux did not recover and gradually decreased, and as a result, it was not possible to obtain an economical permeation flux.
(課題を解決するための手段および作用)本発明は、上
述した従来技術にあった問題点を解決するために為され
たものであって、実用性のある高い膜透過流束を持つ新
規なジェット流型濾過器を提供することを目的とするも
のである。(Means and effects for solving the problem) The present invention has been made to solve the problems of the prior art described above, and is a novel and practical method that has a high membrane permeation flux. The object is to provide a jet stream type filter.
すなわち本発明は、懸濁物を含む懸濁液から懸濁物質と
液体とを分離する目的において、原流体が濾過膜に対し
て垂直に吐出し、吐出口と循環排出口が交互に設置され
ていることを特徴とする。That is, in the present invention, for the purpose of separating suspended matter and liquid from a suspension containing suspended matter, raw fluid is discharged perpendicularly to a filtration membrane, and discharge ports and circulation discharge ports are installed alternately. It is characterized by
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は、懸濁物質を含む流体から懸濁物質と液体を分
離する際に、濾過膜表面に堆積するケーク層を源流体の
細い吐出口から吐出するジェット流によって効率的に取
り除き、結果として透過流束を高めるジェット流型濾過
器の構造に関するものである。そして本発明の特徴は、
原流体か濾過膜に対して垂直に吐出し、吐出口と循環排
出口が交互に設置されていることである。吐出する原流
体の吐出速度は高いほとケークをはぎ取る効果が大きく
、1m/秒以上であることが好ましい。吐出口の近くに
位置する濾過膜の表面が特にケーク層の剥ぎ取り効果が
大きいため、吐出口の間隔は短い方がよく、50tun
以下であることが好ましい。The present invention, when separating suspended solids and liquid from a fluid containing suspended solids, efficiently removes the cake layer deposited on the surface of the filtration membrane using a jet stream discharged from a narrow discharge port of the source fluid. The present invention relates to the structure of a jet stream filter that increases permeation flux. The features of the present invention are
The raw fluid is discharged perpendicularly to the filtration membrane, and the discharge ports and circulation discharge ports are installed alternately. The higher the discharge speed of the raw fluid to be discharged, the greater the effect of peeling off the cake, and it is preferably 1 m/sec or more. Since the surface of the filtration membrane located near the discharge ports has a particularly strong cake layer peeling effect, the shorter the distance between the discharge ports, the better.
It is preferable that it is below.
本発明では原流体の吐出口と循環排出口が交互に設置さ
れているところに特徴がある。すなわち、ジェット流型
濾過器は原流体の液体の一部を濾過膜を透過させ、残り
の原流体は循環させるため、循環排出口を設ける必要が
あり、しかも濾過膜面上に堆積するケーク層は圧縮させ
ない方が剥ぎ取りやすく、原流体が流れる濾過器内では
圧力損失を小さくすることが好ましい。すなわち、原流
体の吐出口と循環排出口を交互に設けることによって、
濾過器内の圧力損失を小さくし、ケーク層を圧縮しない
ばかりか濾過器内の原流体の均一な流れを形成すること
が可能で、結果としてケーク層を効率的に剥ぎ取り高い
透過流束が保持できる。The present invention is characterized in that raw fluid discharge ports and circulation discharge ports are arranged alternately. In other words, in a jet flow filter, a part of the raw fluid liquid passes through the filtration membrane, and the remaining raw fluid is circulated, so it is necessary to provide a circulation outlet, and in addition, there is a need to provide a circulation outlet to prevent the cake layer deposited on the filtration membrane surface. It is easier to strip the material without compressing it, and it is preferable to reduce the pressure loss in the filter through which the raw fluid flows. In other words, by alternately providing raw fluid discharge ports and circulation discharge ports,
It is possible to reduce the pressure loss inside the filter and not only do not compress the cake layer, but also to form a uniform flow of the raw fluid inside the filter, and as a result, the cake layer is efficiently stripped and a high permeation flux is achieved. Can be retained.
使用される濾過膜の孔径は懸濁物質が膜内部に侵入しな
い大きさが好ましく、すなわち懸濁物質の大きさより小
さければ良い。本発明の効果が顕著であるのは精密濾過
膜に属する領域であり、その表面孔径は約0.01um
〜10μmである。The pore size of the filtration membrane used is preferably a size that does not allow suspended solids to enter the membrane, ie, it is sufficient that it is smaller than the size of the suspended solids. The effect of the present invention is remarkable in the region belonging to the microfiltration membrane, and its surface pore diameter is approximately 0.01 um.
~10 μm.
次にジェット流型濾過器を用いた本発明を図面で更に詳
しく説明する。Next, the present invention using a jet stream type filter will be explained in more detail with reference to the drawings.
第1図はジェット流型濾過器を用いた濾過フローを示し
た説明図である。図において、供給タンク1内の懸濁液
をポンプ2により濾過膜を内蔵した濾過器3を通して循
環する。この際懸濁液の圧力は圧力調整バルブ4によっ
て調整する。この圧力を圧力計5.6により、液の流量
はフローメーター7により読み取る。FIG. 1 is an explanatory diagram showing a filtration flow using a jet stream type filter. In the figure, a suspension in a supply tank 1 is circulated by a pump 2 through a filter 3 having a built-in filtration membrane. At this time, the pressure of the suspension is regulated by a pressure regulating valve 4. This pressure is read by a pressure gauge 5.6, and the flow rate of the liquid is read by a flow meter 7.
第2図−1はジェット流型濾過器の断面図であり、原流
体は濾過器本体に入り、吐出口8から濾過膜に対して垂
直方向に吐出される。原流体の液体の一部は濾過膜を通
過し、残りは循環排出口9から供給タンクにもどされる
。第2図−2はその平面図である。FIG. 2-1 is a cross-sectional view of a jet stream type filter, in which raw fluid enters the filter body and is discharged from the discharge port 8 in a direction perpendicular to the filter membrane. A portion of the raw fluid liquid passes through the filter membrane, and the remainder is returned to the supply tank through the circulation outlet 9. FIG. 2-2 is a plan view thereof.
吐出口と循環排出口の構造は例示したものに限定される
必要はなく、交互に設置されていればどのような構造の
ものであってもよい。The structure of the discharge port and the circulation discharge port does not need to be limited to the one illustrated, and any structure may be used as long as they are arranged alternately.
第3図はジェット流型濾過器の濾過膜面上にケ−′2@
か堆積している状態である。吐出口に近し濾過膜面上で
はケーク層の剥ぎ取り効果は大きしw44図はジェット
流型濾過器とクロスフロー−過を行った際の、大腸菌分
数液の透過流束の経麟変化を示している。Figure 3 shows a case '2@ on the filtration membrane surface of a jet stream filter.
It is in a state of accumulation. The peeling effect of the cake layer on the filtration membrane surface near the discharge port is large. Figure 44 shows the change in the permeation flux of the E. coli fraction over time when cross-flow filtration is performed with a jet flow filter. It shows.
(実施例)
以下に実施例をあげて本発明を更に詳しく説明するが、
本発明はこれに限定されるものではない本発明のジェッ
ト流型濾過器は、第2図に示すとおりである。吐出口は
、直径1mの円形であり循環排出口は直径7IlI11
の円形である。吐出口と循環排出口は交互に設置され、
その間隔はlowである。また吐出口と膜面までの距離
は3閣であるこのジェット流型濾過器を用いて大III
菌分散液の濾過を行なった。(Example) The present invention will be explained in more detail with reference to Examples below.
The jet stream type filter of the present invention, which the present invention is not limited to, is as shown in FIG. The discharge port is circular with a diameter of 1 m, and the circulation discharge port has a diameter of 7IlI11.
It is circular. The discharge port and circulation discharge port are installed alternately,
The interval is low. In addition, the distance between the discharge port and the membrane surface is three-dimensional.
The bacterial dispersion was filtered.
実施例
大m菌(I FO=、3301)を0. 9wt、−%
の生理食塩水にIDryg7・′E (Cb)の含有率
で分散させたものを懸濁液として用い、公称孔径0゜2
μm(7)精畜1a過膜、富士写真フィルム社製のFM
22を用いてクロスフロー濾過を行った。使用したモジ
ュールの有効膜面積は100alで、実験条件は圧力差
(Δp)0.5xlO″Pa、原流体の流量(Q) 1
51/min、液温度25℃であった。Example E. coli (IFO=, 3301) at 0. 9wt, -%
IDryg7・'E (Cb) was dispersed in physiological saline with a nominal pore size of 0°2.
μm (7) Livestock 1a membrane, FM manufactured by Fuji Photo Film Co., Ltd.
Cross flow filtration was performed using 22. The effective membrane area of the module used was 100al, the experimental conditions were a pressure difference (Δp) of 0.5xlO''Pa, and a flow rate of the raw fluid (Q) of 1
The flow rate was 51/min, and the liquid temperature was 25°C.
第4図に透過流束の経時変化をクロスフロー透過を行っ
た比較例と共に示した。比較例では透過開始後5分後に
は透過流束は急激に低下するのに対し、本発明のジェッ
ト流型濾過器では初期の高い透過流速を維持した。Figure 4 shows the change in permeation flux over time together with a comparative example in which cross-flow permeation was performed. In the comparative example, the permeation flux sharply decreased 5 minutes after the start of permeation, whereas in the jet flow type filter of the present invention, the initial high permeation flow rate was maintained.
(発明の効果)
過流束が得られ、それによって種々の懸濁物質を含有す
る液体から各懸濁成分の分離、回収、精製、濃縮などが
きわめて効率的しかも経済的に行われる。そしてさらに
プロセスの連続化及び装置の小型化か可能であり、膜の
選択性を利用して目的物のみを連続的に選択的に分離す
ることができ、酵母や菌体などを反応液中に固定するこ
とによりバイオリアクターへの応用ができ、従来技術に
比べて運転管理が容易でかつ高濃度で運転が可能であり
、膜の透過性を回復させるために特別な洗浄なとを必要
としないなど諸々の効果が奏せられる。(Effects of the Invention) A superfluous flux is obtained, whereby the separation, recovery, purification, concentration, etc. of each suspended component from a liquid containing various suspended substances can be performed very efficiently and economically. Furthermore, it is possible to make the process continuous and downsize the equipment, and by utilizing the selectivity of the membrane, it is possible to continuously and selectively separate only the target substance, and yeast and bacterial cells can be removed from the reaction solution. By immobilizing it, it can be applied to bioreactors, and compared to conventional technology, it is easier to manage and operate at higher concentrations, and does not require special cleaning to restore membrane permeability. Various effects can be produced.
W!、1図は本発明に係るジェット流型濾過装置を示し
、第2図−1及び第2図−2はジェット流型濾過器の細
部を示す断面図と平面図である。第3図は濾過膜面上に
ケーク層か堆積している状態を模式的に示した。第4図
はシェツト流型濾過(本発明)とクロスフロー(比較例
)濾過を行ったさいの透過流速の経時変化を示す。
゛符号の説明:
■・・・・ 供給2ンク
2・・・ポンプ
3 ・濾過器
4・・・・圧力調整バルブ
5・・・・ 圧力計
6・・・・・・圧力計
7 ・・・・・フローメーター
・・・・・・・・吐出口
9・・・・・・・・・循環排出口W! , 1 shows a jet stream type filtration device according to the present invention, and FIGS. 2-1 and 2-2 are a sectional view and a plan view showing details of the jet stream type filter. FIG. 3 schematically shows the state in which a cake layer is deposited on the surface of the filtration membrane. FIG. 4 shows the change in permeation flow rate over time during shet flow type filtration (invention) and cross flow filtration (comparative example). Explanation of symbols: ■... Supply 2 Ink 2... Pump 3 ・Filter 4... Pressure adjustment valve 5... Pressure gauge 6... Pressure gauge 7...・・Flow meter・・・Discharge port 9・・・・・Circulation discharge port
Claims (1)
で使用される濾過器において、懸濁物質を含む流体から
なる原流体が濾過膜に対して垂直の方向に吐出し、吐出
口と循環排出口を交互に設けたことを特徴とするジェッ
ト流型濾過器。 2)原流体の吐出速度が1m/秒以上であり、吐出口と
濾過膜面との間隔が5mm以下である請求項第1項のジ
ェット流型濾過器。[Claims] 1) In a filter used for the purpose of separating suspended solids and liquid from a suspended solids dispersion, the source fluid consisting of a fluid containing suspended solids is directed perpendicularly to the filtration membrane. A jet flow filter characterized by alternately providing a discharge port and a circulation discharge port. 2) The jet stream type filter according to claim 1, wherein the discharge speed of the raw fluid is 1 m/sec or more, and the distance between the discharge port and the filtration membrane surface is 5 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23640190A JPH04118032A (en) | 1990-09-06 | 1990-09-06 | Jet flow type filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23640190A JPH04118032A (en) | 1990-09-06 | 1990-09-06 | Jet flow type filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04118032A true JPH04118032A (en) | 1992-04-20 |
Family
ID=17000214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23640190A Pending JPH04118032A (en) | 1990-09-06 | 1990-09-06 | Jet flow type filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04118032A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104028064A (en) * | 2014-03-07 | 2014-09-10 | 北京神雾环境能源科技集团股份有限公司 | Plate-frame type PTFE membrane deduster |
JP2015000384A (en) * | 2013-06-17 | 2015-01-05 | 株式会社東芝 | Filter and cleaning method therefor |
WO2016186174A1 (en) * | 2015-05-20 | 2016-11-24 | 株式会社Ihi | Algae separating device and method for producing dry algae |
-
1990
- 1990-09-06 JP JP23640190A patent/JPH04118032A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015000384A (en) * | 2013-06-17 | 2015-01-05 | 株式会社東芝 | Filter and cleaning method therefor |
CN104028064A (en) * | 2014-03-07 | 2014-09-10 | 北京神雾环境能源科技集团股份有限公司 | Plate-frame type PTFE membrane deduster |
CN104028064B (en) * | 2014-03-07 | 2015-10-28 | 北京神雾环境能源科技集团股份有限公司 | Plate and frame PTFE film deduster |
WO2016186174A1 (en) * | 2015-05-20 | 2016-11-24 | 株式会社Ihi | Algae separating device and method for producing dry algae |
JP2016214151A (en) * | 2015-05-20 | 2016-12-22 | 株式会社Ihi | Algae separating device, and method for producing dried algae |
US10995315B2 (en) | 2015-05-20 | 2021-05-04 | Ihi Corporation | Algae separating device and method for producing dry algae |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aptel et al. | Categories of membrane operations | |
US5221479A (en) | Filtration system | |
WO2008116410A1 (en) | A method and apparatus for membrane separation applying concentration polarization, and an extrctor specially used thereof | |
CN216918696U (en) | System for ultrafiltration, reverse osmosis utilization of strong brine | |
Wang et al. | Understand the basics of membrane filtration | |
CN113149135A (en) | System and method for recycling strong brine through ultrafiltration and reverse osmosis | |
JPH04118032A (en) | Jet flow type filter | |
JPH04190834A (en) | Cross-flow type filter | |
JP3354257B2 (en) | Oil-water separation method and oil-water separation device | |
JP3838689B2 (en) | Water treatment system | |
JPH06102136B2 (en) | Backwash method in cross-flow type microfiltration | |
JPH05329339A (en) | Filtering apparatus | |
JPH04190835A (en) | Cross-flow type filter | |
JPH04145929A (en) | Cross-flow filter | |
JPH0549877A (en) | Production of composite filter membrane | |
JPH0679147A (en) | Filtration method | |
JPH04271818A (en) | Hollow yarn membrane filtering system | |
JPS63126511A (en) | Cross flow type precision filtering method | |
JPH04317729A (en) | Composite filtration membrane | |
JPH04150930A (en) | Cross flow filtering apparatus | |
JP2717458B2 (en) | Filtration method | |
JPH04317730A (en) | Composite filtration membrane | |
JPH04271819A (en) | Method for regeneration of filter membrane | |
JPH04265130A (en) | Back washing method for filtration system | |
JPH04317728A (en) | Composite filtration membrane |