Nothing Special   »   [go: up one dir, main page]

JP7606304B2 - Polyester resin composition for injection molding, and injection molded article - Google Patents

Polyester resin composition for injection molding, and injection molded article Download PDF

Info

Publication number
JP7606304B2
JP7606304B2 JP2020158119A JP2020158119A JP7606304B2 JP 7606304 B2 JP7606304 B2 JP 7606304B2 JP 2020158119 A JP2020158119 A JP 2020158119A JP 2020158119 A JP2020158119 A JP 2020158119A JP 7606304 B2 JP7606304 B2 JP 7606304B2
Authority
JP
Japan
Prior art keywords
resin
poly
weight
hydroxybutyrate
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020158119A
Other languages
Japanese (ja)
Other versions
JP2022052004A (en
Inventor
佳明 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2020158119A priority Critical patent/JP7606304B2/en
Publication of JP2022052004A publication Critical patent/JP2022052004A/en
Application granted granted Critical
Publication of JP7606304B2 publication Critical patent/JP7606304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、射出成形用ポリエステル樹脂組成物、および射出成形体に関するものであり、特に生分解性に優れるポリ(3-ヒドロキシアルカノエート)を多く含有し、低温での衝撃強度が優れる射出成形用ポリエステル樹脂組成物および射出成形体に関するものである。 The present invention relates to a polyester resin composition for injection molding and an injection molded article, and in particular to a polyester resin composition for injection molding and an injection molded article that contains a large amount of poly(3-hydroxyalkanoate), which has excellent biodegradability, and has excellent impact strength at low temperatures.

近年、廃棄プラスチックが引き起こす環境問題がクローズアップされ、地球規模での循環型社会の実現が切望される中で、使用後、微生物の働きによって水と二酸化炭素に分解される生分解性プラスチックが注目を集めている。また欧州などで実施されている生ごみのコンポスト処理では、ごみと共にコンポストに投入できるごみ袋が望まれている。生分解性プラスチックとしては、ポリ(3-ヒドロキシアルカノエート)(以下、P3HAと称することがある。)、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートなどがあり、これらの生分解性樹脂を用いた組成物や成形体の開発が進められている。特に、これらの生分解性樹脂の内、P3HAが最も生分解性に優れており、常温付近でのコンポスト化や嫌気分解など、多様な生分解処理が可能である。そのため、P3HAを単独、もしくはその他の生分解性樹脂との樹脂組成物中に多く配合することが、生分解性の観点から好ましい。 In recent years, environmental problems caused by waste plastics have been highlighted, and the realization of a recycling-oriented society on a global scale is eagerly awaited. In this environment, biodegradable plastics that are decomposed into water and carbon dioxide by the action of microorganisms after use have attracted attention. In addition, in the composting of food waste practiced in Europe and other places, there is a demand for garbage bags that can be thrown into the compost together with the garbage. Biodegradable plastics include poly(3-hydroxyalkanoate) (hereinafter sometimes referred to as P3HA), polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, polybutylene succinate, etc., and the development of compositions and molded articles using these biodegradable resins is underway. In particular, of these biodegradable resins, P3HA has the highest biodegradability, and various biodegradation processes such as composting and anaerobic decomposition at around room temperature are possible. Therefore, from the viewpoint of biodegradability, it is preferable to incorporate a large amount of P3HA alone or in a resin composition with other biodegradable resins.

例えば特許文献1には、ポリヒドロキシアルカノエートとして(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート、略称:PHBH)に結晶化核剤としてペンタエリスリトール、タルクなどの充填剤を含有する脂肪族ポリエステル樹脂組成物の射出成形体が例示されている。しかし、低温(5℃以下、特に0℃以下の温度領域)での衝撃強度の点で改良の余地が有り用途が制限されていた。 For example, Patent Document 1 gives an example of an injection molded article of an aliphatic polyester resin composition that contains a polyhydroxyalkanoate (3-hydroxybutyrate-co-3-hydroxyhexanoate, abbreviated as PHBH) and a filler such as pentaerythritol or talc as a crystallization nucleating agent. However, there is room for improvement in terms of impact strength at low temperatures (5°C or less, particularly in the temperature range of 0°C or less), and applications are limited.

また、特許文献2には脂肪族ジオールと脂肪族ジカルボン酸に由来する繰り返し単位として含む脂肪族ポリエステル系樹脂とポリヒドロキシアルカノエートと無機フィラーを含む成型性、耐衝撃性に優れる脂肪族ポリエステル系樹脂組成物が挙げられている。しかし、低温の衝撃強度に関して改良の余地があった。 Patent Document 2 also lists an aliphatic polyester resin composition that has excellent moldability and impact resistance and contains an aliphatic polyester resin containing repeating units derived from an aliphatic diol and an aliphatic dicarboxylic acid, polyhydroxyalkanoate, and an inorganic filler. However, there is room for improvement in terms of low-temperature impact strength.

国際公開2015/052876号公報International Publication No. 2015/052876 特開2019-178206号公報JP 2019-178206 A

本発明は、上記の点に鑑み、鋭意検討を進め、低温の衝撃強度が優れる射出成形用ポリエステル樹脂組成物とその射出成形体の提供を目的とするものである。 In view of the above, the present invention is the result of extensive research and an objective of the present invention to provide a polyester resin composition for injection molding that has excellent low-temperature impact strength and an injection-molded article made from the same.

本発明者らは、上記課題を解決すべく鋭意検討した結果、ポリ(3-ヒドロキシアルカノエート)系樹脂(P3HA)、脂肪族芳香族ポリエステル系樹脂と層状粘土鉱物を含有する組成物において、低温の衝撃強度が大幅に改良されることを見出し、本発明を完成するに至った。
即ち、本発明のポリエステル樹脂組成物は、前記課題を解決するために、下記一般式(1)
As a result of intensive research aimed at solving the above problems, the present inventors discovered that low-temperature impact strength is significantly improved in a composition containing a poly(3-hydroxyalkanoate) resin (P3HA), an aliphatic aromatic polyester resin, and a layered clay mineral, and thus completed the present invention.
That is, in order to solve the above problems, the polyester resin composition of the present invention comprises a polyester resin represented by the following general formula (1):

Figure 0007606304000001
Figure 0007606304000001

(但し、RはCn2n+1で表されるアルキル基であり、n=1以上15以下の整数である。)で示される繰り返し単位を有するポリ(3-ヒドロキシアルカノエート)系樹脂(A)、脂肪族芳香族ポリエステル系樹脂(B)、層状粘土鉱物(C)を含有する射出成形用ポリエステル系樹脂組成物であって、前記樹脂(A)と前記樹脂(B)の合計に対して、前記樹脂(A)の割合が55~75重量%、前記樹脂(B)の割合が25~45重量%、前記樹脂(A)と前記樹脂(B)の合計を100重量部とした場合に、前記粘土鉱物(C)の含有量が5~35重量部であることを特徴としている。 (wherein R is an alkyl group represented by C n H 2n+1 , and n is an integer of 1 to 15), aliphatic aromatic polyester resin (B), and layered clay mineral (C). The polyester resin composition for injection molding contains a poly(3-hydroxyalkanoate) resin (A) having a repeating unit represented by the formula: (wherein R is an alkyl group represented by C n H 2n+1, and n is an integer of 1 to 15), an aliphatic aromatic polyester resin (B), and a layered clay mineral (C), characterized in that the proportion of the resin (A) is 55 to 75% by weight and the proportion of the resin (B) is 25 to 45% by weight relative to the total of the resins (A) and (B), and the content of the clay mineral (C) is 5 to 35 parts by weight when the total of the resins (A) and (B) is 100 parts by weight.

また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)からなる群から選択される少なくとも1種であることが好ましい。 It is also preferable that the poly(3-hydroxyalkanoate)-based resin (A) is at least one selected from the group consisting of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), and poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate).

また、前記脂肪族芳香族ポリエステル系樹脂(B)が、ポリブチレンアジペートテレフタレート系樹脂、ポリブチレンセバケートテレフタレート系樹脂、ポリブチレンサクシネートテレフタレート系樹脂からなる群から選択される少なくとも1種であることが好ましい。 It is also preferable that the aliphatic aromatic polyester resin (B) is at least one selected from the group consisting of polybutylene adipate terephthalate resins, polybutylene sebacate terephthalate resins, and polybutylene succinate terephthalate resins.

また、層状粘土鉱物(C)がスメクタイト、マイカ、タルク、パイロフェライト、バーミキュライト、緑泥石、カオリナイトおよび蛇紋石からなる群から選択される少なくとも1種であることが好ましい。
また、本発明は、前記射出成形用ポリエステル樹脂組成物を含む射出成形体であることを特徴としている。
The layered clay mineral (C) is preferably at least one selected from the group consisting of smectite, mica, talc, pyroferrite, vermiculite, chlorite, kaolinite and serpentine.
The present invention is also characterized by being an injection molded article containing the polyester resin composition for injection molding.

本発明によれば、低温の衝撃強度に優れた射出成形用ポリエステル樹脂組成物とその射出成形体を提供することができる。 The present invention provides a polyester resin composition for injection molding that has excellent low-temperature impact strength and an injection-molded article made from the same.

以下に、本発明の射出成形用ポリエステル樹脂組成物の実施の一形態について説明するが、本発明は、これに限定されるものではない。 One embodiment of the polyester resin composition for injection molding of the present invention is described below, but the present invention is not limited thereto.

本発明に係る射出成形用ポリエステル樹脂組成物は、樹脂成分として、下記一般式(1)、
[-CHR-CH2-CO-O-] (1)
(但し、RはCn2n+1で表されるアルキル基であり、nは1以上15以下の整数である。)で示される繰り返し単位を有するポリ(3―ヒドロキシアルカノエート系樹脂(P3HA)および脂肪族芳香族ポリエステル系樹脂(B)を含有しており、更に層状粘土鉱物(C)を含有している。
The polyester resin composition for injection molding according to the present invention contains, as a resin component, a compound represented by the following general formula (1):
[-CHR-CH 2 -CO-O-] (1)
(wherein R is an alkyl group represented by CnH2n +1 , and n is an integer of 1 to 15.)) and an aliphatic aromatic polyester resin (B) having a repeating unit represented by the formula (1), and further comprising a layered clay mineral (C).

本発明に用いられるポリ(3―ヒドロキシアルカノエート系樹脂(P3HA)は、微生物から生産されるポリエステル樹脂である。 The poly(3-hydroxyalkanoate) resin (P3HA) used in the present invention is a polyester resin produced from microorganisms.

P3HAを生産する微生物としては、P3HA類生産能を有する微生物であれば特に限定されない。例えば、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体生産菌としては、3-ヒドロキシブチレートと3-ヒドロキシバリレートをモノマーユニットとする共重合体(以下、「PHBV」と略称する。)およびポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート(以下、「PHBH」と略称する。)生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)などが挙げられる。特に、PHBHに関し、PHBHの生産性を上げるために、PHA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(J.Bateriol.,179,p4821-4830(1997))などがより好ましく、これらの微生物を適切な条件で培養して菌体内にPHBHを蓄積させた微生物菌体が用いられる。 There is no particular limitation on the microorganism that produces P3HA, so long as it is a microorganism that has the ability to produce P3HAs. For example, examples of bacteria that produce copolymers of hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which produces a copolymer having 3-hydroxybutyrate and 3-hydroxyvalerate as monomer units (hereinafter abbreviated as "PHBV") and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate (hereinafter abbreviated as "PHBH"), and Alcaligenes eutrophus, which produces poly(3-hydroxybutyrate-co-4-hydroxybutyrate). In particular, with regard to PHBH, Alcaligenes eutrophus AC32 strain (FERM), into which genes of a PHA synthase group have been introduced in order to increase the productivity of PHBH, has been used. BP-6038) (J. Bateriol., 179, p. 4821-4830 (1997)) are more preferred, and microbial cells in which these microorganisms have been cultured under appropriate conditions and PHBH has accumulated within the cells are used.

本発明で使用するP3HAの重量平均分子量としては、成形性と物性のバランス観点から50,000~3,000,000が好ましく、100,000~1,500,000がより好ましい。150,000~1,000,000が更に好ましく、200,000~600,000が特に好ましい。なお、ここでの重量平均分子量は、クロロホルム溶液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。重量平均分子量が50,000より小さい場合、成形品が脆すぎる場合があり、3,000,000を超えた場合、溶融粘度が高すぎて射出成形が困難になる場合がある。 From the viewpoint of the balance between moldability and physical properties, the weight average molecular weight of the P3HA used in the present invention is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,500,000. It is further preferably 150,000 to 1,000,000, and particularly preferably 200,000 to 600,000. The weight average molecular weight here refers to that measured from the polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform solution. If the weight average molecular weight is less than 50,000, the molded product may be too brittle, and if it exceeds 3,000,000, the melt viscosity may be too high, making injection molding difficult.

本発明で使用するP3HAとしては、前記一般式(1)において、アルキル基(R)のnが1で示される繰り返し単位からなるもの、またはnが1で示される繰り返し単位とnが2、3、5および7の少なくとも1種で示される繰り返し単位からなるものが好ましく、nが1で示される繰り返し単位およびnが3で示される繰り返し単位からなるものがより好ましい。P3HAの具体例としては、ポリ(3-ヒドロキシブチレート)(略称:P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(略称:PHBH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(略称:PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(略称:P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)などが挙げられる。これらなかでも、工業的に生産が容易であるものとして、P3HB、PHBH、PHBV、P3HB4HBが挙げられる。 The P3HA used in the present invention is preferably one consisting of repeating units in which n of the alkyl group (R) in the general formula (1) is 1, or one consisting of repeating units in which n is 1 and at least one of repeating units in which n is 2, 3, 5, and 7, and more preferably one consisting of repeating units in which n is 1 and repeating units in which n is 3. Specific examples of P3HA include poly(3-hydroxybutyrate) (abbreviation: P3HB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (abbreviation: PHBH), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (abbreviation: PHBV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (abbreviation: P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), and poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate). Among these, P3HB, PHBH, PHBV, and P3HB4HB are the easiest to produce industrially.

このうち、繰り返し単位の組成比を変えることで、融点、結晶化度を変化させ、ヤング率、耐熱性などの物性を変化させることができ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であること、また上記したように工業的に生産が容易であり、物性的に有用なプラスチックであるという観点から、前記一般式(1)において、アルキル基(R)のnが1である繰り返し単位とnが3である繰り返し単位とからなる、PHBHが好ましい。PHBHの具体的な製造方法は、例えば、国際公開第2010/013483号公報に記載されている。また、PHBHの市販品としては、株式会社カネカ「カネカ生分解性ポリマーPHBH)」(登録商標)などが挙げられる。 Among these, PHBH, which is composed of a repeating unit in which n in the alkyl group (R) is 1 and a repeating unit in which n is 3 in the general formula (1) in the above, is preferred from the viewpoints that by changing the composition ratio of the repeating units, it is possible to change the melting point, the degree of crystallinity, and physical properties such as Young's modulus and heat resistance, and it is possible to impart physical properties between polypropylene and polyethylene, and that it is a plastic that is easy to produce industrially and has useful physical properties as described above. A specific method for producing PHBH is described in, for example, International Publication No. 2010/013483. In addition, a commercially available product of PHBH is Kaneka Biodegradable Polymer PHBH (registered trademark) from Kaneka Corporation.

また、PHBHの繰り返し単位の組成比は、柔軟性と強度のバランスの観点から、ポリ(3-ヒドロキシブチレート)/ポリ(3-ヒドロキシヘキサノエート)の組成比が80/20~99/1(mol/mol)であることが好ましく、85/15~97/3(mol/mol)であることがより好ましく、90/10~97/3(mo1/mo1)であることが更に好ましく、93/7~96/4(mo1/mo1)であることが特に好ましい。PHBHの繰り返し単位の組成比が80/20より小さい場合、固化が遅く成形サイクルが低くなる場合がある。また、99/1より大きい場合、成形可能温度が分解温度を超えてしまい、成形できなくなる場合がある。 From the viewpoint of the balance between flexibility and strength, the composition ratio of the repeating units of PHBH is preferably poly(3-hydroxybutyrate)/poly(3-hydroxyhexanoate) of 80/20 to 99/1 (mol/mol), more preferably 85/15 to 97/3 (mol/mol), further preferably 90/10 to 97/3 (mol/mol), and particularly preferably 93/7 to 96/4 (mol/mol). If the composition ratio of the repeating units of PHBH is less than 80/20, solidification may be slow and the molding cycle may be short. If it is more than 99/1, the moldable temperature may exceed the decomposition temperature, making molding impossible.

本発明で使用する脂肪族芳香族ポリエステル系樹脂(B)は、脂肪族ジカルボン酸単位及び芳香族ジカルボン酸単位からなる群から選ばれる一種以上のジカルボン酸単位と、脂肪族ジオール単位及び芳香族ジオール単位からなる群から選ばれる一種以上のジオール単位を含むポリエステル樹脂であり、脂肪族単位と芳香族単位の両方の単位を有するポリエステル樹脂であ。 The aliphatic aromatic polyester resin (B) used in the present invention is a polyester resin containing one or more dicarboxylic acid units selected from the group consisting of aliphatic dicarboxylic acid units and aromatic dicarboxylic acid units, and one or more diol units selected from the group consisting of aliphatic diol units and aromatic diol units, and is a polyester resin having both aliphatic units and aromatic units.

本発明で使用する脂肪族芳香族ポリエステル系樹脂(B)としては、ポリブチレンアジペートテレフタレート系樹脂、ポリブチレンセバケートテレフタレート系樹脂、ポリブチレンサクシネートテレフタレート系樹脂が好ましく、特にポリブチレンアジペートテレフタレート系樹脂(PBAT)が特に好ましい。ポリブチレンアジペートテレフタレート系樹脂(PBAT)とは、1,4-ブタンジオールとアジピン酸とテレフタル酸のランダム共重合体のことをいい、なかでも、特表平10-508640号公報等に記載されているような、(a)主としてアジピン酸もしくはそのエステル形成性誘導体またはこれらの混合物35~95モル%、テレフタル酸もしくはそのエステル形成性誘導体またはこれらの混合物5~65モル%(個々のモル%の合計は100モル%である)よりなる混合物に、(b)ブタンジオールが含まれている混合物(ただし(a)と(b)とのモル比が0.4:1~1.5:1)の反応により得られるPBATが好ましい。PBATの市販品としてはBASF社製「エコフレックス」(登録商標)などが挙げられる。 As the aliphatic aromatic polyester resin (B) used in the present invention, polybutylene adipate terephthalate resin, polybutylene sebacate terephthalate resin, and polybutylene succinate terephthalate resin are preferred, with polybutylene adipate terephthalate resin (PBAT) being particularly preferred. Polybutylene adipate terephthalate resin (PBAT) refers to a random copolymer of 1,4-butanediol, adipic acid, and terephthalic acid. Among them, PBAT obtained by reacting (a) a mixture consisting mainly of 35 to 95 mol % of adipic acid or its ester-forming derivative or a mixture of these, and 5 to 65 mol % of terephthalic acid or its ester-forming derivative or a mixture of these (the sum of the individual mol % is 100 mol %) with (b) a mixture containing butanediol (wherein the molar ratio of (a) to (b) is 0.4:1 to 1.5:1), as described in JP-A-10-508640, is preferred. Commercially available PBAT products include "Ecoflex" (registered trademark) manufactured by BASF.

本発明のポリエステルにおける前記P3HA(A)と脂肪族芳香族ポリエスエル系樹脂(B)の混合量は、成形体の低温強度に優れる点から、樹脂(A)と樹脂(B)の合計に対して、樹脂(A)が55~75重量%、樹脂(B)が、25~45重量%である。 The mixing ratio of the P3HA (A) and the aliphatic aromatic polyester resin (B) in the polyester of the present invention is 55 to 75% by weight of resin (A) and 25 to 45% by weight of resin (B) relative to the total of resin (A) and resin (B), in order to obtain excellent low-temperature strength of the molded product.

本発明で用いられる層状粘土鉱物(C)は、層状珪酸塩を主成分とする鉱物であり、耐熱性の向上や加工性の改善効果等を得ることができる。特に、加工性の改善効果が得られやすい点で、層状粘土鉱物(C)としては、スメクタイト、マイカ、タルク、パイロフェライト、バーミキュライト、緑泥石、カオリナイトおよび蛇紋石からなる群より選択される1種以上が好ましい。汎用性の観点から、マイカ、タルク、カオリナイトが好ましく、タルクが特に好ましい。 The layered clay mineral (C) used in the present invention is a mineral mainly composed of layered silicate, and can provide effects such as improved heat resistance and improved workability. In particular, in terms of the ease with which the effect of improving workability can be obtained, the layered clay mineral (C) is preferably one or more selected from the group consisting of smectite, mica, talc, pyroferrite, vermiculite, chlorite, kaolinite, and serpentine. From the viewpoint of versatility, mica, talc, and kaolinite are preferred, and talc is particularly preferred.

前記マイカとしては、湿式粉砕マイカ、乾式粉砕マイカ等が挙げられ、具体的には、ヤマグチマイカ社や啓和炉材社製のマイカが例示される。 Examples of the mica include wet-ground mica and dry-ground mica, and specific examples include mica manufactured by Yamaguchi Mica Co., Ltd. and Keiwa Rozai Co., Ltd.

前記タルクとしては、汎用のタルク、表面処理タルク等が挙げられ、具体的には、日本タルク社の「ミクロエース」(登録商標)、林化成社の「タルカンパウダー」(登録商標)、竹原化学工業社や丸尾カルシウム社製のタルクが例示される。 Examples of the talc include general-purpose talc and surface-treated talc. Specific examples include "Microace" (registered trademark) from Nippon Talc Co., Ltd., "Talc Powder" (registered trademark) from Hayashi Kasei Co., Ltd., and talc manufactured by Takehara Chemical Industry Co., Ltd. and Maruo Calcium Co., Ltd.

前記カオリナイトとしては、乾式カオリン、焼成カオリン、湿式カオリン等が挙げられ、具体的には、林化成社「TRANSLINK」(登録商標)、「ASP」(登録商標)、「SANTINTONE」(登録商標)、「ULTREX」(登録商標)や、啓和炉材社製のカオリナイトが例示される。 Examples of kaolinite include dry kaolin, calcined kaolin, wet kaolin, etc., and specific examples include "TRANSLINK" (registered trademark), "ASP" (registered trademark), "SANTINTONE" (registered trademark), and "ULTREX" (registered trademark) from Hayashi Kasei Co., Ltd., and kaolinite manufactured by Keiwa Rozai Co., Ltd.

前記層状粘土鉱物(C)の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)と前記脂肪族芳香族ポリエステル系樹脂(B)の合計を100重量部とした場合に、5~35重量部であることが好ましく、6~25であることがより好ましく、7~15であることが特に好ましい。前記層状粘土鉱物(C)が5重量部を下回る場合、固化が遅く成形性が劣る場合がある。また、前記層状粘土鉱物(C)が35重量部を上回る場合、溶融粘度が高すぎて、成形性が劣る場合がある。 The content of the layered clay mineral (C) is preferably 5 to 35 parts by weight, more preferably 6 to 25 parts by weight, and particularly preferably 7 to 15 parts by weight, when the total of the poly(3-hydroxyalkanoate) resin (A) and the aliphatic aromatic polyester resin (B) is 100 parts by weight. If the layered clay mineral (C) is less than 5 parts by weight, solidification may be slow and moldability may be poor. Also, if the layered clay mineral (C) is more than 35 parts by weight, the melt viscosity may be too high, resulting in poor moldability.

また本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、通常の添加剤として使用される層状粘土鉱物以外の充填剤、顔料、染料などの着色剤、活性炭、ゼオライト等の臭気吸収剤、バニリン、デキストリン等の香料、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、結晶化核剤、滑剤、離型剤、撥水剤、抗菌剤、摺動性改良剤、その他の副次的添加剤を1種または2種以上添加してもよい。 The resin composition of the present invention may also contain one or more of the following secondary additives, as long as they do not impair the effects of the present invention: fillers other than layered clay minerals that are commonly used as additives, colorants such as pigments and dyes, odor absorbents such as activated carbon and zeolite, fragrances such as vanillin and dextrin, antioxidants, weather resistance improvers, UV absorbers, crystallization nucleating agents, lubricants, release agents, water repellents, antibacterial agents, sliding improvers, and other secondary additives.

結晶化核剤としては、例えば、ペンタエリスリトール、オロチン酸、アスパルテーム、シアヌル酸、グリシン、フェニルホスホン酸亜鉛、窒化ホウ素等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する効果が特に優れている点で、ペンタエリスリトールが好ましい。結晶化核剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対して、0.1~5重量部が好ましく、より好ましくは0.5~3重量部、更に好ましくは0.7~1.5重量部である。また、結晶化核剤は、1種のみならず2種以上混合してもよく、目的に応じて、混合比率を適宜調整することができる。 Examples of crystallization nucleating agents include pentaerythritol, orotic acid, aspartame, cyanuric acid, glycine, zinc phenylphosphonate, and boron nitride. Among them, pentaerythritol is preferred because of its particularly excellent effect of promoting the crystallization of poly(3-hydroxyalkanoate) resins. The amount of crystallization nucleating agent used is not particularly limited, but is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, and even more preferably 0.7 to 1.5 parts by weight, per 100 parts by weight of poly(3-hydroxyalkanoate) resin. In addition, not only one type of crystallization nucleating agent but also two or more types may be mixed, and the mixing ratio can be appropriately adjusted depending on the purpose.

滑剤としては、例えば、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、パルミチン酸アミド、N-ステアリルベヘン酸アミド、N-ステアリルエルカ酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリル酸アミド、エチレンビスカプリン酸アミド、p-フェニレンビスステアリン酸アミド、エチレンジアミンとステアリン酸とセバシン酸の重縮合物等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂への滑剤効果が特に優れている点で、ベヘン酸アミドとエルカ酸アミドが好ましい。滑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対して、0.01~5重量部が好ましく、より好ましくは0.05~3重量部、更に好ましくは0.1~1.5重量部である。また、滑剤は、1種のみならず2種以上混合してもよく、目的に応じて、混合比率を適宜調整することができる。 Examples of lubricants include behenamide, oleamide, erucamide, stearamide, palmitamide, N-stearylbehenamide, N-stearylerucamide, ethylenebisstearamide, ethylenebisoleamide, ethylenebiserucamide, ethylenebislauramide, ethylenebiscapricamide, p-phenylenebisstearamide, and polycondensates of ethylenediamine, stearic acid, and sebacic acid. Among these, behenamide and erucamide are preferred because of their particularly excellent lubricant effect on poly(3-hydroxyalkanoate) resins. The amount of lubricant used is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, and even more preferably 0.1 to 1.5 parts by weight, per 100 parts by weight of poly(3-hydroxyalkanoate) resin. In addition, the lubricant may be a mixture of one or more types, and the mixing ratio can be adjusted appropriately depending on the purpose.

可塑剤としては、例えば、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物、アジピン酸エステル系化合物、ポリエーテルエステル系化合物、安息香酸エステル系化合物、フタル酸エステル系化合物、イソソルバイドエステル系化合物、ポリカプロラクトン系化合物、二塩基酸エステル系化合物等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂への可塑化効果が特に優れている点で、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物、二塩基酸エステル系化合物が好ましい。グリセリンエステル系化合物としては、例えば、グリセリンジアセトモノラウレート等が挙げられる。クエン酸エステル系化合物としては、例えば、アセチルクエン酸トリブチル等が挙げられる。セバシン酸エステル系化合物としては、例えば、セバシン酸ジブチル等が挙げられる。二塩基酸エステル系化合物としては、例えば、ベンジルメチルジエチレングリコールアジペート等が挙げられる。可塑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂とポリ乳酸の合計100重量部に対して、1~20重量部が好ましく、より好ましくは2~15重量部、更に好ましくは3~10重量部である。また、可塑剤は、1種のみならず2種以上混合してもよく、目的に応じて、混合比率を適宜調整することができる。
次に、本発明の射出成形用ポリエステル樹脂組成物の製造方法の一形態について説明するが、本発明は、これに限定されるものではない。
Examples of the plasticizer include glycerin ester compounds, citrate compounds, sebacic acid ester compounds, adipate compounds, polyether ester compounds, benzoic acid ester compounds, phthalic acid ester compounds, isosorbide ester compounds, polycaprolactone compounds, and dibasic acid ester compounds. Among them, glycerin ester compounds, citrate compounds, sebacic acid ester compounds, and dibasic acid ester compounds are preferred because of their particularly excellent plasticizing effect on poly(3-hydroxyalkanoate) resins. Examples of the glycerin ester compounds include glycerin diacetomonolaurate. Examples of the citrate compounds include acetyl tributyl citrate. Examples of the sebacic acid ester compounds include dibutyl sebacate. Examples of the dibasic acid ester compounds include benzyl methyl diethylene glycol adipate. The amount of the plasticizer used is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight, and even more preferably 3 to 10 parts by weight, per 100 parts by weight of the total of the poly(3-hydroxyalkanoate) resin and the polylactic acid. In addition, the plasticizer may be used alone or in combination of two or more kinds, and the mixing ratio can be appropriately adjusted depending on the purpose.
Next, one embodiment of the method for producing the polyester resin composition for injection molding of the present invention will be described, but the present invention is not limited thereto.

本発明の樹脂組成物は、単軸押出機、二軸押出機、バンバリーミキサーなどの公知の混練機を用いて製造することができる。これらの内、混練機としては、樹脂に過度の剪断を加えることなく層状粘土鉱物(C)を樹脂中に分散できることから、二軸押出機が好ましい。また混練機の設定条件としては、P3HAの熱分解を抑制できることから、シリンダー設定温度を180℃以下とすることが好ましい。
また各成分を混練機に供給する際、一括で添加してもよく、一部を混練した後残余の成分を混練してもよい。層状粘土鉱物(C)は樹脂にダメージを与える場合があり、樹脂成分を溶融混練した後、層状粘土鉱物(C)をサイドフィード等を用いて添加することが望ましい。
本発明の射出成形用ポリエステル樹脂組成物を射出成形体に加工する際の成形加工方法としては、一般的な射出成形方法を用いることができ、例えば、熱可塑性樹脂を成形する場合に一般的に採用される射出成形法の他、ガスアシスト成形法、射出圧縮成形法等の射出成形法を採用することができる。また、インモールド成形法、ガスプレス成形法、2色成形法、サンドイッチ成形法、PUSH-PULL、SCORIM等を採用することもできるが、本発明で使用可能な射出成形法は、以上の方法に限定されるものではなく、具体的な条件についても適宜設定すればよい。
本発明により得られる射出成形体の用途は特に限定されないが、例えば、皿、コップ、カトラリーなどの食器類、コーヒーカプセル、農業用資材、OA用部品、家電部品、自動車用部材、おもちゃ、箱、容器などの日用雑貨類、ボールペン、シャープペン、定規などの文房具類、ボトル、キャップ、フタなどの成形品、押出シート・フィルム、異型押出製品等が挙げられる。また、本発明により得られる射出成形体は、樹脂成分が主にポリ(3-ヒドロキシアルカノエート)系樹脂から構成されるため、海水分解性を有しており、そのため、プラスチックの海洋投棄による環境問題を解決し得るものである。
The resin composition of the present invention can be produced using a known kneader such as a single screw extruder, a twin screw extruder, or a Banbury mixer. Of these, a twin screw extruder is preferred as the kneader because it can disperse the layered clay mineral (C) in the resin without applying excessive shear to the resin. As for the setting conditions of the kneader, it is preferred to set the cylinder temperature to 180° C. or less because it can suppress the thermal decomposition of P3HA.
When each component is fed to the kneader, it may be added all at once, or a portion of the components may be kneaded and then the remaining components may be kneaded. Since the layered clay mineral (C) may damage the resin, it is preferable to add the layered clay mineral (C) by using a side feed or the like after melt-kneading the resin components.
As a molding method when processing the polyester resin composition for injection molding of the present invention into an injection molded article, a general injection molding method can be used, for example, an injection molding method generally used when molding a thermoplastic resin, as well as a gas-assisted molding method, an injection compression molding method, etc. can be used. In-mold molding, gas press molding, two-color molding, sandwich molding, PUSH-PULL, SCORIM, etc. can also be used, but the injection molding method usable in the present invention is not limited to the above methods, and specific conditions may be appropriately set.
Applications of the injection molded articles obtained by the present invention are not particularly limited, and examples thereof include tableware such as plates, cups, cutlery, etc., coffee capsules, agricultural materials, office automation parts, home appliance parts, automotive parts, toys, daily necessities such as boxes and containers, stationery such as ballpoint pens, mechanical pencils, rulers, etc., molded articles such as bottles, caps, lids, extruded sheets and films, irregularly shaped extruded products, etc. In addition, the injection molded articles obtained by the present invention have seawater degradability because the resin component is mainly composed of poly(3-hydroxyalkanoate)-based resin, and therefore can solve environmental problems caused by ocean dumping of plastics.

以下に実施例、比較例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(使用した原料)
本実施例および比較例で使用した原料を表1にまとめた。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples in any way.
(Ingredients used)
The raw materials used in the present examples and comparative examples are summarized in Table 1.

Figure 0007606304000002
Figure 0007606304000002

実施例および比較例において実施した評価方法を、以下に説明する。 The evaluation methods used in the examples and comparative examples are described below.

(離型性)
後述の射出成形条件を用い、スリープレート、ピンゲート、1個取りの厚さ0.4mmのコーヒーカプセル金型を用い、冷却時間を短くしていき、離型不良が起こらない最小の時間を離型可能冷却時間を測定し、下記基準に基づいて離型性の評価を行った。
◎:10秒未満
〇:10秒~20秒未満
△:20秒~25秒未満
×:25秒以上
(Releasability)
Using the injection molding conditions described below and a three-plate, pin-gate, single-cavity coffee capsule mold with a thickness of 0.4 mm, the cooling time was shortened and the minimum cooling time during which no release problems occurred was measured, and the releasability was evaluated based on the following criteria.
◎: Less than 10 seconds 〇: 10 to 20 seconds △: 20 to 25 seconds ×: 25 seconds or more

(外観評価)
後述の射出成形により得られた成形体について、外観を目視で確認し、下記基準に基づき判定を行った。
〇:良好な外観を有する場合
×:バリ、フローマークのいずれか1つ以上の成型不良が見られる場合
(Appearance Evaluation)
The appearance of the molded article obtained by injection molding as described below was visually inspected and judged based on the following criteria.
○: Good appearance ×: One or more molding defects such as burrs or flow marks are observed

(面衝撃試験)
後述の射出成形により得られた8cm×8cm×1mmのプレートから4cm×4cm×1mmのプレートを切り出し、23℃と0℃の恒温室の中で1日養生したのち、300gの撃芯を高さ50cmから落下し、10枚の試験片をテストし下記式にて非破壊率を求めた。
非破壊率(%)=破壊しなかった試験片数(枚)/全試験片数(枚)×100
(surface impact test)
From an 8 cm x 8 cm x 1 mm plate obtained by injection molding as described below, a 4 cm x 4 cm x 1 mm plate was cut out and cured for one day in a thermostatic chamber at 23°C and 0°C. After that, a 300 g impact core was dropped from a height of 50 cm and 10 test pieces were tested to calculate the non-destructive rate using the following formula.
Non-destructive rate (%) = Number of unbroken test pieces (pieces) / Total number of test pieces (pieces) × 100

<実施例1>
(PHBHブレンドの作製)
株式会社カワタ製75Lスーパーミキサーを用いて、PHBH 10kg、PETL 100g、BA 50g、EA 50gを300rpmにて3分攪拌し、PHBHブレンドを得た。
Example 1
(Preparation of PHBH Blends)
Using a 75 L Super Mixer manufactured by Kawata Corporation, 10 kg of PHBH, 100 g of PETL, 50 g of BA, and 50 g of EA were stirred at 300 rpm for 3 minutes to obtain a PHBH blend.

(二軸押出機によるコンパウンド化)
東芝機械製TEM26SS(L/D=60)を表2のスクリュー構成にし、スクリュー回転数を100rpmに設定した。スクリュー根本より、PHBHブレンドを7.14kg/hrにてフィードし、同時にスクリュー根本より、PBATを3.0kg/hrにてフィードし、更に、タルクを1.0kg/hrにてサイドフィードし、45℃の温水で満たした水槽に通してストランドを固化し、ペレタイザーで裁断することにより、ペレットを得た。
(Compounding using a twin-screw extruder)
A TEM26SS (L/D=60) manufactured by Toshiba Machine was used with the screw configuration shown in Table 2, and the screw rotation speed was set to 100 rpm. The PHBH blend was fed from the screw root at 7.14 kg/hr, and simultaneously, PBAT was fed from the screw root at 3.0 kg/hr, and further, talc was side-fed at 1.0 kg/hr. The strands were solidified by passing through a water tank filled with hot water at 45° C., and cut with a pelletizer to obtain pellets.

Figure 0007606304000003
Figure 0007606304000003

(射出成型体の取得)
8cm×8cm×1mmのプレート金型を用い、東洋機械金属製射出成形機Si-30Vを用い、ノズル/T1/T2/T3=155/145/135/125℃、金型35℃とし、8cm×8cm×1mmのプレート状の成形体を得た。
得られた射出成形体について、外観評価、面衝撃試験を行い、その結果を表3に示した。更に、離型性を評価し、その結果を表3に示した。
(Acquisition of injection molded bodies)
Using a plate mold of 8 cm x 8 cm x 1 mm and a Toyo Machinery Metal injection molding machine Si-30V, nozzle/T1/T2/T3 = 155/145/135/125°C and mold temperature of 35°C, a plate-shaped molded body of 8 cm x 8 cm x 1 mm was obtained.
The obtained injection molded articles were subjected to an appearance evaluation and a surface impact test, and the results are shown in Table 3. Furthermore, the mold releasability was evaluated, and the results are shown in Table 3.

<実施例2>
スクリュー根本より、PHBHブレンドを6.12kg/hrにて、PBATを4.0kg/hrにて供給し、タルクを1.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
Example 2
An experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed at 6.12 kg/hr, PBAT was fed at 4.0 kg/hr, and talc was fed from the side feed at 1.0 kg/hr from the base of the screw. Appearance, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

<実施例3>
スクリュー根本より、PHBHブレンドを7.14kg/hrにて、PBATを3.0kg/hrにて供給し、タルクを2.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
Example 3
An experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed at 7.14 kg/hr, PBAT was fed at 3.0 kg/hr, and talc was fed from the side feed at 2.0 kg/hr from the base of the screw. Appearance, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

<実施例4>
スクリュー根本より、PHBHブレンドを6.12kg/hrにて、PBATを4.0kg/hrにて供給し、タルクを2.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、。外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
Example 4
The experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed at 6.12 kg/hr, PBAT was fed at 4.0 kg/hr, and talc was fed at 2.0 kg/hr from the side feed through the screw root. Appearance evaluation, surface impact test, and mold releasability were evaluated, and the results are shown in Table 3.

<実施例5>
スクリュー根本より、PHBHブレンドを7.14kg/hrにて、PBATを3.0kg/hrにてより供給し、タルクを3.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
Example 5
An experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed at 7.14 kg/hr, PBAT was fed at 3.0 kg/hr from the base of the screw, and talc was fed from the side feed at 3.0 kg/hr. Appearance evaluation, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

<比較例1>
スクリュー根本より、PHBHブレンドを10.20kg/hrにて供給し、PBATおよびタルクを供給しなかった以外は、実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 1>
The experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed from the base of the screw at 10.20 kg/hr and PBAT and talc were not fed. Appearance evaluation, surface impact test, and demolding properties were evaluated. The results are shown in Table 3.

<比較例2>
スクリュー根本より、PHBHブレンドを8.16kg/hrにて、PBATを2.0kg/hrにて供給し、タルクを供給しなかったことを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 2>
From the base of the screw, the PHBH blend was fed at 8.16 kg/hr and PBAT was fed at 2.0 kg/hr. Except for not feeding talc, an experiment was carried out in the same manner as in Example 1. Appearance evaluation, surface impact test, and demolding properties were evaluated. The results are shown in Table 3.

<比較例3>
スクリュー根本より、PHBHブレンドを7.14kg/hrにて、PBATを3.0kg/hrにて供給し、タルクを供給しなかったことを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 3>
From the base of the screw, the PHBH blend was fed at 7.14 kg/hr and PBAT was fed at 3.0 kg/hr. Except for not feeding talc, an experiment was carried out in the same manner as in Example 1. Appearance evaluation, surface impact test, and demolding properties were evaluated. The results are shown in Table 3.

<比較例4>
スクリュー根本より、PHBHブレンドを6.12kg/hrにて、PBATを4.0kg/hrにて供給し、タルクを供給しなかったことを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 4>
From the base of the screw, the PHBH blend was fed at 6.12 kg/hr and PBAT was fed at 4.0 kg/hr. Except for not feeding talc, an experiment was carried out in the same manner as in Example 1. Appearance evaluation, surface impact test, and demolding properties were evaluated. The results are shown in Table 3.

<比較例5>
スクリュー根本より、PHBHブレンドを8.16kg/hrにて、PBSAを2.0kg/hrにて供給し、タルクを供給しなかったことを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 5>
The experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed at 8.16 kg/hr and PBSA was fed at 2.0 kg/hr from the base of the screw, and no talc was fed. The appearance, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

<比較例6>
スクリュー根本より、PHBHブレンドを7.14kg/hrにて、PBSAを3.0kg/hrにて供給し、タルクを供給しなかったことを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 6>
From the base of the screw, the PHBH blend was fed at 7.14 kg/hr and PBSA was fed at 3.0 kg/hr. Except for not feeding talc, an experiment was carried out in the same manner as in Example 1. Appearance evaluation, surface impact test, and demolding properties were evaluated. The results are shown in Table 3.

<比較例7>
スクリュー根本より、PHBHブレンドを6.12kg/hrにて、PBSAを4.0kg/hrにて供給し、タルクを供給しなかったことを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 7>
From the base of the screw, the PHBH blend was fed at 6.12 kg/hr and PBSA was fed at 4.0 kg/hr. Except for not feeding talc, an experiment was carried out in the same manner as in Example 1. Appearance evaluation, surface impact test, and demolding properties were evaluated. The results are shown in Table 3.

<比較例8>
スクリュー根本より、PHBHブレンドを7.14kg/hrにてし、PBATを3.0kg/hrにて供給し、タルクを4.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 8>
An experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed from the base of the screw at 7.14 kg/hr, PBAT was fed at 3.0 kg/hr, and talc was fed from the side feed at 4.0 kg/hr. Appearance evaluation, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

<比較例9>
スクリュー根本より、PHBHブレンドを7.14kg/hrにて、PBSAを3.0kg/hrにて供給し、タルクを1.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 9>
The experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed at 7.14 kg/hr, PBSA at 3.0 kg/hr, and talc was fed from the side feed at 1.0 kg/hr from the base of the screw. Appearance, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

<比較例10>
スクリュー根本より、PHBHブレンドを6.12kg/hrにて、PBSAを4.0kg/hrにて供給し、タルクを1.0kg/hrにてサイドフィードより供給することを除いて実施例1と同様に実験を行ない、外観評価、面衝撃試験、離型性を評価し、その結果を表3に示した。
<Comparative Example 10>
The experiment was carried out in the same manner as in Example 1, except that the PHBH blend was fed from the base of the screw at 6.12 kg/hr, PBSA was fed at 4.0 kg/hr, and talc was fed from the side feed at 1.0 kg/hr. Appearance, surface impact test, and demolding properties were evaluated, and the results are shown in Table 3.

Figure 0007606304000004
Figure 0007606304000004

表3に、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)と脂肪族芳香族ポリエステル(B)の合計に対する、樹脂(A)と樹脂(B)の含有量と、樹脂(A)と樹脂(B)の合計を100重量部とした場合の層状粘土鉱物(C)の含有量(重量部)を含む樹脂組成物に対する、各種評価結果を示した。
この結果より、実施例1~実施例5は、比較例1~10に対して、低温の衝撃強度が優れ、離型可能冷却時間が短いため生産性が高く、良好な外観を有する射出成型体が得られることが分かる。
Table 3 shows the results of various evaluations of resin compositions containing the contents of resin (A) and resin (B) relative to the total of poly(3-hydroxyalkanoate) resin (A) and aliphatic aromatic polyester (B), and the content (parts by weight) of layered clay mineral (C) when the total of resin (A) and resin (B) is taken as 100 parts by weight.
From these results, it can be seen that, compared to Comparative Examples 1 to 10, Examples 1 to 5 have excellent low-temperature impact strength and a short cooling time for demolding, which results in high productivity and the production of injection-molded articles with good appearance.

Claims (5)

下記一般式(1)
Figure 0007606304000005
(但し、RはC2n+1で表されるアルキル基であり、n=1以上15以下の整数である。)で示される繰り返し単位を有するポリ(3-ヒドロキシアルカノエート)系樹脂(A)、脂肪族芳香族ポリエステル系樹脂(B)、層状粘土鉱物(C)を含有する射出成形用ポリエステル系樹脂組成物であって、
前記樹脂(A)と前記樹脂(B)の合計に対して、前記樹脂(A)の割合が55~75重量%、前記樹脂(B)の割合が25~45重量%、
前記樹脂(A)と前記樹脂(B)の合計を100重量部とした場合に、前記粘土鉱物(C)が5~30重量部である射出成形用ポリエステル系樹脂組成物(但し、ポリ乳酸と前記樹脂(A)と前記樹脂(B)との全量100重量部のうち、ポリ乳酸を30重量部以上60重量部以下含有する組成物を除く)
The following general formula (1)
Figure 0007606304000005
(wherein R is an alkyl group represented by C n H 2n+1 , n being an integer of 1 to 15), a poly(3-hydroxyalkanoate) resin (A) having a repeating unit represented by the formula:
The ratio of the resin (A) is 55 to 75% by weight, and the ratio of the resin (B) is 25 to 45% by weight, based on the total weight of the resin (A) and the resin (B);
A polyester-based resin composition for injection molding, in which the clay mineral (C) is 5 to 30 parts by weight when the total of the resin (A) and the resin (B) is 100 parts by weight (however, excluding compositions containing 30 parts by weight or more and 60 parts by weight or less of polylactic acid out of a total of 100 parts by weight of polylactic acid, the resin (A), and the resin (B)) .
前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)からなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の射出成形用ポリエステル樹脂組成物。 The polyester resin composition for injection molding according to claim 1, characterized in that the poly(3-hydroxyalkanoate)-based resin (A) is at least one selected from the group consisting of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), and poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate). 前記脂肪族芳香族ポリエステル系樹脂(B)が、ポリブチレンアジペートテレフタレート系樹脂、ポリブチレンセバケートテレフタレート系樹脂、ポリブチレンサクシネートテレフタレート系樹脂からなる群から選択される少なくとも1種であることを特徴とする請求項1または2に記載の射出成形用ポリエステル樹脂組成物。 The polyester resin composition for injection molding according to claim 1 or 2, characterized in that the aliphatic aromatic polyester resin (B) is at least one selected from the group consisting of polybutylene adipate terephthalate resins, polybutylene sebacate terephthalate resins, and polybutylene succinate terephthalate resins. 前記層状粘土鉱物(C)がスメクタイト、マイカ、タルク、パイロフェライト、バーミキュライト、緑泥石、カオリナイトおよび蛇紋石からなる群から選択される少なくとも1種であることを特徴とする請求項1~3のいずれか1項に記載の射出成形用ポリエステル樹脂組成物。 The polyester resin composition for injection molding according to any one of claims 1 to 3, characterized in that the layered clay mineral (C) is at least one selected from the group consisting of smectite, mica, talc, pyroferrite, vermiculite, chlorite, kaolinite and serpentine. 請求項1~4のいずれか1項に記載の射出成形用ポリエステル樹脂組成物を含む射出成形体。 An injection molded article comprising the polyester resin composition for injection molding according to any one of claims 1 to 4.
JP2020158119A 2020-09-23 2020-09-23 Polyester resin composition for injection molding, and injection molded article Active JP7606304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020158119A JP7606304B2 (en) 2020-09-23 2020-09-23 Polyester resin composition for injection molding, and injection molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020158119A JP7606304B2 (en) 2020-09-23 2020-09-23 Polyester resin composition for injection molding, and injection molded article

Publications (2)

Publication Number Publication Date
JP2022052004A JP2022052004A (en) 2022-04-04
JP7606304B2 true JP7606304B2 (en) 2024-12-25

Family

ID=80949028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020158119A Active JP7606304B2 (en) 2020-09-23 2020-09-23 Polyester resin composition for injection molding, and injection molded article

Country Status (1)

Country Link
JP (1) JP7606304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543634B2 (en) * 2018-08-30 2024-09-03 三菱ケミカル株式会社 Tubular bodies, straws, cotton buds and balloon sticks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527120A (en) 2005-01-12 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Biodegradable polyester blend
JP2012062490A (en) 2003-12-22 2012-03-29 Eastman Chemical Co Polymer blend with improved rheology and improved unnotched impact strength
WO2015052876A1 (en) 2013-10-11 2015-04-16 株式会社カネカ Aliphatic polyester resin composition and aliphatic polyester resin molded body
WO2017138392A1 (en) 2016-02-09 2017-08-17 株式会社カネカ Biodegradable polyester resin composition and molded body formed from said resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062490A (en) 2003-12-22 2012-03-29 Eastman Chemical Co Polymer blend with improved rheology and improved unnotched impact strength
JP2008527120A (en) 2005-01-12 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Biodegradable polyester blend
WO2015052876A1 (en) 2013-10-11 2015-04-16 株式会社カネカ Aliphatic polyester resin composition and aliphatic polyester resin molded body
WO2017138392A1 (en) 2016-02-09 2017-08-17 株式会社カネカ Biodegradable polyester resin composition and molded body formed from said resin composition

Also Published As

Publication number Publication date
JP2022052004A (en) 2022-04-04

Similar Documents

Publication Publication Date Title
KR101376642B1 (en) Biodegradable Resin Foam Sheet, Biodegradable Resin Foam and Biodegradable Resin Molding Container
US10544301B2 (en) Biodegradable polyester resin composition and molded article formed from said resin composition
AU2015257900B2 (en) Injection-moulded article
US20120196950A1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
WO2022065182A1 (en) Resin composition for injection molding, and injection-molded object
JP7598226B2 (en) Polyhydroxyalkanoate resin composition and molded body thereof
US20230312916A1 (en) Blow-molded or injection-molded article
AU2021349252A1 (en) Biodegradable container closure and resin therefor
US20250019539A1 (en) Resin tube
JP7606304B2 (en) Polyester resin composition for injection molding, and injection molded article
JP3945264B2 (en) Polylactic acid composite material and molded body
KR100642289B1 (en) Biodegradable resin composition, preparation method thereof and biodegradable film produced therefrom
JP6102315B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
JP2022102160A (en) Molding having inorganic material membrane
JP2009062532A (en) Thermally molded product and composition containing poly (hydroxyalkanoic acid) and polyoxymethylene
US20220185953A1 (en) Biodegradable vci packaging compositions
US20230357492A1 (en) Resin composition for injection molding and injection-molded article
WO2022075232A1 (en) Resin composition, and molded body thereof
JP7218650B2 (en) Polyester resin composition and molded article
JP2004323791A (en) Injection molded product
WO2024202717A1 (en) Resin composition for injection molding, and injection-molded object
KR101850514B1 (en) Biodegradable resin composition for 3D printer filament and 3D printer filament with excellent flexibility and impact resistance using the same
JP7569311B2 (en) Resin composition for injection molding and injection molded article
WO2024111463A1 (en) Method for manufacturing poly(3-hydroxyalkanoate)-based resin molded body
JP4010287B2 (en) Aliphatic polyester composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241213

R150 Certificate of patent or registration of utility model

Ref document number: 7606304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150