Nothing Special   »   [go: up one dir, main page]

JP7602501B2 - Embankment construction method - Google Patents

Embankment construction method Download PDF

Info

Publication number
JP7602501B2
JP7602501B2 JP2022016413A JP2022016413A JP7602501B2 JP 7602501 B2 JP7602501 B2 JP 7602501B2 JP 2022016413 A JP2022016413 A JP 2022016413A JP 2022016413 A JP2022016413 A JP 2022016413A JP 7602501 B2 JP7602501 B2 JP 7602501B2
Authority
JP
Japan
Prior art keywords
treated soil
bag
liquefied
formwork
liquefied treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022016413A
Other languages
Japanese (ja)
Other versions
JP2023114198A (en
Inventor
啓介 太田
進 中島
佳孝 冨田
健太 杉山
翔太 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2022016413A priority Critical patent/JP7602501B2/en
Publication of JP2023114198A publication Critical patent/JP2023114198A/en
Application granted granted Critical
Publication of JP7602501B2 publication Critical patent/JP7602501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Railway Tracks (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、鉄道等の用途に用いられる盛土の施工方法に関し、詳しくは、流動化処理土を用いた盛土の施工方法に関する。 The present invention relates to a method for constructing embankments for use in railways and other applications, and more specifically, to a method for constructing embankments using liquefied soil.

例えば鉄道用の盛土は、その性質上、狭隘部等の作業性の悪い場所での施工や、夜間等の限られた時間での施工が要求されることが多く、施工の省力化や迅速化が要求される。また、近年では、集中豪雨等の被害が増加していることから、崩壊した盛土の早期復旧に対する需要も増している。 For example, railway embankments, by their very nature, often require construction in places with poor workability, such as narrow areas, or in limited time slots, such as at night, so there is a demand for labor-saving and rapid construction. In addition, with the increase in damage from torrential rains in recent years, there is also a growing demand for the early restoration of collapsed embankments.

建設発生土などに水やセメント等の固化材を混ぜ合わせた流動化処理土は、高い流動性と充填性を有しており、流動化処理土を盛土材として用いることで、土質材料を使用した場合と比べて、盛土施工の省力化や迅速化を図ることができる。 Fluidized soil, which is made by mixing construction waste soil with water, cement, and other solidifying agents, has high fluidity and filling properties, and using fluidized soil as an embankment material can reduce the labor required for embankment construction and speed up the process compared to using soil materials.

流動化処理土を使用して盛土を施工する場合、流動化処理土打設時の流出を防ぐために、側面に型枠を設けることが必要である。従来、型枠として、大型土のうやPC擁壁が用いられている。ところが、大型土のうはあくまでも仮設材であり、恒久構造物としては使用できないため、大型土のうを用いた場合は、流動化処理土の硬化後に大型土のうを撤去し、法面を施工する必要がある。一方、PC擁壁は、運搬や製作の関係から大きさに制限があり、大型のPC擁壁を製作する場合には長期間を要する。したがって、これらの方法では、流動化処理土を盛土材として使用した場合の施工の省力化や迅速化という利点を十分に活かすことができない。 When constructing embankments using liquefied treated soil, it is necessary to set up formwork on the sides to prevent the soil from flowing out when it is poured. Traditionally, large sandbags or PC retaining walls have been used as formwork. However, large sandbags are merely temporary materials and cannot be used as permanent structures, so when large sandbags are used, they must be removed after the liquefied treated soil has hardened and the slope must be constructed. On the other hand, PC retaining walls are limited in size due to transportation and construction, and it takes a long time to construct a large PC retaining wall. Therefore, these methods do not fully utilize the advantages of using liquefied treated soil as an embankment material, such as labor-saving and rapid construction.

流動化処理土を用いた盛土の施工方法として、例えば特許文献1には、複数の箱体または袋体に充填物を充填した堰堤内に流動化処理土を打設する盛土の施工方法が開示されている。 As an example of a method for constructing embankments using liquefied treated soil, Patent Document 1 discloses a method for constructing embankments in which liquefied treated soil is poured into a dam made of multiple boxes or bags filled with a filling material.

特開2002-21083号公報JP 2002-21083 A

ところが、流動化処理土は、雨水等の滞水、外気による乾燥といった外的要因によって劣化する特性がある。例えば鉄道用盛土として長期的に列車荷重を支持する性能を確保するためには、これらの外的要因から防護し、耐久性を向上させる手段が必要である。 However, liquefied treated soil has the tendency to deteriorate due to external factors such as water retention from rainwater and drying out due to the outside air. For example, to ensure that it can support the load of trains over the long term as railway embankments, it is necessary to have a method of protecting it from these external factors and improving its durability.

本発明は上記事情に鑑みてなされたものであり、流動化処理土を用いて、簡易且つ迅速な施工が可能であり、雨水等の滞水や乾燥等の外的要因に対する耐久性を有する盛土の施工方法を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a method for constructing embankments using liquefied treated soil that allows for simple and quick construction and is durable against external factors such as water retention from rainwater and drying.

上記問題を解決するため、本発明は、流動化処理土を用いた盛土の施工方法であって、盛土施工場所の外周に袋体を配置し、前記袋体の内部に充填材を充填して袋体型枠を形成し、前記袋体型枠を1段目の高さまで積み上げた後、前記袋体型枠の天端高さまで1段目の流動化処理土を打設し、前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、前記1段目の流動化処理土の上に、前記1段目と同様に、袋体型枠を設置し、前記袋体型枠を2段目の高さまで積み上げて2段目の流動化処理土を打設し、これを繰り返して所定の高さまで前記流動化処理土を打設した後、前記流動化処理土の最上層の上端を、排水・保水および荷重分散効果を有する保護層で覆い、前記保護層は、透水性の異なる二種類の層で構成され、前記流動化処理土の直上に透水性が高い下層、その上に透水性が低い上層を設けることを特徴としている。
別の観点による本発明は、流動化処理土を用いた盛土の施工方法であって、盛土施工場所の外周に袋体を配置し、前記袋体の内部に充填材を充填して袋体型枠を形成し、前記袋体型枠を1段目の高さまで積み上げた後、前記袋体型枠の天端高さまで1段目の流動化処理土を打設し、前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、1段目の前記袋体型枠を解体し、解体した前記袋体型枠の袋体を前記1段目の流動化処理土の上に設置し、前記袋体の内部に充填材を充填し袋体型枠を形成して2段目の流動化処理土を打設し、これを繰り返して所定の高さまで前記流動化処理土を打設した後、前記流動化処理土の最上層の上端を、排水・保水および荷重分散効果を有する保護層で覆うことを特徴としている。
In order to solve the above problems, the present invention provides a method for constructing embankments using liquefied treated soil, which comprises placing bags around the periphery of an embankment construction site, filling the inside of the bags with filler to form a bag formwork, stacking the bag formwork to the height of the first stage, and then pouring the first stage of liquefied treated soil up to the top height of the bag formwork. After the first stage of liquefied treated soil has hardened to a predetermined uniaxial compressive strength, a bag formwork is installed on top of the first stage of liquefied treated soil, as in the first stage, and the bag formwork is stacked to the height of the second stage and the second stage of liquefied treated soil is poured. This process is repeated until the liquefied treated soil has been poured to a predetermined height, after which the upper end of the top layer of the liquefied treated soil is covered with a protective layer having drainage, water retention and load dispersion effects, and the protective layer is composed of two types of layers with different permeabilities, with a lower layer with high permeability directly above the liquefied treated soil and an upper layer with low permeability above that .
Another aspect of the present invention is a method for constructing embankments using liquefied treated soil, which comprises placing bags around the periphery of an embankment construction site, filling the inside of the bags with filler to form a bag formwork, stacking the bag formwork to the height of the first stage, and then pouring the first stage of liquefied treated soil up to the top height of the bag formwork, and after the first stage of liquefied treated soil has hardened to a predetermined uniaxial compressive strength, dismantling the first stage of the bag formwork, placing the bags of the dismantled bag formwork on top of the first stage of liquefied treated soil, filling the inside of the bags with filler to form a bag formwork, and pouring the second stage of liquefied treated soil, and repeating this process to pour the liquefied treated soil up to a predetermined height, and then covering the upper end of the topmost layer of the liquefied treated soil with a protective layer that has drainage, water retention and load distribution effects.

前記流動化処理土は、一軸圧縮強度の28日強度が600kPa以上でもよい。 The 28-day unconfined compressive strength of the liquefied soil may be 600 kPa or more.

打設した前記流動化処理土の硬化時の一軸圧縮強度は、小型FWD試験で前記流動化処理土の地盤反力係数を計測し、地盤反力係数と変形係数との関係から変形係数を求め、変形係数と一軸圧縮強度との関係から、前記流動化処理土の一軸圧縮強度を求めてもよい。 The unconfined compressive strength of the poured liquefied treated soil when it hardens can be determined by measuring the subgrade reaction coefficient of the liquefied treated soil in a small-scale FWD test, determining the deformation coefficient from the relationship between the subgrade reaction coefficient and the deformation coefficient, and then determining the unconfined compressive strength of the liquefied treated soil from the relationship between the deformation coefficient and the uniaxial compressive strength.

一端を前記袋体型枠に固定し、他端を前記流動化処理土内に定着させる棒状補強材を設けてもよい。 A rod-shaped reinforcing material may be provided, one end of which is fixed to the bag formwork and the other end of which is fixed within the liquefied treated soil.

前記袋体は合成繊維製でもよい。 The bag may be made of synthetic fibers.

前記充填材がコンクリートでもよい。 The filler may be concrete.

前記盛土の法面に擁壁を設けてもよい。また、前記盛土は、鉄道用盛土でもよい。 A retaining wall may be provided on the slope of the embankment. The embankment may also be a railway embankment.

本発明によれば、流動化処理土を用いて、雨水の滞水や乾燥等の外的要因に対する耐久性を有し、鉄道等の用途で用いることができる盛土を簡易且つ迅速に施工することができる。 According to the present invention, it is possible to easily and quickly construct embankments using liquefied treated soil that are durable against external factors such as rainwater retention and drying, and that can be used for railways and other purposes.

本発明で用いられる袋体型枠の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a bag form used in the present invention. 本発明の実施形態にかかる盛土の施工手順の例を説明する断面図である。FIG. 2 is a cross-sectional view illustrating an example of a construction procedure for embankment according to an embodiment of the present invention. 地盤反力係数KP.FWD値と変形係数E50との関係を示すグラフである。1 is a graph showing the relationship between the subgrade reaction coefficient KP.FWD value and the deformation coefficient E50 . 一軸圧縮強度qと変形係数E50との関係を示すグラフである。1 is a graph showing the relationship between unconfined compressive strength q u and deformation modulus E 50 . 鉄道用盛土の施工例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of construction of a railway embankment. 急勾配の盛土を施工する際の補強方法の例を示す斜視図である。FIG. 1 is a perspective view showing an example of a reinforcement method when constructing a steeply sloping embankment. 急勾配の盛土の施工例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of construction of a steep embankment. 先端に定着部を設けた定着用鉄筋の例を示す斜視図である。FIG. 13 is a perspective view showing an example of an anchoring rebar having an anchoring portion at its tip. 複数の定着用鉄筋の先端に長尺の定着部材を取り付けた例を示す斜視図である。13 is an oblique view showing an example in which long anchoring members are attached to the ends of multiple anchoring steel bars. FIG. 本発明の異なる実施形態にかかる盛土の施工手順の例を説明する断面図である。10A to 10C are cross-sectional views for explaining an example of a construction procedure for embankment according to a different embodiment of the present invention.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The following describes an embodiment of the present invention with reference to the drawings. In this specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to avoid redundant description.

図1は、本発明で用いられる袋体型枠2の一例を示す。袋体型枠2は、盛土を施工する場所の外周に袋体2aを配置した後、コンクリート等の充填材を注入口2bから袋体2aの内部に充填して形成される。袋体型枠2は、盛土施工後、そのまま盛土の本体構造物として使用できるものとし、袋体2aは耐候性および強度に優れた例えば合成繊維等を材料とすることが好ましい。また、充填材を充填する前の袋体2aは、例えば折りたたんで、人力で運搬および設置が可能な重量であることが好ましい。 Figure 1 shows an example of a bag formwork 2 used in the present invention. The bag formwork 2 is formed by placing a bag body 2a around the periphery of the area where the embankment is to be constructed, and then filling the interior of the bag body 2a with a filling material such as concrete through an injection port 2b. The bag formwork 2 can be used as is as the main structure of the embankment after construction of the embankment, and the bag body 2a is preferably made of a material with excellent weather resistance and strength, such as synthetic fiber. In addition, the bag body 2a before being filled with the filling material is preferably light enough to be folded, for example, and transported and set up manually.

以下、図2に基づいて、本発明の実施形態にかかる盛土の施工方法の手順の一例について説明する。本実施形態は、鉄道用盛土の施工方法とする。 Below, an example of the procedure for the embankment construction method according to an embodiment of the present invention will be described with reference to Figure 2. This embodiment is a method for constructing embankments for railways.

先ず、例えば合成繊維製の袋体2aを現場の所定位置に設置し、コンクリート等の充填材を袋体2aに充填して、図1に示す形に整形し、袋体型枠2を形成する。充填材は、例えばポンプ車等により圧入する。充填材を充填した袋体型枠2は、高さが例えば500mm程度である。幅は、流動化処理土打設時の側圧に抵抗できる寸法とし、例えば1,000~4,000mm程度で、施工する盛土の幅や高さ、充填材の単位体積重量等に応じて決められる。袋体型枠2の長手方向の寸法は特に制限されないが、盛土の長手方向に沿って配置される長尺形状、例えば50m程度としてもよい。 First, a bag body 2a made of synthetic fiber, for example, is placed at a predetermined position on-site, and a filler such as concrete is filled into the bag body 2a and shaped into the shape shown in FIG. 1 to form the bag body formwork 2. The filler is pressed in, for example, by a pump truck. The bag body formwork 2 filled with the filler has a height of, for example, about 500 mm. The width is determined according to the width and height of the embankment to be constructed, the unit volume weight of the filler, and the like, and is, for example, about 1,000 to 4,000 mm, so as to be able to resist the lateral pressure when pouring the liquefied treated soil. The longitudinal dimension of the bag body formwork 2 is not particularly limited, but it may be an elongated shape arranged along the longitudinal direction of the embankment, for example, about 50 m.

次に、充填材を充填した袋体型枠2の上に、別の袋体2aを重ねて設置し、同様に充填材を充填して袋体型枠2を形成する。そして、例えば2体の袋体型枠2を重ねたところで、充填材が硬化するまで養生を行う。充填材として呼び強度24N/mmのコンクリートを使用した場合には、1日程度の養生を行うとよい。同様にして、図2(a)に示すように、盛土の両端側に、例えば2m程度の高さまで袋体型枠2を積み上げる。図2(a)の実施形態では、高さ500mmの袋体型枠を4段重ねている。 Next, another bag 2a is placed on top of the bag form 2 filled with the filler, and the filler is filled in the same way to form the bag form 2. Then, for example, when the two bag form 2 are stacked, curing is performed until the filler hardens. When concrete with a nominal strength of 24 N/ mm2 is used as the filler, curing for about one day is recommended. In the same manner, as shown in Fig. 2(a), bag form 2 is piled up on both ends of the embankment to a height of, for example, about 2 m. In the embodiment of Fig. 2(a), four layers of bag form 2 with a height of 500 mm are stacked.

その後、1段目としての所定高さまで積み上げられた袋体型枠2同士の間に、袋体型枠2の天端高さまで、流動化処理土3を打設する(図2(b))。流動化処理土3は、建設発生土などに水やセメント等の固化材を混ぜ合わせた一般的なものを用いればよい。従来、鉄道の盛土材料として流動化処理土を使用する際、流動化処理土の設計基準強度に関する明確な規定は無く、例えばトンネルインバート部では、十分な安全性を考慮し、一軸圧縮強度6,000kPa程度のものを使用していた。ところが、近年、本発明者らの実験的研究により、流動化処理土による盛土に保護層を設けることにより、流動化処理土の一軸圧縮強度qを600kPa程度以上とすれば、列車荷重の繰返し作用に耐えうる構造となることが確認されている。本実施形態では、28日強度で1,200kPaの配合の流動化処理土3を用いることとする。 Then, between the bag-shaped forms 2 piled up to a predetermined height as the first stage, liquefied treated soil 3 is poured up to the top height of the bag-shaped forms 2 (FIG. 2(b)). The liquefied treated soil 3 may be a general one made by mixing construction waste soil with water and cement or other solidifying materials. Conventionally, when using liquefied treated soil as a railway embankment material, there is no clear regulation regarding the design standard strength of the liquefied treated soil. For example, in the tunnel invert section, liquefied treated soil with a uniaxial compressive strength of about 6,000 kPa was used in consideration of sufficient safety. However, in recent years, experimental research by the inventors has confirmed that if a protective layer is provided on the embankment made of liquefied treated soil and the uniaxial compressive strength q u of about 600 kPa or more, the structure can withstand the repeated action of train loads. In this embodiment, liquefied treated soil 3 with a 28-day strength of 1,200 kPa is used.

打設した流動化処理土3は、袋体型枠2の重量などに応じて決められる一軸圧縮強度強度になるまで硬化させる。本実施形態では、一軸圧縮強度が50kPa程度となるまで硬化させる。例えば28日強度が1,200kPaの配合とした場合、通常は、材齢1日程度で50kPa以上となる。 The poured liquefied treated soil 3 is allowed to harden until it reaches an unconfined compressive strength determined according to the weight of the bag formwork 2, etc. In this embodiment, it is allowed to harden until the unconfined compressive strength reaches approximately 50 kPa. For example, if the mix is designed for a 28-day strength of 1,200 kPa, it will usually reach 50 kPa or more after about one day of age.

一軸圧縮試験を行うには、専用の試験機が必要であり、時間も要するうえ、一軸圧縮試験を行うための供試体は数に限りがあり、現場状況を反映した試験を行うことが難しいという問題がある。そこで、本実施形態では、打設後の流動化処理土3の強度を現場で簡易に確認する方法として、小型FWD試験を用いる。先ず、小型FWD試験により地盤反力係数KP.FWD値を計測し、地盤反力係数KP.FWD値と変形係数E50との関係から、図3に示すように変形係数E50が求められる。さらに、予め確認された一軸圧縮強度qと変形係数E50との関係から、図4に示すように一軸圧縮強度qが求められる。こうして求められた一軸圧縮強度qにより、流動化処理土3の強度を把握することができる。 To perform the uniaxial compression test, a dedicated testing machine is required, which takes time, and the number of specimens for the uniaxial compression test is limited, making it difficult to perform a test that reflects the on-site conditions. Therefore, in this embodiment, a small-scale FWD test is used as a method for easily confirming the strength of the liquefied treated soil 3 after casting at the site. First, the ground reaction coefficient KP.FWD value is measured by the small-scale FWD test, and the deformation coefficient E50 is obtained from the relationship between the ground reaction coefficient KP.FWD value and the deformation coefficient E50 as shown in FIG. 3. Furthermore, the uniaxial compressive strength qu is obtained from the relationship between the previously confirmed uniaxial compressive strength qu and the deformation coefficient E50 as shown in FIG. 4. The strength of the liquefied treated soil 3 can be grasped from the uniaxial compressive strength qu thus obtained.

流動化処理土3が所定の強度に硬化したことが確認されると、その上に、2段目として、所定の傾斜が得られる位置に袋体型枠2を上述の方法と同様にして積み上げ(図2(c))、さらに、28日強度が1,200kPaの配合の流動化処理土3を、袋体型枠2の天端高さまで打設する(図2(d))。本実施形態では、一度に打設する流動化処理土3の1段の高さを2mとし、図2(e)、(f)に示すように、3段に分けて袋体型枠2の積み上げおよび流動化処理土3の打設を繰り返す。なお、最上段の流動化処理土3を打設する際には、盛土施工後に試験する一軸圧縮試験用供試体を採取しておく。 Once it is confirmed that the liquefied treated soil 3 has hardened to a predetermined strength, the bag formwork 2 is piled on top of it in the same manner as described above at a position that provides a predetermined slope as the second layer (Fig. 2(c)), and then liquefied treated soil 3 with a composition that has a 28-day strength of 1,200 kPa is poured up to the height of the top of the bag formwork 2 (Fig. 2(d)). In this embodiment, the height of one layer of liquefied treated soil 3 poured at once is 2 m, and the stacking of the bag formwork 2 and pouring of liquefied treated soil 3 are repeated in three layers as shown in Figs. 2(e) and (f). When pouring the top layer of liquefied treated soil 3, a specimen for a uniaxial compression test to be tested after construction of the embankment is taken.

図2(f)に示すように3段目の流動化処理土3の打設が終了した後、流動化処理土3の上に、鉄道の軌道等を設けるための重機作業が行われる。本実施形態において、この重機作業を行う際、流動化処理土3の上で一般的な敷き均しや転圧機械が作業できる強度として、流動化処理土3の一軸圧縮強度qを100kPa以上とする。28日強度が1,200kPaの配合の流動化処理土3の場合、通常、2日程度の養生で、一軸圧縮強度qが100kPa以上になる。 As shown in Figure 2 (f), after the casting of the third layer of liquefied treated soil 3 is completed, heavy machinery work is carried out to lay railway tracks and the like on the liquefied treated soil 3. In this embodiment, when carrying out this heavy machinery work, the uniaxial compressive strength q u of the liquefied treated soil 3 is set to 100 kPa or more so that general spreading and compaction machines can work on the liquefied treated soil 3. In the case of liquefied treated soil 3 with a composition having a 28-day strength of 1,200 kPa, the uniaxial compressive strength q u usually reaches 100 kPa or more after about 2 days of curing.

2日程度養生した最上段の流動化処理土3の一軸圧縮強度qが100kPaに達していない場合には、さらに1日程度養生を行い、再度小型FWD試験を行って流動化処理土3の一軸圧縮強度qを確認する。所定の強度発現を確認できるまで、これを繰り返す。 If the unconfined compressive strength q u of the topmost liquefied treated soil 3 after curing for about two days does not reach 100 kPa, curing is continued for another day or so and a small-scale FWD test is conducted again to confirm the unconfined compressive strength q u of the liquefied treated soil 3. This process is repeated until the desired strength is confirmed.

一軸圧縮強度qが100kPa以上になっていることが確認されたら、最上層の流動化処理土3の上面に、雨水の滞水の防止や乾燥からの防護、および列車荷重等の分散のために、保護層4を施工する。本実施形態において、保護層4は、図2(g)に示すように、透水性が異なる二種類の層5,6を重ねて形成し、流動化処理土3の直上の下層5を透水性が高い例えば粗い礫層とし、上層6を粒子の細かい砂層とする。このように上層6の透水性を低くすることで、上層6や、上層6と下層5との境界での排水を促進し、下層5を介して流動化処理土3に雨水が浸漬しにくくなる。保護層4全体の厚さは、例えば300mm程度とする。保護層4は、流動化処理土3の過剰な乾燥を防いだり、列車等の荷重の分散効果を持たせたりすることもできる。保護層4は、少なくとも流動化処理土3の上面を覆う範囲に設けられ、図5(a)に示すように袋体型枠2の上面を覆ってもよい。こうして、流動化処理土3の上面は保護層4で保護され、側面は袋体型枠2で保護された盛土10が形成される。 When it is confirmed that the uniaxial compressive strength q u is 100 kPa or more, a protective layer 4 is constructed on the top surface of the liquefied treated soil 3 of the top layer to prevent rainwater from accumulating, protect against drying, and disperse train loads, etc. In this embodiment, the protective layer 4 is formed by stacking two types of layers 5 and 6 with different permeabilities, as shown in FIG. 2(g), and the lower layer 5 directly above the liquefied treated soil 3 is made to have high permeability, for example, a coarse gravel layer, and the upper layer 6 is made to have fine sand. By lowering the permeability of the upper layer 6 in this way, drainage at the upper layer 6 and the boundary between the upper layer 6 and the lower layer 5 is promoted, and rainwater is less likely to soak into the liquefied treated soil 3 through the lower layer 5. The thickness of the entire protective layer 4 is, for example, about 300 mm. The protective layer 4 can also prevent the liquefied treated soil 3 from drying excessively and disperse the load of trains, etc. The protective layer 4 is provided in an area that covers at least the upper surface of the liquefied treated soil 3, and may also cover the upper surface of the bag formwork 2 as shown in Fig. 5(a). In this way, the upper surface of the liquefied treated soil 3 is protected by the protective layer 4, and the sides are protected by the bag formwork 2 to form an embankment 10.

さらに、鉄道用盛土として用いる際には、図5に示すように、保護層4の上面に、砕石路盤7および軌道8を施工する。そして、最上段の流動化処理土3を打設する際に採取した一軸圧縮試験用供試体に対して一軸圧縮試験を行い、流動化処理土3の一軸圧縮強度qが所定強度、すなわち、本実施形態では1,200kPa以上となっていることを確認する。一軸圧縮強度qが確認された後、試験列車の走行等により、列車走行に関する支持性能を確保できていることを確認し、列車走行を開始する。 Furthermore, when used as a railway embankment, a crushed stone roadbed 7 and a track 8 are constructed on the upper surface of the protective layer 4 as shown in Fig. 5. Then, a uniaxial compression test is performed on the uniaxial compression test specimen taken when pouring the topmost liquefied treated soil 3, and it is confirmed that the uniaxial compressive strength q u of the liquefied treated soil 3 is a predetermined strength, i.e., 1,200 kPa or more in this embodiment. After the uniaxial compressive strength q u is confirmed, it is confirmed that the support performance for train operation is secured by running a test train, etc., and train operation is started.

以上のように、本実施形態によれば、人力で運搬および設置が可能な袋体2aを盛土10の範囲に沿って配置し、袋体2aに、ポンプ車等により充填材を圧入することで、簡易に袋体型枠2の設置を行うことができる。さらに、設置した袋体型枠2をそのまま本体構造として使用することができるので、型枠の撤去や法面工を省略することができる。したがって、工期を短縮して迅速に盛土を施工することができる。また、袋体型枠2の充填材としてコンクリートを使用すれば、法面の防草効果も期待できる。 As described above, according to this embodiment, the bag body 2a, which can be transported and installed manually, is placed along the area of the embankment 10, and the filler is pressed into the bag body 2a using a pump truck or the like, allowing the bag body formwork 2 to be easily installed. Furthermore, since the installed bag body formwork 2 can be used as the main structure as is, removal of the formwork and slope work can be omitted. This allows the construction period to be shortened and the embankment to be constructed quickly. Furthermore, if concrete is used as the filler for the bag body formwork 2, a weed-prevention effect on the slope can also be expected.

また、流動化処理土3の上面に保護層4を施工することで、雨水の滞水や外気による乾燥等の外的要因から流動化処理土3を保護し、流動化処理土3の耐久性を向上させるとともに、列車荷重の分散効果も期待できる。したがって、従来、例えばトンネルインバート部では28日強度qu28が6,000kPa程度の流動化処理土が使用されていたが、より低強度な流動化処理土(qu28=600kPa以上、例えば1200kPa)が適用可能になり、汎用性が向上する。流動化処理土3の側面は、連続した袋体型枠2を残置することで、外的要因から保護することができる。 Furthermore, by constructing a protective layer 4 on the top surface of the liquefied treated soil 3, the liquefied treated soil 3 is protected from external factors such as rainwater retention and drying due to the outside air, improving the durability of the liquefied treated soil 3 and also having the effect of dispersing the train load. Therefore, while liquefied treated soil with a 28-day strength q u28 of about 6,000 kPa has been used in the past in tunnel invert sections, it is now possible to use liquefied treated soil with lower strength (q u28 = 600 kPa or more, for example 1200 kPa), improving versatility. The sides of the liquefied treated soil 3 can be protected from external factors by leaving the continuous bag formwork 2 in place.

さらに、小型FWD試験により流動化処理土3の強度を確認することで、従来の一軸圧縮試験による強度の確認よりも簡易かつ適切なタイミングで流動化処理土3の強度を評価することが可能となる。したがって、保護層4や軌道8などの流動化処理土3上の作業を適切なタイミングで行うことが可能となり、迅速に盛土10を施工することができる。 Furthermore, by checking the strength of the liquefied treated soil 3 using a small-scale FWD test, it is possible to evaluate the strength of the liquefied treated soil 3 more easily and at the right time than by checking the strength using a conventional uniaxial compression test. Therefore, work on the liquefied treated soil 3, such as the protective layer 4 and the track 8, can be carried out at the right time, and the embankment 10 can be constructed quickly.

図6は、本発明の異なる実施形態を示し、法勾配が急勾配の場合の袋体型枠2の施工手順を示す。 Figure 6 shows a different embodiment of the present invention, illustrating the construction procedure for the bag formwork 2 when the slope is steep.

先ず、図2の例と同様に、袋体2aを現場の所定位置に設置し、袋体2aの注入口2bから、コンクリート等の充填材を充填して、袋体型枠2を形成する(図6(a))。 First, as in the example of Figure 2, the bag body 2a is placed at a predetermined position on-site, and a filler such as concrete is poured into the injection port 2b of the bag body 2a to form the bag body formwork 2 (Figure 6 (a)).

本実施形態では、袋体型枠2に、流動化処理土3に定着させる棒状補強材を取り付けることで、袋体型枠2と流動化処理土3とを一体化させる。これにより、袋体型枠2の地震等による倒壊を防止し、流動化処理土3による急勾配の盛土10の安定性を向上させることができる。本実施形態では、棒状部材として、定着用鉄筋22を用いる。先ず、図6(b)に示すように、袋体型枠2の、盛土の外側となる面に、長手方向に適宜間隔で、鉛直方向に固定用鉄筋21を配置する。その後、この固定用鉄筋21に固定されるとともに流動化処理土3に定着される定着用鉄筋22を配置する。定着用鉄筋22は、一端側が曲げ加工されており、この曲げ加工部22aを固定用鉄筋21に引っ掛けて、他端側は水平方向に延びるように配置する(図6(c))。そして、この定着用鉄筋22の上に、次の袋体2aを設置し、充填材を充填して袋体型枠2を形成する(図6(d))。 In this embodiment, the bag formwork 2 and the liquefied treated soil 3 are integrated by attaching a rod-shaped reinforcing material to the bag formwork 2, which is fixed to the liquefied treated soil 3. This prevents the bag formwork 2 from collapsing due to an earthquake or the like, and improves the stability of the steeply sloping embankment 10 made of the liquefied treated soil 3. In this embodiment, an anchoring reinforcing bar 22 is used as a rod-shaped member. First, as shown in FIG. 6(b), fixing reinforcing bars 21 are arranged vertically at appropriate intervals in the longitudinal direction on the surface of the bag formwork 2 that will be the outer side of the embankment. Then, fixing reinforcing bars 22 are arranged to be fixed to the fixing reinforcing bars 21 and fixed to the liquefied treated soil 3. One end of the fixing reinforcing bar 22 is bent, and the bent portion 22a is hooked onto the fixing reinforcing bar 21, and the other end is arranged to extend horizontally (FIG. 6(c)). Then, the next bag 2a is placed on top of this anchoring rebar 22 and filled with filler to form the bag formwork 2 (Figure 6(d)).

こうして、袋体型枠2同士の間に定着用鉄筋22が挟まれ、定着用鉄筋22が水平方向に延びた状態で固定される。同様にして、各段の袋体型枠2の上に定着用鉄筋22を配置する(図6(e))。袋体型枠2が、例えば2mの所定高さまで積み上げられたら(図6(f))、図2(b)と同様に、袋体型枠2の天端高さまで流動化処理土3を打設する。定着用鉄筋22の径や本数(設置間隔)、流動化処理土3への定着長さは、地震等に対して盛土10が恒久構造物として安定して耐え得る強度を満たすように設計される。 In this way, the anchoring rebars 22 are sandwiched between the bag formwork 2 and fixed in a state where they extend horizontally. In the same manner, the anchoring rebars 22 are placed on top of the bag formwork 2 of each stage (Figure 6 (e)). When the bag formwork 2 has been piled up to a specified height, for example 2 m (Figure 6 (f)), liquefied treated soil 3 is poured up to the top height of the bag formwork 2, as in Figure 2 (b). The diameter and number (installation interval) of the anchoring rebars 22 and the length of their anchorage into the liquefied treated soil 3 are designed so that the embankment 10 has the strength to stably withstand earthquakes and the like as a permanent structure.

上記工程を繰り返し、所望する盛土高さに達したら、図7に示すように、袋体型枠2の外側に、法面の勾配に応じて、コンクリート等により擁壁9を構築し、積み上げた複数の袋体型枠2を一体化させる。比較的勾配が緩い場合には、擁壁9の代わりに、紫外線や雨水等に対する耐候性を有する吹きつけ材や面状または網目状の補強材を敷設してもよい。なお、網目状の補強材の場合には、表面に露出する鉄筋21、22を保護する手段が別途必要である。 After repeating the above steps until the desired embankment height is reached, as shown in Figure 7, a retaining wall 9 is constructed of concrete or the like on the outside of the bag formwork 2 according to the gradient of the slope, and multiple piled up bag formwork 2 are integrated. If the gradient is relatively gentle, a sprayed material or a planar or mesh-like reinforcing material that is weather-resistant to ultraviolet rays, rainwater, etc. may be laid instead of the retaining wall 9. Note that in the case of a mesh-like reinforcing material, a separate means is required to protect the reinforcing bars 21, 22 exposed on the surface.

さらに、流動化処理土3の強度を確認した後、図2(g)に示した実施形態と同様に、流動化処理土3の上に保護層4を施工する。 Furthermore, after checking the strength of the liquefied treated soil 3, a protective layer 4 is constructed on top of the liquefied treated soil 3, similar to the embodiment shown in Figure 2 (g).

流動化処理土を用いて急勾配の盛土を施工する場合、従来、PC擁壁などの強固な壁面の施工が必要とされていたが、PC擁壁は製作に時間を要し、運搬に制限があるという問題があった。また、急勾配の盛土施工に大型土のうを使用する場合には、急勾配に対応した施工時の安定性を確保するための対策を講じる必要があった。一方、図6に示す実施形態によれば、急勾配の法面を有する盛土に関しては、袋体型枠2間に棒状の補強材を配置して流動化処理土3を打設することで、盛土10の構造の安定性を増すことができる。さらに、法面表層に、擁壁9の構築または面状補強材等を敷設することにより複数の袋体型枠2を一体化させることで、盛土10の安定性が向上する。このように補強した盛土10は、用地面積が限られている場合や、既存の急勾配の法面を有する盛土を復旧する場合等、十分な面積が確保できない場合に適用することができる。 When constructing steep embankments using liquefied treated soil, it was necessary to construct a strong wall such as a PC retaining wall, but there was a problem that the construction of PC retaining walls takes time and there is a limit to transportation. In addition, when using large sandbags to construct steep embankments, measures must be taken to ensure stability during construction corresponding to the steep slope. On the other hand, according to the embodiment shown in FIG. 6, for embankments with steep slopes, the stability of the structure of the embankment 10 can be increased by placing rod-shaped reinforcing materials between the bag formwork 2 and pouring the liquefied treated soil 3. Furthermore, the stability of the embankment 10 is improved by integrating multiple bag formworks 2 by constructing a retaining wall 9 or laying a planar reinforcing material on the surface of the slope. The embankment 10 reinforced in this way can be applied when the land area is limited or when sufficient area cannot be secured, such as when restoring an existing embankment with a steep slope.

なお、定着用鉄筋22と流動化処理土3との定着を強固にするために、定着用鉄筋22の先端に、図8に例示するような矩形または円形の板状の定着部22bを設けてもよい。あるいは、複数の定着用鉄筋22の先端を長尺の定着部材23、例えば図9に示すようにL型アングル等に取り付けてもよい。 In order to strengthen the fixation of the anchoring rebars 22 to the liquefied soil 3, a rectangular or circular plate-shaped anchoring portion 22b may be provided at the tip of the anchoring rebars 22 as shown in FIG. 8. Alternatively, the tips of multiple anchoring rebars 22 may be attached to a long anchoring member 23, such as an L-shaped angle as shown in FIG. 9.

また、図10は、本発明のさらに異なる実施形態にかかる盛土10の施工方法の手順を示す。 Figure 10 also shows the steps of a construction method for embankment 10 according to yet another embodiment of the present invention.

袋体2aを現場の所定位置に設置し、充填材を充填して、袋体型枠2を形成する(図10(a))。本実施形態では、充填材として水を用いる。充填材を充填した袋体型枠2は、高さおよび幅が例えば1,500mm程度である。 The bag body 2a is placed at a predetermined position on-site and filled with a filler to form the bag body formwork 2 (Figure 10 (a)). In this embodiment, water is used as the filler. The bag body formwork 2 filled with the filler has a height and width of, for example, about 1,500 mm.

その後、袋体型枠2同士の間に、袋体型枠2の天端高さ以下の高さ、例えば1,000mmの高さまで、流動化処理土3を打設する(図10(b))。流動化処理土3は、前述の実施形態と同様のものを用いればよい。 Then, liquefied treated soil 3 is poured between the bag formwork 2 to a height equal to or lower than the top height of the bag formwork 2, for example, to a height of 1,000 mm (Figure 10 (b)). The liquefied treated soil 3 may be the same as that in the above-mentioned embodiment.

流動化処理土3を打設して1日程度養生して所定の強度になった後、1段目の袋体型枠2から水を抜き取り、袋体型枠2を解体する(図10(c))。そして、解体した袋体型枠2の袋体2aを、1段目の流動化処理土3の上に設置し、充填材を充填して、袋体型枠2を形成する(図10(d))。その後、1段目と同様に流動化処理土3を打設し(図10(e))、1日程度養生した後、袋体型枠2から水を抜き取り、袋体型枠2を解体する(図10(f))。 After pouring the liquefied treated soil 3 and curing it for about a day until it reaches the required strength, the water is drained from the first layer of the bag formwork 2 and the bag formwork 2 is dismantled (Figure 10(c)). The bag 2a of the dismantled bag formwork 2 is then placed on top of the first layer of the liquefied treated soil 3 and filled with filler to form the bag formwork 2 (Figure 10(d)). Thereafter, liquefied treated soil 3 is poured in the same way as the first layer (Figure 10(e)), and after curing for about a day, the water is drained from the bag formwork 2 and the bag formwork 2 is dismantled (Figure 10(f)).

同様の工程を繰り返し、所定の高さまで流動化処理土3を積み上げる(図10(g))。流動化処理土3の一軸圧縮強度qが所定の強度を満たすことが確認されたら、最上層の流動化処理土3の上面に、透水性が異なる二種類の層5,6を重ねて形成した保護層4を施工する。さらに、流動化処理土3の側面に、コンクリート等により擁壁9を構築し、積み上げた複数段の流動化処理土3を一体化させる。鉄道用盛土として用いる際には、保護層4の上面に、砕石路盤7および軌道8を施工する(図10(h))。 The same process is repeated to pile up the liquefied treated soil 3 to a specified height (Fig. 10(g)). Once it has been confirmed that the uniaxial compressive strength q u of the liquefied treated soil 3 satisfies the specified strength, a protective layer 4 formed by stacking two types of layers 5, 6 with different permeabilities is constructed on the top surface of the topmost layer of the liquefied treated soil 3. Furthermore, a retaining wall 9 is constructed of concrete or the like on the side of the liquefied treated soil 3 to integrate the piled up multiple layers of liquefied treated soil 3. When used as an embankment for a railway, a crushed stone roadbed 7 and tracks 8 are constructed on the top surface of the protective layer 4 (Fig. 10(h)).

本実施形態では、袋体型枠2の充填材として水を用い、各段で同じ袋体型枠2を繰り返し使用するため、低コストで盛土を施工することができる。 In this embodiment, water is used as the filler for the bag formwork 2, and the same bag formwork 2 is used repeatedly for each stage, making it possible to construct the embankment at low cost.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The above describes preferred embodiments of the present invention, but the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the technical ideas described in the claims, and it is understood that these also naturally fall within the technical scope of the present invention.

本発明は、鉄道等の用途に用いられる盛土の施工方法として有用である。 The present invention is useful as a method for constructing embankments for railways and other applications.

2 袋体型枠
3 流動化処理土
4 保護層
9 擁壁
10 盛土
21 固定用鉄筋
22 定着用鉄筋
2 Bag formwork 3 Fluidized treated soil 4 Protective layer 9 Retaining wall 10 Embankment 21 Fixing reinforcing bar 22 Anchoring reinforcing bar

Claims (9)

流動化処理土を用いた盛土の施工方法であって、
盛土施工場所の外周に袋体を配置し、前記袋体の内部に充填材を充填して袋体型枠を形成し、
前記袋体型枠を1段目の高さまで積み上げた後、前記袋体型枠の天端高さまで1段目の流動化処理土を打設し、
前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、
前記1段目の流動化処理土の上に、前記1段目と同様に、袋体型枠を設置し、前記袋体型枠を2段目の高さまで積み上げて2段目の流動化処理土を打設し、
これを繰り返して所定の高さまで前記流動化処理土を打設した後、
前記流動化処理土の最上層の上端を、排水・保水および荷重分散効果を有する保護層で覆い、
前記保護層は、透水性の異なる二種類の層で構成され、前記流動化処理土の直上に透水性が高い下層、その上に透水性が低い上層を設けることを特徴とする、盛土の施工方法。
A method for constructing embankments using liquefied treated soil, comprising the steps of:
A bag is placed around the periphery of the embankment construction site, and a filler is filled into the bag to form a bag formwork;
After stacking the bag formwork to the height of the first stage, pour the first stage of liquefied treated soil up to the top height of the bag formwork,
After the first stage of liquefied soil has hardened to a specified uniaxial compressive strength,
A bag formwork is installed on the first layer of liquefied treated soil in the same manner as the first layer, and the bag formwork is piled up to the height of the second layer and the second layer of liquefied treated soil is poured in.
This process is repeated until the liquefied treated soil is poured to a specified height, and then
The upper end of the top layer of the liquefied treated soil is covered with a protective layer having drainage, water retention and load dispersion effects.
The method for constructing embankments is characterized in that the protective layer is composed of two types of layers with different permeabilities, with a lower layer with high permeability being placed directly above the liquefied treated soil, and an upper layer with low permeability being placed on top of that .
一端を前記袋体型枠に固定し、他端を前記流動化処理土内に定着させる棒状補強材を設けることを特徴とする、請求項に記載の盛土の施工方法。 2. The method for constructing embankments according to claim 1 , further comprising providing a rod-shaped reinforcing material having one end fixed to the bag formwork and the other end anchored in the liquefied treated soil. 前記袋体は合成繊維製であることを特徴とする、請求項1または2のいずれか一項に記載の盛土の施工方法。 3. The method for constructing a bank as claimed in claim 1 , wherein the bag body is made of synthetic fiber. 前記充填材がコンクリートであることを特徴とする、請求項1~のいずれか一項に記載の盛土の施工方法。 The method for constructing a bank as claimed in any one of claims 1 to 3 , characterized in that the filling material is concrete. 流動化処理土を用いた盛土の施工方法であって、
盛土施工場所の外周に袋体を配置し、前記袋体の内部に充填材を充填して袋体型枠を形成し、
前記袋体型枠を1段目の高さまで積み上げた後、前記袋体型枠の天端高さまで1段目の流動化処理土を打設し、
前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、
1段目の前記袋体型枠を解体し、解体した前記袋体型枠の袋体を前記1段目の流動化処理土の上に設置し、前記袋体の内部に充填材を充填し袋体型枠を形成して2段目の流動化処理土を打設し、
これを繰り返して所定の高さまで前記流動化処理土を打設した後、
前記流動化処理土の最上層の上端を、排水・保水および荷重分散効果を有する保護層で覆うことを特徴とする、盛土の施工方法。
A method for constructing embankments using liquefied treated soil, comprising the steps of:
A bag is placed around the periphery of the embankment construction site, and a filler is filled into the bag to form a bag formwork;
After stacking the bag formwork to the height of the first stage, pour the first stage of liquefied treated soil up to the top height of the bag formwork,
After the first stage of liquefied soil has hardened to a specified uniaxial compressive strength,
The first stage of the bag body formwork is dismantled, the bag body of the dismantled bag body formwork is placed on the first stage of the liquefied treated soil, a filler material is filled inside the bag body to form a bag body form, and the second stage of the liquefied treated soil is poured in.
This process is repeated until the liquefied treated soil is poured to a specified height, and then
A method for constructing embankments, characterized in that the upper end of the topmost layer of the liquefied treated soil is covered with a protective layer that has drainage, water retention and load dispersion effects.
前記流動化処理土は、一軸圧縮強度の28日強度が600kPa以上であることを特徴とする、請求項1~5のいずれか一項に記載の盛土の施工方法。 The method for constructing embankments according to any one of claims 1 to 5 , characterized in that the 28-day unconfined compressive strength of the liquefied treated soil is 600 kPa or more. 打設した前記流動化処理土の硬化時の一軸圧縮強度は、
小型FWD試験で前記流動化処理土の地盤反力係数を計測し、
地盤反力係数と変形係数との関係から変形係数を求め、
変形係数と一軸圧縮強度との関係から、前記流動化処理土の一軸圧縮強度を求めることを特徴とする、請求項1~のいずれか一項に記載の盛土の施工方法。
The uniaxial compressive strength of the cast liquefied treated soil when hardened is as follows:
The subgrade reaction coefficient of the liquefied treated soil was measured in a small FWD test.
The deformation coefficient is calculated from the relationship between the subgrade reaction coefficient and the deformation coefficient.
The method for constructing embankments according to any one of claims 1 to 6 , characterized in that the unconfined compressive strength of the liquefied treated soil is determined from the relationship between the deformation coefficient and the unconfined compressive strength.
前記盛土の法面に擁壁を設けることを特徴とする、請求項1~のいずれか一項に記載の盛土の施工方法。 The method for constructing an embankment according to any one of claims 1 to 7 , further comprising providing a retaining wall on the slope of the embankment. 前記盛土は、鉄道用盛土であることを特徴とする、請求項1~のいずれか一項に記載の盛土の施工方法。
The embankment construction method according to any one of claims 1 to 8 , characterized in that the embankment is an embankment for a railway.
JP2022016413A 2022-02-04 2022-02-04 Embankment construction method Active JP7602501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022016413A JP7602501B2 (en) 2022-02-04 2022-02-04 Embankment construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022016413A JP7602501B2 (en) 2022-02-04 2022-02-04 Embankment construction method

Publications (2)

Publication Number Publication Date
JP2023114198A JP2023114198A (en) 2023-08-17
JP7602501B2 true JP7602501B2 (en) 2024-12-18

Family

ID=87569142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022016413A Active JP7602501B2 (en) 2022-02-04 2022-02-04 Embankment construction method

Country Status (1)

Country Link
JP (1) JP7602501B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021083A (en) 2000-07-13 2002-01-23 Kogensha:Kk Fill and construction method therefor
JP2016191272A (en) 2015-03-31 2016-11-10 日鐵住金建材株式会社 Construction method for slope structure
JP2019190093A (en) 2018-04-24 2019-10-31 旭化成アドバンス株式会社 Fabric form, slope face protection structure and slope face protection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021083A (en) 2000-07-13 2002-01-23 Kogensha:Kk Fill and construction method therefor
JP2016191272A (en) 2015-03-31 2016-11-10 日鐵住金建材株式会社 Construction method for slope structure
JP2019190093A (en) 2018-04-24 2019-10-31 旭化成アドバンス株式会社 Fabric form, slope face protection structure and slope face protection method

Also Published As

Publication number Publication date
JP2023114198A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
NL8700512A (en) FOUNDATION AND METHOD FOR MAKING THEREOF
CN111576454B (en) Combined protective structure for slope retaining wall plus steel pipe piles and construction method thereof
US20100325819A1 (en) Bridge approach and abutment construction and method
CN113186766A (en) Shallow soft soil foundation foam light soil embankment structure and construction method
CN110761316B (en) Prefabricated foundation ring beam prefabricating method and storage tank construction method applying prefabricated foundation ring beam prefabricating method
KR101710304B1 (en) Method of repairing and reinforcing scour and separation of underwater concrete structure
US6808156B2 (en) Method and apparatus for molding concrete into a bridge or other structure
CN114837088A (en) A kind of construction method of bearing platform on highway
JP7602501B2 (en) Embankment construction method
CN111119219B (en) Reinforced foundation tire membrane structure and construction method thereof
US7067001B2 (en) Drainage composition and uses thereof
KR100483350B1 (en) In place assembling top blocks and their reinforced complex foundation method
CN212742588U (en) Green assembled side slope supporting construction
JP3749995B2 (en) Ground improvement method and ground improvement body
CN113186768A (en) Construction method for improving roadbed backfill quality after existing line demolition of frame structure
KR100884391B1 (en) Reinforced soil retaining wall reinforced with drainage function at the top of retaining wall and its construction method
CN112663418A (en) Pile-supported high embankment and construction method
Singh et al. Concrete in Residential Construction
JP4680676B2 (en) Three-dimensional intersection construction method using backfilling material and construction material of fluidized soil
CN212129795U (en) Dampproofing anti ground structure that splits
JP2024136060A (en) Embankment construction method and embankment structure
JP2012503112A (en) Monolithic foundation system with durable aggregate pavement with homopolymer / semi-continuous structure
Fill et al. I. General
GIRDER Royal Government of Bhutan
CN118854990A (en) A method for constructing a submerged tube pier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241206

R150 Certificate of patent or registration of utility model

Ref document number: 7602501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150