Nothing Special   »   [go: up one dir, main page]

JP7529525B2 - Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group - Google Patents

Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group Download PDF

Info

Publication number
JP7529525B2
JP7529525B2 JP2020172863A JP2020172863A JP7529525B2 JP 7529525 B2 JP7529525 B2 JP 7529525B2 JP 2020172863 A JP2020172863 A JP 2020172863A JP 2020172863 A JP2020172863 A JP 2020172863A JP 7529525 B2 JP7529525 B2 JP 7529525B2
Authority
JP
Japan
Prior art keywords
heat
flow path
temperature
heat medium
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020172863A
Other languages
Japanese (ja)
Other versions
JP2022064235A (en
Inventor
良之 佐藤
学 加藤
哲也 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUBISHI HEAVY INDUSTRIES POWER IDS CO., LTD.
Cosmo Oil Co Ltd
Original Assignee
MITSUBISHI HEAVY INDUSTRIES POWER IDS CO., LTD.
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUBISHI HEAVY INDUSTRIES POWER IDS CO., LTD., Cosmo Oil Co Ltd filed Critical MITSUBISHI HEAVY INDUSTRIES POWER IDS CO., LTD.
Priority to JP2020172863A priority Critical patent/JP7529525B2/en
Publication of JP2022064235A publication Critical patent/JP2022064235A/en
Application granted granted Critical
Publication of JP7529525B2 publication Critical patent/JP7529525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本開示は、蓄熱式温度差蓄電池、熱電併給システム及び熱電併給システム群に関する。 This disclosure relates to a thermal storage temperature difference battery, a combined heat and power supply system, and a group of combined heat and power supply systems.

従来、我が国では、原子力発電所に代表されるような大規模集中型の発電所から電力を供給するエネルギー供給システムが採用されてきた。これに対し、近年、エネルギーの安定供給や省エネルギー等の観点から、比較的小規模なエネルギー変換機器をエネルギー消費地に近い場所に設置してエネルギー供給を行う分散型のエネルギー供給システムが注目されている。 Traditionally, Japan has adopted an energy supply system that supplies electricity from large-scale centralized power plants, such as nuclear power plants. In recent years, however, from the perspective of stable energy supply and energy conservation, a distributed energy supply system that supplies energy by installing relatively small-scale energy conversion equipment in locations close to energy consumption areas has been attracting attention.

特許文献1には、分散型のエネルギー供給システムの一形態である地域熱電併給システムが記載されている。特許文献1に記載の地域熱電併給システムでは、熱媒体を供給する側に少なくとも圧縮機と放熱装置とを設けるとともに熱媒体を供給される需要体側(対象地域の複数の需要体)に熱交換器を設けて、熱媒体を供給する側と供給される側とで熱媒体の流路を形成し、対象地域の複数の需要体を対象とした大規模なヒートポンプサイクルを構築している。これにより、少ない投入エネルギーで効率的に対象地域の冷暖房及び給湯需要を満たすことができる。 Patent Document 1 describes a district heat and power cogeneration system, which is one form of a distributed energy supply system. In the district heat and power cogeneration system described in Patent Document 1, at least a compressor and a radiator are provided on the side that supplies the heat medium, and a heat exchanger is provided on the side of the demand entity (multiple demand entities in the target area) to which the heat medium is supplied, forming a flow path for the heat medium between the side that supplies the heat medium and the side that is supplied, and constructing a large-scale heat pump cycle for multiple demand entities in the target area. This makes it possible to efficiently meet the demand for heating, cooling, and hot water in the target area with little input energy.

この構成では、少なくとも圧縮機と放熱装置とを複数の需要体に対する共用設備として熱媒体の共用流路に設けることにより、これらの設備を各需要体側に設置する場合と比較して、各需要体側の設備構成を簡素化することができる。これにより、各需要体側における熱電併給用の設備の設置スペース及び騒音の問題を軽減又は解消することが可能となる。 In this configuration, at least the compressor and the heat dissipation device are provided in the shared flow path of the heat medium as shared equipment for multiple consumers, and this simplifies the equipment configuration on each consumer side compared to when these facilities are installed on each consumer side. This makes it possible to reduce or eliminate problems with the installation space and noise of the combined heat and power supply equipment on each consumer side.

特開2016-61190号公報JP 2016-61190 A

本開示は、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池、並びにこれを備える熱電併給システム及び相互に熱電のやり取りが可能な熱電併給システム群を提供することを目的とする。 The purpose of this disclosure is to provide a thermal storage temperature difference battery, which is a new type of battery that generates electricity by utilizing heat media of different temperatures stored in a heat pump cycle, as well as a combined heat and power supply system including the same and a group of combined heat and power supply systems capable of exchanging heat and power with each other.

上記目的を達成するため、本開示の少なくとも一実施形態に係る蓄熱式温度差蓄電池は、
熱媒体を圧縮するための圧縮機と、
圧縮機に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1流路と、
前記第1流路に接続され、前記第1流路から供給された前記熱媒体を貯蔵するための蓄圧断熱高温貯槽と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽を出た前記熱媒体を流すための第2流路と、
前記第2流路に設けられ、前記第2流路を流れる前記熱媒体を減圧するように構成された膨張装置と、
前記第2流路における前記膨張装置の上流側又は下流側に設けられ、前記第2流路の前記熱媒体を貯蔵するための蓄圧断熱低温貯槽と、
前記第2流路の下流側に接続され、前記膨張装置及び前記蓄圧断熱低温貯槽の各々を通った前記熱媒体を前記圧縮機に供給するように構成された第3流路と、
前記第2流路における前記膨張装置の上流側を流れる前記熱媒体と前記第3流路を流れる前記熱媒体との温度差を利用して発電するように構成された温度差発電機と、
を備える。
In order to achieve the above object, a heat storage type temperature difference storage battery according to at least one embodiment of the present disclosure includes:
A compressor for compressing the heat medium;
a first flow path connected to the compressor for allowing the heat medium compressed by the compressor to flow;
A pressure-accumulating, insulated, high-temperature storage tank connected to the first flow path for storing the heat medium supplied from the first flow path;
A second flow path connected to the pressure-accumulating, insulated, high-temperature storage tank for flowing the heat medium that has left the pressure-accumulating, insulated, high-temperature storage tank;
an expansion device provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path;
a pressure-accumulating, insulated, low-temperature storage tank provided upstream or downstream of the expansion device in the second flow path for storing the heat medium in the second flow path;
a third flow path connected to a downstream side of the second flow path and configured to supply the heat medium that has passed through each of the expansion device and the pressure-accumulating insulated low-temperature storage tank to the compressor;
a temperature difference generator configured to generate electricity by utilizing a temperature difference between the heat medium flowing on the upstream side of the expansion device in the second flow path and the heat medium flowing in the third flow path;
Equipped with.

上記目的を達成するため、本開示の少なくとも一実施形態に係る熱電併給システムは、
上記蓄熱式温度差蓄電池と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成された第4流路と、
を備える。
In order to achieve the above object, a cogeneration system according to at least one embodiment of the present disclosure includes:
The heat storage type temperature difference storage battery;
A fourth flow path connected to the pressure-accumulating, insulated, high-temperature storage tank and configured to supply the heat medium from the pressure-accumulating, insulated, high-temperature storage tank to a consumer at a target site;
Equipped with.

上記目的を達成するため、本開示の少なくとも一実施形態に係る熱電併給システム群は、
上記熱電併給システムを複数備える熱電併給システム群であって、
前記複数の熱電併給システムは、複数の対象サイトにそれぞれ対応して設けられており、
前記熱電併給システム群は、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された統括熱電需給システムを更に備える。
In order to achieve the above object, a group of cogeneration systems according to at least one embodiment of the present disclosure includes:
A group of cogeneration systems including a plurality of the cogeneration systems,
The plurality of cogeneration systems are provided corresponding to a plurality of target sites, respectively;
The group of cogeneration systems further includes an integrated heat and power supply and demand system configured to optimize supply and demand of electric power and heat in the entire plurality of cogeneration systems.

本開示によれば、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池、並びにこれを備える熱電併給システム及び熱電併給システム群が提供される。 The present disclosure provides a thermal storage temperature difference battery, which is a new type of battery that generates electricity by using heat media of different temperatures stored in a heat pump cycle, as well as a combined heat and power supply system and a group of combined heat and power supply systems that include the same.

一実施形態に係る地域熱電併給システム2(2A)の概略構成を示す模式図である。1 is a schematic diagram showing a general configuration of a district heat and power cogeneration system 2 (2A) according to one embodiment. 地域熱電併給システム群4の概略構成を示す模式図である。2 is a schematic diagram showing a general configuration of a district heat and power cogeneration system group 4. FIG. 一実施形態に係る地域熱電併給システム2(2B)の概略構成を示す模式図である。1 is a schematic diagram showing a general configuration of a district heat and power cogeneration system 2 (2B) according to one embodiment. 図3に示した地域熱電併給システム2(2B)における循環流路74及び循環流路76を太線で示す模式図である。FIG. 4 is a schematic diagram illustrating a circulation flow path 74 and a circulation flow path 76 in the district heat and power cogeneration system 2 (2B) shown in FIG. 3 by thick lines. 一実施形態に係る地域熱電併給システム2(2C)の概略構成を示す模式図である。1 is a schematic diagram showing a general configuration of a district heat and power cogeneration system 2 (2C) according to one embodiment. 地域熱電併給システム2(2B)の変形例を示す模式図である。FIG. 13 is a schematic diagram showing a modified example of the district heat and power cogeneration system 2 (2B).

以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of components described as the embodiments or shown in the drawings are merely illustrative examples and are not intended to limit the scope of the invention.
For example, expressions expressing relative or absolute configuration, such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""center,""concentric," or "coaxial," not only express such a configuration strictly, but also express a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
For example, expressions indicating that things are in an equal state, such as "identical,""equal," and "homogeneous," not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
For example, expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to rectangular shapes, cylindrical shapes, etc. in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect is obtained.
On the other hand, the expressions "comprise,""include,""have,""includes," or "have" of one element are not exclusive expressions excluding the presence of other elements.

(地域熱電併給システムの概略構成)
図1は、一実施形態に係る地域熱電併給システム2(2A)の概略構成を示す模式図である。
図1に示す地域熱電併給システム2は、発電と、対象サイトにおける需要体100への熱供給とを併行して実行可能に構築されるシステムである。対象サイトの規模は、例えば直径300~500m程度の地域であってもよいし、それより広くとも狭くともよい。需要体100は、例えば戸建住宅、マンション等の集合住宅、ショッピング施設、工場及び病院等の各種施設のうち少なくとも1種を含む。
(Outline of district heat and power supply system)
FIG. 1 is a schematic diagram showing a schematic configuration of a district heat and power cogeneration system 2 (2A) according to one embodiment.
The district heat and power cogeneration system 2 shown in Fig. 1 is a system that is constructed so that power generation and heat supply to consumers 100 at a target site can be performed in parallel. The size of the target site may be, for example, an area with a diameter of about 300 to 500 m, or it may be larger or smaller than that. The consumers 100 include at least one of various facilities such as detached houses, collective housing such as condominiums, shopping facilities, factories, and hospitals.

図1に示すように、地域熱電併給システム2は、電気モータ5、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14(膨張装置)、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22、第4流路24、第5流路26、第6流路28、第7流路30、送電ライン32~38及びサイト熱電需給システム50、温度センサ82、温度センサ84及びモータ制御部86を備える。なお、図1では、熱及び電力の伝達経路がそれぞれ実線及び一点鎖線で記載されている。 As shown in FIG. 1, the district heat and power cogeneration system 2 includes an electric motor 5, a compressor 6, a first flow path 8, a pressurized insulated high-temperature storage tank 10, a second flow path 12, an expansion turbine 14 (expansion device), a pressurized insulated low-temperature storage tank 18, a third flow path 20, a temperature difference generator 22, a fourth flow path 24, a fifth flow path 26, a sixth flow path 28, a seventh flow path 30, power transmission lines 32-38, a site heat and power supply and demand system 50, a temperature sensor 82, a temperature sensor 84, and a motor control unit 86. Note that in FIG. 1, the heat and power transmission paths are indicated by solid lines and dashed lines, respectively.

電気モータ5は、圧縮機6に連結されており、サイト熱電需給システム50から送電ライン32を介して供給された電力を用いて圧縮機6を駆動する。サイト熱電需給システム50から電気モータ5に供給される電力は、系統電力であってもよいし、温度差発電機22から供給された電力であってもよいし、膨張タービン14に連結された後述の発電機や、送電ライン36を通じて需要体100に設置されたEVやNAS電池、太陽光などの各種電気設備から供給された電力であってもよい。サイト熱電需給システム50から電気モータ5に供給する電力として系統電力を用いる場合は、安価な夜間電力を使用することが望ましい。 The electric motor 5 is connected to the compressor 6, and drives the compressor 6 using power supplied from the site heat and power supply system 50 via the power transmission line 32. The power supplied from the site heat and power supply system 50 to the electric motor 5 may be grid power, may be power supplied from the temperature difference generator 22, or may be power supplied from a generator connected to the expansion turbine 14 (described below), or from various electrical equipment such as an EV, NAS battery, or solar power installed in the consumer 100 via the power transmission line 36. When using grid power as the power supplied from the site heat and power supply system 50 to the electric motor 5, it is desirable to use inexpensive nighttime power.

圧縮機6は、電気モータ5により駆動されることにより、第3流路20から供給された中温低圧の熱媒体を圧縮して高温高圧の熱媒体を生成するよう構成されている。なお、他の実施形態では、電気モータ5に代えて、風車や水車等によって直接(電力に変換せずに)圧縮機6を駆動してもよい。また、第3流路20から圧縮機6に供給される熱媒体は、ヒートポンプサイクルに使用可能な熱媒体であれば特に限定されず、例えばCO、アンモニア、プロパン、ブタン、代替フロン等を用いることができる。なお、本明細書では、相対的な温度として、温度の高い方から順に、高温、中温、低温との表現を使用する。また、相対的な圧力として、圧力の高い方から順に、高圧、中圧、低圧との表現を使用する。 The compressor 6 is configured to generate a high-temperature, high-pressure heat medium by compressing the medium-temperature, low-pressure heat medium supplied from the third flow path 20 by being driven by the electric motor 5. In another embodiment, the compressor 6 may be driven directly (without being converted into electric power) by a windmill, a waterwheel, or the like instead of the electric motor 5. The heat medium supplied to the compressor 6 from the third flow path 20 is not particularly limited as long as it is a heat medium usable in a heat pump cycle, and may be, for example, CO 2 , ammonia, propane, butane, or a fluorocarbon alternative. In this specification, the expressions high temperature, medium temperature, and low temperature are used in order from the highest temperature to the lowest pressure as the relative temperature. The expressions high pressure, medium pressure, and low pressure are used in order from the highest pressure to the highest pressure as the relative pressure.

第1流路8は、圧縮機6の下流側に接続されており、圧縮機6で圧縮された高温高圧の熱媒体を流すように構成されている。 The first flow path 8 is connected downstream of the compressor 6 and is configured to carry the high-temperature, high-pressure heat medium compressed by the compressor 6.

蓄圧断熱高温貯槽10は、第1流路8の下流側に接続されており、第1流路8から供給された高温高圧の熱媒体を貯蔵するように構成されている。 The pressurized, insulated, high-temperature storage tank 10 is connected downstream of the first flow path 8 and is configured to store the high-temperature, high-pressure heat medium supplied from the first flow path 8.

第2流路12は、蓄圧断熱高温貯槽10の下流側に接続されており、蓄圧断熱高温貯槽10を出た熱媒体を温度差発電機22の高温側、膨張タービン14及び蓄圧断熱低温貯槽18に供給するように構成されている。幾つかの実施形態では、需要体100の温熱・電力の需要や消費量に基づくサイト熱電需給システム50からの指令に従い、蓄圧断熱高温貯槽10に貯蔵された高温高圧の熱媒体の一部を後述の第4流路24によって需要体100へ供給し、また一部を第2流路12によって温度差発電機22の高温側に導入し、温度差発電機22の低温側との温度差により発電し、送電ライン34及び送電ライン35を介して需要体100へ電力を供給してもよい。第2流路12を流れる熱媒体は、温度差発電機22の高温側で放熱して減温する。一実施形態では、温度差発電機22の高温側は凝縮器として機能する。 The second flow path 12 is connected to the downstream side of the pressure-accumulating insulated high-temperature storage tank 10, and is configured to supply the heat medium that has left the pressure-accumulating insulated high-temperature storage tank 10 to the high-temperature side of the temperature difference generator 22, the expansion turbine 14, and the pressure-accumulating insulated low-temperature storage tank 18. In some embodiments, in accordance with a command from the site heat and power supply system 50 based on the demand and consumption of heat and electricity by the consumer 100, a part of the high-temperature and high-pressure heat medium stored in the pressure-accumulating insulated high-temperature storage tank 10 is supplied to the consumer 100 via the fourth flow path 24 described below, and a part is introduced to the high-temperature side of the temperature difference generator 22 via the second flow path 12, electricity is generated by the temperature difference with the low-temperature side of the temperature difference generator 22, and electricity is supplied to the consumer 100 via the power transmission line 34 and the power transmission line 35. The heat medium flowing through the second flow path 12 releases heat on the high-temperature side of the temperature difference generator 22 to reduce its temperature. In one embodiment, the high-temperature side of the temperature difference generator 22 functions as a condenser.

膨張タービン14は、第2流路12における温度差発電機22の下流側に設けられており、第2流路12を流れる中温高圧の熱媒体(温度差発電機22の高温側で仕事をした後の中温高圧の熱媒体)を減圧するように構成されている。図1に示す例では、第2流路12を流れる中温高圧の熱媒体によって膨張タービン14が駆動され、膨張タービン14に接続された不図示の発電機が発電を行う。膨張タービン14に接続された発電機から得られる電力は、送電ライン33を介してサイト熱電需給システム50に送電される。 The expansion turbine 14 is provided downstream of the temperature difference generator 22 in the second flow path 12 and is configured to reduce the pressure of the medium-temperature, high-pressure heat medium (the medium-temperature, high-pressure heat medium after doing work on the high-temperature side of the temperature difference generator 22) flowing through the second flow path 12. In the example shown in FIG. 1, the expansion turbine 14 is driven by the medium-temperature, high-pressure heat medium flowing through the second flow path 12, and a generator (not shown) connected to the expansion turbine 14 generates electricity. The electricity obtained from the generator connected to the expansion turbine 14 is transmitted to the site heat and power supply system 50 via the power transmission line 33.

蓄圧断熱低温貯槽18は、第2流路12において膨張タービン14の下流側に設けられており、第2流路12の低温低圧の熱媒体を貯蔵するように構成されている。 The pressure-accumulating, insulated, low-temperature storage tank 18 is provided downstream of the expansion turbine 14 in the second flow path 12 and is configured to store the low-temperature, low-pressure heat medium of the second flow path 12.

第3流路20は、第2流路12の下流側に接続されており、膨張タービン14及び蓄圧断熱低温貯槽18の各々を通った熱媒体を温度差発電機22の低温側を介して圧縮機6に供給するように構成されている。幾つかの実施形態では、需要体100の冷熱・電力の需要や消費量に基づくサイト熱電需給システム50からの指令に従い、蓄圧断熱低温貯槽18に貯蔵された低温低圧の熱媒体の一部を後述の第6流路28によって需要体100へ供給し、また一部を第3流路20によって温度差発電機22の低温側に導入し、温度差発電機22の高温側との温度差により発電し、送電ライン34及び送電ライン35を介して需要体100へ電力を供給してもよい。 The third flow path 20 is connected to the downstream side of the second flow path 12 and is configured to supply the heat medium that has passed through each of the expansion turbine 14 and the pressure-accumulating insulated low-temperature storage tank 18 to the compressor 6 via the low-temperature side of the temperature difference generator 22. In some embodiments, in accordance with a command from the site heat and power supply system 50 based on the demand and consumption of cold and electricity by the consumer 100, a portion of the low-temperature, low-pressure heat medium stored in the pressure-accumulating insulated low-temperature storage tank 18 may be supplied to the consumer 100 via the sixth flow path 28 described below, and a portion may be introduced to the low-temperature side of the temperature difference generator 22 via the third flow path 20, and electricity may be generated by the temperature difference with the high-temperature side of the temperature difference generator 22, and the electricity may be supplied to the consumer 100 via the power transmission line 34 and the power transmission line 35.

温度差発電機22は、ゼーベック素子(熱電素子)を含み、第2流路12における膨張タービン14の上流側を流れる高温高圧の熱媒体と第3流路20を流れる低温低圧の熱媒体との温度差を利用して、ゼーベック効果により発電するように構成されている。温度差発電機22で発電した電力は送電ライン34を介してサイト熱電需給システム50に供給される。第3流路20を流れる熱媒体は、温度差発電機22の低温側で吸熱して加温する。一実施形態では、温度差発電機22の低温側は蒸発器として機能する。第3流路20において温度差発電機22で仕事をした後の中温低圧の熱媒体は、圧縮機6に戻されて、圧縮機6で再び圧縮されて高温高圧の熱媒体となる。 The temperature difference generator 22 includes a Seebeck element (thermoelectric element) and is configured to generate electricity by the Seebeck effect using the temperature difference between the high-temperature, high-pressure heat medium flowing upstream of the expansion turbine 14 in the second flow path 12 and the low-temperature, low-pressure heat medium flowing in the third flow path 20. The electricity generated by the temperature difference generator 22 is supplied to the site heat and power supply system 50 via the power transmission line 34. The heat medium flowing in the third flow path 20 absorbs heat on the low-temperature side of the temperature difference generator 22 and is heated. In one embodiment, the low-temperature side of the temperature difference generator 22 functions as an evaporator. The medium-temperature, low-pressure heat medium after doing work in the temperature difference generator 22 in the third flow path 20 is returned to the compressor 6 and compressed again in the compressor 6 to become a high-temperature, high-pressure heat medium.

第4流路24は、蓄圧断熱高温貯槽10の下流側に接続されており、蓄圧断熱高温貯槽10から地域熱電併給システム2の対象サイトの需要体100に高温高圧の熱媒体を供給(温熱供給)するように構成されている。この温熱は、需要体100に備えられた貯湯槽へお湯等の形にて改めて熱として蓄えられても良い。 The fourth flow path 24 is connected downstream of the pressurized insulated high-temperature storage tank 10 and is configured to supply high-temperature and high-pressure heat medium (hot heat supply) from the pressurized insulated high-temperature storage tank 10 to the consumer 100 at the target site of the district heat and power cogeneration system 2. This hot heat may be stored again as heat in the form of hot water, etc. in a hot water storage tank provided in the consumer 100.

第5流路26は、第4流路24を介して需要体100に供給されて需要体100側で仕事を行うことで温度が下がった中温高圧の熱媒体を需要体100から回収するように構成されている。第5流路26は、第2流路12における温度差発電機22と膨張タービン14との間の位置に接続しており、需要体100から回収した中温高圧の熱媒体を第2流路12における温度差発電機22と膨張タービン14との間の位置に供給するように構成されている。 The fifth flow path 26 is configured to recover from the consumer 100 the medium-temperature, high-pressure heat medium that has been supplied to the consumer 100 via the fourth flow path 24 and whose temperature has been reduced by performing work on the consumer 100 side. The fifth flow path 26 is connected to a position between the temperature difference generator 22 and the expansion turbine 14 in the second flow path 12, and is configured to supply the medium-temperature, high-pressure heat medium recovered from the consumer 100 to a position between the temperature difference generator 22 and the expansion turbine 14 in the second flow path 12.

第6流路28は、蓄圧断熱低温貯槽18の下流側に接続されており、蓄圧断熱低温貯槽18を出た低温低圧の熱媒体を蓄圧断熱低温貯槽18から需要体100に供給(冷熱供給)するように構成されている。なお、より低温の熱媒体を供給する場合には、第6流路28を膨張タービン14の下流側に接続し、膨張タービン14を通過後のより低温となった熱媒体を需要体100に供給するように構成してもよい。 The sixth flow path 28 is connected to the downstream side of the pressure-accumulated insulated low-temperature storage tank 18, and is configured to supply (supply cold heat) the low-temperature, low-pressure heat medium that has left the pressure-accumulated insulated low-temperature storage tank 18 from the pressure-accumulated insulated low-temperature storage tank 18 to the consumer 100. When supplying a lower-temperature heat medium, the sixth flow path 28 may be connected to the downstream side of the expansion turbine 14, and the lower-temperature heat medium that has passed through the expansion turbine 14 may be supplied to the consumer 100.

第7流路30は、第6流路28を介して需要体100に供給された低温低圧の熱媒体を需要体100から回収するように構成されている。第7流路30は、第3流路20における温度差発電機22と圧縮機6との間の位置に接続しており、需要体100から回収した低温低圧の熱媒体を第3流路20における温度差発電機22と圧縮機6との間の位置に供給するように構成されている。 The seventh flow path 30 is configured to recover from the consumer 100 the low-temperature, low-pressure heat medium supplied to the consumer 100 via the sixth flow path 28. The seventh flow path 30 is connected to a position between the temperature difference generator 22 and the compressor 6 in the third flow path 20, and is configured to supply the low-temperature, low-pressure heat medium recovered from the consumer 100 to a position between the temperature difference generator 22 and the compressor 6 in the third flow path 20.

サイト熱電需給システム50は、電気モータ5を駆動するための電力を送電ライン32を介して電気モータ5に直流電力で送電する。サイト熱電需給システム50は、膨張タービン14に接続された不図示の発電機で発電した電力を送電ライン33を介して直流電力で受電し、温度差発電機22で発電した電力を送電ライン34を介して直流電力で受電する。 The site heat and power supply and demand system 50 transmits DC power to the electric motor 5 via the power transmission line 32 to drive the electric motor 5. The site heat and power supply and demand system 50 receives DC power via the power transmission line 33 from the electric power generated by a generator (not shown) connected to the expansion turbine 14, and receives DC power from the electric power generated by the temperature difference generator 22 via the power transmission line 34.

サイト熱電需給システム50は、膨張タービン14に接続された発電機から送電ライン33を介して受電した直流電力と、温度差発電機22から送電ライン34を介して受電した直流電力とを、送電ライン35を介して対象サイトの需要体100に供給可能に構成されている。サイト熱電需給システム50は、対象サイトの需要体側で発電した電力(例えば対象サイトに設置された太陽光発電設備、燃料電池、NAS電池、対象サイトで使用される電気自動車に設置されたリチウムイオン電池等から出力される電力)を送電ライン36を介して直流電力で受電可能に構成されている。 The site heat and power supply and demand system 50 is configured to be able to supply DC power received from the generator connected to the expansion turbine 14 via the power transmission line 33 and DC power received from the temperature difference generator 22 via the power transmission line 34 to the consumer 100 at the target site via the power transmission line 35. The site heat and power supply and demand system 50 is configured to be able to receive power generated on the consumer side of the target site (for example, power output from a solar power generation facility, fuel cell, NAS battery, lithium ion battery installed in an electric vehicle used at the target site, etc.) via the power transmission line 36 as DC power.

サイト熱電需給システム50は、送電ライン37を介して統括熱電需給システム52に直流電力を供給可能に構成されており、送電ライン38を介して統括熱電需給システム52から直流電力を受電可能に構成されている。 The site heat and power supply and demand system 50 is configured to be capable of supplying DC power to the integrated heat and power supply and demand system 52 via the power transmission line 37, and is configured to be capable of receiving DC power from the integrated heat and power supply and demand system 52 via the power transmission line 38.

統括熱電需給システム52は、図2に示すように、複数の地域熱電併給システム2全体における電力と熱の需給最適化を行うように構成されている。統括熱電需給システム52とサイト熱電需給システム50とは直流電力を授受可能に構成されており、地域熱電併給システム2間では、直流電力、高温高圧の熱媒体及び低温低圧の熱媒体を授受可能に構成されている。図2において、複数の地域熱電併給システム2は、複数の対象サイトにそれぞれ対応して設けられており、複数の地域熱電併給システム2と、統括熱電需給システム52とが、地域熱電併給システム群4を構成する。 As shown in FIG. 2, the integrated heat and power supply and demand system 52 is configured to optimize the supply and demand of electricity and heat across multiple regional heat and power cogeneration systems 2. The integrated heat and power supply and demand system 52 and the site heat and power supply and demand systems 50 are configured to be able to exchange DC power, and DC power, high-temperature and high-pressure heat medium, and low-temperature and low-pressure heat medium are exchanged between the regional heat and power cogeneration systems 2. In FIG. 2, multiple regional heat and power cogeneration systems 2 are provided corresponding to multiple target sites, respectively, and the multiple regional heat and power cogeneration systems 2 and the integrated heat and power supply and demand system 52 constitute a regional heat and power cogeneration system group 4.

温度センサ82は、蓄圧断熱高温貯槽10に設けられており、蓄圧断熱高温貯槽10に貯蔵された熱媒体の温度を検出可能に構成されている。温度センサ84は、蓄圧断熱低温貯槽18に設けられており、蓄圧断熱低温貯槽18に貯蔵された熱媒体の温度を検出可能に構成されている。 The temperature sensor 82 is provided in the pressure-accumulated, insulated high-temperature tank 10 and is configured to be able to detect the temperature of the heat medium stored in the pressure-accumulated, insulated high-temperature tank 10. The temperature sensor 84 is provided in the pressure-accumulated, insulated low-temperature tank 18 and is configured to be able to detect the temperature of the heat medium stored in the pressure-accumulated, insulated low-temperature tank 18.

モータ制御部86は、温度センサ82の出力が閾値以下である場合に、電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するように構成されてもよい。また、蓄圧断熱高温貯槽10には、蓄圧断熱高温貯槽10に貯蔵された熱媒体の残量を検出可能な残量センサ(容量センサ)が設けられていてもよい。また、当該残量センサが設けられている場合には、モータ制御部86は、残量センサによって検出された蓄圧断熱高温貯槽10の熱媒体の残量が閾値を下回った場合に電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するように構成されていてもよい。 The motor control unit 86 may be configured to replenish the high-temperature, high-pressure heat medium to the pressure-accumulating, insulated, high-temperature storage tank 10 by driving the electric motor 5 to operate the compressor 6 when the output of the temperature sensor 82 is equal to or lower than a threshold value. The pressure-accumulating, insulated, high-temperature storage tank 10 may also be provided with a remaining amount sensor (capacity sensor) capable of detecting the remaining amount of heat medium stored in the pressure-accumulating, insulated, high-temperature storage tank 10. In addition, when the remaining amount sensor is provided, the motor control unit 86 may be configured to replenish the high-temperature, high-pressure heat medium to the pressure-accumulating, insulated, high-temperature storage tank 10 by driving the electric motor 5 to operate the compressor 6 when the remaining amount of heat medium in the pressure-accumulating, insulated, high-temperature storage tank 10 detected by the remaining amount sensor falls below a threshold value.

また、モータ制御部86は、温度センサ84の出力が閾値以上である場合に、電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するとともに蓄圧断熱高温貯槽10から高温高圧の熱媒体を第2流路12に放出し、温度差発電機22で発電を行ってもよい。また、蓄圧断熱低温貯槽18には、蓄圧断熱低温貯槽18に貯蔵された熱媒体の残量を検出可能な残量センサ(容量センサ)が設けられていてもよい。また、当該残量センサが設けられている場合には、モータ制御部86は、残量センサによって検出された蓄圧断熱低温貯槽18の熱媒体の残量が閾値を下回った場合に、電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するとともに蓄圧断熱高温貯槽10から高温高圧の熱媒体を第2流路12に放出し、温度差発電機22で発電を行ってもよい。 When the output of the temperature sensor 84 is equal to or greater than the threshold value, the motor control unit 86 may drive the electric motor 5 to operate the compressor 6 to replenish the high-temperature, high-pressure heat medium in the pressure-accumulated, insulated high-temperature storage tank 10 and release the high-temperature, high-pressure heat medium from the pressure-accumulated, insulated high-temperature storage tank 10 to the second flow path 12, and generate electricity with the temperature difference generator 22. The pressure-accumulated, insulated low-temperature storage tank 18 may be provided with a remaining amount sensor (capacity sensor) capable of detecting the remaining amount of heat medium stored in the pressure-accumulated, insulated low-temperature storage tank 18. When the remaining amount sensor is provided, the motor control unit 86 may drive the electric motor 5 to operate the compressor 6 to replenish the high-temperature, high-pressure heat medium in the pressure-accumulated, insulated high-temperature storage tank 10 and release the high-temperature, high-pressure heat medium from the pressure-accumulated, insulated high-temperature storage tank 10 to the second flow path 12, and generate electricity with the temperature difference generator 22, when the remaining amount of heat medium in the pressure-accumulated, insulated low-temperature storage tank 18 detected by the remaining amount sensor falls below the threshold value.

この際、温度差発電機22の高温側で単に放熱するのではなく、蓄圧断熱低温貯槽18から第3流路20を介して温度差発電機22に低温低圧の熱媒体を供給することにより温度差発電機22で発電を行ってエネルギーを回収する。そして、第2流路12において温度差発電機22の高温側で発電に利用された後の中温高圧の熱媒体は、膨張タービン14に供給されて膨張タービン14を駆動し、膨張タービン14に連結された不図示の発電機が行われる。膨張タービン14を通過して低温低圧となった熱媒体は蓄圧断熱低温貯槽18に補充される。 In this case, heat is not simply released on the high-temperature side of the temperature difference generator 22, but a low-temperature, low-pressure heat medium is supplied from the pressure-accumulating, insulated, low-temperature storage tank 18 to the temperature difference generator 22 via the third flow path 20, generating electricity in the temperature difference generator 22 and recovering energy. Then, after being used for power generation on the high-temperature side of the temperature difference generator 22 in the second flow path 12, the medium-temperature, high-pressure heat medium is supplied to the expansion turbine 14 to drive the expansion turbine 14, and a generator (not shown) connected to the expansion turbine 14 is operated. The heat medium, which has passed through the expansion turbine 14 and has become low-temperature and low-pressure, is replenished in the pressure-accumulating, insulated, low-temperature storage tank 18.

図1に示した構成によれば、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22によって構成される熱媒体の循環流路25によって、ヒートポンプサイクルを構築することができる。ヒートポンプは、COPが3(=300%)を超えるのが通常であり、効率が90%程度の燃焼式機器を利用する給湯に比べ、効率は何百%の向上となり極めて効率的である。このため、少ない投入エネルギーで効率的に高温高圧の熱媒体と低温低圧の熱媒体とを生成することができる。 According to the configuration shown in FIG. 1, a heat pump cycle can be constructed with a heat medium circulation flow path 25 consisting of a compressor 6, a first flow path 8, a pressure-accumulating, insulated high-temperature storage tank 10, a second flow path 12, an expansion turbine 14, a pressure-accumulating, insulated low-temperature storage tank 18, a third flow path 20, and a temperature difference generator 22. Heat pumps usually have a COP of over 3 (=300%), and are extremely efficient, with an efficiency several hundred percent higher than hot water supply using combustion equipment with an efficiency of about 90%. Therefore, a high-temperature, high-pressure heat medium and a low-temperature, low-pressure heat medium can be efficiently generated with a small input of energy.

また、生成した高温高圧の熱媒体と低温低圧の熱媒体とをそれぞれ蓄圧断熱高温貯槽10と蓄圧断熱低温貯槽18に貯蔵することで電力を熱として蓄積し、電力需要に応じて蓄圧断熱高温貯槽10と蓄圧断熱低温貯槽18から高温高圧の熱媒体と低温低圧の熱媒体と温度差発電機22に供給して発電を行うことができるため、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池3を提供することができる。図1に示す構成では、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22が蓄熱式温度差蓄電池3を構成する。 In addition, the generated high-temperature and high-pressure heat medium and low-temperature and low-pressure heat medium are stored in the pressure-storage and heat-insulating high-temperature storage tank 10 and the pressure-storage and heat-insulating low-temperature storage tank 18, respectively, to store electricity as heat, and the high-temperature and high-pressure heat medium and the low-temperature and low-pressure heat medium and the temperature difference generator 22 can be supplied from the pressure-storage and heat-insulating high-temperature storage tank 10 and the pressure-storage and heat-insulating low-temperature storage tank 18 to generate electricity according to the demand for electricity. This makes it possible to provide a heat storage type temperature difference battery 3, which is a new type of battery that generates electricity using heat media with different temperatures stored in a heat pump cycle. In the configuration shown in FIG. 1, the compressor 6, the first flow path 8, the pressure-storage and heat-insulating high-temperature storage tank 10, the second flow path 12, the expansion turbine 14, the pressure-storage and heat-insulating low-temperature storage tank 18, the third flow path 20, and the temperature difference generator 22 constitute the heat storage type temperature difference battery 3.

この蓄熱式温度差蓄電池3によれば、例えば特許文献1に記載される構成(ヒートポンプサイクルを流れる高温高圧の熱媒体で膨張タービンを駆動して膨張タービンに接続された発電機により発電を行う構成)と比較して、ヒートポンプサイクル内の熱媒体を利用して簡素な構成で発電を行うことができる。 This heat storage type temperature difference storage battery 3 can generate electricity with a simpler configuration that utilizes the heat medium in the heat pump cycle, compared to the configuration described in Patent Document 1 (wherein the high-temperature, high-pressure heat medium flowing through the heat pump cycle drives an expansion turbine and generates electricity using a generator connected to the expansion turbine).

また、地域熱電併給システム2のヒートポンプサイクルによって生成される熱媒体は、給湯、暖房、冷房、氷温保存等をはじめとした、一般的な生活に十分な温度(例えば-30℃程度~60℃程度)で需要体100に供給可能であることから、地域への熱供給源として活用できる。
特にコンパクトシティやスマートシティなど、インフラが集中する地域では、熱の移動距離に伴う制約を受けずにより効率的な運用が可能となる。
In addition, the heat medium generated by the heat pump cycle of the district heat and power combined supply system 2 can be supplied to the consumer 100 at a temperature sufficient for general living (for example, approximately -30°C to approximately 60°C) including hot water supply, heating, cooling, ice storage, etc., and therefore can be utilized as a heat supply source for the district.
Particularly in areas where infrastructure is concentrated, such as compact cities and smart cities, more efficient operation will be possible without being restricted by the distance that heat must travel.

比較的小規模なエネルギー変換機器である圧縮機6や温度差発電機22等をエネルギー消費地に近い場所に設置してエネルギー供給を行う分散型のエネルギー供給システムを実現することができ、エネルギーの安定供給や省エネルギー等の観点でもメリットがある。 A distributed energy supply system can be realized in which relatively small-scale energy conversion equipment such as a compressor 6 and a temperature difference generator 22 are installed in locations close to the energy consumption area, which offers benefits in terms of stable energy supply and energy conservation.

また、一般に、夏は冷熱需要が多く、冬は温熱需要が多い。多量の熱を使う家もあれば、日中は不在で熱をそれほど使わない家もある。環境やライフスタイルほか、多様な因子により熱の需要量に変動が発生するが、その変動の結果、余った熱を大気に放出するのは省エネの観点から望ましくない。電気も熱と同様、需要者単位での変動は大きいが、複数の需要者を纏めて管理することで平準化が可能である。上記地域熱電併給システム2は、このような熱や電気の需要量や再生可能エネルギーの発電量等の変動のバッファーとして、余剰熱/電気を熱状態で蓄え、必要に応じ温度差発電機22を用いて電気として取り出すことを可能とするものである。 In general, there is a high demand for cold energy in the summer and a high demand for warm energy in the winter. Some homes use a lot of heat, while others are unoccupied during the day and do not use much heat. Heat demand fluctuates due to a variety of factors, including the environment and lifestyle, and it is undesirable from an energy-saving perspective to release excess heat into the atmosphere as a result of these fluctuations. Like heat, electricity also fluctuates greatly per consumer, but this can be leveled out by managing multiple consumers together. The district heat and power cogeneration system 2 serves as a buffer for fluctuations in the demand for heat and electricity and the amount of power generated by renewable energy sources, and stores excess heat/electricity in a thermal state, making it possible to extract it as electricity as needed using a temperature difference generator 22.

また、例えばNAS電池やリチウムイオン電池は、蓄電容量を上げるためには、リチウムや硫黄を増やすなどにより高コスト化を招きやすいが、この蓄熱式温度差蓄電池3では、蓄圧断熱高温貯槽10及び蓄圧断熱低温貯槽18を新設又は増設することにより蓄電容量を容易に増大することができる。 In addition, for example, in order to increase the storage capacity of NAS batteries and lithium ion batteries, the cost tends to increase due to the need to increase the amount of lithium or sulfur, but in the case of this heat storage type temperature difference storage battery 3, the storage capacity can be easily increased by newly installing or expanding the pressurized insulated high-temperature storage tank 10 and the pressurized insulated low-temperature storage tank 18.

また、温度差発電機22(熱電素子)は、可動部がないため、長寿命で信頼性が高く、振動や雑音が発生しない。温度差発電機22(熱電素子)は、素子の形状を自由設計できる。温度差発電機22は、単位面積当たりの発電量が太陽光発電の数倍から数十倍である。温度差発電機22は、使用材料の多くが金属又は半導体なので高温環境下や、酸素、水蒸気等により酸化劣化する場合があるが、この酸化劣化を抑制する観点からは、地域熱電併給システム2で使用する熱媒体は代替フロン類が望ましい。 In addition, since the temperature difference generator 22 (thermoelectric element) has no moving parts, it has a long life, is highly reliable, and does not generate vibration or noise. The shape of the element of the temperature difference generator 22 (thermoelectric element) can be freely designed. The temperature difference generator 22 generates electricity per unit area several to several tens of times that of solar power generation. Since many of the materials used in the temperature difference generator 22 are metals or semiconductors, they may be subject to oxidative degradation in high temperature environments or due to oxygen, water vapor, etc., but from the perspective of suppressing this oxidative degradation, it is preferable that the heat medium used in the district heat and power cogeneration system 2 be an alternative to fluorocarbons.

また、温度差発電機22において、蓄圧断熱高温貯槽10に貯蔵された熱媒体が保有する温熱量と、蓄圧断熱低温貯槽18に貯蔵された熱媒体の保有する冷熱量がバランスしない場合、温度差発電機22による発電を効率的に行うことができない。 In addition, in the temperature difference generator 22, if the amount of hot heat held by the heat medium stored in the pressure-accumulated insulated high-temperature storage tank 10 is not balanced with the amount of cold heat held by the heat medium stored in the pressure-accumulated insulated low-temperature storage tank 18, the temperature difference generator 22 cannot generate electricity efficiently.

この点、上記温度センサ82及びモータ制御部86を備える地域熱電併給システム2によれば、蓄圧断熱高温貯槽10に設けられた温度センサ82の出力が閾値以下である場合に電気モータ5で圧縮機6を駆動して蓄圧断熱高温貯槽10に貯蔵された熱媒体が保有する温熱量を補充する(蓄圧断熱高温貯槽10に貯蔵された熱媒体の温度を上昇させる)ことができるため、温度差発電機22で効率的に発電することができる。 In this regard, according to the district heat and power cogeneration system 2 equipped with the above-mentioned temperature sensor 82 and motor control unit 86, when the output of the temperature sensor 82 provided in the pressurized insulated high-temperature storage tank 10 is below a threshold value, the electric motor 5 drives the compressor 6 to replenish the heat energy contained in the heat medium stored in the pressurized insulated high-temperature storage tank 10 (to increase the temperature of the heat medium stored in the pressurized insulated high-temperature storage tank 10), thereby enabling efficient power generation by the temperature difference generator 22.

また、上記温度センサ84及びモータ制御部86を備える地域熱電併給システム2によれば、蓄圧断熱低温貯槽18に設けられた温度センサ84の出力が閾値以上である場合に電気モータ5で圧縮機6を駆動して高温高圧の熱媒体を生成し、温度差発電機22で減温後に膨張タービン14で膨張させて蓄圧断熱低温貯槽18に貯蔵された熱媒体が保有する冷熱量を補充する(蓄圧断熱低温貯槽18に貯蔵された熱媒体の温度を低下させる)ことができるため、温度差発電機22で効率的に発電することができる。 In addition, according to the district heat and power cogeneration system 2 equipped with the above-mentioned temperature sensor 84 and motor control unit 86, when the output of the temperature sensor 84 provided in the pressure-accumulated insulated low-temperature storage tank 18 is equal to or higher than a threshold value, the electric motor 5 drives the compressor 6 to generate a high-temperature, high-pressure heat medium, which is then cooled by the temperature difference generator 22 and expanded by the expansion turbine 14 to replenish the cold energy held by the heat medium stored in the pressure-accumulated insulated low-temperature storage tank 18 (the temperature of the heat medium stored in the pressure-accumulated insulated low-temperature storage tank 18 is lowered), and therefore the temperature difference generator 22 can generate electricity efficiently.

(機械学習装置)
幾つかの実施形態では、図1に示すように、複数の対象サイトの各々における電力及び熱の需給傾向を学習するように構成された機械学習装置88を更に備えていてもよい。この場合、統括熱電需給システム52は、機械学習装置88が学習した複数の対象サイトの各々における電力及び熱の需給傾向(以下、単に「機械学習装置88の学習結果」と記載する。)に基づいて、複数の熱電併給システム2全体における電力と熱の需給最適化を行うように構成される。機械学習装置88は、コンピュータで構成されており、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリや外部記憶装置などからなる記憶装置を備えている。また、機械学習装置88や統括熱電需給システム、および100需要体の各種設備間においては、データや指示命令信号の授受のために必要な相互通信手段(有線、無線を問わない)を含む。図1に示す例では、機械学習装置88は、統括熱電需給システム52に設けられているが、機械学習装置88はサイト熱電需給システム50毎に設けられていてもよいし、その他の箇所に設けられていてもよい。
(Machine learning device)
In some embodiments, as shown in FIG. 1, the integrated heat and power supply and demand system 52 may further include a machine learning device 88 configured to learn the supply and demand trends of power and heat at each of the multiple target sites. In this case, the integrated heat and power supply and demand system 52 is configured to optimize the supply and demand of power and heat in the multiple heat and power cogeneration systems 2 as a whole based on the supply and demand trends of power and heat at each of the multiple target sites learned by the machine learning device 88 (hereinafter simply referred to as the "learning result of the machine learning device 88"). The machine learning device 88 is configured as a computer and includes a storage device including a CPU (processor) not shown, memories such as ROM and RAM, and external storage devices. In addition, the machine learning device 88, the integrated heat and power supply and demand system, and various facilities of the 100 consumers include mutual communication means (whether wired or wireless) necessary for transmitting and receiving data and instruction command signals between them. In the example shown in FIG. 1, the machine learning device 88 is provided in the integrated heat and power supply and demand system 52, but the machine learning device 88 may be provided for each site heat and power supply and demand system 50, or may be provided in other locations.

統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトのうち特に高温の熱媒体の需要が多いサイトには、圧縮機6での圧縮直後の極高温の熱媒体を第1流路8から抽出して積極的に供給するように熱の需給最適化を行ってもよい。また、統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトのうち特に低温の熱媒体の需要が多いサイト(例えば食品工場が多い地域等)には、膨張タービン14での膨張直後の極低温の熱媒体を第2流路における膨張タービン14の下流側から抽出して積極的に供給するように熱の需給最適化を行ってもよい。また、統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトのうちそれほど高温や低温の熱媒体を必要としないサイトには、各サイトで仕事をした後の熱媒体(リターン熱媒体)を供給するように熱の需給最適化を行ってもよい。 Based on the learning results of the machine learning device 88, the integrated heat and power supply and demand system 52 may optimize heat supply and demand, for example, to a site among the multiple target sites corresponding to the multiple regional heat and power cogeneration systems 2 that has a particularly high demand for a high-temperature heat medium, by extracting an extremely high-temperature heat medium immediately after compression by the compressor 6 from the first flow path 8 and actively supplying it. Based on the learning results of the machine learning device 88, the integrated heat and power supply and demand system 52 may optimize heat supply and demand, for example, to a site among the multiple target sites corresponding to the multiple regional heat and power cogeneration systems 2 that has a particularly high demand for a low-temperature heat medium (for example, an area with many food factories), by extracting an extremely low-temperature heat medium immediately after expansion by the expansion turbine 14 from the downstream side of the expansion turbine 14 in the second flow path and actively supplying it. Based on the learning results of the machine learning device 88, the integrated heat and power supply and demand system 52 may optimize heat supply and demand, for example, to a site among the multiple target sites corresponding to the multiple regional heat and power cogeneration systems 2 that does not require a high-temperature or low-temperature heat medium, by supplying the heat medium (return heat medium) after work at each site.

統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトの各々において、サイト内の人口の過疎化や過密化に合わせて、温度差発電機22の発電量、膨張タービン14に接続された不図示の発電機の発電量、電気モータ5の駆動、蓄圧断熱高温貯槽10及び蓄圧断熱低温貯槽18の各々の蓄熱量並びに蓄熱のタイミングを制御して電力及び熱の供給不足や供給過多を回避してもよい。また、統括熱電需給システム52は、例えば複数の地域熱電併給システム2に対応する複数の対象サイトの各々において、サイト内の人の年齢構成や就労状況などのライフスタイルによる電力及び熱の需要の変動量(例えば自宅におけるエネルギー使用時間や使用量)についての機械学習装置88の学習結果に基づいて、温度差発電機22の発電量、膨張タービン14に接続された不図示の発電機の発電量、電気モータ5の駆動、蓄圧断熱高温貯槽10及び蓄圧断熱低温貯槽18の各々の蓄熱量並びに蓄熱のタイミングを制御して電力及び熱の供給不足や供給過多を回避してもよい。 Based on the learning results of the machine learning device 88, the integrated heat and power supply and demand system 52 may, for example, control the amount of power generated by the temperature difference generator 22, the amount of power generated by a generator not shown connected to the expansion turbine 14, the drive of the electric motor 5, and the amount of heat stored and the timing of heat storage in each of the pressurized insulated high-temperature storage tank 10 and the pressurized insulated low-temperature storage tank 18 in each of multiple target sites corresponding to multiple regional heat and power cogeneration systems 2 in accordance with the depopulation or overpopulation of the site, thereby avoiding a shortage or oversupply of electricity and heat. In addition, the integrated heat and power supply and demand system 52 may, for example, at each of a number of target sites corresponding to a number of district heat and power cogeneration systems 2, control the amount of power generated by the temperature difference generator 22, the amount of power generated by a generator not shown connected to the expansion turbine 14, the drive of the electric motor 5, and the amount and timing of heat storage in the pressurized insulated high-temperature storage tank 10 and the pressurized insulated low-temperature storage tank 18, based on the learning results of the machine learning device 88 about the amount of fluctuation in power and heat demand due to lifestyles such as the age composition and employment status of people on the site (for example, energy usage time and usage at home), thereby avoiding a shortage or oversupply of power and heat.

図3は、一実施形態に係る地域熱電併給システム2(2B)の概略構成を示す模式図である。図3に示す地域熱電併給システム2(2B)において、図1に示した地域熱電併給システム2(2A)の各構成と共通の符号は、特記しない限り図1に示した地域熱電併給システム2(2A)の各構成と同様の構成を示すものとし、説明を省略する。 Figure 3 is a schematic diagram showing the general configuration of a district heat and power combined supply system 2 (2B) according to one embodiment. In the district heat and power combined supply system 2 (2B) shown in Figure 3, reference symbols common to the respective components of the district heat and power combined supply system 2 (2A) shown in Figure 1 indicate the same components as those of the district heat and power combined supply system 2 (2A) shown in Figure 1 unless otherwise specified, and explanations thereof will be omitted.

図3に示す地域熱電併給システム2(2B)は、第1分岐流路60、地中熱熱交換装置62、第1戻り流路64、第2分岐流路66、第2戻り流路68を備える点が図1に示す地域熱電併給システム2(2A)と異なる。 The district heat and power cogeneration system 2 (2B) shown in FIG. 3 differs from the district heat and power cogeneration system 2 (2A) shown in FIG. 1 in that it includes a first branch flow path 60, a geothermal heat exchanger 62, a first return flow path 64, a second branch flow path 66, and a second return flow path 68.

第1分岐流路60は、第2流路12における温度差発電機22と膨張タービン14との間から分岐し、第2流路12から供給された熱媒体を地中熱熱交換装置62の第1熱交換部70あるいは第2熱交換部72に流すように構成されている。 The first branch flow path 60 branches off from the second flow path 12 between the temperature difference generator 22 and the expansion turbine 14, and is configured to allow the heat medium supplied from the second flow path 12 to flow to the first heat exchange section 70 or the second heat exchange section 72 of the geothermal heat exchange device 62.

第1熱交換部70は、第1分岐流路60に接続し、第1分岐流路60から供給された高温高圧の熱媒体を未利用エネルギーとしての地中熱との熱交換により加熱するように構成されている。なお、第1熱交換部70は、地中熱に代えて、工場排熱やごみ焼却場の排熱等の未利用エネルギーとの熱交換により熱媒体を加熱するように構成されていてもよい。 The first heat exchange unit 70 is connected to the first branch flow path 60 and is configured to heat the high-temperature, high-pressure heat medium supplied from the first branch flow path 60 by heat exchange with geothermal heat as unused energy. Note that the first heat exchange unit 70 may be configured to heat the heat medium by heat exchange with unused energy such as factory exhaust heat or waste incineration plant exhaust heat instead of geothermal heat.

第1戻り流路64は、第1熱交換部70に接続し、第1熱交換部70を通過した高温高圧の熱媒体を第2流路12における蓄圧断熱高温貯槽10と温度差発電機22との間に供給するように構成されている。 The first return flow path 64 is connected to the first heat exchange section 70 and is configured to supply the high-temperature, high-pressure heat medium that has passed through the first heat exchange section 70 between the pressure-accumulating, insulated high-temperature storage tank 10 and the temperature difference generator 22 in the second flow path 12.

このように、地域熱電併給システム2(2B)では、第2流路12の一部、第1分岐流路60、第1熱交換部70及び第1戻り流路64によって循環流路74(図4の2か所の太線部のうち上側の太線部と第1熱交換部70とからなる循環流路)を構成可能となっている。 In this way, in the district heat and power cogeneration system 2 (2B), a circulation flow path 74 (a circulation flow path consisting of the upper thick line portion of the two thick line portions in Figure 4 and the first heat exchange portion 70) can be formed by a part of the second flow path 12, the first branch flow path 60, the first heat exchange portion 70, and the first return flow path 64.

第2分岐流路66は、第3流路20における温度差発電機22と圧縮機6との間から分岐し、第3流路20から供給された低温低圧の熱媒体を地中熱熱交換装置62の第1熱交換部70あるいは第2熱交換部72に流すように構成されている。 The second branch flow path 66 branches off from the third flow path 20 between the temperature difference generator 22 and the compressor 6, and is configured to allow the low-temperature, low-pressure heat medium supplied from the third flow path 20 to flow to the first heat exchange section 70 or the second heat exchange section 72 of the geothermal heat exchange device 62.

第2熱交換部72は、第2分岐流路66に接続し、第2分岐流路66から供給された低温低圧の熱媒体を未利用エネルギーとしての地中熱との熱交換により冷却するように構成されている。なお、第2熱交換部72は、地中熱に代えて、河川、海水、下水又は雪氷熱等の未利用エネルギーとの熱交換により熱媒体を冷却するように構成されていてもよい。 The second heat exchanger 72 is connected to the second branch flow path 66 and is configured to cool the low-temperature, low-pressure heat medium supplied from the second branch flow path 66 by heat exchange with geothermal heat as unused energy. The second heat exchanger 72 may be configured to cool the heat medium by heat exchange with unused energy such as river water, seawater, sewage water, or snow and ice heat, instead of geothermal heat.

第2戻り流路68は、第2熱交換部72に接続し、第2熱交換部72を通過した低温低圧の熱媒体を第3流路20における蓄圧断熱低温貯槽18と温度差発電機22との間に供給するように構成されている。 The second return flow path 68 is connected to the second heat exchange section 72 and is configured to supply the low-temperature, low-pressure heat medium that has passed through the second heat exchange section 72 between the pressure-accumulated insulated low-temperature storage tank 18 and the temperature difference generator 22 in the third flow path 20.

このように、地域熱電併給システム2(2B)では、第3流路20の一部、第2分岐流路66、第2熱交換部72及び第2戻り流路68によって循環流路76(図4の2か所の太線部のうち下側の太線部と第2熱交換部72とからなる循環流路)を構成可能となっている。 In this way, in the district heat and power cogeneration system 2 (2B), a circulation flow path 76 (a circulation flow path consisting of the lower of the two thick line portions in Figure 4 and the second heat exchange portion 72) can be formed by a part of the third flow path 20, the second branch flow path 66, the second heat exchange portion 72, and the second return flow path 68.

温度差発電機22において、第2流路12を流れる熱媒体が保有する温熱量と、第3流路20を流れる熱媒体の保有する冷熱量がバランスしない場合、温度差発電機22による発電を効率的に行うことができない。この点、上記地域熱電併給システム2(2B)の蓄熱式温度差蓄電池によれば、第2流路12における温度差発電機22と膨張タービン14との間を流れる熱媒体を第1分岐流路60を介して第1熱交換部70に供給し、第1熱交換部70で地中熱との熱交換により加熱してから第1戻り流路64で第2流路12における蓄圧断熱高温貯槽10と温度差発電機22との間に供給することができる。このため、第2流路12を流れる熱媒体が保有する温熱量が第3流路20を流れる熱媒体の保有する冷熱量に対して不足している場合(温媒不足の場合)に、第2流路12を流れる熱媒体の温熱量を地中熱を利用して補充し、温度差発電機22で効率的に発電することができる。 In the temperature difference generator 22, if the amount of hot heat held by the heat medium flowing through the second flow path 12 and the amount of cold heat held by the heat medium flowing through the third flow path 20 are not balanced, the temperature difference generator 22 cannot generate power efficiently. In this regard, according to the heat storage type temperature difference battery of the above-mentioned regional heat and power cogeneration system 2 (2B), the heat medium flowing between the temperature difference generator 22 and the expansion turbine 14 in the second flow path 12 is supplied to the first heat exchange section 70 via the first branch flow path 60, heated by heat exchange with geothermal heat in the first heat exchange section 70, and then supplied to between the pressure-storage insulated high-temperature storage tank 10 and the temperature difference generator 22 in the second flow path 12 via the first return flow path 64. Therefore, when the amount of hot heat held by the heat medium flowing through the second flow path 12 is insufficient compared to the amount of cold heat held by the heat medium flowing through the third flow path 20 (when there is a shortage of hot medium), the amount of hot heat of the heat medium flowing through the second flow path 12 can be replenished using geothermal heat, and the temperature difference generator 22 can generate power efficiently.

また、第3流路20を流れる熱媒体を第2分岐流路66を介して第2熱交換部72に供給し、第2熱交換部72で地中熱との熱交換により冷却してから第2戻り流路68で第3流路20における蓄圧断熱低温貯槽18と温度差発電機22との間に供給することができる。このため、第3流路20を流れる熱媒体が保有する冷熱量が第2流路12を流れる熱媒体の保有する温熱量に対して不足している場合(冷媒不足の場合)に、第3流路20を流れる熱媒体の冷熱量を未利用エネルギーを利用して補充し、温度差発電機22で効率的に発電することができる。 The heat medium flowing through the third flow path 20 can be supplied to the second heat exchange section 72 via the second branch flow path 66, cooled by heat exchange with geothermal heat in the second heat exchange section 72, and then supplied through the second return flow path 68 to between the pressure-storage insulated low-temperature storage tank 18 and the temperature difference generator 22 in the third flow path 20. Therefore, when the amount of cold energy held by the heat medium flowing through the third flow path 20 is insufficient compared to the amount of hot energy held by the heat medium flowing through the second flow path 12 (when there is a refrigerant shortage), the amount of cold energy of the heat medium flowing through the third flow path 20 can be replenished by using unused energy, and electricity can be efficiently generated by the temperature difference generator 22.

なお、図3及び図4に示す構成では、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22、第1分岐流路60、第1熱交換部70、第1戻り流路64、第2分岐流路66、第2熱交換部72及び第2戻り流路68が蓄熱式温度差蓄電池3を構成する。 In the configuration shown in Figures 3 and 4, the compressor 6, the first flow path 8, the pressure-accumulating insulated high-temperature storage tank 10, the second flow path 12, the expansion turbine 14, the pressure-accumulating insulated low-temperature storage tank 18, the third flow path 20, the temperature difference generator 22, the first branch flow path 60, the first heat exchanger 70, the first return flow path 64, the second branch flow path 66, the second heat exchanger 72, and the second return flow path 68 constitute the heat storage type temperature difference storage battery 3.

図5は、一実施形態に係る地域熱電併給システム2(2C)の概略構成を示す模式図である。図5に示す地域熱電併給システム2(2C)において、上述した地域熱電併給システム2(2A)及び地域熱電併給システム2(2B)の各構成と共通の符号は、特記しない限り上述した地域熱電併給システム2(2A)及び地域熱電併給システム2(2B)の各構成と同様の構成を示すものとし、説明を省略する。 Figure 5 is a schematic diagram showing the general configuration of a district heat and power combined supply system 2 (2C) according to one embodiment. In the district heat and power combined supply system 2 (2C) shown in Figure 5, the reference symbols common to the respective components of the district heat and power combined supply system 2 (2A) and the district heat and power combined supply system 2 (2B) described above indicate the same components as the respective components of the district heat and power combined supply system 2 (2A) and the district heat and power combined supply system 2 (2B) described above unless otherwise specified, and the description thereof will be omitted.

図5に示す地域熱電併給システム2(2C)は、温度調整流路78,80を備える点が図3に示す地域熱電併給システム2(2B)と異なる。温度調整流路78は第2熱交換部72に、温度調整流路80は第1熱交換部70にそれぞれ接続されているのが基本である。ただし、システムを効率的に稼働させるため、切替バルブなどを設置し、温度調整流路78を第1熱交換部70に、温度調整流路80を第2熱交換部72に接続してもよい。ただし、第1分岐流路60から供給された熱媒体と第2分岐流路66から供給された熱媒体とが地中熱交換装置62内で混ざらないように各流路が切り替えられる。第1分岐流路60が第1熱交換部70に対する熱媒体の入口側の流路となる場合に温度調整流路78が第1熱交換部70に対する熱媒体の出口側の流路となり、第2分岐流路66が第2熱交換部72に対する熱媒体の入口側の流路となる場合に温度調整流路80が第2熱交換部72に対する熱媒体の出口側の流路となる。第1分岐流路60が第2熱交換部72に対する熱媒体の入口側の流路となる場合に温度調整流路78が第2熱交換部72に対する熱媒体の出口側の流路となり、第2分岐流路66が第1熱交換部70に対する熱媒体の入口側の流路となる場合に温度調整流路80が第1熱交換部70に対する熱媒体の出口側の流路となる。 The district heat and power cogeneration system 2 (2C) shown in FIG. 5 differs from the district heat and power cogeneration system 2 (2B) shown in FIG. 3 in that it includes temperature adjustment flow paths 78, 80. Basically, the temperature adjustment flow path 78 is connected to the second heat exchange section 72, and the temperature adjustment flow path 80 is connected to the first heat exchange section 70. However, in order to operate the system efficiently, a switching valve or the like may be installed to connect the temperature adjustment flow path 78 to the first heat exchange section 70 and the temperature adjustment flow path 80 to the second heat exchange section 72. However, each flow path is switched so that the heat medium supplied from the first branch flow path 60 and the heat medium supplied from the second branch flow path 66 do not mix in the underground heat exchange device 62. When the first branch flow path 60 is the inlet side flow path of the heat medium for the first heat exchanger 70, the temperature adjustment flow path 78 is the outlet side flow path of the heat medium for the first heat exchanger 70, and when the second branch flow path 66 is the inlet side flow path of the heat medium for the second heat exchanger 72, the temperature adjustment flow path 80 is the outlet side flow path of the heat medium for the second heat exchanger 72. When the first branch flow path 60 is the inlet side flow path of the heat medium for the second heat exchanger 72, the temperature adjustment flow path 78 is the outlet side flow path of the heat medium for the second heat exchanger 72, and when the second branch flow path 66 is the inlet side flow path of the heat medium for the first heat exchanger 70, the temperature adjustment flow path 80 is the outlet side flow path of the heat medium for the first heat exchanger 70.

温度調整流路78は、第2流路12を流れる高温高圧の熱媒体の温度調整が必要な時に使用される。具体的には、温度差発電機22にて十分に温度が下がらない場合などに使用される。
温度調整流路80は、第3流路20を流れる低温高圧の熱媒体の温度調整が必要な時に使用される。具体的には、温度差発電機22にて十分に温度が上がらない場合などに使用される。
The temperature adjustment flow path 78 is used when it is necessary to adjust the temperature of the high-temperature, high-pressure heat medium flowing through the second flow path 12. Specifically, it is used when the temperature is not sufficiently reduced by the temperature difference power generator 22.
The temperature adjustment flow path 80 is used when it is necessary to adjust the temperature of the low-temperature, high-pressure heat medium flowing through the third flow path 20. Specifically, it is used when the temperature difference power generator 22 does not sufficiently increase the temperature.

なお、図5に示す構成では、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22、第1分岐流路60、第1熱交換部70、第1戻り流路64、第2分岐流路66、第2熱交換部72及び第2戻り流路68及び温度調整流路78,80が蓄熱式温度差蓄電池3を構成する。 In the configuration shown in FIG. 5, the compressor 6, the first flow path 8, the pressure-accumulating insulated high-temperature storage tank 10, the second flow path 12, the expansion turbine 14, the pressure-accumulating insulated low-temperature storage tank 18, the third flow path 20, the temperature difference generator 22, the first branch flow path 60, the first heat exchange section 70, the first return flow path 64, the second branch flow path 66, the second heat exchange section 72, the second return flow path 68, and the temperature adjustment flow paths 78, 80 constitute the heat storage type temperature difference storage battery 3.

本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-described embodiments, but also includes variations of the above-described embodiments and appropriate combinations of these embodiments.

例えば上述の地域熱電併給システム2(2A~2C)の各々において、膨張タービン14の代わりに膨張弁等の他の膨張装置(減圧弁等の蒸発器)を設けてもよい。 For example, in each of the above-mentioned district heat and power cogeneration systems 2 (2A to 2C), another expansion device such as an expansion valve (an evaporator such as a pressure reducing valve) may be provided instead of the expansion turbine 14.

また、上述した実施形態では、温度差発電機22で発電した電力及び膨張タービン14に連結された発電機で発電した電力が対象サイトの需要体100へ供給される場合等を例示したが、温度差発電機22で発電した電力及び膨張タービン14に連結された発電機で発電した電力を例えば電気モータ5の駆動に利用してもよいし、統括熱電需給システム52を介して電力会社に売電してもよい。 In addition, in the above-described embodiment, an example was given of the case where the electricity generated by the temperature difference generator 22 and the electricity generated by the generator connected to the expansion turbine 14 are supplied to the consumer 100 at the target site, but the electricity generated by the temperature difference generator 22 and the electricity generated by the generator connected to the expansion turbine 14 may be used, for example, to drive the electric motor 5, or may be sold to an electric power company via the integrated heat and power supply and demand system 52.

また、例えば上述の地域熱電併給システム2(2A~2C)の各々において、第1流路8、第2流路12、第3流路20等の各流路に熱媒体を貯蔵するためのバッファタンクを必要に応じて設置してもよい。また、このバッファタンクにバッファタンクの熱媒体の残量を検出するための残量センサ(容量センサ)を設けてもよい。 For example, in each of the above-mentioned district heat and power cogeneration systems 2 (2A to 2C), a buffer tank for storing the heat medium may be installed as necessary in each flow path, such as the first flow path 8, the second flow path 12, and the third flow path 20. In addition, the buffer tank may be provided with a remaining amount sensor (capacity sensor) for detecting the remaining amount of heat medium in the buffer tank.

また、上述した幾つかの実施形態では、送電ライン32,33,34,35,36,37,38が設けられていたが、各送電ラインは地域熱電併給システム2に必須の構成ではない。例えば、温度差発電機22で発電した電力で水を電気分解して水素を製造し、水素を需要体100に輸送して需要体100側で燃料電池により発電してもよい。 In addition, in some of the above-mentioned embodiments, the power transmission lines 32, 33, 34, 35, 36, 37, and 38 are provided, but each of the power transmission lines is not an essential component of the district heat and power cogeneration system 2. For example, hydrogen may be produced by electrolyzing water using the electricity generated by the temperature difference generator 22, and the hydrogen may be transported to the consumer 100 and electricity may be generated by a fuel cell on the consumer 100 side.

また、例えば上述の地域熱電併給システム2(2A~2C)の各々において、蓄圧断熱低温貯槽18は、第2流路12における膨張タービン14の下流側に設けられていたが、蓄圧断熱低温貯槽18は、第2流路12における膨張タービン14の上流側に設けられていてもよい。この場合、上述した地域熱電併給システム2(2A~2C)の各々において、膨張タービン14の位置と蓄圧断熱低温貯槽18の位置とを入れ替えればよい(例えば図6参照)。これにより、膨張タービン14で気化する前の液体の熱媒体を蓄圧断熱低温貯槽18に貯蔵することができる。このため、膨張タービン14で気化した後の気体の熱媒体を蓄圧断熱低温貯槽18に貯蔵する場合と比較して、蓄圧断熱低温貯槽18を小型化することができる。 For example, in each of the above-mentioned district heat and power cogeneration systems 2 (2A to 2C), the pressurized insulated low-temperature storage tank 18 is provided downstream of the expansion turbine 14 in the second flow path 12, but the pressurized insulated low-temperature storage tank 18 may be provided upstream of the expansion turbine 14 in the second flow path 12. In this case, in each of the above-mentioned district heat and power cogeneration systems 2 (2A to 2C), the position of the expansion turbine 14 and the position of the pressurized insulated low-temperature storage tank 18 can be interchanged (see, for example, FIG. 6). This allows the liquid heat medium before it is vaporized in the expansion turbine 14 to be stored in the pressurized insulated low-temperature storage tank 18. Therefore, the pressurized insulated low-temperature storage tank 18 can be made smaller than when the gaseous heat medium after it is vaporized in the expansion turbine 14 is stored in the pressurized insulated low-temperature storage tank 18.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood, for example, as follows:

(1)本開示の一実施形態に係る蓄熱式温度差蓄電池(例えば上述の蓄熱式温度差蓄電池3)は、
熱媒体を圧縮するための圧縮機(例えば上述の圧縮機6)と、
前記圧縮機に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1流路(例えば上述の第1流路8)と、
前記第1流路に接続され、前記第1流路から供給された前記熱媒体を貯蔵するための蓄圧断熱高温貯槽(例えば上述の蓄圧断熱高温貯槽10)と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽を出た前記熱媒体を流すための第2流路(例えば上述の第2流路12)と、
前記第2流路に設けられ、前記第2流路を流れる前記熱媒体を減圧するように構成された膨張装置(例えば上述の膨張タービン14)と、
前記第2流路における前記膨張装置の上流側又は下流側に設けられ、前記第2流路の前記熱媒体を貯蔵するための蓄圧断熱低温貯槽(例えば上述の蓄圧断熱低温貯槽18)と、
前記第2流路の下流側に接続され、前記膨張装置及び前記蓄圧断熱低温貯槽の各々を通った前記熱媒体を前記圧縮機に供給するように構成された第3流路(例えば上述の第3流路20)と、
前記第2流路における前記膨張装置の上流側を流れる前記熱媒体と前記第3流路を流れる前記熱媒体との温度差を利用して発電するように構成された温度差発電機(例えば上述の温度差発電機22)と、
を備える。
(1) A heat storage type temperature difference storage battery according to an embodiment of the present disclosure (for example, the heat storage type temperature difference storage battery 3 described above) has the following features:
A compressor (e.g., the above-mentioned compressor 6) for compressing the heat medium;
A first flow path (for example, the above-mentioned first flow path 8) connected to the compressor and through which the heat medium compressed by the compressor flows;
A pressure-accumulating, insulated, high-temperature storage tank (for example, the above-mentioned pressure-accumulating, insulated, high-temperature storage tank 10) connected to the first flow path and for storing the heat medium supplied from the first flow path;
A second flow path (for example, the above-mentioned second flow path 12) connected to the pressure-accumulating, insulated, high-temperature storage tank for flowing the heat medium that has left the pressure-accumulating, insulated, high-temperature storage tank;
an expansion device (e.g., the expansion turbine 14 described above) provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path;
A pressure-accumulating, insulated, low-temperature storage tank (e.g., the pressure-accumulating, insulated, low-temperature storage tank 18) is provided on the upstream or downstream side of the expansion device in the second flow path and stores the heat medium in the second flow path;
A third flow path (e.g., the above-mentioned third flow path 20) is connected to the downstream side of the second flow path and is configured to supply the heat medium that has passed through each of the expansion device and the pressure-accumulating insulated low-temperature storage tank to the compressor;
a temperature difference generator (e.g., the above-mentioned temperature difference generator 22) configured to generate electricity by utilizing a temperature difference between the heat medium flowing on the upstream side of the expansion device in the second flow path and the heat medium flowing in the third flow path;
Equipped with.

上記(1)に記載の蓄熱式温度差蓄電池によれば、圧縮機で圧縮されて高温高圧状態となった熱媒体は、第1流路を介して蓄圧断熱高温貯槽に送られて貯蔵される。
蓄圧断熱高温貯槽を出た高温高圧の熱媒体は、第2流路を通って温度差発電機に供給され、温度差発電機で放熱して膨張装置に供給される。膨張装置に供給された熱媒体は膨張装置で減圧されて低温低圧の熱媒体となる。膨張装置及び蓄圧断熱低温貯槽の各々を通った低温低圧の熱媒体は、第3流路を介して温度差発電機に供給され、温度差発電機に冷熱を供給してから圧縮機に戻される。
このように、圧縮機、第1流路、蓄圧断熱高温貯槽、膨張装置、蓄圧断熱低温貯槽、第3流路及び温度差発電機が設けられた熱媒体の循環流路によって、ヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に高温高圧の熱媒体と低温低圧の熱媒体とを生成することができる。
また、生成した高温高圧の熱媒体と低温低圧の熱媒体とをそれぞれ蓄圧断熱高温貯槽と蓄圧断熱低温貯槽に貯蔵することで電力を蓄積し、電力需要に応じて蓄圧断熱高温貯槽と蓄圧断熱低温貯槽から高温高圧の熱媒体と低温低圧の熱媒体と温度差発電機に供給して発電を行うことができるため、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池を提供することができる。
この蓄熱式温度差蓄電池によれば、例えば特許文献1に記載される構成(ヒートポンプサイクルを流れる高温高圧の熱媒体で膨張タービンを駆動して膨張タービンに接続された発電機により発電を行う構成)と比較して、ヒートポンプサイクル内の熱媒体を利用して簡素な構成で発電を行うことができる。
According to the heat storage type temperature difference storage battery described in (1) above, the heat medium compressed by the compressor and brought into a high temperature and high pressure state is sent to the pressure-storage insulated high temperature tank via the first flow path and stored therein.
The high-temperature, high-pressure heat medium leaving the pressure-accumulating, insulated, high-temperature storage tank is supplied to the temperature difference generator through the second flow path, where it dissipates heat and is supplied to the expansion device. The heat medium supplied to the expansion device is decompressed in the expansion device to become a low-temperature, low-pressure heat medium. The low-temperature, low-pressure heat medium that has passed through the expansion device and the pressure-accumulating, insulated, low-temperature storage tank is supplied to the temperature difference generator through the third flow path, where it supplies cold energy to the temperature difference generator before being returned to the compressor.
In this way, a heat pump cycle can be constructed by the heat medium circulation flow path provided with the compressor, the first flow path, the pressure-accumulating insulated high-temperature storage tank, the expansion device, the pressure-accumulating insulated low-temperature storage tank, the third flow path, and the temperature difference generator, so that a high-temperature, high-pressure heat medium and a low-temperature, low-pressure heat medium can be efficiently generated with little input energy.
In addition, electricity can be accumulated by storing the produced high-temperature, high-pressure heat medium and low-temperature, low-pressure heat medium in a pressure-accumulated, insulated high-temperature tank and a pressure-accumulated, insulated low-temperature tank, respectively, and power can be generated by supplying the high-temperature, high-pressure heat medium and the low-temperature, low-pressure heat medium from the pressure-accumulated, insulated high-temperature tank and the pressure-accumulated, insulated low-temperature tank to a temperature difference generator according to power demand.This makes it possible to provide a heat storage type temperature difference storage battery, which is a new type of battery that generates power using heat media of different temperatures stored in a heat pump cycle.
With this heat storage type temperature difference storage battery, power generation can be performed with a simpler configuration that utilizes the heat medium in the heat pump cycle, compared to, for example, the configuration described in Patent Document 1 (a configuration in which an expansion turbine is driven by a high-temperature, high-pressure heat medium flowing through a heat pump cycle, and power generation is performed by a generator connected to the expansion turbine).

(2)幾つかの実施形態では、上記(1)に記載の蓄熱式温度差蓄電池において、
前記第2流路における前記温度差発電機と前記膨張装置との間から分岐し、前記第2流路から供給された前記熱媒体を流すための第1分岐流路(例えば上述の第1分岐流路60)と、
前記第1分岐流路に接続し、前記第1分岐流路から供給された前記熱媒体を未利用エネルギーとの熱交換により加熱するように構成された第1熱交換部(例えば上述の第1熱交換部70)と、
前記第1熱交換部に接続し、前記第1熱交換部を通過した前記熱媒体を前記第2流路における前記蓄圧断熱高温貯槽と前記温度差発電機との間に供給するように構成された第1戻り流路(例えば上述の第1戻り流路64)と、
を更に備える。
(2) In some embodiments, in the heat storage type temperature difference storage battery described in (1) above,
a first branch flow path (for example, the above-mentioned first branch flow path 60) that branches off from a portion of the second flow path between the temperature difference power generator and the expansion device and that allows the heat medium supplied from the second flow path to flow;
A first heat exchange unit (for example, the above-mentioned first heat exchange unit 70) connected to the first branch flow path and configured to heat the heat medium supplied from the first branch flow path by heat exchange with unused energy;
A first return flow path (for example, the above-mentioned first return flow path 64) connected to the first heat exchange unit and configured to supply the heat medium that has passed through the first heat exchange unit between the pressure-accumulating insulated high-temperature storage tank and the temperature difference power generator in the second flow path;
It further comprises:

温度差発電機において、第2流路を流れる熱媒体が保有する温熱量と、第3流路を流れる熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(2)に記載の蓄熱式温度差蓄電池によれば、第2流路を流れる熱媒体を第1分岐流路を介して第1熱交換部に供給し、第1熱交換部で未利用エネルギーとの熱交換により加熱してから第1戻り流路で第2流路における蓄圧断熱高温貯槽と温度差発電機との間に供給することができる。このため、第2流路を流れる熱媒体が保有する温熱量が第3流路を流れる熱媒体の保有する冷熱量に対して不足している場合(温媒不足の場合)に、第2流路を流れる熱媒体の温熱量を未利用エネルギー等を利用して補充し、温度差発電機で効率的に発電することができる。 In a temperature difference generator, if the amount of hot heat held by the heat medium flowing through the second flow path and the amount of cold heat held by the heat medium flowing through the third flow path are not balanced, the temperature difference generator cannot generate power efficiently. In this regard, according to the heat storage type temperature difference battery described in (2) above, the heat medium flowing through the second flow path can be supplied to the first heat exchange section via the first branch flow path, heated by heat exchange with unused energy in the first heat exchange section, and then supplied to between the pressure-storage insulated high-temperature storage tank in the second flow path and the temperature difference generator via the first return flow path. Therefore, when the amount of hot heat held by the heat medium flowing through the second flow path is insufficient compared to the amount of cold heat held by the heat medium flowing through the third flow path (when there is a hot medium shortage), the amount of hot heat of the heat medium flowing through the second flow path can be replenished by using unused energy, etc., and the temperature difference generator can generate power efficiently.

(3)幾つかの実施形態では、上記(1)又は(2)に記載の蓄熱式温度差蓄電池において、
前記第3流路における前記温度差発電機と前記圧縮機との間から分岐し、前記第3流路から供給された前記熱媒体を流すための第2分岐流路(例えば上述の第2分岐流路66)と、
前記第2分岐流路に接続し、前記第2分岐流路から供給された前記熱媒体を未利用エネルギーとの熱交換により冷却するように構成された第2熱交換部(例えば上述の第2熱交換部72)と、
前記第2熱交換部に接続し、前記第2熱交換部を通過した前記熱媒体を前記第3流路における前記蓄圧断熱低温貯槽と前記温度差発電機との間に供給するように構成された第2戻り流路(例えば上述の第2戻り流路68)と、
を更に備える。
(3) In some embodiments, in the heat storage type temperature difference storage battery described in (1) or (2) above,
a second branch flow path (for example, the above-mentioned second branch flow path 66) that branches off from the third flow path between the temperature difference power generator and the compressor and through which the heat medium supplied from the third flow path flows;
A second heat exchange unit (for example, the above-mentioned second heat exchange unit 72) connected to the second branch flow path and configured to cool the heat medium supplied from the second branch flow path by heat exchange with unused energy;
A second return flow path (for example, the above-mentioned second return flow path 68) that is connected to the second heat exchange unit and is configured to supply the heat medium that has passed through the second heat exchange unit between the pressure-accumulating insulated low-temperature storage tank and the temperature difference power generator in the third flow path;
It further comprises:

温度差発電機において、第2流路を流れる熱媒体が保有する温熱量と、第3流路を流れる熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(3)に記載の蓄熱式温度差蓄電池によれば、第3流路を流れる熱媒体を第2分岐流路を介して第2熱交換部に供給し、第2熱交換部で未利用エネルギーとの熱交換により冷却してから第2戻り流路で第3流路における蓄圧断熱低温貯槽と温度差発電機との間に供給することができる。このため、第3流路を流れる熱媒体が保有する冷熱量が第2流路を流れる熱媒体の保有する温熱量に対して不足している場合(冷媒不足の場合)に、第3流路を流れる熱媒体の冷熱量を未利用エネルギー等を利用して補充し、温度差発電機で効率的に発電することができる。 In a temperature difference generator, if the amount of hot energy held by the heat medium flowing through the second flow path and the amount of cold energy held by the heat medium flowing through the third flow path are not balanced, the temperature difference generator cannot generate power efficiently. In this regard, according to the heat storage type temperature difference storage battery described in (3) above, the heat medium flowing through the third flow path can be supplied to the second heat exchange section via the second branch flow path, cooled by heat exchange with unused energy in the second heat exchange section, and then supplied to between the pressure-storage insulated low-temperature storage tank in the third flow path and the temperature difference generator via the second return flow path. Therefore, when the amount of cold energy held by the heat medium flowing through the third flow path is insufficient compared to the amount of hot energy held by the heat medium flowing through the second flow path (when there is a refrigerant shortage), the amount of cold energy of the heat medium flowing through the third flow path can be replenished by using unused energy, etc., and the temperature difference generator can generate power efficiently.

(4)本開示の一実施形態に係る熱電併給システムは、
上記(1)乃至(3)の何れかに記載の蓄熱式温度差蓄電池と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽から対象サイトの需要体(例えば上述の需要体100)に前記熱媒体を供給するように構成された第4流路(例えば上述の第4流路24)と、
を備える。
(4) A cogeneration system according to an embodiment of the present disclosure,
A heat storage type temperature difference storage battery according to any one of (1) to (3) above;
A fourth flow path (e.g., the above-mentioned fourth flow path 24) connected to the pressure-accumulating, insulated, high-temperature storage tank and configured to supply the heat medium from the pressure-accumulating, insulated, high-temperature storage tank to a consumer (e.g., the above-mentioned consumer 100) at the target site;
Equipped with.

上記(4)に記載の熱電併給システムによれば、上記蓄熱式温度差蓄電池で蓄圧断熱高温貯槽に貯蔵された熱媒体を用いて需要体の温熱需要(例えば暖房需要や給湯需要)を満たすことができる。 According to the cogeneration system described in (4) above, the heat medium stored in the pressure-storage, insulated, high-temperature storage tank in the heat storage type temperature difference storage battery can be used to meet the heat demand of the consumer (e.g., heating demand and hot water demand).

(5)幾つかの実施形態では、上記(4)に記載の熱電併給システムにおいて、
前記第4流路を介して前記需要体に供給された前記熱媒体を前記需要体から回収するための第5流路(例えば上述の第65流路26)を更に備え、
前記第5流路は、前記需要体から回収した前記熱媒体を前記第2流路における前記温度差発電機と前記膨張装置との間の位置に供給するように構成される。
(5) In some embodiments, in the cogeneration system according to (4) above,
a fifth flow path (e.g., the above-mentioned 65th flow path 26) for recovering the heat medium supplied to the consumer via the fourth flow path from the consumer,
The fifth flow path is configured to supply the heat medium recovered from the consumer to a position in the second flow path between the temperature difference power generator and the expansion device.

上記(5)に記載の熱電併給システムによれば、第1流路、蓄圧断熱高温貯槽、第4流路、第5流路、膨張装置、蓄圧断熱低温貯槽及び第3流路が設けられた熱媒体の循環流路によって、ヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に高温高圧の熱媒体を需要体に供給することができる。 According to the cogeneration system described in (5) above, a heat pump cycle can be constructed by a circulation flow path for the heat medium, which includes the first flow path, the pressurized insulated high-temperature storage tank, the fourth flow path, the fifth flow path, the expansion device, the pressurized insulated low-temperature storage tank, and the third flow path, so that a high-temperature and high-pressure heat medium can be efficiently supplied to a consumer with a small input of energy.

(6)幾つかの実施形態では、上記(4)又は(5)に記載の熱電併給システムにおいて、
前記蓄圧断熱低温貯槽に接続された第6流路(例えば上述の第6流路28)を更に備え、
前記第6流路は、前記蓄圧断熱低温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成される。
(6) In some embodiments, in the cogeneration system according to (4) or (5) above,
Further comprising a sixth flow path (for example, the sixth flow path 28 described above) connected to the pressure-accumulating insulated low-temperature storage tank;
The sixth flow path is configured to supply the heat medium from the pressure-accumulating, insulated, low-temperature storage tank to a consumer at a target site.

上記(6)に記載の熱電併給システムによれば、上記蓄熱式温度差蓄電池で蓄圧断熱低温貯槽に貯蔵された熱媒体を用いて需要体の冷熱需要(例えば冷房需要)を満たすことができる。 According to the cogeneration system described in (6) above, the heat storage type temperature difference storage battery can use the heat medium stored in the pressure storage insulated low-temperature storage tank to meet the cold energy demand (e.g., cooling demand) of the consumer.

(7)幾つかの実施形態では、上記(6)に記載の熱電併給システムにおいて、
前記第6流路を介して前記需要体に供給された前記熱媒体を回収するための第7流路(例えば上述の第7流路30)を更に備え、
前記第7流路は、前記需要体から回収した前記熱媒体を前記第3流路における前記温度差発電機と前記圧縮機との間の位置に供給するように構成される。
(7) In some embodiments, in the cogeneration system according to (6) above,
The heat transfer device further includes a seventh flow path (e.g., the seventh flow path 30 described above) for recovering the heat transfer medium supplied to the consumer via the sixth flow path,
The seventh flow path is configured to supply the heat medium recovered from the consumer to a position in the third flow path between the temperature difference power generator and the compressor.

上記(7)に記載の熱電併給システムによれば、第1流路、蓄圧断熱高温貯槽、第2流路、膨張装置、蓄圧断熱低温貯槽、第6流路及び第7流路が設けられた熱媒体の循環流路によって、ヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に低温低圧の熱媒体を需要体に供給することができる。 According to the cogeneration system described in (7) above, a heat pump cycle can be constructed by a circulation flow path for the heat medium, which includes the first flow path, the pressurized insulated high-temperature storage tank, the second flow path, the expansion device, the pressurized insulated low-temperature storage tank, the sixth flow path, and the seventh flow path, so that a low-temperature, low-pressure heat medium can be efficiently supplied to a consumer with a small input of energy.

(8)幾つかの実施形態では、上記(1)に記載の熱電併給システムにおいて、
前記蓄圧断熱低温貯槽は、前記第2流路において前記膨張装置の上流側に設けられる。
(8) In some embodiments, in the cogeneration system according to (1) above,
The pressurized insulated low-temperature storage tank is provided in the second flow path upstream of the expansion device.

上記(8)に記載の熱電併給システムによれば、膨張装置で気化する前の液体の熱媒体を蓄圧断熱低温貯槽に貯蔵することができる。このため、膨張装置で気化した後の気体の熱媒体を蓄圧断熱低温貯槽に貯蔵する場合と比較して、蓄圧断熱低温貯槽を小型化することができる。 According to the cogeneration system described in (8) above, the liquid heat transfer medium before being vaporized in the expansion device can be stored in the pressure-accumulated, insulated, low-temperature storage tank. Therefore, the pressure-accumulated, insulated, low-temperature storage tank can be made smaller than when the gaseous heat transfer medium after being vaporized in the expansion device is stored in the pressure-accumulated, insulated, low-temperature storage tank.

(9)幾つかの実施形態では、上記(1)乃至(8)の何れかに記載の熱電併給システムにおいて、
前記圧縮機を駆動する電気モータ(例えば上述の電気モータ5)と、
前記蓄圧断熱高温貯槽の熱媒体の残量を検出するための残量センサ(例えば上述の残量センサ)と、
前記電気モータを制御するモータ制御部(例えば上述のモータ制御部86)と、
を備え、
前記モータ制御部は、前記残量センサによって検出した前記蓄圧断熱高温貯槽の前記熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成される。
(9) In some embodiments, in the cogeneration system according to any one of (1) to (8),
an electric motor (e.g. the electric motor 5 described above) for driving the compressor;
A remaining amount sensor (for example, the remaining amount sensor described above) for detecting the remaining amount of the heat medium in the pressure-accumulating, insulated, high-temperature storage tank;
a motor control unit (e.g., the motor control unit 86 described above) for controlling the electric motor;
Equipped with
The motor control unit is configured to drive the electric motor when the remaining amount of the heat medium in the pressure-accumulating, insulated, high-temperature storage tank detected by the remaining amount sensor is equal to or less than a threshold value.

温度差発電機において、蓄圧断熱高温貯槽に貯蔵された熱媒体が保有する温熱量と、蓄圧断熱低温貯槽に貯蔵された熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(9)に記載の蓄熱式温度差蓄電池によれば、残量センサによって検出した蓄圧断熱高温貯槽の熱媒体の残量が閾値以下である場合に電気モータで圧縮機を駆動して蓄圧断熱高温貯槽に貯蔵された熱媒体が保有する温熱量を補充することができるため、温度差発電機で効率的に発電することができる。 In a temperature difference generator, if the amount of hot heat held by the heat medium stored in the pressure-storage insulated high-temperature tank is not balanced with the amount of cold heat held by the heat medium stored in the pressure-storage insulated low-temperature tank, the temperature difference generator cannot generate power efficiently. In this regard, with the heat storage type temperature difference storage battery described in (9) above, when the remaining amount of heat medium in the pressure-storage insulated high-temperature tank detected by the remaining amount sensor is below a threshold, the electric motor can drive the compressor to replenish the amount of hot heat held by the heat medium stored in the pressure-storage insulated high-temperature tank, allowing the temperature difference generator to generate power efficiently.

(10)幾つかの実施形態では、上記(1)乃至(9)の何れかに記載の熱電併給システムにおいて、
前記圧縮機を駆動する電気モータ(例えば上述の電気モータ5)と、
前記蓄圧断熱低温貯槽の熱媒体の残量を検出するための残量センサ(例えば上述の残量センサ)と、
前記電気モータを制御するモータ制御部(例えば上述のモータ制御部86)と、
を備え、
前記モータ制御部は、残量センサによって検出した蓄圧断熱低温貯槽の熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成される。
(10) In some embodiments, in the cogeneration system according to any one of (1) to (9),
an electric motor (e.g. the electric motor 5 described above) for driving the compressor;
A remaining amount sensor (for example, the remaining amount sensor described above) for detecting the remaining amount of the heat medium in the pressure-accumulating insulated low-temperature storage tank;
a motor control unit (e.g., the motor control unit 86 described above) for controlling the electric motor;
Equipped with
The motor control unit is configured to drive the electric motor when a remaining amount of the heat medium in the pressure-accumulating insulated low-temperature storage tank detected by a remaining amount sensor is equal to or less than a threshold value.

温度差発電機において、蓄圧断熱高温貯槽に貯蔵された熱媒体が保有する温熱量と、蓄圧断熱低温貯槽に貯蔵された熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(10)に記載の蓄熱式温度差蓄電池によれば、残量センサによって検出した蓄圧断熱低温貯槽の熱媒体の残量が閾値以下である場合に電気モータで圧縮機を駆動して蓄圧断熱低温貯槽に貯蔵された熱媒体が保有する冷熱量を補充することができるため、温度差発電機で効率的に発電することができる。 In a temperature difference generator, if the amount of hot heat held by the heat medium stored in the pressure-storage insulated high-temperature storage tank is not balanced with the amount of cold heat held by the heat medium stored in the pressure-storage insulated low-temperature storage tank, the temperature difference generator cannot generate power efficiently. In this regard, with the heat storage type temperature difference storage battery described in (10) above, when the remaining amount of heat medium in the pressure-storage insulated low-temperature storage tank detected by the remaining amount sensor is below a threshold, the electric motor can drive the compressor to replenish the amount of cold heat held by the heat medium stored in the pressure-storage insulated low-temperature storage tank, allowing the temperature difference generator to generate power efficiently.

(11)本開示の一実施形態に係る熱電併給システム群は、
上記(1)乃至(10)の何れかに記載の熱電併給システムを複数備える熱電併給システム群(例えば上述の地域熱電併給システム群4)であって、
前記複数の熱電併給システムは、複数の対象サイトにそれぞれ対応して設けられており、
前記熱電併給システム群は、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された統括熱電需給システム(例えば上述の統括熱電需給システム52)を更に備える。
(11) A group of cogeneration systems according to an embodiment of the present disclosure includes:
A group of cogeneration systems (for example, the above-mentioned district cogeneration system group 4) including a plurality of the cogeneration systems according to any one of (1) to (10),
The plurality of cogeneration systems are provided corresponding to a plurality of target sites, respectively;
The group of cogeneration systems further includes an integrated heat and power supply and demand system (for example, the integrated heat and power supply and demand system 52 described above) configured to optimize the supply and demand of electricity and heat in the entire plurality of cogeneration systems.

上記(11)に記載の熱電併給システムによれば、統括熱電需給システムによって複数の熱電併給システム全体における電力と熱の需給最適化を行うことで、電力及び熱の負荷を平準化し、少ない投入エネルギーで効率的に電力需要と熱需要を満たすことができる。 According to the cogeneration system described in (11) above, the integrated cogeneration system optimizes the supply and demand of electricity and heat across multiple cogeneration systems, thereby leveling out the loads of electricity and heat and efficiently meeting the demand for electricity and heat with a small amount of input energy.

(12)幾つかの実施形態では、上記(11)に記載の熱電併給システム群において、
前記複数の対象サイトの各々における電力及び熱の需給傾向を学習する機械学習装置(例えば上述の機械学習装置88)を更に備え、
前記統括熱電需給システムは、前記機械学習装置が学習した前記複数の対象サイトの各々における電力及び熱の需給傾向および電力市場価格等に基づいて、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成される。
(12) In some embodiments, in the group of cogeneration systems described in (11) above,
Further comprising a machine learning device (e.g., the above-mentioned machine learning device 88) that learns the supply and demand trends of electricity and heat at each of the plurality of target sites;
The integrated heat and power supply and demand system is configured to optimize the supply and demand of electricity and heat across the multiple combined heat and power systems based on the supply and demand trends of electricity and heat and electricity market prices at each of the multiple target sites learned by the machine learning device.

上記(12)に記載の熱電併給システム群によれば、複数の対象サイトの各々における電力及び熱の需給傾向を学習して前記複数の熱電併給システム全体で電力と熱の需給最適化を行うことで、電力及び熱の負荷を平準化し、少ない投入エネルギーで効率的に電力需要と熱需要を満たすことができる。 According to the group of cogeneration systems described in (12) above, by learning the trends in power and heat supply and demand at each of the multiple target sites and optimizing the power and heat supply and demand across the multiple cogeneration systems, it is possible to level out the power and heat loads and efficiently meet the power and heat demand with a small amount of input energy.

2 地域熱電併給システム
3 蓄熱式温度差蓄電池
4 地域熱電併給システム群
5 電気モータ
6 圧縮機
8 第1流路
10 蓄圧断熱高温貯槽
12 第2流路
14 膨張装置
18 蓄圧断熱低温貯槽
20 第3流路
22 温度差発電機
24 第4流路
26 第5流路
25 循環流路
28 第6流路
30 第7流路
32,33,34,35,36,37,38 送電ライン
50 サイト熱電需給システム
52 統括熱電需給システム
60 第1分岐流路
62 地中熱熱交換装置
64 第1戻り流路
66 第2分岐流路
68 第2戻り流路
70 第1熱交換部
72 第2熱交換部
74,76 循環流路
78,80 温度調整流路
82,84 温度センサ
86 モータ制御部
88 機械学習装置
100 需要体
2 District heat and power combined supply system 3 Heat storage type temperature difference storage battery 4 District heat and power combined supply system group 5 Electric motor 6 Compressor 8 First flow path 10 Pressure storage insulated high temperature storage tank 12 Second flow path 14 Expansion device 18 Pressure storage insulated low temperature storage tank 20 Third flow path 22 Temperature difference generator 24 Fourth flow path 26 Fifth flow path 25 Circulation flow path 28 Sixth flow path 30 Seventh flow path 32, 33, 34, 35, 36, 37, 38 Power transmission line 50 Site heat and power supply and demand system 52 Integrated heat and power supply and demand system 60 First branch flow path 62 Geothermal heat exchanger 64 First return flow path 66 Second branch flow path 68 Second return flow path 70 First heat exchanger 72 Second heat exchanger 74, 76 Circulation flow path 78, 80 Temperature adjustment flow path 82, 84 Temperature sensor 86 Motor control unit 88 Machine learning device 100 Demand entity

Claims (12)

熱媒体を圧縮するための圧縮機と、
前記圧縮機に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1流路と、
前記第1流路に接続され、前記第1流路から供給された前記熱媒体を貯蔵するための蓄圧断熱高温貯槽と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽を出た前記熱媒体を流すための第2流路と、
前記第2流路に設けられ、前記第2流路を流れる前記熱媒体を減圧するように構成された膨張装置と、
前記第2流路における前記膨張装置の上流側又は下流側に設けられ、前記第2流路の前記熱媒体を貯蔵するための蓄圧断熱低温貯槽と、
前記第2流路の下流側に接続され、前記膨張装置及び前記蓄圧断熱低温貯槽の各々を通った前記熱媒体を前記圧縮機に供給するように構成された第3流路と、
前記第2流路における前記膨張装置の上流側を流れる前記熱媒体と前記第3流路を流れる前記熱媒体との温度差を利用して発電するように構成された温度差発電機と、
を備える、蓄熱式温度差蓄電池。
A compressor for compressing the heat medium;
a first flow path connected to the compressor and through which the heat medium compressed by the compressor flows;
A pressure-accumulating, insulated, high-temperature storage tank connected to the first flow path for storing the heat medium supplied from the first flow path;
A second flow path connected to the pressure-accumulating, insulated, high-temperature storage tank for flowing the heat medium that has left the pressure-accumulating, insulated, high-temperature storage tank;
an expansion device provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path;
a pressure-accumulating, insulated, low-temperature storage tank provided upstream or downstream of the expansion device in the second flow path for storing the heat medium in the second flow path;
a third flow path connected to a downstream side of the second flow path and configured to supply the heat medium that has passed through each of the expansion device and the pressure-accumulating insulated low-temperature storage tank to the compressor;
a temperature difference generator configured to generate electricity by utilizing a temperature difference between the heat medium flowing on the upstream side of the expansion device in the second flow path and the heat medium flowing in the third flow path;
A heat storage type temperature difference storage battery comprising:
前記第2流路における前記温度差発電機と前記膨張装置との間から分岐し、前記第2流路から供給された前記熱媒体を流すための第1分岐流路と、
前記第1分岐流路に接続し、前記第1分岐流路から供給された前記熱媒体を地中熱、工場排熱又はごみ焼却場の排熱との熱交換により加熱するように構成された第1熱交換部と、
前記第1熱交換部に接続し、前記第1熱交換部を通過した前記熱媒体を前記第2流路における前記蓄圧断熱高温貯槽と前記温度差発電機との間に供給するように構成された第1戻り流路と、
を更に備える、請求項1に記載の蓄熱式温度差蓄電池。
a first branch flow path that branches off from the second flow path between the temperature difference power generator and the expansion device, and through which the heat medium supplied from the second flow path flows;
A first heat exchange unit connected to the first branch flow path and configured to heat the heat medium supplied from the first branch flow path by heat exchange with geothermal heat, factory exhaust heat, or exhaust heat from a waste incineration plant ;
A first return flow path connected to the first heat exchange unit and configured to supply the heat medium that has passed through the first heat exchange unit to a portion between the pressure-accumulating insulated high-temperature storage tank and the temperature differential power generator in the second flow path;
The heat storage type temperature difference storage battery according to claim 1 , further comprising:
前記第3流路における前記温度差発電機と前記圧縮機との間から分岐し、前記第3流路から供給された前記熱媒体を流すための第2分岐流路と、
前記第2分岐流路に接続し、前記第2分岐流路から供給された前記熱媒体を地中熱、河川の熱、海水の熱、下水熱又は雪氷熱との熱交換により冷却するように構成された第2熱交換部と、
前記第2熱交換部に接続し、前記第2熱交換部を通過した前記熱媒体を前記第3流路における前記蓄圧断熱低温貯槽と前記温度差発電機との間に供給するように構成された第2戻り流路と、
を更に備える、請求項1又は2に記載の蓄熱式温度差蓄電池。
a second branch flow path that branches off from the third flow path between the temperature difference power generator and the compressor, and through which the heat medium supplied from the third flow path flows;
A second heat exchange unit connected to the second branch flow path and configured to cool the heat medium supplied from the second branch flow path by heat exchange with geothermal heat, river heat, seawater heat, sewage heat, or snow and ice heat ;
A second return flow path connected to the second heat exchange unit and configured to supply the heat medium that has passed through the second heat exchange unit to a portion between the pressure-accumulating insulated low-temperature storage tank and the temperature difference power generator in the third flow path;
The heat storage type temperature difference storage battery according to claim 1 or 2, further comprising:
請求項1乃至3の何れか1項に記載の蓄熱式温度差蓄電池と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成された第4流路と、
を備える、熱電併給システム。
A heat storage type temperature difference storage battery according to any one of claims 1 to 3;
A fourth flow path connected to the pressure-accumulating, insulated, high-temperature storage tank and configured to supply the heat medium from the pressure-accumulating, insulated, high-temperature storage tank to a consumer at a target site;
A combined heat and power system comprising:
前記第4流路を介して前記需要体に供給された前記熱媒体を前記需要体から回収するための第5流路を更に備え、
前記第5流路は、前記需要体から回収した前記熱媒体を前記第2流路における前記温度差発電機と前記膨張装置との間の位置に供給するように構成された、請求項4に記載の熱電併給システム。
a fifth flow path for recovering the heat medium supplied to the consumer via the fourth flow path from the consumer,
The combined heat and power supply system according to claim 4 , wherein the fifth flow path is configured to supply the heat medium recovered from the consumer to a position in the second flow path between the temperature difference power generator and the expansion device.
前記蓄圧断熱低温貯槽に接続された第6流路を更に備え、
前記第6流路は、前記蓄圧断熱低温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成された、請求項4又は5に記載の熱電併給システム。
Further comprising a sixth flow path connected to the pressure-accumulating insulated low-temperature storage tank;
The combined heat and power supply system according to claim 4 or 5, wherein the sixth flow path is configured to supply the heat medium from the pressure-accumulating insulated low-temperature storage tank to a consumer at a target site.
前記第6流路を介して前記需要体に供給された前記熱媒体を回収するための第7流路を更に備え、
前記第7流路は、前記需要体から回収した前記熱媒体を前記第3流路における前記温度差発電機と前記圧縮機との間の位置に供給するように構成された、請求項6に記載の熱電併給システム。
a seventh flow path for recovering the heat medium supplied to the consumer via the sixth flow path,
The combined heat and power supply system according to claim 6 , wherein the seventh flow path is configured to supply the heat medium recovered from the consumer to a position in the third flow path between the temperature difference power generator and the compressor.
前記蓄圧断熱低温貯槽は、前記第2流路において前記膨張装置の上流側に設けられた、請求項1に記載の蓄熱式温度差蓄電池。 The heat storage type temperature difference storage battery according to claim 1, wherein the pressure-storage insulated low-temperature storage tank is provided upstream of the expansion device in the second flow path. 前記圧縮機を駆動する電気モータと、
前記蓄圧断熱高温貯槽の熱媒体の残量を検出するための残量センサと、
前記電気モータを制御するモータ制御部と、
を備え、
前記モータ制御部は、前記残量センサによって検出した前記蓄圧断熱高温貯槽の前記熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成された、請求項1乃至8の何れか1項に記載の熱電併給システム。
an electric motor for driving the compressor;
A remaining amount sensor for detecting the remaining amount of the heat medium in the pressure-accumulating, insulated, high-temperature storage tank;
A motor control unit that controls the electric motor;
Equipped with
The heat and power cogeneration system according to any one of claims 1 to 8, wherein the motor control unit is configured to drive the electric motor when the remaining amount of the heat medium in the pressurized insulated high-temperature storage tank detected by the remaining amount sensor is equal to or less than a threshold value.
前記圧縮機を駆動する電気モータと、
前記蓄圧断熱低温貯槽の熱媒体の残量を検出するための残量センサと、
前記電気モータを制御するモータ制御部と、
を備え、
前記モータ制御部は、前記残量センサによって検出した前記蓄圧断熱低温貯槽の前記熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成された、請求項1乃至9の何れか1項に記載の熱電併給システム。
an electric motor for driving the compressor;
A remaining amount sensor for detecting the remaining amount of the heat medium in the pressure-accumulating insulated low-temperature storage tank;
A motor control unit that controls the electric motor;
Equipped with
The heat and power cogeneration system according to any one of claims 1 to 9, wherein the motor control unit is configured to drive the electric motor when the remaining amount of the heat medium in the pressurized insulated low-temperature storage tank detected by the remaining amount sensor is equal to or less than a threshold value.
請求項1乃至10の何れか1項に記載の熱電併給システムを複数備える熱電併給システム群であって、
前記複数の熱電併給システムは、複数の対象サイトにそれぞれ対応して設けられており、
前記熱電併給システム群は、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された統括熱電需給システムを更に備える、熱電併給システム群。
A group of cogeneration systems comprising a plurality of cogeneration systems according to any one of claims 1 to 10,
The plurality of cogeneration systems are provided corresponding to a plurality of target sites, respectively;
The group of cogeneration systems further includes an integrated heat and power supply system configured to optimize supply and demand of electricity and heat in the entire group of the plurality of cogeneration systems.
前記複数の対象サイトの各々における電力及び熱の需給傾向を学習する機械学習装置を更に備え、
前記統括熱電需給システムは、前記機械学習装置が学習した前記複数の対象サイトの各々における電力及び熱の需給傾向に基づいて、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された、請求項11に記載の熱電併給システム群。
Further comprising a machine learning device configured to learn trends in supply and demand of electricity and heat at each of the plurality of target sites;
The group of cogeneration systems described in claim 11, wherein the integrated cogeneration supply and demand system is configured to optimize the supply and demand of electricity and heat in the entire cogeneration systems based on the supply and demand trends of electricity and heat at each of the target sites learned by the machine learning device.
JP2020172863A 2020-10-13 2020-10-13 Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group Active JP7529525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020172863A JP7529525B2 (en) 2020-10-13 2020-10-13 Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020172863A JP7529525B2 (en) 2020-10-13 2020-10-13 Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group

Publications (2)

Publication Number Publication Date
JP2022064235A JP2022064235A (en) 2022-04-25
JP7529525B2 true JP7529525B2 (en) 2024-08-06

Family

ID=81378515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020172863A Active JP7529525B2 (en) 2020-10-13 2020-10-13 Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group

Country Status (1)

Country Link
JP (1) JP7529525B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044281A2 (en) * 2022-08-23 2024-02-29 Enginuity Power Systems, Inc. Combined heat and power architectures and related methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347506A (en) 2005-06-20 2006-12-28 Toyota Motor Corp Energy control device for heating and cooling
JP2013503444A (en) 2009-08-28 2013-01-31 ザ・ボーイング・カンパニー Thermoelectric generator and fuel cell for cogeneration
JP2014505453A (en) 2010-11-16 2014-02-27 エレクトロン ホールディング,エルエルシー System, method and / or apparatus for generating electrical energy from heat
JP2016142272A (en) 2015-02-04 2016-08-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH System for storing and discharging electric energy
US20160298498A1 (en) 2015-04-10 2016-10-13 Sten Kreuger Energy Storage and Retrieval Systems
JP2017155975A (en) 2016-02-29 2017-09-07 コスモエネルギーホールディングス株式会社 Billing device for district electrothermal cogeneration system
JP2020089049A (en) 2018-11-23 2020-06-04 マレリ株式会社 Thermoelectric power generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347506A (en) 2005-06-20 2006-12-28 Toyota Motor Corp Energy control device for heating and cooling
JP2013503444A (en) 2009-08-28 2013-01-31 ザ・ボーイング・カンパニー Thermoelectric generator and fuel cell for cogeneration
JP2014505453A (en) 2010-11-16 2014-02-27 エレクトロン ホールディング,エルエルシー System, method and / or apparatus for generating electrical energy from heat
JP2016142272A (en) 2015-02-04 2016-08-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH System for storing and discharging electric energy
US20160298498A1 (en) 2015-04-10 2016-10-13 Sten Kreuger Energy Storage and Retrieval Systems
JP2017155975A (en) 2016-02-29 2017-09-07 コスモエネルギーホールディングス株式会社 Billing device for district electrothermal cogeneration system
JP2020089049A (en) 2018-11-23 2020-06-04 マレリ株式会社 Thermoelectric power generation device

Also Published As

Publication number Publication date
JP2022064235A (en) 2022-04-25

Similar Documents

Publication Publication Date Title
Nguyen et al. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications
Fan et al. Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system
US11041637B2 (en) Cogeneration systems and methods for generating heating and electricity
KR100893828B1 (en) Hybrid heat pump system for cooling and heating with integrated power generation system
Ferrucci et al. Mechanical compressor-driven thermochemical storage for cooling applications in tropical insular regions. Concept and efficiency analysis
US12050035B2 (en) Grid interactive water heater
Hassan et al. Integrated adsorption-based multigeneration systems: A critical review and future trends
Kiviluoma et al. Harnessing flexibility from hot and cold: heat storage and hybrid systems can play a major role
CN112880451A (en) CO based on supplemental external energy2Gas-liquid phase change energy storage device and method
US10883728B2 (en) Broad band district heating and cooling system
Asadi et al. Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study
Abbasi et al. Performance Assessment of a Hybrid Solar‐Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis
Demirel et al. Energy conservation
Fan et al. Comparison and evaluation of mega watts proton exchange membrane fuel cell combined heat and power system under different waste heat recovery methods
Zhou et al. Performance study on a new solar aided liquid air energy storage system integrated with organic Rankine cycle and thermoelectric generator
JP7529525B2 (en) Thermal storage type temperature difference battery, combined heat and power supply system, and combined heat and power supply system group
Zhang et al. Parametric development and multi-aspect assessment of a novel solar energy driven plant for synchronic generation of green hydrogen and electricity
US10551096B2 (en) Combined heat and power system with energy control module
US20200343833A1 (en) Energy storage system
Bayendang et al. Combined cold, heat and power (CCHP) systems and fuel cells for CCHP applications: a topological review
Li et al. An idea to construct integrated energy systems of data center by combining CO2 heat pump and compressed CO2 energy storage
Jabari et al. Optimal planning of a micro-combined cooling, heating and power system using air-source heat pumps for residential buildings
US20220356838A1 (en) Heat transfer systems for critical power applications
CN115333248A (en) Liquid carbon dioxide energy storage system for island reef and microgrid system
JP2023154926A (en) Heat storage type storage battery, cogeneration system, and cogeneration system group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240725

R150 Certificate of patent or registration of utility model

Ref document number: 7529525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150