Nothing Special   »   [go: up one dir, main page]

JP7539828B2 - Shaft seal structure of oil-cooled screw compressor - Google Patents

Shaft seal structure of oil-cooled screw compressor Download PDF

Info

Publication number
JP7539828B2
JP7539828B2 JP2020219043A JP2020219043A JP7539828B2 JP 7539828 B2 JP7539828 B2 JP 7539828B2 JP 2020219043 A JP2020219043 A JP 2020219043A JP 2020219043 A JP2020219043 A JP 2020219043A JP 7539828 B2 JP7539828 B2 JP 7539828B2
Authority
JP
Japan
Prior art keywords
oil
rotor
shaft
chamber
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020219043A
Other languages
Japanese (ja)
Other versions
JP2022104058A (en
Inventor
優 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2020219043A priority Critical patent/JP7539828B2/en
Publication of JP2022104058A publication Critical patent/JP2022104058A/en
Application granted granted Critical
Publication of JP7539828B2 publication Critical patent/JP7539828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は油冷式スクリュ圧縮機の軸封構造に関し,より詳細には,油冷式スクリュ圧縮機のスクリュロータに設けた吐出側ロータ軸と軸孔間の間隔を介してロータ室の圧縮気体が漏出することを防止するための軸封部の構造に関する。 The present invention relates to a shaft seal structure for an oil-cooled screw compressor, and more specifically, to a shaft seal structure for preventing compressed gas from leaking from the rotor chamber through the gap between the discharge side rotor shaft and the shaft hole provided in the screw rotor of an oil-cooled screw compressor.

油冷式スクリュ圧縮機100は,ケーシング内に形成されたロータ室111内にオス,メス一対のスクリュロータ140,150を噛み合い回転可能に収容し,前記一対のスクリュロータ140,150の噛み合い回転により被圧縮気体を潤滑油と共に圧縮して気液混合流体として吐出するもので,各種の気体の圧縮に使用されている。 The oil-cooled screw compressor 100 houses a pair of male and female screw rotors 140, 150 that can mesh and rotate in a rotor chamber 111 formed in a casing, and compresses the gas to be compressed together with lubricating oil by the meshing rotation of the pair of screw rotors 140, 150 and discharges it as a gas-liquid mixed fluid. It is used to compress various types of gas.

この油冷式スクリュ圧縮機100は,前述のように被圧縮気体を潤滑油と共に圧縮して気液混合流体として吐出するものであることから,空気作業機等が接続された消費側に対し圧縮気体を供給するためには,油冷式スクリュ圧縮機100が吐出した気液混合流体から潤滑油を除去する必要がある。 As described above, this oil-cooled screw compressor 100 compresses the compressed gas together with lubricating oil and discharges it as a gas-liquid mixed fluid. Therefore, in order to supply compressed gas to the consumption side to which a pneumatic work machine or the like is connected, it is necessary to remove the lubricating oil from the gas-liquid mixed fluid discharged by the oil-cooled screw compressor 100.

そのため,図6に示すように,エンジンやモータなどの駆動源210によって駆動することにより油冷式スクリュ圧縮機100が吐出した気液混合流体は,一旦,レシーバタンク220内に導入して気液分離した後,潤滑油が分離された後の圧縮気体を,逆止弁221を介して消費側に供給する構成が採用されている。 As shown in FIG. 6, the oil-cooled screw compressor 100 is driven by a driving source 210 such as an engine or a motor, and the gas-liquid mixture fluid discharged from the oil-cooled screw compressor 100 is first introduced into a receiver tank 220 for gas-liquid separation, and the compressed gas from which the lubricating oil has been separated is then supplied to the consumer side via a check valve 221.

一方,レシーバタンク220内に回収された潤滑油はレシーバタンク220内の圧力を利用してオイルフィルタ222,オイルクーラ223を備える給油配管224を介して,再度,圧縮機本体に給油する構成が採用されている。 On the other hand, the lubricating oil recovered in the receiver tank 220 is supplied again to the compressor body via an oil supply pipe 224 equipped with an oil filter 222 and an oil cooler 223, utilizing the pressure within the receiver tank 220.

このようにして油冷式スクリュ圧縮機100に給油された潤滑油は,圧縮作用空間内に給油されて,圧縮作用空間の潤滑,冷却,及び密封のために使用される他,軸封部や軸受,歯車機構等の,油冷式スクリュ圧縮機100内の潤滑が必要とされる部分に給油されて各部の潤滑や密封に使用されている。 The lubricating oil supplied to the oil-cooled screw compressor 100 in this way is supplied to the compression space and used to lubricate, cool, and seal the compression space, and is also supplied to parts of the oil-cooled screw compressor 100 that require lubrication, such as shaft seals, bearings, and gear mechanisms, and is used to lubricate and seal each part.

この油冷式スクリュ圧縮機100では,スクリュロータ140,150をロータ室111内で噛み合い回転することができるようにするために,スクリュロータ140,150の両端にはロータ軸141,142(151,152)が形成されていると共に,ケーシング内に形成された軸孔内にロータ軸を挿入して,この軸孔と連通する軸受室132に収容した軸受170で各ロータ軸141,142(151,152)を回転可能に支承している。 In this oil-cooled screw compressor 100, in order to enable the screw rotors 140, 150 to mesh and rotate within the rotor chamber 111, rotor shafts 141, 142 (151, 152) are formed on both ends of the screw rotors 140, 150, and the rotor shafts are inserted into shaft holes formed in the casing, and each rotor shaft 141, 142 (151, 152) is rotatably supported by bearings 170 housed in a bearing chamber 132 that communicates with the shaft holes.

そして,スクリュロータ140(150)の噛み合い回転によってロータ室111内で圧縮された圧縮気体が,スクリュロータ140(150)の吐出側ロータ軸142(152)の外周面と軸孔131の内周面間の間隔から漏出することを防止するために,吐出側ロータ軸142(152)を支承する軸受170を収容する軸受室132と,ロータ室111間には,前述した軸封部134が設けられている。 Then, to prevent the compressed gas compressed in the rotor chamber 111 by the meshing rotation of the screw rotor 140 (150) from leaking from the gap between the outer peripheral surface of the discharge side rotor shaft 142 (152) of the screw rotor 140 (150) and the inner peripheral surface of the shaft hole 131, the aforementioned shaft seal portion 134 is provided between the rotor chamber 111 and the bearing chamber 132 that houses the bearing 170 that supports the discharge side rotor shaft 142 (152).

この軸封部134の構成として,後掲の特許文献1では,図7に示すように吐出側の軸受170を収容する軸受室132とロータ室111間の吐出側ロータ軸142(152)の外周面に,周方向に連続して形成された無端環状の給油溝137を設けている。 As shown in FIG. 7, in the configuration of the shaft seal 134 in Patent Document 1, which is cited below, an endless annular oil supply groove 137 is provided on the outer circumferential surface of the discharge side rotor shaft 142 (152) between the bearing chamber 132 that houses the discharge side bearing 170 and the rotor chamber 111.

そして,この給油溝137に,前述したレシーバタンク220からの潤滑油を,給油配管224,及び,給油流路193を介して給油することで,この潤滑油によってロータ軸142の外周面と軸孔131の内周面間の隙間Δ’を封止し,この隙間Δ’を介してロータ室111より圧縮気体が漏出することを防止している。 Then, lubricating oil from the receiver tank 220 described above is supplied to this oil supply groove 137 via the oil supply pipe 224 and the oil supply passage 193, and this lubricating oil seals the gap Δ' between the outer circumferential surface of the rotor shaft 142 and the inner circumferential surface of the shaft hole 131, thereby preventing compressed gas from leaking from the rotor chamber 111 through this gap Δ'.

そして,給油溝137を介してロータ軸142の外周面と軸孔131の内周面間の隙間Δ’に導入した潤滑油を軸受室132側に漏出させることで,軸受170に対する給油についても行うことができるように構成されている。 The lubricating oil introduced into the gap Δ' between the outer circumferential surface of the rotor shaft 142 and the inner circumferential surface of the shaft hole 131 via the oil supply groove 137 is allowed to leak into the bearing chamber 132, so that the bearing 170 can also be oiled.

特開2015-4306号公報JP 2015-4306 A

以上で説明した特許文献1に記載の軸封部134では,前述の隙間Δ’を介してロータ室111の圧縮気体が軸受室132へ漏出しないように油冷式スクリュ圧縮機の吐出圧と略同圧の潤滑油をロータ軸142(152)の外周面に設けた給油溝137に給油することで,この潤滑油の圧力と,ロータ室111より漏出しようとする圧縮気体の圧力が前述の隙間Δ’内で釣り合って,ロータ室111内の圧縮気体が隙間Δ’を通過することを防止する。 In the shaft seal portion 134 described in Patent Document 1 described above, lubricating oil at approximately the same pressure as the discharge pressure of the oil-cooled screw compressor is supplied to the oil supply groove 137 provided on the outer peripheral surface of the rotor shaft 142 (152) to prevent the compressed gas in the rotor chamber 111 from leaking into the bearing chamber 132 through the aforementioned gap Δ'. This causes the pressure of this lubricating oil to balance with the pressure of the compressed gas attempting to leak from the rotor chamber 111 within the aforementioned gap Δ', preventing the compressed gas in the rotor chamber 111 from passing through the gap Δ'.

ロータ軸142(152)の給油溝137に対して給油する潤滑油は,前述したように油冷式スクリュ圧縮機100の吐出圧と略同圧であるため,高圧設定の油冷式スクリュ圧縮機100のようにロータ室111内で圧縮された圧縮気体の圧力が高くなると,ロータ軸142(152)の給油溝137に対する給油圧力もこれに応じて高くなる。 The lubricating oil supplied to the oil supply groove 137 of the rotor shaft 142 (152) is at approximately the same pressure as the discharge pressure of the oil-cooled screw compressor 100 as described above, so when the pressure of the compressed gas compressed in the rotor chamber 111 increases, as in the case of an oil-cooled screw compressor 100 set to high pressure, the oil supply pressure to the oil supply groove 137 of the rotor shaft 142 (152) also increases accordingly.

その結果,給油溝137に対する給油圧力の上昇分,給油溝137に対し軸受室132側のロータ軸142の外周面と軸孔131の内周面間の隙間Δ’を介して軸受170側に流入する潤滑油量,従って,軸受170に対する給油量が必要以上に増大する。 As a result, the amount of lubricating oil flowing into the bearing 170 through the gap Δ' between the outer circumferential surface of the rotor shaft 142 on the bearing chamber 132 side and the inner circumferential surface of the shaft hole 131 relative to the oil groove 137 due to the increase in oil supply pressure to the oil groove 137, and therefore the amount of oil supplied to the bearing 170, increases more than necessary.

このように,軸受170に対し必要量以上の潤滑油が給油されれば,軸受170が潤滑油を攪拌することに伴って生じる回転抵抗が増加することで油冷式スクリュ圧縮機100の動力ロスが増加する。 In this way, if more lubricating oil than necessary is supplied to the bearing 170, the rotational resistance caused by the bearing 170 stirring the lubricating oil increases, resulting in increased power loss in the oil-cooled screw compressor 100.

また,軸受170を潤滑した後の潤滑油は,軸受170に対し機外側に設けられた潤滑油回収室135内に回収されるが,この潤滑油回収室135に回収された潤滑油を,潤滑油回収室135よりも低圧である吸気閉じ込み直後の圧縮作用空間に給油して回収する構成を採用する場合,圧縮作用空間に導入される潤滑油量も増加することとなるために,スクリュロータ140(150)がこのような増加分の潤滑油を攪拌することによって生じる動力ロスも大きくなる。 In addition, the lubricating oil after lubricating the bearing 170 is recovered in the lubricating oil recovery chamber 135 provided on the outside of the bearing 170. However, if a configuration is adopted in which the lubricating oil recovered in this lubricating oil recovery chamber 135 is fed and recovered into the compression action space immediately after intake air confinement, which is at a lower pressure than the lubricating oil recovery chamber 135, the amount of lubricating oil introduced into the compression action space also increases, and the power loss caused by the screw rotor 140 (150) stirring this increased amount of lubricating oil also increases.

このように,軸受170に対し過剰に給油が行われることを防止する方法としては,一例として図8に示すように,軸受室132とロータ室111間のロータ軸142に円筒状のスペーサ136を取り付け,このスペーサ136の外周面に前述の給油溝137を設けると共に,この給油溝137に対しロータ室111側のスペーサ136の外周面と,軸受室132側のスペーサ136の外周面に,断面矩形状を有し,周方向に連続して形成された無端環状のラビリンス溝138’,139を複数形成することで,このスペーサ136にラビリンスシールとしての機能を持たせることも考えられる。 As an example of a method for preventing excessive oil supply to the bearing 170, as shown in FIG. 8, a cylindrical spacer 136 is attached to the rotor shaft 142 between the bearing chamber 132 and the rotor chamber 111, and the above-mentioned oil supply groove 137 is provided on the outer circumferential surface of this spacer 136. In addition, a plurality of endless annular labyrinth grooves 138', 139 having a rectangular cross section and formed continuously in the circumferential direction are formed on the outer circumferential surface of the spacer 136 on the rotor chamber 111 side and the outer circumferential surface of the spacer 136 on the bearing chamber 132 side with respect to the oil supply groove 137, thereby giving the spacer 136 the function as a labyrinth seal.

この構成では,給油溝137から軸受室132側に向かってスペーサ136の外周面と軸孔131の内周面間の隙間Δを通過する潤滑油は,図8(B)に示すようにラビリンス溝139間に形成された絞り部と,ラビリンス溝139内に形成された拡大部を交互に通過することにより生じる圧力損失によって,軸受170側に流入する潤滑油の量を減少させることが可能となる。 In this configuration, the lubricating oil passing through the gap Δ between the outer peripheral surface of the spacer 136 and the inner peripheral surface of the shaft hole 131 from the oil supply groove 137 toward the bearing chamber 132 side passes alternately through the throttling section formed between the labyrinth grooves 139 and the enlarged section formed within the labyrinth groove 139, as shown in Figure 8 (B), which causes pressure loss, making it possible to reduce the amount of lubricating oil flowing into the bearing 170 side.

しかし,この構成により,給油溝137に対する給油圧力を低下させることなく高圧設定の油冷式スクリュ圧縮機100の軸受170に対する給油量を減少させようとした場合,油冷式スクリュ圧縮機100の吐出側圧力の上昇分に対応した大幅な圧力損失を発生させるためにスペーサ136の外周面に多数のラビリンス溝139を形成することが必要で,このスペースを確保するために,スペーサ136の長さを長くする必要がある等,寸法変化等を伴った軸封部134の大幅な設計の見直しが必要となる。 However, if this configuration is used to reduce the amount of oil supplied to the bearing 170 of the oil-cooled screw compressor 100 set at high pressure without reducing the oil supply pressure to the oil supply groove 137, it is necessary to form a large number of labyrinth grooves 139 on the outer peripheral surface of the spacer 136 in order to generate a significant pressure loss corresponding to the increase in the discharge side pressure of the oil-cooled screw compressor 100. In order to secure this space, it is necessary to increase the length of the spacer 136, etc., and a major redesign of the shaft seal portion 134 involving dimensional changes, etc. is required.

そのため,スペーサ136の長さの変更等,軸封部134の大幅な設計変更を伴うことなく,例えば軸封用のスペーサ136の交換だけで,より効率的に軸受170に対する給油量を減らすことができる軸封構造が要望される。 Therefore, there is a demand for a shaft seal structure that can more efficiently reduce the amount of oil supplied to the bearing 170 by simply replacing the shaft seal spacer 136, for example, without requiring major design changes to the shaft seal portion 134, such as changing the length of the spacer 136.

ここで,軸受室132側に対する潤滑油の流入量を減少させるために,給油溝137内に潤滑油を供給する給油流路193を絞ることも考えられる。 Here, in order to reduce the amount of lubricating oil flowing into the bearing chamber 132, it is also possible to narrow the oil supply passage 193 that supplies lubricating oil into the oil supply groove 137.

しかし,給油溝137に対する給油量が減少すると,給油溝137内の圧力がロータ室111より漏出しようとする圧縮気体の圧力に抗することができなくなり,その結果,ロータ室111からの圧縮気体の漏出を防止できなくなる。 However, if the amount of oil supplied to the oil supply groove 137 decreases, the pressure inside the oil supply groove 137 will no longer be able to resist the pressure of the compressed gas attempting to leak from the rotor chamber 111, and as a result, it will no longer be possible to prevent the compressed gas from leaking from the rotor chamber 111.

そこで,図8に示すように給油溝137に対しロータ室111側のスペーサ136外周面にも,断面矩形状のラビリンス溝138’を設け,ロータ室111から漏出する圧縮気体にも圧力損出を生じさせることで,給油溝137に対し給油する潤滑油の圧力を低下させることも考えられる。 As shown in FIG. 8, a labyrinth groove 138' with a rectangular cross section is provided on the outer peripheral surface of the spacer 136 on the rotor chamber 111 side relative to the oil supply groove 137, and a pressure loss is also generated in the compressed gas leaking from the rotor chamber 111, thereby reducing the pressure of the lubricating oil supplied to the oil supply groove 137.

しかし,給油溝137に対しロータ室111側に位置するスペーサ136の外周面と軸孔131内周面間の隙間Δには,図8(C)に示すようにロータ室111側から圧縮気体が導入されるだけでなく,給油溝137側からの潤滑油が導入される。 However, in the gap Δ between the outer peripheral surface of the spacer 136, which is located on the rotor chamber 111 side of the oil supply groove 137, and the inner peripheral surface of the shaft hole 131, not only is compressed gas introduced from the rotor chamber 111 side, as shown in FIG. 8(C), but lubricating oil is also introduced from the oil supply groove 137 side.

そして,この隙間Δ内において両流体の圧力が釣り合うと,ロータ室111の圧縮気体が前述の隙間Δを通過できなくなり、軸受室132への漏出防止が図れるが,図8(C)に示したように,断面矩形状,従って左右対称形状のラビリンス溝138’を設けた場合,このラビリンス溝138’は,ロータ室111から給油溝137側に向かう圧縮気体に圧力損失を生じさせるだけでなく,給油溝137からロータ室111側へ向かう潤滑油にも圧力損失を生じさせることになるため,断面矩形状のラビリンス溝138’を設けたとしても給油溝137内に潤滑油を供給する給油流路を絞って給油溝137に対する潤滑油の給油量を低下させてしまうと,ロータ室111からの圧縮気体の漏出を防止することができなくなる。 When the pressures of both fluids are balanced in this gap Δ, the compressed gas in the rotor chamber 111 cannot pass through the gap Δ, preventing leakage into the bearing chamber 132. However, as shown in FIG. 8(C), if a labyrinth groove 138' with a rectangular cross section and therefore a symmetrical shape is provided, this labyrinth groove 138' not only causes a pressure loss in the compressed gas flowing from the rotor chamber 111 to the oil supply groove 137, but also causes a pressure loss in the lubricating oil flowing from the oil supply groove 137 to the rotor chamber 111. Therefore, even if a labyrinth groove 138' with a rectangular cross section is provided, if the oil supply flow path that supplies lubricating oil to the oil supply groove 137 is narrowed to reduce the amount of lubricating oil supplied to the oil supply groove 137, it will no longer be possible to prevent leakage of compressed gas from the rotor chamber 111.

そこで,本発明の発明者は,給油溝137に対しロータ室111側に位置するスペーサ136の外周面に形成するラビリンス溝138’の断面形状を工夫することにより,給油溝137側からロータ室111側へ向かう潤滑油に対するよりも,ロータ室111側から給油溝137側に向かう圧縮気体に対してより大きな圧力損出を生じさせることができれば給油溝137に対する給油圧力を低下させた場合であってもロータ室111からの圧縮気体の漏出を防止できるのではないかとの考えの下,鋭意研究を重ね,本発明の完成に至った。 The inventors of the present invention therefore conducted extensive research and completed the present invention, based on the idea that if a greater pressure loss could be caused in the compressed gas flowing from the rotor chamber 111 side to the oil groove 137 than in the lubricating oil flowing from the oil groove 137 side to the rotor chamber 111 side by devising a cross-sectional shape of the labyrinth groove 138' formed on the outer circumferential surface of the spacer 136 located on the rotor chamber 111 side relative to the oil groove 137, it would be possible to prevent leakage of compressed gas from the rotor chamber 111 even if the oil pressure supplying the oil groove 137 is reduced.

このように,本発明は,ロータ室からの圧縮気体の漏出を防止するという軸封部の機能を維持しつつ,軸封部に対する給油量を減少させてもロータ室内の圧縮気体が軸受室側へ漏出することを防ぐことが可能であり,従って,軸封部に隣接して設けられた軸受に対する給油量の制御幅を広げることができる油冷式スクリュ圧縮機の軸封構造を提供することを目的とする。 In this way, the present invention aims to provide a shaft seal structure for an oil-cooled screw compressor that can prevent compressed gas in the rotor chamber from leaking into the bearing chamber even if the amount of oil supplied to the shaft seal is reduced, while maintaining the function of the shaft seal to prevent leakage of compressed gas from the rotor chamber, and therefore can widen the range of control over the amount of oil supplied to the bearings located adjacent to the shaft seal.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするために記載したものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 Below, the means for solving the problem are described together with the reference symbols used in the description of the embodiment of the invention. These reference symbols are described to clarify the correspondence between the description of the claims and the description of the embodiment of the invention, and needless to say, are not used in a restrictive manner in interpreting the technical scope of the present invention.

上記目的を達成するために,本発明の油冷式スクリュ圧縮機1の軸封構造は,
ケーシング2内に形成されたロータ室11内にオス,メス一対のスクリュロータ40,50を噛み合い状態で回転可能に収容し,前記ケーシング2に前記スクリュロータ40,50の吐出側ロータ軸42,52を挿入する軸孔31と,該軸孔31と連通し,前記吐出側ロータ軸42,52を支承する軸受70,70を収容する軸受室32とを形成し,前記ロータ室11と前記軸受室32との間で前記吐出側ロータ軸42,52の外周面と前記軸孔31の内周面間の隙間Δを封止する軸封部34を備えた油冷式スクリュ圧縮機の軸封構造において,
前記軸受室32,32と前記ロータ室11間の前記吐出側ロータ軸42,52の外周面及び/又は前記ロータ軸42,52の収容位置における前記軸孔31の内周面(図示の例ではロータ軸42,52に外嵌されてロータ軸42,52の外周面を成すスペーサ36の外周面)に,周方向に連続する無端環状の給油溝37を形成すると共に,前記ケーシング2内に該給油溝37に潤滑油を給油する給油流路93を設け,
前記給油溝37側から前記ロータ室11側に向かって徐々に拡大することにより前記給油溝37側から前記ロータ室11側に向かう潤滑油に対するよりも,前記ロータ室11側から前記給油溝37側に向かう圧縮気体に対してより大きな圧力損失を生じさせる断面形状を有し,周方向に連続する無端環状のラビリンス溝38を,前記給油溝37に対し前記ロータ室11側に位置する前記ロータ軸42,52の外周面及び/又は前記軸孔31の内周面(図示の例ではロータ軸42,52の外周面を成すスペーサ36の外周面)に,所定間隔で複数平行に設けたことを特徴とする(請求項1,図3~5参照)。
In order to achieve the above object, the shaft seal structure of the oil-cooled screw compressor 1 of the present invention is as follows:
A shaft seal structure for an oil-cooled screw compressor, in which a pair of male and female screw rotors 40, 50 are rotatably accommodated in a meshed state within a rotor chamber 11 formed within a casing 2, a shaft hole 31 into which a discharge side rotor shaft 42, 52 of the screw rotors 40, 50 is inserted, and a bearing chamber 32 is formed in the casing 2, communicating with the shaft hole 31 and accommodating bearings 70, 70 supporting the discharge side rotor shaft 42, 52, and a shaft seal portion 34 is provided between the rotor chamber 11 and the bearing chamber 32 to seal a gap Δ between an outer peripheral surface of the discharge side rotor shaft 42, 52 and an inner peripheral surface of the shaft hole 31,
an endless annular oil supply groove 37 is formed in the circumferential direction on the outer peripheral surface of the discharge side rotor shaft 42, 52 between the bearing chambers 32, 32 and the rotor chamber 11 and/or on the inner peripheral surface of the shaft hole 31 at the accommodation position of the rotor shaft 42, 52 (in the illustrated example, on the outer peripheral surface of a spacer 36 fitted onto the rotor shaft 42, 52 to form the outer peripheral surface of the rotor shaft 42, 52); and an oil supply passage 93 is provided in the casing 2 for supplying lubricating oil to the oil supply groove 37.
The labyrinth groove 38 has a cross-sectional shape which gradually expands from the oil groove 37 side toward the rotor chamber 11 side, thereby causing a greater pressure loss for the compressed gas flowing from the rotor chamber 11 side to the oil groove 37 side than for the lubricating oil flowing from the oil groove 37 side to the rotor chamber 11 side, and is characterized in that a plurality of endless annular labyrinth grooves 38 which are continuous in the circumferential direction are provided in parallel at predetermined intervals on the outer peripheral surface of the rotor shafts 42, 52 located on the rotor chamber 11 side of the oil groove 37 and/or the inner peripheral surface of the shaft hole 31 (in the illustrated example, the outer peripheral surface of the spacer 36 which forms the outer peripheral surface of the rotor shafts 42, 52) (see claim 1 and Figures 3 to 5).

前記軸受室32,32と前記ロータ室11間の前記吐出側ロータ軸42,52に外嵌されて,該位置における前記吐出側ロータ軸42,52の外径を拡大する円筒状のスペーサ36を設け,該スペーサ36の外周面を前記吐出側ロータ軸42,52の前記外周面とするものとしても良い(請求項2)。 A cylindrical spacer 36 may be provided that is fitted around the discharge side rotor shaft 42, 52 between the bearing chamber 32, 32 and the rotor chamber 11 to expand the outer diameter of the discharge side rotor shaft 42, 52 at that position, and the outer circumferential surface of the spacer 36 may be the outer circumferential surface of the discharge side rotor shaft 42, 52 (claim 2).

前記ラビリンス溝38を,更に前記給油溝37に対し前記軸受室32側に位置する前記吐出側ロータ軸42,52の外周面及び/又は前記軸孔31の内周面(図示の例では吐出側ロータ軸42,52の外周面を成すスペーサ36の外周面)に対しても所定間隔で複数平行に設けるものとしても良い(請求項3,図3参照)。 The labyrinth grooves 38 may also be provided in parallel at a predetermined interval on the outer circumferential surface of the discharge rotor shaft 42, 52 located on the bearing chamber 32 side relative to the oil supply groove 37 and/or on the inner circumferential surface of the shaft hole 31 (in the illustrated example, on the outer circumferential surface of the spacer 36 forming the outer circumferential surface of the discharge rotor shaft 42, 52) (see claim 3 and FIG. 3).

又は,上記構成に代えて,断面矩形状を成し,周方向に連続する無端環状の矩形ラビリンス溝39を,前記給油溝37に対し前記軸受室32側に位置する前記吐出側ロータ軸42,52の外周面及び/又は前記軸孔31の内周面(図示の例では吐出側ロータ軸42,52の外周面を成すスペーサ36の外周面)に所定間隔で複数平行に設けるものとしても良い(請求項4,図4参照)。 Alternatively, instead of the above configuration, a rectangular labyrinth groove 39 having a rectangular cross section and an endless annular shape that continues in the circumferential direction may be provided in parallel at a predetermined interval on the outer circumferential surface of the discharge side rotor shaft 42, 52 located on the bearing chamber 32 side relative to the oil supply groove 37 and/or on the inner circumferential surface of the shaft hole 31 (in the illustrated example, the outer circumferential surface of the spacer 36 that forms the outer circumferential surface of the discharge side rotor shaft 42, 52) (see claim 4 and Figure 4).

更に,前記給油溝37に対し前記軸受室32側の前記吐出側ロータ軸42,52の外周面(図示の例では吐出側ロータ軸42,52の外周面を成すスペーサ36の外周面)と前記軸孔31の内周面は,いずれも平滑面としてラビリンス溝を設けない構成としても良い(請求項5,図5参照)。 Furthermore, the outer peripheral surface of the discharge side rotor shaft 42, 52 on the bearing chamber 32 side relative to the oil supply groove 37 (in the illustrated example, the outer peripheral surface of the spacer 36 forming the outer peripheral surface of the discharge side rotor shaft 42, 52) and the inner peripheral surface of the shaft hole 31 may both be smooth surfaces without labyrinth grooves (see claim 5 and Figure 5).

以上で説明した本発明の構成により,本発明の油冷式スクリュ圧縮機1の軸封部34では,以下の顕著な効果を得ることができた。 By using the configuration of the present invention described above, the shaft seal portion 34 of the oil-cooled screw compressor 1 of the present invention can achieve the following remarkable effects:

軸受室32側からロータ室11側に向かって徐々に拡大する断面形状を有し,周方向に連続する無端環状のラビリンス溝38を,前記給油溝37に対し前記ロータ室11側に位置する吐出側ロータ軸42,52の外周面及び/又は前記軸孔31の内周面(図示の例では吐出側ロータ軸42,52の外周面を成すスペーサ36の外周面)に,所定間隔で複数平行に設けた構成(図3~図5参照)を採用したことで,給油溝37に対する給油量を絞って給油溝37内の潤滑油の圧力を,ロータ室11より漏出する圧縮気体の圧力よりも低く設定した場合であっても,ロータ室11からの圧縮気体の漏出を防止することができた。 By adopting a configuration (see Figures 3 to 5) in which a plurality of endless annular labyrinth grooves 38, which have a cross-sectional shape that gradually expands from the bearing chamber 32 side toward the rotor chamber 11 side and are continuous in the circumferential direction, are provided in parallel at predetermined intervals on the outer circumferential surface of the discharge side rotor shaft 42, 52 located on the rotor chamber 11 side relative to the oil supply groove 37 and/or the inner circumferential surface of the shaft hole 31 (in the illustrated example, the outer circumferential surface of the spacer 36 that forms the outer circumferential surface of the discharge side rotor shaft 42, 52), it is possible to prevent leakage of compressed gas from the rotor chamber 11 even when the amount of oil supplied to the oil supply groove 37 is reduced and the pressure of the lubricating oil in the oil supply groove 37 is set lower than the pressure of the compressed gas leaking from the rotor chamber 11.

このように,給油溝37に対する給油量の減少が可能となったことで,軸封部34に隣接して設けられた軸受70に対する給油量を減少させることが可能で,高圧設定の油冷式スクリュ圧縮機1においても軸受70に対し過剰に潤滑油が給油されることを防止することができた。 In this way, it is possible to reduce the amount of oil supplied to the oil groove 37, which makes it possible to reduce the amount of oil supplied to the bearing 70 located adjacent to the shaft seal portion 34, and prevents excessive supply of lubricating oil to the bearing 70 even in an oil-cooled screw compressor 1 set at high pressure.

その結果,軸受70が過剰に給油された潤滑油を攪拌することにより生じる動力ロスの発生や,軸受70に過剰に供給された潤滑油を圧縮作用空間内に回収することにより,スクリュロータ40,50が攪拌する潤滑油量が増加することにより生じる動力ロスの発生を防止することができた。 As a result, it is possible to prevent power loss caused by the bearing 70 stirring up excess lubricating oil, and by recovering excess lubricating oil supplied to the bearing 70 in the compression action space, it is possible to prevent power loss caused by an increase in the amount of lubricating oil stirred by the screw rotors 40, 50.

また,給油溝37に対しロータ室11側に前述したラビリンス溝38を形成するだけでなく,給油溝37に対し軸受室32側にも同様の構造のラビリンス溝38を形成する構成(図3参照)を採用し,又は,断面矩形状の矩形ラビリンス溝39を形成する構成(図4参照)を採用することで,給油溝37に対し軸受室32側に位置する吐出側ロータ軸42,52の外周面(図示の例では吐出側ロータ軸42,52の外周面を成すスペーサ36の外周面)と軸孔31の内周面間の隙間Δを介して軸受室32側に漏出する潤滑油の漏出量を減少させることができ,前述した給油溝37に対する給油量の減少との相乗効果によって更に軸受70に対する給油量を減少させることも可能である。 In addition to forming the labyrinth groove 38 described above on the rotor chamber 11 side of the oil supply groove 37, a configuration in which a labyrinth groove 38 of a similar structure is formed on the bearing chamber 32 side of the oil supply groove 37 (see FIG. 3), or a configuration in which a rectangular labyrinth groove 39 with a rectangular cross section is formed (see FIG. 4), can be adopted to reduce the amount of lubricating oil leaking into the bearing chamber 32 side through the gap Δ between the outer circumferential surface of the discharge side rotor shaft 42, 52 located on the bearing chamber 32 side of the oil supply groove 37 (in the illustrated example, the outer circumferential surface of the spacer 36 forming the outer circumferential surface of the discharge side rotor shaft 42, 52) and the inner circumferential surface of the shaft hole 31. This can further reduce the amount of oil supplied to the bearing 70 by the synergistic effect of the reduction in the amount of oil supplied to the oil supply groove 37 described above.

更に,前記給油溝37に対し前記軸受室32側の前記吐出側ロータ軸42,52の外周面(図示の例では吐出側ロータ軸42,52の外周面を成すスペーサ36の外周面)と前記軸孔31の内周面を,いずれも平滑面とする構成(図5参照)を採用することにより,前述した給油溝37に対する給油量の減少のみで軸受70に対する給油量を減少させる構成としても良く,給油溝37に対し軸受室側の部分で採用する構成を図3~図5に示した構成中より適宜選択して組み合わせることにより,軸受70に対する給油量を細かく調整することも可能である。 Furthermore, by adopting a configuration in which the outer peripheral surface of the discharge side rotor shaft 42, 52 on the bearing chamber 32 side (in the illustrated example, the outer peripheral surface of the spacer 36 forming the outer peripheral surface of the discharge side rotor shaft 42, 52) and the inner peripheral surface of the shaft hole 31 are both smooth surfaces with respect to the oil supply groove 37 (see FIG. 5), the amount of oil supplied to the bearing 70 can be reduced by only reducing the amount of oil supplied to the oil supply groove 37 described above, and by appropriately selecting and combining the configurations adopted for the bearing chamber side portion of the oil supply groove 37 from the configurations shown in FIG. 3 to FIG. 5, it is also possible to finely adjust the amount of oil supplied to the bearing 70.

本発明の軸封構造が適用される油冷式スクリュ圧縮機の縮尺断面平面図。1 is a cross-sectional plan view of an oil-cooled screw compressor to which the shaft seal structure of the present invention is applied; 本発明の軸封構造が適用される油冷式スクリュ圧縮機の縮尺断面正面図。1 is a front view, on a reduced scale, of an oil-cooled screw compressor to which the shaft seal structure of the present invention is applied; 図2の矢示III部分(破線で囲った部分)の(A)は拡大図,(B)は(A)の矢示B部分の拡大説明図,(C)は(A)の矢示C部分の拡大説明図。3A is an enlarged view of the part indicated by the arrow III in FIG. 2 (the part surrounded by the dashed line), FIG. 3B is an enlarged explanatory view of the part indicated by the arrow B in FIG. 3A, and FIG. 3C is an enlarged explanatory view of the part indicated by the arrow C in FIG. 図2の矢示III部分(破線で囲った部分)の変形例を示す(A)は拡大図,(B)は(A)の矢示B部分の拡大説明図。3A is an enlarged view showing a modified example of the portion indicated by the arrow III in FIG. 2 (the portion surrounded by a dashed line), and FIG. 3B is an enlarged explanatory view of the portion indicated by the arrow B in FIG. 図2の矢示III部分(破線で囲った部分)の別の変形例を示す拡大図。3 is an enlarged view showing another modified example of the portion indicated by the arrow III in FIG. 2 (portion surrounded by a dashed line). 油冷式スクリュ圧縮機を圧縮機本体とした圧縮機ユニットの説明図。FIG. 2 is an explanatory diagram of a compressor unit having an oil-cooled screw compressor as a compressor body. 従来の油冷式スクリュ圧縮機の軸封部の説明図(特許文献1の図2に対応)。FIG. 2 is an explanatory diagram of a shaft seal of a conventional oil-cooled screw compressor (corresponding to FIG. 2 of Patent Document 1). 軸封部に軸封用のスペーサを設け,このスペーサにラビリンス溝を設ける構造を採用した場合を想定した(A)は説明図,(B)は(A)の矢示B部分の拡大説明図,(C)は(A)の矢示C部分の拡大説明図。FIG. 1A is an explanatory diagram assuming a structure in which a shaft seal spacer is provided in the shaft seal section and a labyrinth groove is provided in this spacer. FIG. 1B is an enlarged explanatory diagram of the part indicated by the arrow B in FIG. 1A. FIG. 1C is an enlarged explanatory diagram of the part indicated by the arrow C in FIG.

次に,本発明の実施形態につき添付図面を参照しながら説明する。 Next, an embodiment of the present invention will be described with reference to the attached drawings.

〔油冷式スクリュ圧縮機の全体構成〕
図1及び図2中の符号1は,本発明の軸封構造が適用される油冷式スクリュ圧縮機であり,この油冷式スクリュ圧縮機1は,外殻を成すケーシング2を備えている。
[Overall configuration of oil-cooled screw compressor]
Reference numeral 1 in Figs. 1 and 2 denotes an oil-cooled screw compressor to which the shaft seal structure of the present invention is applied, and this oil-cooled screw compressor 1 includes a casing 2 forming an outer shell.

このケーシング2は,ロータケーシング10と,このロータケーシング10の吸入側端部に取り付けられあるいはこれと一体に形成される吸入側ケーシング20と,ロータケーシング10の吐出側端部に取り付けられる吐出側ケーシング30を備えており,このうちのロータケーシング10内に形成されたロータ室11内にオス・メス一対のスクリュロータ40,50が噛み合い回転可能に収容されている。 The casing 2 comprises a rotor casing 10, a suction side casing 20 attached to the suction side end of the rotor casing 10 or formed integrally therewith, and a discharge side casing 30 attached to the discharge side end of the rotor casing 10. A pair of male and female screw rotors 40, 50 are housed in a rotor chamber 11 formed in the rotor casing 10 so as to mesh and rotate.

このロータケーシング10の吸入側端部に取り付けた吸入側ケーシング20にはスクリュロータ40,50の吸入側ロータ軸41,51を収容する軸孔が形成され,この軸孔と連通して形成された軸受室21,22内に軸受60,60を収容し,この軸受60,60にオス,メスの各スクリュロータ40,50の吸入側ロータ軸41,51が支承されている。 The suction side casing 20 attached to the suction side end of the rotor casing 10 has an axial hole formed therein to accommodate the suction side rotor shafts 41, 51 of the screw rotors 40, 50, and bearings 60, 60 are housed in the bearing chambers 21, 22 formed in communication with this axial hole, and the suction side rotor shafts 41, 51 of the male and female screw rotors 40, 50 are supported by these bearings 60, 60.

また,この吸入側ケーシング20には,ギヤ室23が形成されており,このギヤ室23内には,オス,メスいずれかのスクリュロータ40,50に対して,図示せざるモータやエンジン等の駆動源からの回転駆動力を増速して入力する増速装置80が収容されている。 The suction side casing 20 also has a gear chamber 23 formed therein, which houses a speed increasing device 80 that increases the rotational driving force from a driving source such as a motor or engine (not shown) and inputs it to either the male or female screw rotor 40, 50.

この増速装置80は,一例としていずれか一方のスクリュロータ40又は50の吸入側ロータ軸(本実施形態にあってはオスロータ40の吸入側ロータ軸41)に固着された従動歯車81と,この従動歯車81に対して回転駆動力を伝達する駆動歯車82,及び前記駆動歯車82に駆動源で発生した回転駆動力を入力する駆動軸83を備え,前記駆動歯車82に対して従動歯車81を小径とすることにより,駆動軸83を介して入力された回転駆動力が増速されてオスロータ40の吸入側ロータ軸41に伝達され,スクリュロータ40,50を増速回転させることができるように構成されている。 As an example, this speed increasing device 80 includes a driven gear 81 fixed to the suction side rotor shaft of one of the screw rotors 40 or 50 (in this embodiment, the suction side rotor shaft 41 of the male rotor 40), a drive gear 82 that transmits a rotational driving force to this driven gear 81, and a drive shaft 83 that inputs a rotational driving force generated by a drive source to the drive gear 82. By making the diameter of the driven gear 81 smaller than that of the drive gear 82, the rotational driving force input via the drive shaft 83 is accelerated and transmitted to the suction side rotor shaft 41 of the male rotor 40, and the screw rotors 40, 50 can be rotated at an accelerated speed.

なお,本発明の油冷式スクリュ圧縮機1において,上記増速装置80及び上記ギヤ室23は必須の構成ではなく,油冷式スクリュ圧縮機1の外部に増速装置を設けたり,駆動源からの回転駆動力を増速することなくそのままの回転速度で入力したりする場合など,増速装置80及びギヤ室23を設けない場合には,オス・メスいずれか一方の吸入側ロータ軸,例えばオスロータ40の吸入側ロータ軸41を,ケーシングを貫通させて機外に突設し,これを駆動軸としてエンジンやモータからの回転駆動力を入力するように構成しても良い。 In addition, in the oil-cooled screw compressor 1 of the present invention, the speed-increasing device 80 and the gear chamber 23 are not essential components. In cases where the speed-increasing device is provided outside the oil-cooled screw compressor 1, or where the rotational driving force from the driving source is input at the same rotational speed without being increased, the speed-increasing device 80 and the gear chamber 23 are not provided, the suction side rotor shaft of either the male or female, for example the suction side rotor shaft 41 of the male rotor 40, may be protruded outside the machine through the casing and used as the drive shaft to input the rotational driving force from the engine or motor.

ロータケーシング10の吐出側端部は,オスロータ40及びメスロータ50の吐出側ロータ軸42,52を収容する軸孔31,31を備えた吐出側ケーシング30で覆われており,スクリュロータ40,50の吐出側ロータ軸42,52を,前記吐出側ケーシング30の軸孔31,31と連通して形成された軸受室32,32内に収容された軸受70で支承している。 The discharge side end of the rotor casing 10 is covered by a discharge side casing 30 having shaft holes 31, 31 that accommodate the discharge side rotor shafts 42, 52 of the male rotor 40 and female rotor 50, and the discharge side rotor shafts 42, 52 of the screw rotors 40, 50 are supported by bearings 70 accommodated in bearing chambers 32, 32 formed in communication with the shaft holes 31, 31 of the discharge side casing 30.

なお,前述の吸入側ケーシング20には吸気口24が形成されており(図2参照),この吸気口24を介して導入された被圧縮気体が,オス・メス一対のスクリュロータ40,50とロータ室11の内壁によって画成される圧縮作用空間内に導入されて潤滑油と共に圧縮され,吐出側ケーシング30に設けられた吐出口33(図2参照)を介して機外に吐出されるように構成されている。 The suction side casing 20 is formed with an intake port 24 (see Figure 2), and the compressed gas introduced through this intake port 24 is introduced into the compression action space defined by the pair of male and female screw rotors 40, 50 and the inner wall of the rotor chamber 11, where it is compressed together with the lubricating oil, and is discharged outside the machine through a discharge port 33 (see Figure 2) provided in the discharge side casing 30.

この油冷式スクリュ圧縮機1のロータケーシング10の底部には,図6を参照して説明したレシーバタンク220からの給油配管224が連通される給油口12(図2参照)が設けられていると共に,この給油口12に連通して,ケーシングの肉厚内には,油冷式スクリュ圧縮機1内の給油を必要とする各部に対して潤滑油を給油する給油流路91,92,93が形成されている。 The bottom of the rotor casing 10 of this oil-cooled screw compressor 1 is provided with an oil supply port 12 (see FIG. 2) to which the oil supply pipe 224 from the receiver tank 220 described with reference to FIG. 6 is connected, and oil supply passages 91, 92, and 93 are formed in the wall thickness of the casing, communicating with this oil supply port 12, to supply lubricating oil to each part of the oil-cooled screw compressor 1 that requires oil.

図示の実施形態では,図2に示すように,給油口12より3方向に分岐された給油流路91,92,93を設け,そのうちの1つ91を吸気閉込後の圧縮作用空間に連通して,圧縮作用空間に潤滑,冷却,及び密封のための潤滑油を給油することができるように構成している。 In the illustrated embodiment, as shown in FIG. 2, oil supply passages 91, 92, and 93 are provided that branch off in three directions from the oil supply port 12, and one of them, 91, is connected to the compression action space after the intake air is trapped, so that lubricating oil can be supplied to the compression action space for lubrication, cooling, and sealing.

また,残りの給油流路の一方92は,ロータケーシング10の肉厚内を吸入側に向かって延びて吸入側ケーシング20内に至り,この吸入側ケーシング20内において増速装置80が収容されたギヤ室23内に潤滑油を噴射する給油ノズル25に連通されており,これによりギヤ室23内に収容された増速装置80や,ギヤ室23に連通して設けられた軸受室21,22内に収容された軸受60,60等を潤滑することができるように構成されている。 In addition, one of the remaining oil supply passages 92 extends through the thickness of the rotor casing 10 toward the suction side and reaches the suction side casing 20, and is connected to an oil supply nozzle 25 that injects lubricating oil into the gear chamber 23 in which the speed increasing device 80 is housed, thereby lubricating the speed increasing device 80 housed in the gear chamber 23 and the bearings 60, 60 housed in the bearing chambers 21, 22 that are provided in communication with the gear chamber 23.

このギヤ室23は,図示せざる連通路によってロータ室11と連通しており,ギヤ室23内に所定の油面高さ以上に溜まった潤滑油は,この連通孔(図示せず)を介してロータ室11内に導入されて被圧縮気体と共に圧縮されるように構成されている。 This gear chamber 23 is connected to the rotor chamber 11 by a communication passage (not shown), and lubricating oil that accumulates in the gear chamber 23 above a certain oil level is introduced into the rotor chamber 11 through this communication hole (not shown) and compressed together with the gas to be compressed.

更に,給油流路の残りの1つ93は,図2に示すようにロータケーシング10の肉厚内を吐出側に延びた後,吐出側ケーシング30内に至り吐出側ロータ軸42,52の軸線と直交する方向に向きを変えて,吐出側の軸封部34,34と,この軸封部34,34に隣接して設けられた軸受70,70に対し潤滑油を供給することができるように構成されている。 Furthermore, the remaining oil supply passage 93 extends through the thickness of the rotor casing 10 to the discharge side as shown in FIG. 2, then reaches the inside of the discharge side casing 30 and changes direction to a direction perpendicular to the axis of the discharge side rotor shafts 42, 52, so that it can supply lubricating oil to the discharge side shaft seals 34, 34 and the bearings 70, 70 provided adjacent to these shaft seals 34, 34.

この吐出側の軸封部34,34と軸受70,70を潤滑した潤滑油は,軸受70,70に対し機外側に設けられた潤滑油回収室35に導入され,この潤滑油回収室35に連通する潤滑油回収流路94(図1参照)を介して圧縮作用空間に回収されるように構成されている。 The lubricating oil that lubricates the shaft seals 34, 34 and the bearings 70, 70 on the discharge side is introduced into the lubricating oil recovery chamber 35 provided on the outside of the bearings 70, 70, and is configured to be recovered into the compression action space via the lubricating oil recovery passage 94 (see Figure 1) that communicates with this lubricating oil recovery chamber 35.

〔軸封構造〕
図1及び図2を参照して説明した油冷式スクリュ圧縮機1の吐出側ケーシング30には,吐出側ロータ軸42,52を収容するための軸孔31,31が設けられていると共に,この軸孔31,31と連通して設けた軸受室32,32に収容された軸受70,70によって,吐出側ロータ軸42,52が回転可能に支承されている。
[Shaft seal structure]
The discharge side casing 30 of the oil-cooled screw compressor 1 described with reference to Figures 1 and 2 is provided with shaft holes 31, 31 for accommodating the discharge side rotor shafts 42, 52, and the discharge side rotor shafts 42, 52 are rotatably supported by bearings 70, 70 accommodated in bearing chambers 32, 32 provided in communication with the shaft holes 31, 31.

そして,この軸受室32,32とロータ室11間には,ロータ室11からの圧縮気体の漏出を防止するための前述の軸封部34,34が設けられている。 The aforementioned shaft seals 34, 34 are provided between the bearing chambers 32, 32 and the rotor chamber 11 to prevent leakage of compressed gas from the rotor chamber 11.

図3に,オスロータ40の吐出側ロータ軸42に設けた軸封部34の構成例を示す。 Figure 3 shows an example of the configuration of the shaft seal 34 provided on the discharge side rotor shaft 42 of the male rotor 40.

図3に示すように,軸封部34において吐出側ロータ軸42の外径が軸孔31の内径に対し僅かに小さく形成されており,この部分の吐出側ロータ軸42の外周面と軸孔31の内周面間の隙間Δが狭められていると共に,後述するようにこの隙間Δに潤滑油を給油して封止することで,ロータ室11から圧縮気体の漏出が防止されている。 As shown in FIG. 3, the outer diameter of the discharge-side rotor shaft 42 is slightly smaller than the inner diameter of the shaft hole 31 in the shaft seal portion 34, narrowing the gap Δ between the outer circumferential surface of the discharge-side rotor shaft 42 and the inner circumferential surface of the shaft hole 31 in this portion, and by sealing this gap Δ with lubricating oil as described below, leakage of compressed gas from the rotor chamber 11 is prevented.

軸封部34における吐出側ロータ軸42の外径は,該位置の吐出側ロータ軸42自体の外径を軸孔31の内径に対し僅かに小さく形成するものとしても良いが,図3に示す実施形態では,この位置の吐出側ロータ軸42に軸封用の円筒状のスペーサ36を外嵌し,このスペーサ36によって吐出側ロータ軸42の外径を拡張してスペーサ36の外周面と軸孔31の内周面間を前述の隙間Δとしても良く,この場合,スペーサ36の外周面が,吐出側ロータ軸42の外周面となる。 The outer diameter of the discharge side rotor shaft 42 at the shaft seal portion 34 may be formed so that the outer diameter of the discharge side rotor shaft 42 itself at that position is slightly smaller than the inner diameter of the shaft hole 31, but in the embodiment shown in FIG. 3, a cylindrical spacer 36 for shaft sealing may be fitted onto the discharge side rotor shaft 42 at this position, and the outer diameter of the discharge side rotor shaft 42 may be expanded by this spacer 36 to form the aforementioned gap Δ between the outer peripheral surface of the spacer 36 and the inner peripheral surface of the shaft hole 31. In this case, the outer peripheral surface of the spacer 36 becomes the outer peripheral surface of the discharge side rotor shaft 42.

このスペーサ36は,軸孔31の内周面と非接触の状態で吐出側ロータ軸42と共に回転するよう,吐出側ロータ軸42の外周に取り付けられており,このスペーサ36の外周面と軸孔31の内周面間に生じた隙間Δに潤滑油を給油してこの隙間Δを塞ぐことでロータ室11からの圧縮気体の漏出を防止すると共に,この隙間Δを介して軸受室32側に潤滑油を漏出させることで,軸受70に対する給油を行うことができるように構成されている。 This spacer 36 is attached to the outer periphery of the discharge side rotor shaft 42 so that it rotates together with the discharge side rotor shaft 42 without contacting the inner periphery of the shaft hole 31. Lubricating oil is supplied to the gap Δ generated between the outer periphery of this spacer 36 and the inner periphery of the shaft hole 31 to close the gap Δ, thereby preventing leakage of compressed gas from the rotor chamber 11, and lubricating oil is leaked through this gap Δ to the bearing chamber 32 side to oil the bearing 70.

このスペーサ36の軸線方向における中間位置の外周面には,周方向に連続する無端環状の給油溝37が形成されていると共に,吐出側ケーシング30内において吐出側ロータ軸42の軸線方向に対し直交方向に形成された前述の給油流路93を,この給油溝37と連通させて,給油溝37に対しレシーバタンクより圧送された潤滑油を給油することができるように構成されている。 A continuous endless annular oil supply groove 37 is formed on the outer peripheral surface of the spacer 36 at the midpoint in the axial direction, and the oil supply groove 37 is connected to the oil supply passage 93 formed in the discharge side casing 30 in a direction perpendicular to the axial direction of the discharge side rotor shaft 42, so that lubricating oil pumped from a receiver tank can be supplied to the oil supply groove 37.

前述のスペーサ36の外周面のうち,少なくとも給油溝37よりもロータ室11側に位置する部分には,軸受室32側からロータ室11側に向かって徐々に拡大する断面形状を有し,周方向に連続する無端環状に形成されたラビリンス溝38が,所定間隔で複数(図示の例では4つ)平行に設けられており,該部分のスペーサ36の表面が,全体として断面鋸歯状に形成されている。 At least in the portion of the outer circumferential surface of the spacer 36 that is located closer to the rotor chamber 11 than the oil supply groove 37, a labyrinth groove 38 is provided in parallel at a predetermined interval, with a cross-sectional shape that gradually expands from the bearing chamber 32 side toward the rotor chamber 11 side, and is formed as an endless ring that continues in the circumferential direction. The surface of the spacer 36 in this portion is formed as a sawtooth cross section as a whole.

図3に示した実施形態では,このような断面形状を有するラビリンス溝38を給油溝37に対し軸受室32側に位置するスペーサ36の外周面にも同様に所定間隔で複数(図示の例では5つ)平行に設けている。 In the embodiment shown in FIG. 3, multiple labyrinth grooves 38 having such a cross-sectional shape (five in the illustrated example) are also provided parallel to each other at a predetermined interval on the outer peripheral surface of the spacer 36 located on the bearing chamber 32 side relative to the oil supply groove 37.

このように,軸受室32側からロータ室11側に向かって徐々に拡大する断面形状を有するラビリンス溝38を形成することで,給油溝37に対する給油量を減少させて給油溝37内の潤滑油の圧力を,ロータ室11より漏出しようとする圧縮気体の圧力よりも低い圧力とした場合であっても,ロータ室11からの圧縮気体の漏出を防止することができた。 In this way, by forming a labyrinth groove 38 with a cross-sectional shape that gradually expands from the bearing chamber 32 side toward the rotor chamber 11 side, it is possible to prevent leakage of compressed gas from the rotor chamber 11 even when the amount of oil supplied to the oil supply groove 37 is reduced and the pressure of the lubricating oil in the oil supply groove 37 is set to a lower pressure than the pressure of the compressed gas attempting to leak from the rotor chamber 11.

ここで,給油溝37に供給されて,給油溝37から軸受室32側に向かって流れる潤滑油は,図3(B)に拡大図で示すように,ラビリンス溝38間に形成された絞り部を通過した後,ラビリンス溝38内に形成された拡大部に至り流路が急激に拡大することで,図8(B)を参照して説明した矩形の断面を有するラビリンス溝を設けた場合と同様,絞られた状態から急激に拡大する流路を繰り返し通過することで圧力損失が生じ,これを繰り返すことで軸受室32に向かって隙間Δを通過する潤滑油量を減らすことができる。 The lubricating oil that is supplied to the oil supply groove 37 and flows from the oil supply groove 37 toward the bearing chamber 32 passes through the throttling section formed between the labyrinth grooves 38, as shown in the enlarged view of FIG. 3(B), and then reaches the enlarged section formed within the labyrinth groove 38, where the flow path expands suddenly. As a result, as in the case of providing a labyrinth groove with a rectangular cross section as described with reference to FIG. 8(B), the lubricating oil repeatedly passes through a flow path that expands suddenly from a throttling state, causing a pressure loss. By repeating this process, the amount of lubricating oil that passes through the gap Δ toward the bearing chamber 32 can be reduced.

同様に,ロータ室11側から給油溝37側に向かって,スペーサ36の外周面と軸孔31の内周面間の隙間Δを通過しようとする圧縮性流体である圧縮気体も,図3(C)に示すように絞り部から拡大部に至り急激に拡大する流路を通過して給油溝37側に移動することで,断面が矩形のラビリンス溝を設けた場合と同様,圧縮された状態から急激に膨張するとともにこれを繰り返すことで大きな圧力損失を受けることになる。 Similarly, the compressed gas, which is a compressible fluid attempting to pass through the gap Δ between the outer peripheral surface of the spacer 36 and the inner peripheral surface of the shaft hole 31 from the rotor chamber 11 side toward the oil supply groove 37 side, also passes through a flow path that expands rapidly from the choke section to the expansion section and moves toward the oil supply groove 37 side as shown in Figure 3 (C), and as a result, it expands rapidly from a compressed state and undergoes a large pressure loss by repeating this process, just as in the case of a labyrinth groove with a rectangular cross section.

しかし,給油溝37からロータ室11側に向かう非圧縮性流体である潤滑油は,絞り部から拡大部に至り徐々に拡大する流路を通過することで,流速が低下する一方,圧力が上昇するものとなっており(ベルヌーイの定理),これらが繰り返し起きることで,「圧縮気体の圧力 ≦ 潤滑油の圧力」という状態になり,ロータ室からの圧縮気体の漏出防止が可能となる。 However, as the lubricating oil, which is an incompressible fluid flowing from the oil supply groove 37 toward the rotor chamber 11, passes through a flow path that gradually expands from the throttle section to the expansion section, the flow rate decreases while the pressure increases (Bernoulli's theorem). By repeating these steps, a state is reached where "compressed gas pressure ≦ lubricating oil pressure," making it possible to prevent compressed gas from leaking from the rotor chamber.

その結果,絞り部から拡大部に至り流路面積が急激に拡大する側をロータ室11側,絞り部から拡大部に至り流路面積が徐々に拡大する側を軸受室32側として吐出側ロータ軸42にスペーサ36を取り付けることで,給油溝37に対する給油圧力を,ロータ室11より漏出しようとする圧縮気体の圧力よりも低い圧力とした場合であっても,ロータ室11より漏出する圧縮気体の圧力に対抗させることが可能となり,ロータ室11からの圧縮気体の漏出を防止できる。 As a result, by attaching the spacer 36 to the discharge-side rotor shaft 42, with the rotor chamber 11 side being the side where the flow path area expands rapidly from the throttling section to the expansion section, and the bearing chamber 32 side being the side where the flow path area expands gradually from the throttling section to the expansion section, it is possible to counter the pressure of the compressed gas leaking from the rotor chamber 11 even if the oil supply pressure to the oil supply groove 37 is set to a pressure lower than the pressure of the compressed gas attempting to leak from the rotor chamber 11, and leakage of the compressed gas from the rotor chamber 11 can be prevented.

このように給油溝37に対する給油量を減少させることができたことで,本発明の軸封部構造を備えた油冷式スクリュ圧縮機1では,給油溝37から軸受室32に向かってスペーサ36の外周面と軸孔31の内周面間の隙間Δを介して軸受室32側に流入する潤滑油量を減少させることができた。 By reducing the amount of oil supplied to the oil supply groove 37 in this way, in the oil-cooled screw compressor 1 equipped with the shaft seal structure of the present invention, it is possible to reduce the amount of lubricating oil flowing from the oil supply groove 37 toward the bearing chamber 32 through the gap Δ between the outer peripheral surface of the spacer 36 and the inner peripheral surface of the shaft hole 31.

しかも,図3に示した実施形態では,給油溝37と軸受室32間のスペーサ36の外周面に,前述したように,ロータ室11と給油溝37間に設けたと同様の断面形状を有するラビリンス溝38を設けたことで,この部分を通過して軸受室32側に漏出する潤滑油量を減少させることができる。 In addition, in the embodiment shown in FIG. 3, a labyrinth groove 38 having a cross-sectional shape similar to that provided between the rotor chamber 11 and the oil supply groove 37 is provided on the outer peripheral surface of the spacer 36 between the oil supply groove 37 and the bearing chamber 32, as described above, thereby reducing the amount of lubricating oil that passes through this portion and leaks into the bearing chamber 32.

このように軸受70に対する給油量を減少させることができたことで,高圧設定の油冷式スクリュ圧縮機1であっても軸受70が多量の潤滑油を攪拌することにより生じる動力ロスの発生を防止することができた。 By reducing the amount of oil supplied to the bearings 70 in this way, it was possible to prevent power loss caused by the bearings 70 stirring a large amount of lubricating oil, even in an oil-cooled screw compressor 1 set at high pressure.

また,軸受70に対する給油量を減少させることができたことで,軸受70を潤滑した後,潤滑油回収室35及び潤滑油回収流路94(図2参照)を介して圧縮作用空間に回収される潤滑油量が減少することで,スクリュロータ40,50が余分な潤滑油を攪拌することによって生じる動力ロスの発生についても防止することができた。 In addition, by reducing the amount of oil supplied to the bearing 70, the amount of lubricating oil recovered in the compression space via the lubricating oil recovery chamber 35 and the lubricating oil recovery passage 94 (see Figure 2) after lubricating the bearing 70 is reduced, which makes it possible to prevent power loss caused by the screw rotors 40, 50 stirring up excess lubricating oil.

以上,図3を参照して説明した軸封部34では,給油溝37に対し軸受室32側に位置するスペーサ36の外周面に設けるラビリンス溝38と,給油溝37に対しロータ室11側のスペーサ36の外周面に設けたラビリンス溝38の断面形状を,いずれも軸受室32側からロータ室11側に向かって徐々に拡大する形状とした。 In the shaft seal portion 34 described above with reference to FIG. 3, the cross-sectional shape of the labyrinth groove 38 provided on the outer peripheral surface of the spacer 36 located on the bearing chamber 32 side relative to the oil supply groove 37, and the cross-sectional shape of the labyrinth groove 38 provided on the outer peripheral surface of the spacer 36 on the rotor chamber 11 side relative to the oil supply groove 37, are both gradually enlarged from the bearing chamber 32 side toward the rotor chamber 11 side.

この構成に代えて,給油溝37に対し軸受室32側に位置するスペーサ36の外周面に設けるラビリンス溝は,図4に示すように,断面矩形状の矩形ラビリンス溝39としても良い。 Instead of this configuration, the labyrinth groove provided on the outer peripheral surface of the spacer 36 located on the bearing chamber 32 side relative to the oil supply groove 37 may be a rectangular labyrinth groove 39 with a rectangular cross section, as shown in Figure 4.

給油溝37に対し軸受室32側のスペーサ36外周面と軸孔31の内周面間の隙間Δには,給油溝37から軸受室32側に向かう潤滑油の流れのみが生じ,逆向きの流体の流れについて考慮する必要がなく,この部分に形成するラビリンス溝の形状としては,軸受室32側に漏出する潤滑油量を減少させることができるものであれば,如何なる断面形状のラビリンス溝を採用しても良い。 In the gap Δ between the outer peripheral surface of the spacer 36 on the bearing chamber 32 side relative to the oil supply groove 37 and the inner peripheral surface of the shaft hole 31, only the flow of lubricating oil occurs from the oil supply groove 37 toward the bearing chamber 32 side, and there is no need to consider the flow of fluid in the opposite direction. The shape of the labyrinth groove formed in this part can be any cross-sectional shape as long as it can reduce the amount of lubricating oil leaking into the bearing chamber 32 side.

しかも,形成するラビリンス溝の溝幅,深さを同じくする場合,軸受室32側からロータ室11側に向かって徐々に拡大する断面形状のラビリンス溝38に比較して,断面形状を矩形としたラビリンス溝39の方が拡大部の断面積が大きくなり,隙間Δを通過する潤滑油の流れをより急拡大,急縮小させるものとなることでより大きな圧力損失を生じさせることができ,この部分を通過する潤滑剤の量をより一層減少させることが可能となる。 In addition, when the labyrinth groove width and depth are the same, labyrinth groove 39, which has a rectangular cross-sectional shape, has a larger cross-sectional area at the expanding portion than labyrinth groove 38, which has a cross-sectional shape that gradually expands from the bearing chamber 32 side toward the rotor chamber 11 side. This causes the flow of lubricating oil passing through gap Δ to expand and contract more suddenly, resulting in a larger pressure loss and making it possible to further reduce the amount of lubricant passing through this portion.

従って,軸受70に対する給油量をより減少させることが必要となる場合,図4に示すように,給油溝37に対し軸受室32側に設けるラビリンス溝を断面が矩形である矩形ラビリンス溝39とすることで,このような要求に対応することが可能となる。 Therefore, if it becomes necessary to further reduce the amount of oil supplied to the bearing 70, such a requirement can be met by forming the labyrinth groove 39, which has a rectangular cross section, on the bearing chamber 32 side relative to the oil supply groove 37 as shown in FIG. 4.

更に,図3及び図4を参照して説明した軸封部34では,給油溝37に対しロータ室11側のスペーサ36の外周面だけでなく,給油溝37に対し軸受室32側のスペーサ36外周面に対してもラビリンス溝38,39を設ける構成を説明したが,この構成に代えて,給油溝37に対し軸受室32側のスペーサ36の外周面には,図5に示すようにラビリンス溝を設けない,平坦な表面に形成するものとしても良い。 Furthermore, in the shaft seal portion 34 described with reference to Figures 3 and 4, labyrinth grooves 38, 39 are provided not only on the outer circumferential surface of the spacer 36 on the rotor chamber 11 side relative to the oil supply groove 37, but also on the outer circumferential surface of the spacer 36 on the bearing chamber 32 side relative to the oil supply groove 37. However, instead of this configuration, the outer circumferential surface of the spacer 36 on the bearing chamber 32 side relative to the oil supply groove 37 may be formed as a flat surface without labyrinth grooves, as shown in Figure 5.

このように構成することで,図3及び図4を参照して説明した実施形態に比較して,軸受70に対する給油量が増加することとなるが,スクリュロータ40,50を比較的早い回転速度で回転させる油冷式スクリュ圧縮機1等,軸受70に対する給油量を比較的多くする必要がある油冷式スクリュ圧縮機1も存在することから,給油溝37に対し軸受室32側のスペーサ36外周面の構造は,油冷式スクリュ圧縮機1の設定等に対応して,図3~5に示した構成より適宜選択して適用することができる。 With this configuration, the amount of oil supplied to the bearing 70 increases compared to the embodiment described with reference to Figures 3 and 4. However, since there are oil-cooled screw compressors 1 that require a relatively large amount of oil to be supplied to the bearing 70, such as oil-cooled screw compressors 1 that rotate the screw rotors 40, 50 at a relatively high rotational speed, the structure of the outer surface of the spacer 36 on the bearing chamber 32 side relative to the oil supply groove 37 can be appropriately selected from the configurations shown in Figures 3 to 5 according to the settings of the oil-cooled screw compressor 1, etc.

なお,図3~図5を参照した実施形態では,いずれもスペーサ36を単一の円筒状部材によって構成する例を示したが,一例として図5中に変更例として示したように,スペーサ36を軸線方向に二分割して二部材の組み合わせにより形成するものとしても良い。 In the embodiments shown in Figures 3 to 5, the spacer 36 is made of a single cylindrical member. However, as an example, as shown as a modified example in Figure 5, the spacer 36 may be divided into two in the axial direction and formed by combining two members.

この構成では,スペーサ36のうち,ロータ室11側に配置される部分36aの外周面に軸受室32側からロータ室11側に向かって徐々に拡大する断面形状のラビリンス溝38を形成しておく。 In this configuration, a labyrinth groove 38 with a cross-sectional shape that gradually expands from the bearing chamber 32 side toward the rotor chamber 11 side is formed on the outer peripheral surface of the portion 36a of the spacer 36 that is arranged on the rotor chamber 11 side.

一方,軸受室側に配置される部分36bについては,図3に示したラビリンス溝38,又は図4に示した矩形ラビリンス溝39が設けられたもの,又は,図5に示すようにラビリンス溝を設けていないものを予め準備しておき,油冷式スクリュ圧縮機1の設定等に応じて,これらの中から選択した軸受室側に配置される部分36bを組み合わせることによりスペーサ36を形成するものとしても良い。 On the other hand, the portion 36b arranged on the bearing chamber side may be prepared in advance with the labyrinth groove 38 shown in FIG. 3, the rectangular labyrinth groove 39 shown in FIG. 4, or without a labyrinth groove as shown in FIG. 5, and the spacer 36 may be formed by combining the portion 36b arranged on the bearing chamber side selected from these according to the settings of the oil-cooled screw compressor 1, etc.

更に,図3~図5を参照して説明した実施形態では,いずれも,前述した給油溝37やラビリンス溝38,矩形ラビリンス溝39を,スペーサ36の外周面に形成する構成について説明したが,これらはいずれも,スペーサ36の外周面に形成する構成と共に,又は,スペーサ36の外周面に形成する構成に代えて,スペーサ36に対応する位置の前記軸孔31の内周面に形成するものとしても良く,この構成の採用によっても同様の効果を得ることができる。 Furthermore, in the embodiments described with reference to Figures 3 to 5, the oil supply groove 37, labyrinth groove 38, and rectangular labyrinth groove 39 are formed on the outer peripheral surface of the spacer 36. However, these may be formed on the inner peripheral surface of the shaft hole 31 at a position corresponding to the spacer 36, either in addition to or instead of being formed on the outer peripheral surface of the spacer 36, and the same effect can be obtained by adopting this configuration.

1 油冷式スクリュ圧縮機
2 ケーシング
10 ロータケーシング
11 ロータ室
12 給油口
20 吸入側ケーシング
21,22 軸受室
23 ギヤ室
24 吸気口
25 給油ノズル
30 吐出側ケーシング
31 軸孔
32 軸受室
33 吐出口
34 軸封部
35 潤滑油回収室
36 スペーサ
36a (スペーサの)ロータ室側に配置される部分
36b (スペーサの)軸受室側に配置される部分
37 給油溝
38 ラビリンス溝
39 矩形ラビリンス溝
40 オスのスクリュロータ
41 吸入側ロータ軸
42 吐出側ロータ軸
50 メスのスクリュロータ
51 吸入側ロータ軸
52 吐出側ロータ軸
60,70 軸受
80 増速装置
81 従動歯車
82 駆動歯車
83 駆動軸
91,92,93 給油流路
94 潤滑油回収流路
100 油冷式スクリュ圧縮機
111 ロータ室
131 軸孔
132 軸受室
134 軸封部
135 潤滑油回収室
136 スペーサ
137 給油溝
138’,139 ラビリンス溝
140,150 スクリュロータ
140a,150a 吐出側端面(スクリュロータの)
141,142,151,152 ロータ軸
170 軸受
193 給油流路
210 駆動源
220 レシーバタンク
221 逆止弁
222 オイルフィルタ
223 オイルクーラ
224 給油配管
Δ 吐出側ロータ軸(スペーサ)の外周面と軸孔の内周面間の隙間
Δ’ ロータ軸の外周面と軸孔の内周面間の隙間

REFERENCE SIGNS LIST 1 oil-cooled screw compressor 2 casing 10 rotor casing 11 rotor chamber 12 oil supply port 20 suction side casing 21, 22 bearing chamber 23 gear chamber 24 intake port 25 oil supply nozzle 30 discharge side casing 31 shaft hole 32 bearing chamber 33 discharge port 34 shaft seal portion 35 lubricating oil recovery chamber 36 spacer 36a portion (of spacer) disposed on rotor chamber side 36b portion (of spacer) disposed on bearing chamber side 37 oil supply groove 38 labyrinth groove 39 rectangular labyrinth groove 40 male screw rotor 41 suction side rotor shaft 42 discharge side rotor shaft 50 female screw rotor 51 suction side rotor shaft 52 discharge side rotor shaft 60, 70 bearing 80 speed increasing device 81 driven gear 82 Drive gear 83 Drive shaft 91, 92, 93 Oil supply passage 94 Lubricating oil recovery passage 100 Oil-cooled screw compressor 111 Rotor chamber 131 Shaft hole 132 Bearing chamber 134 Shaft seal portion 135 Lubricating oil recovery chamber 136 Spacer 137 Oil supply groove 138', 139 Labyrinth groove 140, 150 Screw rotor 140a, 150a Discharge side end surface (of the screw rotor)
141, 142, 151, 152 Rotor shaft 170 Bearing 193 Oil supply passage 210 Driving source 220 Receiver tank 221 Check valve 222 Oil filter 223 Oil cooler 224 Oil supply pipe Δ Gap between outer circumferential surface of discharge side rotor shaft (spacer) and inner circumferential surface of shaft hole Δ' Gap between outer circumferential surface of rotor shaft and inner circumferential surface of shaft hole

Claims (5)

ケーシング内に形成されたロータ室内にオス,メス一対のスクリュロータを噛み合い状態で回転可能に収容し,前記ケーシングに前記スクリュロータの吐出側ロータ軸を挿入する軸孔と,該軸孔と連通し,前記吐出側ロータ軸を支承する軸受を収納する軸受室とを形成し,前記ロータ室と前記軸受室との間で前記吐出側ロータ軸の外周面と前記軸孔の内周面間の隙間を封止する軸封部を備えた油冷式スクリュ圧縮機の軸封構造において,
前記軸受室と前記ロータ室間の前記吐出側ロータ軸の外周面及び/又は前記吐出側ロータ軸の収容位置における前記軸孔の内周面に,周方向に連続する無端環状の給油溝を形成すると共に,前記ケーシング内に該給油溝に潤滑油を給油する給油流路を設け,
前記給油溝側から前記ロータ室側に向かって徐々に拡大することにより前記給油溝側から前記ロータ室側に向かう潤滑油に対するよりも,前記ロータ室側から前記給油溝側に向かう圧縮気体に対してより大きな圧力損失を生じさせる断面形状を有し,周方向に連続する無端環状のラビリンス溝を,前記給油溝に対し前記ロータ室側に位置する前記吐出側ロータ軸の外周面及び/又は前記軸孔の内周面に,所定間隔で複数平行に設けたことを特徴とする油冷式スクリュ圧縮機の軸封構造。
A shaft seal structure for an oil-cooled screw compressor, comprising: a pair of male and female screw rotors rotatably housed in a rotor chamber formed in a casing in an intermeshed state; a shaft hole into which a discharge side rotor shaft of the screw rotor is inserted; and a bearing chamber communicating with the shaft hole and housing a bearing for supporting the discharge side rotor shaft; and a shaft seal portion for sealing a gap between the outer peripheral surface of the discharge side rotor shaft and the inner peripheral surface of the shaft hole between the rotor chamber and the bearing chamber,
an endless annular oil supply groove is formed in the outer peripheral surface of the discharge side rotor shaft between the bearing chamber and the rotor chamber and/or in the inner peripheral surface of the shaft hole at the accommodation position of the discharge side rotor shaft, and an oil supply passage is provided in the casing for supplying lubricating oil to the oil supply groove,
a shaft seal structure for an oil-cooled screw compressor, characterized in that a plurality of endless annular labyrinth grooves continuing in the circumferential direction are provided in parallel at predetermined intervals on the outer peripheral surface of the discharge-side rotor shaft located on the rotor chamber side of the oil groove and/or the inner peripheral surface of the shaft hole, the labyrinth grooves having a cross-sectional shape that gradually expands from the oil groove side towards the rotor chamber side, thereby causing a greater pressure loss for the compressed gas flowing from the rotor chamber side to the oil groove side, than for the lubricating oil flowing from the oil groove side to the rotor chamber side.
前記軸受室と前記ロータ室間で前記吐出側ロータ軸に外嵌されて,該位置における前記吐出側ロータ軸の外径を拡大する円筒状のスペーサを設け,該スペーサの外周面を前記吐出側ロータ軸の前記外周面としたことを特徴とする請求項1記載の油冷式スクリュ圧縮機の軸封構造。 The shaft seal structure of an oil-cooled screw compressor according to claim 1, characterized in that a cylindrical spacer is provided between the bearing chamber and the rotor chamber, fitted onto the discharge rotor shaft to expand the outer diameter of the discharge rotor shaft at that position, and the outer circumferential surface of the spacer is the outer circumferential surface of the discharge rotor shaft. 前記ラビリンス溝を,更に前記給油溝に対し前記軸受室側に位置する前記吐出側ロータ軸の外周面及び/又は前記軸孔の内周面に対しても所定間隔で複数平行に設けたことを特徴とする請求項1又は2記載の油冷式スクリュ圧縮機の軸封構造。 The shaft seal structure of an oil-cooled screw compressor according to claim 1 or 2, characterized in that the labyrinth grooves are further provided in parallel at predetermined intervals on the outer circumferential surface of the discharge rotor shaft located on the bearing chamber side relative to the oil supply groove and/or on the inner circumferential surface of the shaft hole. 断面矩形状を成し,周方向に連続する無端環状の矩形ラビリンス溝を,前記給油溝に対し前記軸受室側に位置する前記吐出側ロータ軸の外周面及び/又は前記軸孔の内周面に所定間隔で複数平行に設けたことを特徴とする請求項1又は2記載の油冷式スクリュ圧縮機の軸封構造。 The shaft seal structure of an oil-cooled screw compressor according to claim 1 or 2, characterized in that a plurality of endless annular rectangular labyrinth grooves, each having a rectangular cross section and continuing in the circumferential direction, are provided parallel to each other at predetermined intervals on the outer circumferential surface of the discharge rotor shaft located on the bearing chamber side relative to the oil supply groove and/or on the inner circumferential surface of the shaft hole. 前記給油溝に対し前記軸受室側の前記吐出側ロータ軸の外周面と前記軸孔の内周面を,いずれも平滑面としたことを特徴とする請求項1又は2記載の油冷式スクリュ圧縮機の軸封構造。

3. A shaft seal structure for an oil-cooled screw compressor according to claim 1, wherein the outer peripheral surface of the discharge-side rotor shaft on the bearing chamber side with respect to the oil supply groove and the inner peripheral surface of the shaft hole are both smooth surfaces.

JP2020219043A 2020-12-28 2020-12-28 Shaft seal structure of oil-cooled screw compressor Active JP7539828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020219043A JP7539828B2 (en) 2020-12-28 2020-12-28 Shaft seal structure of oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020219043A JP7539828B2 (en) 2020-12-28 2020-12-28 Shaft seal structure of oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JP2022104058A JP2022104058A (en) 2022-07-08
JP7539828B2 true JP7539828B2 (en) 2024-08-26

Family

ID=82279478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020219043A Active JP7539828B2 (en) 2020-12-28 2020-12-28 Shaft seal structure of oil-cooled screw compressor

Country Status (1)

Country Link
JP (1) JP7539828B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776087A (en) 2010-01-13 2010-07-14 镇江正汉泵业有限公司 Rotation shell pump adopting spiral labyrinth dynamic seal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776087A (en) 2010-01-13 2010-07-14 镇江正汉泵业有限公司 Rotation shell pump adopting spiral labyrinth dynamic seal

Also Published As

Publication number Publication date
JP2022104058A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
CN102162444B (en) Gerotor hydraulic pump
US7713040B2 (en) Rotor shaft sealing method and structure of oil-free rotary compressor
JP5904961B2 (en) Screw compressor
JPH07145785A (en) Trochoid type refrigerant compressor
JP6677515B2 (en) Oil-free screw compressor
JP7539828B2 (en) Shaft seal structure of oil-cooled screw compressor
US6663367B2 (en) Shaft seal structure of vacuum pumps
CN216306225U (en) Rotor subassembly, compressor and air conditioner
US11428228B2 (en) Screw compressor having a different pressure of the fluid applied to the seal ring on the delivery side shaft sealing unit
EP1236903A2 (en) Shaft seal structure of vacuum pumps
KR101948228B1 (en) Gerotor pump having separation plate integrated with housing
EP1857679A1 (en) Vane pump
US6659747B2 (en) Shaft seal structure of vacuum pumps
JP4321206B2 (en) Gas compression device
JP6948206B2 (en) Oil-cooled screw compressor
JP7539825B2 (en) Bearing lubrication structure for oil-cooled screw compressor
WO2007054910A2 (en) Scroll type fluid machinery
CN216306217U (en) Rotor subassembly, compressor and air conditioner
WO2023243270A1 (en) Screw compressor
RU74978U1 (en) TWO-SECTION CENTRIFUGAL-GEAR PUMP
CN113982918A (en) Rotor subassembly, compressor and air conditioner
JP2003278673A (en) Screw compressor
JP2002089474A (en) Shaft seal structure of oil-free screw compressor
JP2000110760A (en) Oil cooled screw compressor
CN113982917A (en) Rotor subassembly, compressor and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240814

R150 Certificate of patent or registration of utility model

Ref document number: 7539828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150