JP7528681B2 - Method for polishing SiC polycrystalline substrate - Google Patents
Method for polishing SiC polycrystalline substrate Download PDFInfo
- Publication number
- JP7528681B2 JP7528681B2 JP2020163026A JP2020163026A JP7528681B2 JP 7528681 B2 JP7528681 B2 JP 7528681B2 JP 2020163026 A JP2020163026 A JP 2020163026A JP 2020163026 A JP2020163026 A JP 2020163026A JP 7528681 B2 JP7528681 B2 JP 7528681B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- sic
- polycrystalline substrate
- substrate
- sic polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 141
- 238000005498 polishing Methods 0.000 title claims description 125
- 238000000034 method Methods 0.000 title claims description 73
- 230000003746 surface roughness Effects 0.000 claims description 58
- 229910003460 diamond Inorganic materials 0.000 claims description 54
- 239000010432 diamond Substances 0.000 claims description 54
- 239000006061 abrasive grain Substances 0.000 claims description 24
- 238000000227 grinding Methods 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000008119 colloidal silica Substances 0.000 claims description 15
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 10
- 239000002002 slurry Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 107
- 229910010271 silicon carbide Inorganic materials 0.000 description 104
- 239000013078 crystal Substances 0.000 description 44
- 239000000126 substance Substances 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 230000007547 defect Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
Description
本発明は、研削加工が施されたSiC多結晶基板の主面を研磨加工するSiC多結晶基板の研磨方法に係り、特に、SiC多結晶基板の主面を原子サイズ近傍まで平坦化できる研磨方法の改良に関するものである。 The present invention relates to a method for polishing a SiC polycrystalline substrate, which polishes the main surface of a SiC polycrystalline substrate that has been subjected to grinding, and in particular to an improved polishing method that can flatten the main surface of a SiC polycrystalline substrate to near atomic size.
炭化珪素(SiC)は、珪素(Si:シリコン)と比較すると、3倍程度の大きなバンドギャップ(4H-SiCで、3.8eV程度、6H-SiCでは、3.1eV程度、シリコンは1.1eV程度)と高い熱伝導率(5W/cm・K程度、シリコンは1.5W/cm・K程度)を有することから、近年、パワーデバイス用途の基板材料としてSiC単結晶が使用され始めている。例えば、従来用いられてきたSiパワーデバイスと比較して、SiCパワーデバイスは5~10倍程度大きい耐電圧と数百℃以上高い動作温度を実現し、更に、素子の電力損失を1/10程度に低減できるため、鉄道車両用インバーター等で実用化されている。 Compared to silicon (Si), silicon carbide (SiC) has a band gap three times larger (4H-SiC: 3.8 eV, 6H-SiC: 3.1 eV, silicon: 1.1 eV) and a high thermal conductivity (5 W/cm K, silicon: 1.5 W/cm K). In recent years, SiC single crystals have begun to be used as a substrate material for power devices. For example, compared to conventional Si power devices, SiC power devices have a withstand voltage 5 to 10 times larger and an operating temperature several hundred degrees higher. Furthermore, they can reduce the power loss of the element to about one-tenth, so they have been put to practical use in inverters for railway vehicles, etc.
基板材料としてのSiC単結晶は、通常、昇華再結晶法(改良レーリー法)と呼ばれる気相法で作製され(例えば非特許文献1参照)、所望の直径および厚さに加工される。 SiC single crystals used as substrate materials are usually produced by a gas phase method called sublimation recrystallization (modified Lely process) (see, for example, Non-Patent Document 1), and are processed to the desired diameter and thickness.
上記改良レーリー法は、固体状のSiC原料(通常は粉末)を、高温(2,400℃以上)で加熱・昇華させ、不活性ガス雰囲気中を昇華したSi原子と炭素原子が2,400℃の蒸気として拡散により輸送され、原料よりも低温に設置された種結晶上に過飽和となって再結晶化させることにより塊状のSiC単結晶を育成する方法である。 The modified Lely process is a method for growing bulk SiC single crystals by heating and sublimating solid SiC raw material (usually powder) at high temperatures (2,400°C or higher), and transporting the sublimated Si and carbon atoms as vapor at 2,400°C through an inert gas atmosphere by diffusion, where they become supersaturated and recrystallize on a seed crystal placed at a lower temperature than the raw material.
しかし、改良レーリー法は、プロセス温度が2,400℃以上と非常に高いため、結晶成長の温度制御や対流制御、結晶欠陥の制御が非常に難しく、この方法で作製されたSiC単結晶基板には、マイクロパイプと呼ばれる結晶欠陥やその他の結晶欠陥(積層欠陥等)が多数存在し、電子デバイス用途に耐え得る高品質のSiC単結晶基板を歩留まりよく製造することが極めて難しい。この結果、電子デバイス用に用いることのできる結晶欠陥の少ない高品質なSiC単結晶基板は非常に高額なものとなり、このようなSiC単結晶基板を用いたデバイスも高額なものになってしまうため、SiC単結晶基板が普及されることの妨げになっていた。 However, because the process temperature in the modified Lely process is extremely high at over 2,400°C, it is extremely difficult to control the temperature and convection during crystal growth, and to control crystal defects. SiC single crystal substrates produced by this method contain numerous crystal defects called micropipes and other crystal defects (stacking faults, etc.), making it extremely difficult to manufacture high-quality SiC single crystal substrates that can withstand electronic device use with a high yield. As a result, high-quality SiC single crystal substrates with few crystal defects that can be used for electronic devices are very expensive, and devices using such SiC single crystal substrates are also expensive, which has hindered the widespread use of SiC single crystal substrates.
そこで、近年、SiC単結晶基板とSiC多結晶基板を準備し、上記SiC単結晶基板とSiC多結晶基板とを貼り合わせる工程を行い、その後、上記SiC単結晶基板を薄膜化する工程を行ってSiC多結晶基板上にSiC単結晶薄板層が形成されたSiC基板を製造する方法が提案されている(例えば非特許文献2参照)。 In response to this, in recent years, a method has been proposed in which a SiC substrate is manufactured by preparing a SiC single crystal substrate and a SiC polycrystalline substrate, bonding the SiC single crystal substrate and the SiC polycrystalline substrate together, and then thinning the SiC single crystal substrate to produce a SiC substrate in which a thin SiC single crystal layer is formed on the SiC polycrystalline substrate (see, for example, Non-Patent Document 2).
このSiC基板の製造方法によれば、SiC単結晶基板の厚さを、従来に較べて数分の一から数百分の一まで減少させることができる。このため、従来のように基板のすべてを高額でかつ高品質のSiC単結晶で構成した場合と比較し、SiC基板のコストを大幅に低減させることができる。また、結晶欠陥の少ない高品質なSiC単結晶層上にパワーデバイス等の素子を形成することができるため、デバイス性能の向上および製造歩留りを大きく改善させることができる。 This method for manufacturing SiC substrates allows the thickness of SiC single crystal substrates to be reduced by several times to several hundred times compared to conventional methods. This allows the cost of SiC substrates to be significantly reduced compared to conventional methods in which the entire substrate is made of expensive, high-quality SiC single crystals. In addition, because elements such as power devices can be formed on a high-quality SiC single crystal layer with few crystal defects, device performance and manufacturing yields can be significantly improved.
このようなSiC単結晶基板とSiC多結晶基板を貼り合わせる工程において、SiC多結晶基板は、緻密で高純度であると共に、高平坦度であることが求められる。 In the process of bonding such a SiC single crystal substrate to a SiC polycrystalline substrate, the SiC polycrystalline substrate is required to be dense, highly pure, and highly flat.
ところで、高平坦度の鏡面を有する半導体基板を得るには、一般的に、チョクラルスキー(Cz)法や垂直温度勾配凝固(VGF)法等の育成法により単結晶を育成した後、得られた結晶を円柱状に加工し、かつ、所定とする厚みの基板にマルチワイヤソーにより切り出して作製するが、作製された基板の切断加工表面にはマイクロクラックや転位等を含む加工変質層が発生する。このため、上記基板を切り出した後、更に、面取り(ベベリング)、両面研削(ラッピング)、研磨(ポリッシング)、洗浄等を行い、基板表面の加工変質層やウネリを無くす必要があった。特に、シリコン(Si)や砒化ガリウム等の化合物半導体結晶材料の研磨(ポリッシング)方法としては、コロイダルシリカが分散されたpH9~12程度のアルカリ性水性研磨スラリーを研磨パッドと被加工物との間に供給しながら化学機械研磨(CMP)する方法が知られている(特許文献1~3)。 In order to obtain a semiconductor substrate having a highly flat mirror surface, a single crystal is generally grown by a growth method such as the Czochralski (Cz) method or the Vertical Gradient Freezing (VGF) method, and then the crystal is processed into a cylindrical shape and cut into a substrate of a specified thickness using a multi-wire saw. However, the cut surface of the substrate has a process-induced layer containing microcracks and dislocations. For this reason, after cutting out the substrate, it is necessary to remove the process-induced layer and waviness on the substrate surface by further performing processes such as beveling, double-sided grinding (lapping), polishing, and cleaning. In particular, a method of polishing compound semiconductor crystal materials such as silicon (Si) and gallium arsenide is known in which an alkaline aqueous polishing slurry with a pH of about 9 to 12 in which colloidal silica is dispersed is supplied between the polishing pad and the workpiece while performing chemical mechanical polishing (CMP) (Patent Documents 1 to 3).
しかし、上記炭化珪素(SiC)は、シリコン(Si)よりも化学的に遥かに安定な物質で、また、ダイヤモンド、炭化硼素に次ぐ超硬質材料であるため、上述したシリコン基板等と同様、研削(ラッピング)加工後のコロイダルシリカを用いたCMP(化学機械研磨)法による研磨のみでは、平坦度の高い鏡面を得るのにかなりの時間が必要となる。 However, silicon carbide (SiC) is a much more chemically stable material than silicon (Si), and is also the third hardest material after diamond and boron carbide. As such, just like the silicon substrates mentioned above, polishing using colloidal silica after grinding (lapping) alone requires a considerable amount of time to obtain a highly flat mirror surface.
そこで、研磨時間を短縮させるため、平均粒径が1~3μmのダイヤモンド砥粒を含む研磨液を用いて炭化珪素(SiC)を機械研磨する方法(特許文献4)、SiCの表面を機械的に脆い酸化物や化合物に変化させて研磨時間を短縮させる方法(特許文献5)、具体的には、研磨面に酸化剤(過酸化水素水)を存在させた状態で化学機械研磨する方法、および、触媒作用のある[酸化クロム(III)]を添加して化学機械研磨する方法等が提案されている。 In order to shorten the polishing time, methods have been proposed, such as mechanical polishing of silicon carbide (SiC) using a polishing solution containing diamond abrasive grains with an average particle size of 1 to 3 μm (Patent Document 4), a method of shortening the polishing time by changing the surface of SiC into a mechanically brittle oxide or compound (Patent Document 5), specifically, a method of chemical mechanical polishing in the presence of an oxidizing agent (hydrogen peroxide solution) on the polishing surface, and a method of chemical mechanical polishing by adding catalytic chromium (III) oxide.
ところで、特許文献4に記載のダイヤモンド砥粒によるSiC単結晶の機械研磨加工では、通常、いわゆる線状痕が発生する。この線状痕は、SiC単結晶表面がダイヤモンド砥粒の粗大粒子、SiC研磨屑、加工時に用いる定盤の凸部等で引っ掻かれることにより上述した加工変質層を伴って生じるものである。しかし、これ等の線状痕は、特に深いものを除き、上述の特許文献1~3に記載の化学機械研磨(CMP)により除去することが可能である。 In the mechanical polishing of SiC single crystals using diamond abrasive grains as described in Patent Document 4, so-called linear scratches usually occur. These linear scratches are caused by the surface of the SiC single crystal being scratched by coarse particles of diamond abrasive grains, SiC polishing debris, the convex parts of the table used during processing, etc., and are accompanied by the above-mentioned processing-affected layer. However, these linear scratches, except for particularly deep ones, can be removed by the chemical mechanical polishing (CMP) as described in Patent Documents 1 to 3 above.
一方、SiC多結晶の場合、ダイヤモンド砥粒による機械研磨加工で上記線状痕が発生する点はSiC単結晶の場合と同様であるが、上記線状痕に加え、SiC多結晶では機械研磨加工でピット状の欠陥を生じる場合がある。SiC多結晶は、微小な単結晶粒の集合体であるため、機械研磨加工での過負荷が掛かった時に上記単結晶粒が更に破壊されたり、その一部が脱落したりしてピット状の欠陥が生じるからである。そして、ピット状の欠陥が生じた状態で化学機械研磨(CMP)を実施しても、一旦ピット状の欠陥が生じると、そこを起点にケミカル要素が強く作用するため、平坦に研磨することはできない。 On the other hand, in the case of SiC polycrystals, mechanical polishing with diamond abrasive grains produces the linear scratches described above, just as in the case of SiC single crystals. However, in addition to the linear scratches, mechanical polishing with SiC polycrystals can also produce pit-like defects. Because SiC polycrystals are an aggregate of tiny single crystal grains, when an overload is applied during mechanical polishing, the single crystal grains are further destroyed or parts of them fall off, resulting in pit-like defects. Even if chemical mechanical polishing (CMP) is performed with pit-like defects, once pit-like defects are produced, the chemical elements act strongly from the starting point, making it impossible to polish the surface flat.
更に、SiC多結晶の場合、SiC単結晶と異なり各単結晶粒の成長方位が異なる。炭化珪素(SiC)は、原子半径が大きく異なるシリコン原子と炭素原子の2種類の元素で構成される化合物であるが、シリコンと比較し、炭素は酸化し易いことが知られている。このため、結晶方位や結晶系によって化学機械研磨(CMP)による速度差が生じ易く、単結晶粒毎に研磨量が異なり、粒界に沿った凹凸(粒界段差)が生じてしまう。 Furthermore, unlike single crystal SiC, polycrystalline SiC has a different growth orientation for each single crystal grain. Silicon carbide (SiC) is a compound composed of two elements, silicon atoms and carbon atoms, which have significantly different atomic radii, but carbon is known to be more susceptible to oxidation than silicon. For this reason, speed differences due to chemical mechanical polishing (CMP) are likely to occur depending on the crystal orientation and crystal system, the amount of polishing differs for each single crystal grain, and unevenness (grain boundary steps) occurs along the grain boundaries.
このような理由から、特許文献4に記載された平均粒径が1~3μmのダイヤモンド砥粒を含む研磨液を用いた機械研磨法、および、特許文献5に記載された酸化剤や触媒を単に用いた化学機械研磨(CMP)法により、SiC多結晶の表面を原子サイズ近傍まで平坦化させることは困難であった。 For these reasons, it has been difficult to flatten the surface of polycrystalline SiC to near atomic size using the mechanical polishing method described in Patent Document 4, which uses a polishing solution containing diamond abrasive grains with an average particle size of 1 to 3 μm, and the chemical mechanical polishing (CMP) method described in Patent Document 5, which simply uses an oxidizing agent or catalyst.
本発明は上記問題点に着目してなされたもので、その課題とするところは、SiC多結晶基板の主面を原子サイズ近傍まで平坦化できる研磨方法を提供することにある。 The present invention was made with a focus on the above problems, and its objective is to provide a polishing method that can flatten the main surface of a SiC polycrystalline substrate to near atomic size.
本発明者は、上記課題を解決するため以下のような技術的検討を行った。 The inventors conducted the following technical studies to solve the above problems.
まず、炭化珪素(SiC)は、ダイヤモンド、炭化硼素に次いで硬いと言われる材料であり、シリコン原子と炭素原子の結合は極めて強いが、結晶表面においては結合の手が一部切れている。このため、SiC多結晶基板に対し、酸化剤と触媒等をコロイダルシリカに添加して特許文献5に記載の化学機械研磨(CMP)を実施した場合、結合の手が切れた炭素原子は優先的に酸素原子と化学的に結合することで気化し脱離する。その後、残留したシリコン原子がコロイダルシリカに固溶し、脱離するという反応が結晶表面で繰り返し起こっていると考えられる。従って、SiC多結晶からの離脱過程が異なるシリコン原子と炭素原子が共に近い速度で離脱を起こすことができれば、結晶方位や結晶系が異なっていても粒界に沿った上記凹凸(粒界段差)は生じ難くなると考えられる。 First, silicon carbide (SiC) is a material that is said to be the third hardest after diamond and boron carbide. The bond between silicon atoms and carbon atoms is extremely strong, but some of the bonds are broken on the crystal surface. For this reason, when an oxidizing agent, a catalyst, etc. are added to colloidal silica and chemical mechanical polishing (CMP) described in Patent Document 5 is performed on a SiC polycrystalline substrate, the broken carbon atoms are preferentially chemically bonded with oxygen atoms and vaporized and desorbed. It is believed that the reaction in which the remaining silicon atoms are then dissolved in colloidal silica and desorbed occurs repeatedly on the crystal surface. Therefore, if silicon atoms and carbon atoms, which have different processes for desorption from SiC polycrystalline, can both desorb at similar speeds, it is believed that the above-mentioned unevenness (grain boundary steps) along the grain boundaries will be less likely to occur even if the crystal orientation and crystal system are different.
しかし、様々な施策を実施してもシリコン原子の脱離速度は炭素原子の脱離速度に追いつくことはできない。このため、化学機械研磨(CMP)の処理時間を極力少なくして、研磨速度の違いによる上記粒界段差の発生を抑制する必要がある。 However, even if various measures are implemented, the rate at which silicon atoms are desorbed cannot keep up with the rate at which carbon atoms are desorbed. For this reason, it is necessary to minimize the processing time of chemical mechanical polishing (CMP) and to suppress the occurrence of the above-mentioned grain boundary steps due to differences in polishing speed.
化学機械研磨(CMP)の処理時間を少なくするには、化学機械研磨(CMP)前の機械研磨により、SiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで0.7nm以下まで平滑化させ、然る後、適正な研磨条件下にて化学機械研磨(CMP)を実施する方法が得策であることが分かった。すなわち、超平滑研磨が非常に困難とされてきたSiC多結晶基板の研磨加工において、本発明者は、まず、ダイヤモンド砥粒とウレタン樹脂パッドの相乗的作用を利用した機械研磨を実施し、次いで、コロイダルシリカを主成分とする研磨液のpHを最適化させた条件で化学機械研磨(CMP)を実施することで、SiC多結晶基板の主面を原子サイズ近傍まで平坦化できることを見出すに至った。本発明は、このような技術的発見に基づき完成されたものである。 It has been found that a good method for reducing the processing time of chemical mechanical polishing (CMP) is to smooth the surface roughness of the main surface of the SiC polycrystalline substrate measured by the fringe scan method to 0.7 nm or less in terms of arithmetic mean height Sa specified in ISO 25178 by mechanical polishing before chemical mechanical polishing (CMP), and then perform chemical mechanical polishing (CMP) under appropriate polishing conditions. That is, in the polishing process of SiC polycrystalline substrates, which has been considered very difficult to polish ultra-smoothly, the inventor first performed mechanical polishing using the synergistic action of diamond abrasive grains and a urethane resin pad, and then performed chemical mechanical polishing (CMP) under conditions in which the pH of the polishing liquid, the main component of which is colloidal silica, is optimized, thereby discovering that the main surface of the SiC polycrystalline substrate can be flattened to near atomic size. The present invention was completed based on such technical discoveries.
すなわち、本発明に係る第1の発明は、
研削加工が施されたSiC多結晶基板の主面を研磨加工するSiC多結晶基板の研磨方法において、
平均粒径が0.5μm~1.1μmのダイヤモンド砥粒を含有するダイヤモンド・スラリーをウレタン樹脂パッドに滴下し、SiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで0.7nm以下になるまで機械研磨する第一工程と、
pHを6.7~9.2に調整したコロイダルシリカ水性研磨液を用いてウレタン樹脂パッドにより化学機械研磨する第二工程、
を有することを特徴とする。
That is, the first invention according to the present invention is,
1. A method for polishing a SiC polycrystalline substrate, comprising polishing a main surface of a SiC polycrystalline substrate that has been subjected to grinding, comprising:
A first step of mechanically polishing a SiC polycrystalline substrate by dropping a diamond slurry containing diamond abrasive grains having an average grain size of 0.5 μm to 1.1 μm onto a urethane resin pad until the surface roughness of the main surface of the SiC polycrystalline substrate measured by a fringe scan method is 0.7 nm or less in terms of arithmetic mean height Sa defined in ISO 25178;
A second step of chemically and mechanically polishing the surface with a urethane resin pad using an aqueous colloidal silica polishing solution adjusted to a pH of 6.7 to 9.2;
The present invention is characterized by having the following.
次に、本発明に係る第2の発明は、
第1の発明に記載のSiC多結晶基板の研磨方法において、
上記第二工程で、コロイダルシリカ水性研磨液のpHが7.7に調整されていることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載のSiC多結晶基板の研磨方法において、
上記第二工程で、SiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで0.5nm以下になるまで化学機械研磨することを特徴とし、
また、第4の発明は、
第1の発明、第2の発明または第3の発明に記載のSiC多結晶基板の研磨方法において、
研削加工が施されたSiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで3nm以下であることを特徴とするものである。
Next, the second invention according to the present invention is
In the method for polishing a SiC polycrystalline substrate according to the first aspect of the present invention,
In the second step, the pH of the aqueous colloidal silica polishing liquid is adjusted to 7.7;
The third invention is
In the method for polishing a SiC polycrystalline substrate according to the first or second invention,
In the second step, the SiC polycrystalline substrate is chemically and mechanically polished until the surface roughness of the main surface measured by a fringe scan method is 0.5 nm or less in terms of arithmetic mean height Sa defined in ISO 25178;
The fourth invention is
In the method for polishing a SiC polycrystalline substrate according to the first, second or third invention,
The surface roughness of the main surface of the ground SiC polycrystalline substrate, measured by a fringe scan method, is 3 nm or less in terms of arithmetic mean height Sa defined in ISO 25178.
本発明に係るSiC多結晶基板の研磨方法によれば、
化学機械研磨する前の第一工程において、SiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで0.7nm以下になるまで機械研磨しているため、その分、第二工程における化学機械研磨の処理時間が短縮され、結晶方位や結晶系の違いに起因した研磨速度の違いによる粒界段差の発生を抑制することが可能となる。
According to the method for polishing a SiC polycrystalline substrate of the present invention,
In the first step before chemical mechanical polishing, the SiC polycrystalline substrate is mechanically polished until the surface roughness of the main surface, measured by the fringe scan method, is 0.7 nm or less in terms of arithmetic mean height Sa defined in ISO 25178. This reduces the processing time of the chemical mechanical polishing in the second step, and makes it possible to suppress the occurrence of grain boundary steps due to differences in polishing speed resulting from differences in crystal orientation or crystal system.
このため、SiC多結晶基板の主面を原子サイズ近傍まで平坦化できる効果を有する。 This has the effect of flattening the main surface of the SiC polycrystalline substrate to nearly atomic size.
以下、本発明の実施形態について詳細に説明する。 The following describes an embodiment of the present invention in detail.
本発明に係るSiC多結晶基板の研磨方法は、
研削加工が施されたSiC多結晶基板の主面を研磨加工するSiC多結晶基板の研磨方法において、
平均粒径が0.5μm~1.1μmのダイヤモンド砥粒を含有するダイヤモンド・スラリーをウレタン樹脂パッドに滴下し、SiC多結晶基板をフリンジ・スキャン法(光学式表面形状粗さ測定装置による方法)で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで0.7nm以下になるまで機械研磨する第一工程と、
pHを6.7~9.2に調整したコロイダルシリカ水性研磨液を用いてウレタン樹脂パッドにより化学機械研磨する第二工程、
を有することを特徴とするものである。
The method for polishing a SiC polycrystalline substrate according to the present invention comprises the steps of:
1. A method for polishing a SiC polycrystalline substrate, comprising polishing a main surface of a SiC polycrystalline substrate that has been subjected to grinding, comprising:
A first step is to drop a diamond slurry containing diamond abrasive grains having an average particle size of 0.5 μm to 1.1 μm onto a urethane resin pad, and mechanically polish the SiC polycrystalline substrate until the surface roughness of the main surface measured by a fringe scan method (a method using an optical surface roughness measuring device) is 0.7 nm or less in terms of arithmetic mean height Sa defined in ISO 25178;
A second step of chemically and mechanically polishing the surface with a urethane resin pad using an aqueous colloidal silica polishing solution adjusted to a pH of 6.7 to 9.2;
The present invention is characterized in that it has the following features.
(1)第一工程の機械研磨に用いるダイヤモンド砥粒の平均粒径
図1は、第一工程の機械研磨に用いるダイヤモンド砥粒の平均粒径(μm)と、機械研磨後におけるSiC多結晶基板の表面粗度(Sa)との関係を示すグラフ図である。
(1) Average particle size of diamond abrasive grains used in the first mechanical polishing step FIG. 1 is a graph showing the relationship between the average particle size (μm) of diamond abrasive grains used in the first mechanical polishing step and the surface roughness (Sa) of the SiC polycrystalline substrate after mechanical polishing.
ダイヤモンド砥粒の平均粒径が1μmを超える場合においては、図1に示すように、ダイヤモンド砥粒の平均粒径が小さいほど、機械研磨後におけるSiC多結晶基板の表面粗度(Sa)は小さくなる。 When the average grain size of the diamond abrasive grains exceeds 1 μm, as shown in FIG. 1, the smaller the average grain size of the diamond abrasive grains, the smaller the surface roughness (Sa) of the SiC polycrystalline substrate after mechanical polishing.
しかし、ダイヤモンド砥粒の平均粒径が1μm以下の場合においては、図1に示すように、ダイヤモンド砥粒の平均粒径が小さいほど、機械研磨後におけるSiC多結晶基板の表面粗度(Sa)は増加することが分かった。この理由として、ダイヤモンド砥粒の平均粒径が小さくなると、切削性が低下して脆性破壊モードになり易くなり、SiC多結晶基板の単結晶粒が破壊され、あるいは、単結晶粒の一部が脱落してピット状の欠陥を生じ、表面粗度(Sa)が増加したものと推測される。 However, when the average grain size of the diamond abrasive grains is 1 μm or less, it was found that the smaller the average grain size of the diamond abrasive grains, the greater the surface roughness (Sa) of the SiC polycrystalline substrate after mechanical polishing, as shown in Figure 1. The reason for this is presumably that as the average grain size of the diamond abrasive grains becomes smaller, the cutting ability decreases and the substrate becomes more susceptible to brittle fracture, destroying the single crystal grains of the SiC polycrystalline substrate, or causing pit-like defects by partly dropping off the single crystal grains, thereby increasing the surface roughness (Sa).
そして、第一工程の機械研磨後におけるSiC多結晶基板の表面粗度(Sa)を0.7nm以下に設定できるダイヤモンド砥粒の平均粒径は、図1のグラフ図から、0.5μm~1.1μmであることが確認される。 The graph in Figure 1 confirms that the average particle size of diamond abrasive grains that can set the surface roughness (Sa) of the SiC polycrystalline substrate after the first mechanical polishing step to 0.7 nm or less is 0.5 μm to 1.1 μm.
(2)第二工程の化学機械研磨に用いるコロイダルシリカ水性研磨液のpH
図2は、第二工程の化学機械研磨に用いるコロイダルシリカ水性研磨液のpHと、化学機械研磨後におけるSiC多結晶基板の表面粗度(Sa)との関係を示すグラフ図である。
(2) pH of the colloidal silica aqueous polishing solution used in the second step of chemical mechanical polishing
FIG. 2 is a graph showing the relationship between the pH of the colloidal silica aqueous polishing liquid used in the chemical mechanical polishing in the second step and the surface roughness (Sa) of the SiC polycrystalline substrate after chemical mechanical polishing.
第二工程の化学機械研磨は、第一工程の機械研磨で発生した加工変質層や線状痕を除去するための処理であり、SiC多結晶基板を構成するシリコンとカーボンの脱離速度(研磨速度)をできるだけ近づけることによりSiC多結晶基板の表面粗度(Sa)を0.5nm以下にすることが望ましい。 The second step, chemical mechanical polishing, is a process for removing the altered layer and linear scratches that occurred during the first step of mechanical polishing, and it is desirable to make the surface roughness (Sa) of the SiC polycrystalline substrate 0.5 nm or less by making the desorption rates (polishing rates) of the silicon and carbon that make up the SiC polycrystalline substrate as close as possible.
そして、第二工程の化学機械研磨によりSiC多結晶基板の表面粗度(Sa)を0.5nm以下に設定できるコロイダルシリカ水性研磨液のpHは、図2のグラフ図から、pH6.7~9.2であることが確認され、特に、pH7.5付近のpH7.7が好ましいことが確認される。 The pH of the colloidal silica aqueous polishing solution that can set the surface roughness (Sa) of the SiC polycrystalline substrate to 0.5 nm or less by the chemical mechanical polishing in the second step is confirmed to be pH 6.7 to 9.2, from the graph in Figure 2, and it is confirmed that a pH of around 7.5, that is, pH 7.7, is particularly preferable.
尚、上記pH6.7~9.2の範囲を逸脱した場合、SiC多結晶基板の表面に粒界段差が発生し、表面粗度(Sa)が増加することが確認されている。 It has been confirmed that if the pH falls outside the range of 6.7 to 9.2, grain boundary steps will appear on the surface of the SiC polycrystalline substrate, and the surface roughness (Sa) will increase.
(3)研削加工が施されたSiC多結晶基板の表面粗度(Sa)
研削加工が施されたSiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度については、ISO 25178で規定された算術平均高さSaで3nm以下であることが望ましい。
(3) Surface roughness (Sa) of the ground SiC polycrystalline substrate
The surface roughness of the main surface of the ground SiC polycrystalline substrate, measured by a fringe scan method, is desirably 3 nm or less in terms of arithmetic mean height Sa defined in ISO 25178.
この理由は、研削加工が施されたSiC多結晶基板の表面粗度(Sa)が3nmを超えている場合、ダイヤモンド砥粒が含まれるダイヤモンド・スラリーをウレタン樹脂パッドに滴下して機械研磨する際、SiC多結晶基板の表面粗度(Sa)が0.7nm以下になるまでに要する研磨時間が非常に長くなるからである。 The reason for this is that if the surface roughness (Sa) of the ground SiC polycrystalline substrate exceeds 3 nm, when a diamond slurry containing diamond abrasive grains is dropped onto a urethane resin pad to perform mechanical polishing, the polishing time required to reduce the surface roughness (Sa) of the SiC polycrystalline substrate to 0.7 nm or less becomes extremely long.
以下、本発明の実施例について比較例も挙げて具体的に説明する。 The following is a detailed explanation of the present invention, including comparative examples.
[実施例1]
(研削加工)
直径6インチのSiC多結晶基板に対し、番手が7000番(ISO 8486表示)のダイヤモンド砥石を用いて精密グラインダーによる研削加工を行った後、フリンジ・スキャン法により研削加工されたSiC多結晶基板の表面粗度(ISO 25178で規定された算術平均高さSa、以下、同様)を測定したところ、基板の5点平均(基板周辺部4点および基板中央1点)で2.3nmであった。
[Example 1]
(Grinding)
A 6-inch diameter SiC polycrystalline substrate was ground by a precision grinder using a diamond grinding wheel with a grit size of 7000 (ISO 8486 designation). The surface roughness of the ground SiC polycrystalline substrate (arithmetic mean height Sa defined in ISO 25178, the same applies below) was measured by the fringe scan method, and the average of five points on the substrate (four points on the periphery of the substrate and one point at the center of the substrate) was 2.3 nm.
(第一工程:機械研磨)
次に、平均粒径1.0μmのダイヤモンド砥粒が3×10-3Pa・Sの粘度を有する水性溶液に2g/Lの濃度で混合されたダイヤモンド・スラリーを10ml/minの液量で定盤上に滴下し、かつ、定盤の回転速度80rpm、ヘッドの回転速度64rpm、および、30kPaの圧力で機械研磨(ダイヤモンド・ラッピング)を実施した。
(First step: mechanical polishing)
Next, a diamond slurry in which diamond abrasive grains having an average grain size of 1.0 μm were mixed at a concentration of 2 g/L in an aqueous solution having a viscosity of 3×10 −3 Pa·S was added at a constant rate of 10 ml/min. The solution was dropped onto a platen, and mechanical polishing (diamond lapping) was carried out at a platen rotation speed of 80 rpm, a head rotation speed of 64 rpm, and a pressure of 30 kPa.
尚、上記定盤にはSUS製定盤を用い、かつ、定盤の上にウレタン樹脂パッド(ショアD硬度:75)を貼ったものを用いた。 The platen used was made of stainless steel and had a urethane resin pad (Shore D hardness: 75) attached to it.
この結果、上記精密グラインダーによる研削加工で発生していた大きな線状痕は30minの機械研磨で消滅し、かつ、機械研磨されたSiC多結晶基板の表面粗度(Sa)をフリンジ・スキャン法により測定したところ、基板の5点平均(基板周辺部4点および基板中央1点)で0.63nm(0.7nm以下)となった。 As a result, the large linear scratches that had been generated by the grinding process using the precision grinder disappeared after 30 minutes of mechanical polishing, and when the surface roughness (Sa) of the mechanically polished SiC polycrystalline substrate was measured using the fringe scan method, the average of five points on the substrate (four points on the periphery of the substrate and one point at the center of the substrate) was 0.63 nm (0.7 nm or less).
(第二工程:化学機械研磨)
次に、水酸化ナトリウムと過酸化水素水を添加してpH7.7に調整した平均粒径25nmのコロイダルシリカ(シリカ重量比:5wt%)水性研磨液を100ml/minの液量で定盤上に滴下し、かつ、定盤の回転速度40rpm、ヘッドの回転速度32rpm、および、40kPaの圧力で化学機械研磨(CMP)を20min実施した。
(Second process: chemical mechanical polishing)
Next, an aqueous polishing solution of colloidal silica (silica weight ratio: 5 wt%) with an average particle size of 25 nm, adjusted to pH 7.7 by adding sodium hydroxide and hydrogen peroxide, was applied to the surface of the platen at a rate of 100 ml/min. Then, chemical mechanical polishing (CMP) was carried out for 20 minutes at a platen rotation speed of 40 rpm, a head rotation speed of 32 rpm, and a pressure of 40 kPa.
尚、上記定盤にはSUS製定盤を用い、かつ、定盤の上にウレタン樹脂パッド(ショアD硬度:63)を貼ったものを用いた。 The platen used was made of stainless steel and had a urethane resin pad (Shore D hardness: 63) attached to it.
次いで、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、基板の中央部で0.44nm、基板の周辺部で0.38nm、基板の中央部と周辺部の中間位置で0.42nmとなり、基板全体で0.5nm以下の表面粗度(Sa)であることが確認された。 Next, the surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and it was found to be 0.44 nm at the center of the substrate, 0.38 nm at the periphery of the substrate, and 0.42 nm at the midpoint between the center and periphery of the substrate, confirming that the surface roughness (Sa) of the entire substrate was 0.5 nm or less.
これ等の結果を表1に示す。 These results are shown in Table 1.
[実施例2]
実施例1と同一の条件で精密グラインダーによる研削加工、および、機械研磨(ダイヤモンド・ラッピング)を実施し、化学機械研磨(CMP)時の上記研磨液のpHを9.2とした以外は実施例1と同一の条件で化学機械研磨(CMP)を20min実施した。
[Example 2]
Grinding using a precision grinder and mechanical polishing (diamond lapping) were performed under the same conditions as in Example 1, and chemical mechanical polishing (CMP) was performed for 20 min under the same conditions as in Example 1, except that the pH of the polishing solution during CMP was 9.2.
そして、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、基板の中央部で0.50nm、基板の周辺部で0.45nm、基板の中央部と周辺部の中間位置で0.48nmとなり、基板全体で0.5nm以下の表面粗度(Sa)であることが確認された。 The surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and was found to be 0.50 nm at the center of the substrate, 0.45 nm at the periphery of the substrate, and 0.48 nm midway between the center and periphery of the substrate, confirming that the surface roughness (Sa) of the entire substrate was 0.5 nm or less.
これ等の結果も表1に示す。 These results are also shown in Table 1.
[実施例3]
実施例1と同一の条件で精密グラインダーによる研削加工、および、第二工程の化学機械研磨(CMP)を20min実施し、第一工程の機械研磨(ダイヤモンド・ラッピング)時におけるダイヤモンド砥粒の平均粒径を0.5μmとした以外は実施例1と同一の条件で機械研磨(ダイヤモンド・ラッピング)を実施した。
[Example 3]
Grinding using a precision grinder and chemical mechanical polishing (CMP) in the second step were carried out for 20 min under the same conditions as in Example 1, and mechanical polishing (diamond lapping) was carried out under the same conditions as in Example 1, except that the average particle size of the diamond abrasive grains in the first step of mechanical polishing (diamond lapping) was set to 0.5 μm.
そして、上記機械研磨(ダイヤモンド・ラッピング)されたSiC多結晶基板の表面粗度(Sa)をフリンジ・スキャン法により測定したところ、基板の5点平均(基板周辺部4点および基板中央1点)で0.68nm(0.7nm以下)となった。 The surface roughness (Sa) of the mechanically polished (diamond lapped) SiC polycrystalline substrate was measured using the fringe scan method, and the average of five points on the substrate (four points on the periphery and one point at the center of the substrate) was 0.68 nm (less than 0.7 nm).
更に、上記化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、基板の中央部で0.49nm、基板の周辺部で0.47nm、基板の中央部と周辺部の中間位置で0.48nmとなり、基板全体で0.5nm以下の表面粗度(Sa)であることが確認された。 Furthermore, the surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and was found to be 0.49 nm at the center of the substrate, 0.47 nm at the periphery of the substrate, and 0.48 nm at the midpoint between the center and periphery of the substrate, confirming that the surface roughness (Sa) of the entire substrate was 0.5 nm or less.
これ等の結果も表1に示す。 These results are also shown in Table 1.
[比較例1]
実施例1と同一の条件で精密グラインダーによる研削加工、および、機械研磨(ダイヤモンド・ラッピング)を実施し、かつ、化学機械研磨(CMP)時の上記研磨液のpHを10.2とした以外は実施例1と同一の条件で化学機械研磨(CMP)を20min実施した。
[Comparative Example 1]
Grinding using a precision grinder and mechanical polishing (diamond lapping) were performed under the same conditions as in Example 1, and chemical mechanical polishing (CMP) was performed for 20 min under the same conditions as in Example 1, except that the pH of the polishing solution during CMP was 10.2.
そして、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、基板の中央部で0.68nm、基板の周辺部で0.61nm、基板の中央部と周辺部の中間位置で0.63nmとなり、かつ、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。 The surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and was found to be 0.68 nm at the center of the substrate, 0.61 nm at the periphery of the substrate, and 0.63 nm at the midpoint between the center and periphery of the substrate, and the surface roughness (Sa) was not less than 0.5 nm at any point on the substrate.
これ等の結果も表1に示す。 These results are also shown in Table 1.
[比較例2]
実施例1と同一の条件で精密グラインダーによる研削加工、および、機械研磨(ダイヤモンド・ラッピング)を実施し、かつ、化学機械研磨(CMP)時の上記研磨液のpHを5.4とした以外は実施例1と同一の条件で化学機械研磨(CMP)を20min実施した。
[Comparative Example 2]
Grinding using a precision grinder and mechanical polishing (diamond lapping) were performed under the same conditions as in Example 1, and chemical mechanical polishing (CMP) was performed for 20 min under the same conditions as in Example 1, except that the pH of the polishing solution during CMP was set to 5.4.
そして、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、表面粗度(Sa)の面内平均は1.10nmとなり、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。 The surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and the in-plane average surface roughness (Sa) was 1.10 nm, and the surface roughness (Sa) was not less than 0.5 nm at any point on the substrate.
これ等の結果を表2に示す。 These results are shown in Table 2.
[比較例3]
実施例1と同一の条件で精密グラインダーによる研削加工、および、機械研磨(ダイヤモンド・ラッピング)を実施し、かつ、化学機械研磨(CMP)時の上記研磨液のpHを6.3とした以外は実施例1と同一の条件で化学機械研磨(CMP)を20min実施した。
[Comparative Example 3]
Grinding using a precision grinder and mechanical polishing (diamond lapping) were performed under the same conditions as in Example 1, and chemical mechanical polishing (CMP) was performed for 20 minutes under the same conditions as in Example 1, except that the pH of the polishing solution during CMP was 6.3.
そして、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、表面粗度(Sa)の面内平均は0.60nmとなり、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。 The surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and the in-plane average surface roughness (Sa) was 0.60 nm, and the surface roughness (Sa) was not less than 0.5 nm at any point on the substrate.
これ等の結果も表2に示す。 These results are also shown in Table 2.
[比較例4]
実施例1と同一の条件で精密グラインダーによる研削加工、および、機械研磨(ダイヤモンド・ラッピング)を実施し、かつ、化学機械研磨(CMP)時の上記研磨液のpHを12.3とした以外は実施例1と同一の条件で化学機械研磨(CMP)を20min実施した。
[Comparative Example 4]
Grinding using a precision grinder and mechanical polishing (diamond lapping) were performed under the same conditions as in Example 1, and chemical mechanical polishing (CMP) was performed for 20 minutes under the same conditions as in Example 1, except that the pH of the polishing solution during CMP was 12.3.
そして、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、表面粗度(Sa)の面内平均は0.94nmとなり、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。 The surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method, and the in-plane average surface roughness (Sa) was 0.94 nm, and the surface roughness (Sa) was not less than 0.5 nm at any point on the substrate.
これ等の結果も表2に示す。 These results are also shown in Table 2.
[比較例5]
実施例1と同一の条件で精密グラインダーによる研削加工を行った後、第一工程の機械研磨(ダイヤモンド・ラッピング)時におけるダイヤモンド砥粒の平均粒径を0.2μmとした以外は実施例1と同一条件で機械研磨(ダイヤモンド・ラッピング)を実施した。
[Comparative Example 5]
After grinding was performed using a precision grinder under the same conditions as in Example 1, mechanical polishing (diamond lapping) was performed under the same conditions as in Example 1, except that the average particle size of the diamond abrasive grains in the first mechanical polishing (diamond lapping) step was set to 0.2 μm.
そして、上記機械研磨(ダイヤモンド・ラッピング)されたSiC多結晶基板の表面粗度(Sa)をフリンジ・スキャン法により測定したところ、基板の5点平均(基板周辺部4点および基板中央1点)で0.81nmとなり、0.7nm以下にはならなかった。 The surface roughness (Sa) of the mechanically polished (diamond lapped) SiC polycrystalline substrate was measured using the fringe scan method, and the average of five points on the substrate (four points on the periphery and one point at the center of the substrate) was 0.81 nm, and did not fall below 0.7 nm.
そこで、上記機械研磨(ダイヤモンド・ラッピング)を更に30min追加して実施したが、表面粗度(Sa)は基板の5点平均(基板周辺部4点および基板中央1点)で0.84nmとほとんど変化がなかった。 Therefore, the mechanical polishing (diamond lapping) was performed for an additional 30 min, but the surface roughness (Sa) remained almost unchanged at 0.84 nm, averaged over five points on the substrate (four points on the periphery and one point at the center).
そして、30min追加して機械研磨(ダイヤモンド・ラッピング)が実施されたSiC多結晶基板について、第二工程の化学機械研磨(CMP)を20min実施し、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、表面粗度(Sa)の面内平均は0.78nmとなり、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。 Then, the SiC polycrystalline substrate that had been mechanically polished (diamond lapping) for an additional 30 minutes was subjected to the second process of chemical mechanical polishing (CMP) for 20 minutes, and the surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method. The in-plane average surface roughness (Sa) was 0.78 nm, and the surface roughness (Sa) was not less than 0.5 nm at any point on the substrate.
これ等の結果も表2に示す。 These results are also shown in Table 2.
[比較例6]
実施例1と同一の条件で精密グラインダーによる研削加工を行った後、第一工程の機械研磨(ダイヤモンド・ラッピング)時におけるダイヤモンド砥粒の平均粒径を2.0μmとした以外は実施例1と同一条件で機械研磨(ダイヤモンド・ラッピング)を実施した。
[Comparative Example 6]
After grinding was performed using a precision grinder under the same conditions as in Example 1, mechanical polishing (diamond lapping) was performed under the same conditions as in Example 1, except that the average particle size of the diamond abrasive grains in the first mechanical polishing (diamond lapping) step was set to 2.0 μm.
そして、上記機械研磨(ダイヤモンド・ラッピング)されたSiC多結晶基板の表面粗度(Sa)をフリンジ・スキャン法により測定したところ、基板の5点平均(基板周辺部4点および基板中央1点)で2.4nmとなり、0.7nm以下にはならなかった。 The surface roughness (Sa) of the mechanically polished (diamond lapped) SiC polycrystalline substrate was measured using the fringe scan method, and the average of five points on the substrate (four points on the periphery and one point at the center of the substrate) was 2.4 nm, which was not less than 0.7 nm.
そして、上記機械研磨(ダイヤモンド・ラッピング)を実施したSiC多結晶基板について、第二工程の化学機械研磨(CMP)を20min実施し、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、表面粗度(Sa)の面内平均は1.20nmとなり、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。 Then, the SiC polycrystalline substrate that had been mechanically polished (diamond wrapping) was subjected to the second step of chemical mechanical polishing (CMP) for 20 minutes, and the surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured using the fringe scan method. The in-plane average surface roughness (Sa) was 1.20 nm, and the surface roughness (Sa) was not less than 0.5 nm at any point on the substrate.
これ等の結果も表2に示す。 These results are also shown in Table 2.
[比較例7]
実施例1と同一の条件で精密グラインダーによる研削加工を行った後、第一工程の機械研磨(ダイヤモンド・ラッピング)時におけるダイヤモンド砥粒の平均粒径を4.0μmとした以外は実施例1と同一条件で機械研磨(ダイヤモンド・ラッピング)を実施した。
[Comparative Example 7]
After grinding was performed using a precision grinder under the same conditions as in Example 1, mechanical polishing (diamond lapping) was performed under the same conditions as in Example 1, except that the average particle size of the diamond abrasive grains in the first mechanical polishing (diamond lapping) step was 4.0 μm.
そして、上記機械研磨(ダイヤモンド・ラッピング)されたSiC多結晶基板の表面粗度(Sa)をフリンジ・スキャン法により測定したところ、基板の5点平均(基板周辺部4点および基板中央1点)で5.3nmとなり、0.7nm以下にはならなかった
そして、上記機械研磨(ダイヤモンド・ラッピング)を実施したSiC多結晶基板について、第二工程の化学機械研磨(CMP)を20min実施し、化学機械研磨(CMP)されたSiC多結晶基板の表面粗度(Sa)についてフリンジ・スキャン法により測定したところ、表面粗度(Sa)の面内平均は3.90nmとなり、基板の何れの個所においても表面粗度(Sa)は0.5nm以下にはならなかった。
The surface roughness (Sa) of the mechanically polished (diamond lapped) SiC polycrystalline substrate was measured by a fringe scan method, and the average of five points on the substrate (four points on the periphery of the substrate and one point at the center of the substrate) was 5.3 nm, which did not become 0.7 nm or less. The SiC polycrystalline substrate that had been mechanically polished (diamond lapped) was subjected to the second step of chemical mechanical polishing (CMP) for 20 minutes, and the surface roughness (Sa) of the chemically mechanically polished (CMP) SiC polycrystalline substrate was measured by a fringe scan method, and the in-plane average of the surface roughness (Sa) was 3.90 nm, and the surface roughness (Sa) at no point on the substrate was 0.5 nm or less.
これ等の結果も表2に示す。 These results are also shown in Table 2.
本発明方法によれば、SiC多結晶基板の主面を原子サイズ近傍まで平坦化することができるため、SiC基板の製造に使用されるSiC多結晶基板の研磨方法に利用される産業上の利用可能性を有している。 The method of the present invention can flatten the main surface of a SiC polycrystalline substrate to near atomic size, and therefore has industrial applicability as a method for polishing SiC polycrystalline substrates used in the manufacture of SiC substrates.
Claims (4)
平均粒径が0.5μm~1.1μmのダイヤモンド砥粒を含有するダイヤモンド・スラリーをウレタン樹脂パッドに滴下し、SiC多結晶基板をフリンジ・スキャン法で測定した主面の表面粗度が、ISO 25178で規定された算術平均高さSaで0.7nm以下になるまで機械研磨する第一工程と、
pHを6.7~9.2に調整したコロイダルシリカ水性研磨液を用いてウレタン樹脂パッドにより化学機械研磨する第二工程、
を有することを特徴とするSiC多結晶基板の研磨方法。 1. A method for polishing a SiC polycrystalline substrate, comprising polishing a main surface of a SiC polycrystalline substrate that has been subjected to grinding, comprising:
A first step of mechanically polishing a SiC polycrystalline substrate by dropping a diamond slurry containing diamond abrasive grains having an average grain size of 0.5 μm to 1.1 μm onto a urethane resin pad until the surface roughness of the main surface of the SiC polycrystalline substrate measured by a fringe scan method is 0.7 nm or less in terms of arithmetic mean height Sa defined in ISO 25178;
A second step of chemically and mechanically polishing the surface with a urethane resin pad using an aqueous colloidal silica polishing solution adjusted to a pH of 6.7 to 9.2;
A method for polishing a SiC polycrystalline substrate, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020163026A JP7528681B2 (en) | 2020-09-29 | 2020-09-29 | Method for polishing SiC polycrystalline substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020163026A JP7528681B2 (en) | 2020-09-29 | 2020-09-29 | Method for polishing SiC polycrystalline substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022055549A JP2022055549A (en) | 2022-04-08 |
JP7528681B2 true JP7528681B2 (en) | 2024-08-06 |
Family
ID=80998815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020163026A Active JP7528681B2 (en) | 2020-09-29 | 2020-09-29 | Method for polishing SiC polycrystalline substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7528681B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3139413A1 (en) * | 2022-09-05 | 2024-03-08 | Soitec | Process for processing a polycrystalline silicon carbide wafer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205555A (en) | 1999-11-16 | 2001-07-31 | Denso Corp | Mechanochemical polishing method and device |
JP2005117027A (en) | 2003-09-16 | 2005-04-28 | Matsushita Electric Ind Co Ltd | Method of manufacturing sic substrate |
JP2014116553A (en) | 2012-12-12 | 2014-06-26 | Showa Denko Kk | METHOD FOR MANUFACTURING SiC SUBSTRATE |
JP2017075072A (en) | 2015-10-15 | 2017-04-20 | 住友電気工業株式会社 | Silicon carbide epitaxial substrate |
JP2018039731A (en) | 2017-11-28 | 2018-03-15 | 住友電気工業株式会社 | Silicon carbide single crystal substrate and silicon carbide epitaxial substrate |
JP2020090423A (en) | 2018-12-07 | 2020-06-11 | 住友金属鉱山株式会社 | Manufacturing method of polycrystalline silicon carbide substrate and tabular substrate to be film-deposited |
JP2020100528A (en) | 2018-12-21 | 2020-07-02 | 住友金属鉱山株式会社 | Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate |
-
2020
- 2020-09-29 JP JP2020163026A patent/JP7528681B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205555A (en) | 1999-11-16 | 2001-07-31 | Denso Corp | Mechanochemical polishing method and device |
JP2005117027A (en) | 2003-09-16 | 2005-04-28 | Matsushita Electric Ind Co Ltd | Method of manufacturing sic substrate |
JP2014116553A (en) | 2012-12-12 | 2014-06-26 | Showa Denko Kk | METHOD FOR MANUFACTURING SiC SUBSTRATE |
JP2017075072A (en) | 2015-10-15 | 2017-04-20 | 住友電気工業株式会社 | Silicon carbide epitaxial substrate |
JP2018039731A (en) | 2017-11-28 | 2018-03-15 | 住友電気工業株式会社 | Silicon carbide single crystal substrate and silicon carbide epitaxial substrate |
JP2020090423A (en) | 2018-12-07 | 2020-06-11 | 住友金属鉱山株式会社 | Manufacturing method of polycrystalline silicon carbide substrate and tabular substrate to be film-deposited |
JP2020100528A (en) | 2018-12-21 | 2020-07-02 | 住友金属鉱山株式会社 | Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2022055549A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9396945B2 (en) | Method for producing SiC substrate | |
TWI360457B (en) | Sapphire substrates and methods of making same | |
EP2671975B1 (en) | Sapphire substrates | |
CN102069448B (en) | Method for producing a semiconductor wafer | |
JP2016501809A (en) | Flat SiC semiconductor substrate | |
WO2008083081A2 (en) | Sapphire substrates and methods of making same | |
JP2022092155A (en) | SiC POLYCRYSTALLINE SUBSTRATE MANUFACTURING METHOD | |
CN111630213B (en) | Seed crystal for growing single crystal 4H-SiC and processing method thereof | |
JP7528681B2 (en) | Method for polishing SiC polycrystalline substrate | |
JP2024038313A (en) | SiC wafer manufacturing method | |
CN113322519A (en) | Epitaxial wafer, wafer and manufacturing method thereof | |
JP6329733B2 (en) | Semiconductor wafer etching method, semiconductor wafer manufacturing method, and semiconductor wafer crystal defect detection method | |
JP5135545B2 (en) | Seed crystal for growing silicon carbide single crystal ingot and method for producing the same | |
JP6032087B2 (en) | Method for producing group 13 nitride crystal substrate | |
JP5966524B2 (en) | Method for producing group 13 nitride crystal substrate | |
JP2022012251A (en) | Manufacturing method of panel-shaped molded object | |
JP2022075054A (en) | Tabular compact manufacturing method | |
JP2022075053A (en) | Tabular compact manufacturing method | |
TWI776220B (en) | Epitaxial wafer, wafer and manufacturing method of the same | |
WO2023181586A1 (en) | Aluminum nitride single crystal substrate and method for producing aluminum nitride single crystal substrate | |
JP2002173398A (en) | Method of producing langasite-type oxide single crystal wafer | |
KR20220017651A (en) | CeO2-ZnO alloy abrasive particle for polishing substrate and method of manufacturing the particle | |
JPS63114864A (en) | Ultra-precise polishing abrasive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7528681 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |