Nothing Special   »   [go: up one dir, main page]

JP7528062B2 - Polarizing plate using laminate for protecting polarizer - Google Patents

Polarizing plate using laminate for protecting polarizer Download PDF

Info

Publication number
JP7528062B2
JP7528062B2 JP2021513623A JP2021513623A JP7528062B2 JP 7528062 B2 JP7528062 B2 JP 7528062B2 JP 2021513623 A JP2021513623 A JP 2021513623A JP 2021513623 A JP2021513623 A JP 2021513623A JP 7528062 B2 JP7528062 B2 JP 7528062B2
Authority
JP
Japan
Prior art keywords
layer
polarizer
laminate
polarizing plate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021513623A
Other languages
Japanese (ja)
Other versions
JPWO2020209222A1 (en
Inventor
和哉 三輪
卓史 上条
大介 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JPWO2020209222A1 publication Critical patent/JPWO2020209222A1/en
Application granted granted Critical
Publication of JP7528062B2 publication Critical patent/JP7528062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、偏光子保護用積層体および該積層体を用いた偏光板に関する。 The present invention relates to a laminate for protecting a polarizer and a polarizing plate using the laminate.

画像表示装置(例えば、液晶表示装置、有機EL表示装置)には、その画像形成方式に起因して、多くの場合、表示セルの少なくとも一方の側に偏光板が配置されている。近年、画像表示装置の薄型化およびフレキシブル化が進んでおり、これに伴い、偏光板およびその構成フィルム(例えば、偏光子保護フィルム)の薄型化も強く要望されている。しかし、偏光子保護フィルムを薄くすればするほど、加熱加湿環境下で偏光板の光学特性が低下するという耐久性の問題が顕著となる。薄く、かつ、耐久性に優れた偏光板を実現し得る偏光子保護フィルムとして、所定の樹脂溶液の塗布膜の固化物で構成された偏光子保護フィルムが検討されている。このような技術は開発の初期段階にあり、種々の検討の余地が残されている。In image display devices (e.g., liquid crystal display devices, organic EL display devices), a polarizing plate is often arranged on at least one side of the display cell due to the image formation method. In recent years, image display devices have become thinner and more flexible, and as a result, there is a strong demand for thinner polarizing plates and their constituent films (e.g., polarizer protective films). However, the thinner the polarizer protective film, the more pronounced the durability problem becomes, in that the optical properties of the polarizing plate deteriorate in a heated and humidified environment. As a polarizer protective film that can realize a thin and durable polarizing plate, a polarizer protective film made of a solidified coating film of a specified resin solution is being considered. This technology is in the early stages of development, and there is still room for various considerations.

特開2015-210474号公報JP 2015-210474 A

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、薄く、かつ、耐久性に優れた偏光板を実現し得、さらに、ひびおよび/または割れが抑制された偏光子保護用積層体を提供することにある。The present invention has been made to solve the above-mentioned problems of the conventional art, and its main objective is to provide a laminate for protecting a polarizer that can realize a thin and highly durable polarizing plate and further suppresses cracks and/or breakage.

本発明の偏光子保護用積層体は、ガラス転移温度が95℃以上の熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成された第1層と、硬化性樹脂の硬化物で構成された第2層と、を有し、該第2層の厚みが1.0μm以上である。
1つの実施形態においては、上記第2層の弾性率は50MPa以上であり、かつ、伸び率は2%以上である。1つの実施形態においては、上記第2層の鉛筆硬度は2H以上である。
1つの実施形態においては、上記第1層の厚みは10μm以下である。
1つの実施形態においては、上記第1層の面内位相差Re(550)は0nm~10nmであり、厚み方向の位相差Rth(550)は-20nm~+10nmである。
本発明の別の局面によれば、偏光板が提供される。この偏光板は、偏光子と、該偏光子の一方の側に配置された上記の偏光子保護用積層体と、を有する。該偏光子保護用積層体は、上記第1層が該偏光子側となるよう配置されている。
1つの実施形態においては、上記偏光板は、画像表示装置の視認側に配置され、かつ、上記偏光子保護用積層体の上記第2層が視認側に配置される。
The polarizer protection laminate of the present invention has a first layer composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin having a glass transition temperature of 95° C. or more, and a second layer composed of a cured product of a curable resin, and the second layer has a thickness of 1.0 μm or more.
In one embodiment, the second layer has a modulus of elasticity of 50 MPa or more and an elongation of 2% or more. In one embodiment, the second layer has a pencil hardness of 2H or more.
In one embodiment, the first layer has a thickness of 10 μm or less.
In one embodiment, the first layer has an in-plane retardation Re(550) of 0 nm to 10 nm and a retardation in the thickness direction Rth(550) of −20 nm to +10 nm.
According to another aspect of the present invention, there is provided a polarizing plate comprising a polarizer and the above-described polarizer protection laminate disposed on one side of the polarizer, the polarizer protection laminate being disposed such that the first layer faces the polarizer.
In one embodiment, the polarizing plate is disposed on a viewer side of an image display device, and the second layer of the polarizer protection laminate is disposed on the viewer side.

本発明によれば、偏光子保護フィルムをガラス転移温度が95℃以上の熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成された第1層と硬化性樹脂(代表的には、活性エネルギー線硬化性樹脂)の硬化物で構成された第2層との積層体とすることにより、薄く、かつ、耐久性に優れた偏光板を実現し得、さらに、ひびおよび/または割れが抑制された偏光子保護フィルム(偏光子保護用積層体)を実現することができる。According to the present invention, by forming a polarizer protective film as a laminate of a first layer composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin having a glass transition temperature of 95°C or higher, and a second layer composed of a cured product of a curable resin (typically, an active energy ray curable resin), it is possible to realize a thin polarizing plate having excellent durability, and further, a polarizer protective film (laminate for polarizer protection) in which cracks and/or cracks are suppressed can be realized.

本発明の1つの実施形態による偏光子保護用積層体の概略断面図である。1 is a schematic cross-sectional view of a polarizer protection laminate according to one embodiment of the present invention. 本発明の1つの実施形態による偏光板の概略断面図である。1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. 本発明の1つの実施形態による偏光板の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a drying shrinkage treatment using a heating roll in a method for producing a polarizing plate according to one embodiment of the present invention.

A.偏光子保護用積層体
A-1.偏光子保護用積層体の概略
図1は、本発明の1つの実施形態による偏光子保護用積層体の概略断面図である。図示例の偏光子保護用積層体100は、第1層10と第2層20とを有する。第1層10は、ガラス転移温度が95℃以上の熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。第2層20は、硬化性樹脂の硬化物で構成されている。本発明の実施形態においては、第2層の厚みは1.0μm以上である。以下、第1層および第2層について具体的に説明する。
A. Polarizer Protective Laminate A-1. Overview of Polarizer Protective Laminate FIG. 1 is a schematic cross-sectional view of a polarizer protective laminate according to one embodiment of the present invention. The polarizer protective laminate 100 of the illustrated example has a first layer 10 and a second layer 20. The first layer 10 is composed of a solidified coating film of an organic solvent solution of a thermoplastic acrylic resin having a glass transition temperature of 95° C. or higher. The second layer 20 is composed of a cured product of a curable resin. In an embodiment of the present invention, the thickness of the second layer is 1.0 μm or more. The first layer and the second layer will be specifically described below.

A-2.第1層
第1層は、代表的には偏光子の保護層として機能し得る。第1層は、上記のとおり、熱可塑性アクリル系樹脂(以下、単にアクリル系樹脂と称する)の有機溶媒溶液の塗布膜の固化物で構成されている。以下、第1層の構成成分について具体的に説明し、次いで、第1層の特性を説明する。
A-2. First Layer The first layer can typically function as a protective layer for the polarizer. As described above, the first layer is composed of a solidified coating film of a solution of a thermoplastic acrylic resin (hereinafter simply referred to as an acrylic resin) in an organic solvent. Hereinafter, the components of the first layer will be specifically described, and then the characteristics of the first layer will be described.

A-2-1.アクリル系樹脂
アクリル系樹脂は、ガラス転移温度(Tg)が上記のとおり95℃以上である。その結果、第1層のTgが95℃以上となる。アクリル系樹脂のTgが95℃以上であれば、このような樹脂から得られた第1層を含む偏光板は、耐久性に優れたものとなりやすい。アクリル系樹脂のTgは、代表的には100℃以上、好ましくは110℃以上、より好ましくは115℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、アクリル系樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。アクリル系樹脂のTgがこのような範囲であれば、成形性に優れ得る。
A-2-1. Acrylic resin The glass transition temperature (Tg) of the acrylic resin is 95°C or higher as described above. As a result, the Tg of the first layer is 95°C or higher. If the Tg of the acrylic resin is 95°C or higher, the polarizing plate including the first layer obtained from such a resin tends to have excellent durability. The Tg of the acrylic resin is typically 100°C or higher, preferably 110°C or higher, more preferably 115°C or higher, even more preferably 120°C or higher, and particularly preferably 125°C or higher. On the other hand, the Tg of the acrylic resin is preferably 300°C or lower, more preferably 250°C or lower, even more preferably 200°C or lower, and particularly preferably 160°C or lower. If the Tg of the acrylic resin is in such a range, it may have excellent moldability.

アクリル系樹脂としては、上記のようなTgを有する限りにおいて任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位(繰り返し単位)として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。アルキル(メタ)アクリレート由来の繰り返し単位は、代表的には、下記一般式(1)で表される:As the acrylic resin, any suitable acrylic resin may be used as long as it has the above Tg. The acrylic resin typically contains alkyl (meth)acrylate as the main component as a monomer unit (repeating unit). In this specification, "(meth)acrylic" means acrylic and/or methacrylic. Examples of the alkyl (meth)acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination. Furthermore, any suitable copolymerization monomer may be introduced into the acrylic resin by copolymerization. The repeating unit derived from the alkyl (meth)acrylate is typically represented by the following general formula (1):

Figure 0007528062000001
Figure 0007528062000001

一般式(1)において、Rは、水素原子またはメチル基を示し、Rは、水素原子、あるいは、置換されていてもよい炭素数1~6の脂肪族または脂環式炭化水素基を示す。置換基としては、例えば、ハロゲン、水酸基が挙げられる。アルキル(メタ)アクリレートの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシエチル)アクリル酸メチルが挙げられる。一般式(1)において、Rは、好ましくは、水素原子またはメチル基である。したがって、特に好ましいアルキル(メタ)アクリレートは、アクリル酸メチルまたはメタクリル酸メチルである。 In general formula (1), R4 represents a hydrogen atom or a methyl group, and R5 represents a hydrogen atom or an optionally substituted aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms. Examples of the substituent include halogen and a hydroxyl group. Specific examples of alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, chloromethyl (meth)acrylate, 2-chloroethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth)acrylate, 2,3,4,5-tetrahydroxypentyl (meth)acrylate, methyl 2-(hydroxymethyl)acrylate, ethyl 2-(hydroxymethyl)acrylate, and methyl 2-(hydroxyethyl)acrylate. In the general formula (1), R5 is preferably a hydrogen atom or a methyl group. Therefore, a particularly preferred alkyl (meth)acrylate is methyl acrylate or methyl methacrylate.

アクリル系樹脂は、単一のアルキル(メタ)アクリレート単位のみを含んでいてもよいし、上記一般式(1)におけるRおよびRが異なる複数のアルキル(メタ)アクリレート単位を含んでいてもよい。 The acrylic resin may contain only a single alkyl(meth)acrylate unit, or may contain a plurality of alkyl(meth)acrylate units in which R 4 and R 5 in the above general formula (1) are different.

アクリル系樹脂におけるアルキル(メタ)アクリレート単位の含有割合は、好ましくは50モル%~98モル%、より好ましくは55モル%~98モル%、さらに好ましくは60モル%~98モル%、特に好ましくは65モル%~98モル%、最も好ましくは70モル%~97モル%である。含有割合が50モル%より少ないと、アルキル(メタ)アクリレート単位に由来して発現される効果(例えば、高い耐熱性、高い透明性)が十分に発揮されないおそれがある。上記含有割合が98モル%よりも多いと、樹脂が脆くて割れやすくなり、高い機械的強度が十分に発揮できず、生産性に劣るおそれがある。The content of alkyl (meth)acrylate units in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, even more preferably 60 mol% to 98 mol%, particularly preferably 65 mol% to 98 mol%, and most preferably 70 mol% to 97 mol%. If the content is less than 50 mol%, the effects derived from the alkyl (meth)acrylate units (e.g., high heat resistance, high transparency) may not be fully exhibited. If the content is more than 98 mol%, the resin may be brittle and easily cracked, and high mechanical strength may not be fully exhibited, resulting in poor productivity.

アクリル系樹脂は、環構造を含む繰り返し単位を有していてもよい。環構造を含む繰り返し単位としては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位、マレイミド(N-置換マレイミド)単位が挙げられる。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。The acrylic resin may have a repeating unit containing a ring structure. Examples of repeating units containing a ring structure include lactone ring units, glutaric anhydride units, glutarimide units, maleic anhydride units, and maleimide (N-substituted maleimide) units. The repeating units of the acrylic resin may contain only one type of repeating unit containing a ring structure, or may contain two or more types.

ラクトン環単位は、好ましくは、下記一般式(2)で表される:The lactone ring unit is preferably represented by the following general formula (2):

Figure 0007528062000002
一般式(2)において、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。アクリル系樹脂には、単一のラクトン環単位のみが含まれていてもよく、上記一般式(2)におけるR、RおよびRが異なる複数のラクトン環単位が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されており、当該公報の記載は本明細書に参考として援用される。
Figure 0007528062000002
In the general formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom. The acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units in which R 1 , R 2 and R 3 in the general formula (2) are different. An acrylic resin having a lactone ring unit is described, for example, in JP 2008-181078 A, and the description of this publication is incorporated herein by reference.

グルタルイミド単位は、好ましくは、下記一般式(3)で表される:The glutarimide unit is preferably represented by the following general formula (3):

Figure 0007528062000003
Figure 0007528062000003

一般式(3)において、R11およびR12は、それぞれ独立して、水素または炭素数1~8のアルキル基を示し、R13は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基を示す。一般式(3)において、好ましくは、R11およびR12は、それぞれ独立して水素またはメチル基であり、R13は水素、メチル基、ブチル基またはシクロヘキシル基である。より好ましくは、R11はメチル基であり、R12は水素であり、R13はメチル基である。アクリル系樹脂には、単一のグルタルイミド単位のみが含まれていてもよく、上記一般式(3)におけるR11、R12およびR13が異なる複数のグルタルイミド単位が含まれていてもよい。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報に記載されており、当該公報の記載は本明細書に参考として援用される。なお、無水グルタル酸単位については、上記一般式(3)におけるR13で置換された窒素原子が酸素原子となること以外は、グルタルイミド単位に関する上記の説明が適用される。 In the general formula (3), R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 13 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms. In the general formula (3), preferably, R 11 and R 12 each independently represent hydrogen or a methyl group, and R 13 represents hydrogen, a methyl group, a butyl group, or a cyclohexyl group. More preferably, R 11 represents a methyl group, R 12 represents hydrogen, and R 13 represents a methyl group. The acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units in which R 11 , R 12 , and R 13 in the general formula (3) are different. Acrylic resins having glutarimide units are described, for example, in JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, and JP-A-2006-337569, the disclosures of which are incorporated herein by reference. Note that, for the glutaric anhydride unit, the above description of the glutarimide unit applies, except that the nitrogen atom substituted with R 13 in the above general formula (3) becomes an oxygen atom.

無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位については、名称から構造が特定されるので、具体的な説明は省略する。 As the structures of maleic anhydride units and maleimide (N-substituted maleimide) units are specified from their names, detailed explanations are omitted.

アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。含有割合が少なすぎると、Tgが110℃未満となる場合があり、得られる第1層の耐熱性、耐溶剤性および表面硬度が不十分となる場合がある。含有割合が多すぎると、成形性および透明性が不十分となる場合がある。The content of repeating units containing a ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, and even more preferably 20 mol% to 30 mol%. If the content is too low, the Tg may be less than 110°C, and the heat resistance, solvent resistance, and surface hardness of the resulting first layer may be insufficient. If the content is too high, the moldability and transparency may be insufficient.

アクリル系樹脂は、アルキル(メタ)アクリレート単位および環構造を含む繰り返し単位以外の繰り返し単位を含んでいてもよい。そのような繰り返し単位としては、上記の単位を構成する単量体と共重合可能なビニル系単量体由来の繰り返し単位(他のビニル系単量体単位)が挙げられる。他のビニル系単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、アリルグリシジルエーテル、無水マレイン酸、無水イタコン酸、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、N-フェニルマレイミド、メタクリル酸フェニルアミノエチル、スチレン、α-メチルスチレン、p-グリシジルスチレン、p-アミノスチレン、2-スチリル-オキサゾリンなどがあげられる。これらは、単独で用いてもよく併用してもよい。他のビニル系単量体単位の種類、数、組み合わせ、含有割合等は、目的に応じて適切に設定され得る。The acrylic resin may contain repeating units other than the alkyl (meth)acrylate units and the repeating units containing a ring structure. Examples of such repeating units include repeating units derived from vinyl monomers that are copolymerizable with the monomers that constitute the above units (other vinyl monomer units). Examples of other vinyl monomers include acrylic acid, methacrylic acid, crotonic acid, 2-(hydroxymethyl)acrylic acid, 2-(hydroxyethyl)acrylic acid, acrylonitrile, methacrylonitrile, ethacrylonitrile, allyl glycidyl ether, maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, cyclohexylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acroyl-oxazoline, N-phenylmaleimide, phenylaminoethyl methacrylate, styrene, α-methylstyrene, p-glycidylstyrene, p-aminostyrene, and 2-styryl-oxazoline. These may be used alone or in combination. The type, number, combination, content ratio, etc. of the other vinyl monomer units may be appropriately set depending on the purpose.

アクリル系樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。The weight average molecular weight of the acrylic resin is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, even more preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60,000 to 150,000. The weight average molecular weight can be determined, for example, using a gel permeation chromatograph (GPC system, manufactured by Tosoh Corporation) in terms of polystyrene. Tetrahydrofuran can be used as the solvent.

アクリル系樹脂は、上記の単量体単位を適切に組み合わせて用いて、任意の適切な重合方法により重合され得る。The acrylic resin may be polymerized by any suitable polymerization method using an appropriate combination of the above monomer units.

本発明の実施形態においては、アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体を後述する第1層の成形に供してもよく;アクリル系樹脂と他の樹脂とのブレンドを第1層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなどの熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂(好ましくは、アクリロニトリル-スチレン共重合体)は、位相差制御剤として併用され得る。In an embodiment of the present invention, an acrylic resin may be used in combination with another resin. That is, a monomer component constituting an acrylic resin may be copolymerized with a monomer component constituting another resin, and the copolymer may be used to form the first layer described below; a blend of an acrylic resin and another resin may be used to form the first layer. Examples of other resins include thermoplastic resins such as styrene resins, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, and polyetherimide. The type and amount of the resin used in combination may be appropriately set depending on the purpose and the desired properties of the resulting film. For example, a styrene resin (preferably an acrylonitrile-styrene copolymer) may be used in combination as a retardation control agent.

アクリル系樹脂と他の樹脂とを併用する場合、アクリル系樹脂と他の樹脂とのブレンドにおけるアクリル系樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、アクリル系樹脂が本来有する高い耐熱性、高い透明性が十分に反映できないおそれがある。When acrylic resin is used in combination with other resins, the content of the acrylic resin in the blend of the acrylic resin with other resins is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100% by weight, even more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight. If the content is less than 50% by weight, the high heat resistance and high transparency inherent to the acrylic resin may not be fully reflected.

A-2-2.第1層の構成および特性
第1層は、上記のとおり、ガラス転移温度が95℃以上のアクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。このような塗布膜の固化物であれば、押出成形フィルムに比べて厚みを格段に薄くすることができる。第1層の厚みは、例えば10μm以下であり、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。第1層の厚みの下限は、例えば1μmであり得る。また、理論的には明らかではないが、このような塗布膜の固化物は、熱硬化性樹脂または活性エネルギー線硬化性樹脂(例えば、紫外線硬化性樹脂)の硬化物に比べてフィルム成形時の収縮が小さい、および、残存モノマー等が含まれないのでフィルム自体の劣化が抑制され、かつ、残存モノマー等に起因する偏光板(偏光子)に対する悪影響を抑制することができるという利点を有する。さらに、水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、加熱加湿環境下においても光学特性を維持し得る、耐久性に優れた偏光板を実現することができる。
A-2-2. Configuration and characteristics of the first layer As described above, the first layer is composed of a solidified coating film of an organic solvent solution of an acrylic resin having a glass transition temperature of 95°C or higher. Such a solidified coating film can be made significantly thinner than an extrusion-molded film. The thickness of the first layer is, for example, 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The lower limit of the thickness of the first layer can be, for example, 1 μm. Although not theoretically clear, such a solidified coating film has the advantages of being smaller in shrinkage during film formation than a cured product of a thermosetting resin or an active energy ray-curable resin (for example, an ultraviolet-curable resin), and of being free of residual monomers and the like, thereby suppressing deterioration of the film itself, and of being able to suppress adverse effects on a polarizing plate (polarizer) caused by residual monomers and the like. Furthermore, it has the advantage of being superior in humidification durability because it has smaller moisture absorption and moisture permeability than a solidified coating film of a water-based solution such as an aqueous solution or water dispersion. As a result, it is possible to realize a polarizing plate having excellent durability and capable of maintaining its optical properties even in a heated and humidified environment.

第1層のTgは、アクリル系樹脂に関して上記A-2-1項で説明したとおりである。 The Tg of the first layer is as described above in section A-2-1 for acrylic resins.

第1層は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-20nm~+10nmであることをいう。面内位相差Re(550)は、より好ましくは0nm~5nmであり、さらに好ましくは0nm~3nmであり、特に好ましくは0nm~2nmである。厚み方向の位相差Rth(550)は、より好ましくは-5nm~+5nmであり、さらに好ましくは-3nm~+3nmであり、特に好ましくは-2nm~+2nmである。第1層のRe(550)およびRth(550)がこのような範囲であれば、当該第1層を含む偏光板を画像表示装置に適用した場合に表示特性に対する悪影響を防止することができる。なお、Re(550)は、23℃における波長550nmの光で測定したフィルムの面内位相差である。Re(550)は、式:Re(550)=(nx-ny)×dによって求められる。Rth(550)は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差である。Rth(550)は、式:Rth(550)=(nx-nz)×dによって求められる。ここで、nxは面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、nzは厚み方向の屈折率であり、dはフィルムの厚み(nm)である。The first layer is preferably substantially optically isotropic. In this specification, "substantially optically isotropic" means that the in-plane retardation Re(550) is 0 nm to 10 nm, and the thickness direction retardation Rth(550) is -20 nm to +10 nm. The in-plane retardation Re(550) is more preferably 0 nm to 5 nm, even more preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm. The thickness direction retardation Rth(550) is more preferably -5 nm to +5 nm, even more preferably -3 nm to +3 nm, and particularly preferably -2 nm to +2 nm. If the Re(550) and Rth(550) of the first layer are in such a range, it is possible to prevent adverse effects on the display characteristics when a polarizing plate including the first layer is applied to an image display device. Note that Re(550) is the in-plane retardation of the film measured with light having a wavelength of 550 nm at 23 ° C. Re(550) is calculated by the formula: Re(550)=(nx-ny)×d. Rth(550) is the retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23° C. Rth(550) is calculated by the formula: Rth(550)=(nx-nz)×d. Here, nx is the refractive index in the direction in which the in-plane refractive index is maximized (i.e., the slow axis direction), ny is the refractive index in the direction perpendicular to the slow axis in the plane (i.e., the fast axis direction), nz is the refractive index in the thickness direction, and d is the thickness of the film (nm).

第1層の厚み3μmにおける380nmでの光線透過率は、高ければ高いほど好ましい。具体的には、光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。光線透過率がこのような範囲であれば、所望の透明性を確保することができる。光線透過率は、例えば、ASTM-D-1003に準じた方法で測定され得る。The higher the light transmittance at 380 nm for a first layer thickness of 3 μm, the better. Specifically, the light transmittance is preferably 85% or more, more preferably 88% or more, and even more preferably 90% or more. If the light transmittance is within this range, the desired transparency can be ensured. The light transmittance can be measured, for example, by a method conforming to ASTM-D-1003.

第1層のヘイズは、低ければ低いほど好ましい。具体的には、ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下である。ヘイズが5%以下であると、フィルムに良好なクリヤー感を与えることができる。さらに、画像表示装置の視認側偏光板に使用する場合でも、表示内容が良好に視認できる。The lower the haze of the first layer, the better. Specifically, the haze is preferably 5% or less, more preferably 3% or less, even more preferably 1.5% or less, and particularly preferably 1% or less. A haze of 5% or less can give the film a good sense of clarity. Furthermore, even when used as the viewing side polarizing plate of an image display device, the displayed content can be clearly seen.

第1層の厚み3μmにおけるYIは、好ましくは1.27以下、より好ましくは1.25以下、さらに好ましくは1.23以下、特に好ましくは1.20以下である。YIが1.3を超えると、光学的透明性が不十分となる場合がある。なお、YIは、例えば、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いた測定で得られる色の三刺激値(X、Y、Z)より、次式によって求めることができる。
YI=[(1.28X-1.06Z)/Y]×100
The YI at a thickness of 3 μm of the first layer is preferably 1.27 or less, more preferably 1.25 or less, even more preferably 1.23 or less, and particularly preferably 1.20 or less. If the YI exceeds 1.3, the optical transparency may be insufficient. The YI can be calculated from the tristimulus values (X, Y, Z) of the color obtained by measurement using, for example, a high-speed integrating sphere type spectral transmittance measuring device (product name DOT-3C: manufactured by Murakami Color Research Laboratory) according to the following formula:
YI=[(1.28X-1.06Z)/Y]×100

第1層の厚み3μmにおけるb値(ハンターの表色系に準じた色相の尺度)は、好ましくは1.5未満、より好ましくは1.0以下である。b値が1.5以上である場合、所望でない色味が出る場合がある。なお、b値は、例えば、第1層を構成するフィルムのサンプルを3cm角に裁断し、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いて色相を測定し、当該色相をハンターの表色系に準じて評価することにより得られ得る。The b value (a measure of hue according to the Hunter color system) of the first layer at a thickness of 3 μm is preferably less than 1.5, and more preferably 1.0 or less. If the b value is 1.5 or more, an undesired color tone may result. The b value can be obtained, for example, by cutting a sample of the film constituting the first layer into a 3 cm square, measuring the hue using a high-speed integrating sphere spectroscopic transmittance measuring instrument (product name DOT-3C: manufactured by Murakami Color Research Laboratory), and evaluating the hue according to the Hunter color system.

第1層(塗布膜の固化物)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤はアクリル系樹脂の重合時に添加されてもよく、フィルム形成時に溶液に添加されてもよい。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。The first layer (solidified coating film) may contain any suitable additive depending on the purpose. Specific examples of additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenols, phosphorus, and sulfur; stabilizers such as light stabilizers, weather stabilizers, and heat stabilizers; reinforcing materials such as glass fibers and carbon fibers; near-infrared absorbers; flame retardants such as tris(dibromopropyl)phosphate, triallyl phosphate, and antimony oxide; antistatic agents such as anionic, cationic, and nonionic surfactants; colorants such as inorganic pigments, organic pigments, and dyes; organic or inorganic fillers; resin modifiers; organic and inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants; and the like. The additives may be added during polymerization of the acrylic resin, or may be added to the solution during film formation. The type, number, combination, and amount of additives may be appropriately set depending on the purpose.

第1層の第2層と反対側(代表的には、偏光板に用いられる場合の偏光子側)には、易接着層が形成されていてもよい。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。このような易接着層を形成することにより、第1層と偏光子との密着性を高めることができる。An easy-adhesion layer may be formed on the side of the first layer opposite the second layer (typically, the polarizer side when used in a polarizing plate). The easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based crosslinking agent. By forming such an easy-adhesion layer, the adhesion between the first layer and the polarizer can be increased.

A-3.第2層
第2層は、代表的にはハードコート層として機能し得る。第2層を設けることにより、第1層の優れた特性(非常に薄いにもかかわらず、耐久性に優れた偏光板を実現し得ること)を維持しつつ、第1層のひびおよび/または割れを抑制することができる。第2層は、上記のとおり、硬化性樹脂の硬化物で構成される。理論的には明らかではないが、硬化物の3次元架橋構造がひびおよび/または割れを抑制すると推定される。硬化性樹脂は、活性エネルギー線硬化性樹脂であってもよく、熱硬化性樹脂であってもよい。好ましくは活性エネルギー線硬化性樹脂である。活性エネルギー線硬化性樹脂は、反応の制御が容易であり、操作性に優れるという利点がある。
A-3. Second layer The second layer can typically function as a hard coat layer. By providing the second layer, cracks and/or breaks in the first layer can be suppressed while maintaining the excellent characteristics of the first layer (a polarizing plate with excellent durability can be realized despite being very thin). As described above, the second layer is composed of a cured product of a curable resin. Although not theoretically clear, it is presumed that the three-dimensional crosslinked structure of the cured product suppresses cracks and/or breaks. The curable resin may be an active energy ray curable resin or a thermosetting resin. It is preferably an active energy ray curable resin. An active energy ray curable resin has the advantage that the reaction can be easily controlled and it is excellent in operability.

本発明の実施形態においては、第2層の厚みは、上記のとおり1.0μm以上であり、好ましくは2.0μm以上であり、より好ましくは2.5μm以上である。第2層の厚みを所定値以上とすることにより、所望の剛性が得られ、かつ、ひび割れを抑制することができる。第2層の厚みの上限は、例えば5.0μmであり得る。第2層の厚みが小さすぎると、硬化反応が不十分となって層形成が困難となる場合があり、形成された層の剛性が不十分となる場合がある。第2層の厚みが大きすぎると、屈曲性が不十分となり、ひび割れが生じやすくなる場合がある。In an embodiment of the present invention, the thickness of the second layer is 1.0 μm or more, preferably 2.0 μm or more, and more preferably 2.5 μm or more, as described above. By making the thickness of the second layer a predetermined value or more, the desired rigidity can be obtained and cracks can be suppressed. The upper limit of the thickness of the second layer can be, for example, 5.0 μm. If the thickness of the second layer is too small, the curing reaction may be insufficient, making it difficult to form a layer, and the rigidity of the formed layer may be insufficient. If the thickness of the second layer is too large, the flexibility may be insufficient and cracks may be easily generated.

好ましくは、第2層の弾性率は50MPa以上であり、かつ、伸び率は2%以上である。このような第2層を設けることにより、第1層(結果として、偏光子保護用積層体)のひびおよび/または割れを顕著に抑制することができる。第2層の弾性率は、より好ましくは500MPa以上であり、さらに好ましくは1000MPa以上であり、特に好ましくは2800MPa以上であり、とりわけ好ましくは2900MPa以上である。第2層の弾性率の上限は、例えば7000MPaであり得る。第2層の弾性率が高すぎると、脆くなり、保護層として機能できない場合がある。第2層の伸び率は、より好ましくは5%以上であり、さらに好ましくは10%以上であり、特に好ましくは20%以上であり、とりわけ好ましくは40%以上である。第2層の上限は例えば300%であり得る。第2層の弾性率が大きい場合には伸び率は小さくなり得、第2層の弾性率が小さい場合には伸び率は大きくなり得る。弾性率および伸び率は、例えば、JIS K 7161に準じて測定され得る。Preferably, the modulus of elasticity of the second layer is 50 MPa or more, and the elongation rate is 2% or more. By providing such a second layer, cracks and/or cracks in the first layer (as a result, the laminate for protecting a polarizer) can be significantly suppressed. The modulus of elasticity of the second layer is more preferably 500 MPa or more, even more preferably 1000 MPa or more, particularly preferably 2800 MPa or more, and especially preferably 2900 MPa or more. The upper limit of the modulus of elasticity of the second layer may be, for example, 7000 MPa. If the modulus of elasticity of the second layer is too high, it may become brittle and may not function as a protective layer. The elongation rate of the second layer is more preferably 5% or more, even more preferably 10% or more, particularly preferably 20% or more, and especially preferably 40% or more. The upper limit of the second layer may be, for example, 300%. If the modulus of elasticity of the second layer is large, the elongation rate may be small, and if the modulus of elasticity of the second layer is small, the elongation rate may be large. The modulus of elasticity and the elongation rate may be measured, for example, in accordance with JIS K 7161.

第2層の鉛筆硬度は、好ましくは2H以上であり、より好ましくは3H以上であり、さらに好ましくは4H以上である。第2層の鉛筆硬度の上限は、例えば6Hであり得る。第2層の鉛筆硬度がこのような範囲であれば、第1層のひびおよび/または割れをさらに良好に抑制することができる。鉛筆硬度は、例えば、JIS K 5400に準じて測定され得る。The pencil hardness of the second layer is preferably 2H or more, more preferably 3H or more, and even more preferably 4H or more. The upper limit of the pencil hardness of the second layer may be, for example, 6H. If the pencil hardness of the second layer is in such a range, cracks and/or cracks in the first layer can be further suppressed. The pencil hardness may be measured, for example, in accordance with JIS K 5400.

第2層は、代表的には、上記のような特性を満足し得る任意の適切な活性エネルギー線硬化性樹脂で構成され得る。活性エネルギー線硬化性樹脂としては、紫外線硬化性樹脂、電子線硬化性樹脂が挙げられる。紫外線硬化性樹脂が好ましい。簡単な加工操作にて効率よく第2層を形成することができるからである。紫外線硬化性樹脂としては、例えば、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種樹脂が挙げられる。1つの実施形態においては、紫外線硬化性樹脂は、ウレタンアクリレート樹脂である。なお、紫外線硬化性樹脂の詳細については、例えば、特許第6199605号にハードコート層の有機成分として記載されている。当該公報の記載は、本明細書に参考として援用される。The second layer may typically be composed of any suitable active energy ray curable resin that can satisfy the above-mentioned characteristics. Examples of active energy ray curable resins include ultraviolet ray curable resins and electron beam curable resins. UV curable resins are preferred because they can efficiently form the second layer with simple processing operations. Examples of UV curable resins include various resins such as polyester, acrylic, urethane, amide, silicone, and epoxy. In one embodiment, the UV curable resin is a urethane acrylate resin. Details of the UV curable resin are described, for example, in Japanese Patent No. 6199605 as an organic component of the hard coat layer. The description in this publication is incorporated herein by reference.

B.偏光板
上記A項に記載の偏光子保護用積層体は、偏光子保護フィルムとして偏光板に適用され得る。したがって、本発明の実施形態は、このような偏光板も包含する。図2は、本発明の1つの実施形態による偏光板の概略断面図である。図示例の偏光板200は、偏光子120と、偏光子120の一方の側に配置された偏光子保護用積層体100と、を有する。偏光子保護用積層体100は、上記A項に記載の本発明の実施形態による偏光子保護用積層体である。偏光子保護用積層体100は、第1層10が偏光子120側となるよう配置されている、偏光板200は、画像表示装置に適用される場合、代表的には表示セルの視認側に配置される。この場合、代表的には、偏光子保護用積層体100の第2層20が視認側に配置される。
B. Polarizing Plate The polarizer protection laminate described in the above section A can be applied to a polarizing plate as a polarizer protection film. Therefore, the embodiment of the present invention also includes such a polarizing plate. FIG. 2 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 200 of the illustrated example has a polarizer 120 and a polarizer protection laminate 100 arranged on one side of the polarizer 120. The polarizer protection laminate 100 is a polarizer protection laminate according to the embodiment of the present invention described in the above section A. The polarizer protection laminate 100 is arranged so that the first layer 10 is on the polarizer 120 side, and when the polarizing plate 200 is applied to an image display device, it is typically arranged on the viewing side of a display cell. In this case, typically, the second layer 20 of the polarizer protection laminate 100 is arranged on the viewing side.

必要に応じて、偏光子120の偏光子保護用積層体100と反対側に別の保護層(図示せず)が設けられてもよい。代表的には、偏光板は、一方の側(代表的には、偏光子120の偏光子保護用積層体100と反対側)の最外層として粘着剤層を有し、表示セルへの貼り合わせが可能とされている。必要に応じて、偏光板には表面保護フィルムおよび/またはキャリアフィルムが剥離可能に仮着され、偏光板を補強および/または支持し得る。偏光板が粘着剤層を含む場合には、粘着剤層表面にはセパレーターが剥離可能に仮着され、実使用までの間粘着剤層を保護するとともに、偏光板のロール化を可能としている。If necessary, another protective layer (not shown) may be provided on the side of the polarizer 120 opposite the polarizer protection laminate 100. Typically, the polarizing plate has an adhesive layer as the outermost layer on one side (typically, the side opposite the polarizer protection laminate 100 of the polarizer 120), and can be attached to a display cell. If necessary, a surface protection film and/or a carrier film may be temporarily attached in a peelable manner to the polarizing plate to reinforce and/or support the polarizing plate. When the polarizing plate includes an adhesive layer, a separator is temporarily attached in a peelable manner to the surface of the adhesive layer to protect the adhesive layer until actual use and to enable the polarizing plate to be rolled.

偏光板は、長尺状であってもよいし、枚葉状であってもよい。偏光板が長尺状である場合、偏光板は、好ましくはロール状に巻回可能である。The polarizing plate may be in a long shape or in a sheet shape. If the polarizing plate is in a long shape, the polarizing plate can preferably be wound into a roll.

本発明の実施形態においては、上記A項に記載の偏光子保護用積層体を採用することにより、偏光子保護フィルムの厚みを非常に薄くすることができる。さらに、このような偏光子保護用積層体は、偏光子に直接(すなわち、接着剤層または粘着剤層を介することなく)形成することができる。その結果、偏光板の総厚みをきわめて薄くすることができる。偏光板の総厚みは、例えば40μm以下であり、好ましくは30μm以下であり、より好ましくは25μm以下であり、さらに好ましくは15μm以下である。偏光板の総厚みの下限は、例えば10μmであり得る。In an embodiment of the present invention, by adopting the polarizer protection laminate described in section A above, the thickness of the polarizer protection film can be made very thin. Furthermore, such a polarizer protection laminate can be formed directly on the polarizer (i.e., without an adhesive layer or pressure-sensitive adhesive layer). As a result, the total thickness of the polarizing plate can be made extremely thin. The total thickness of the polarizing plate is, for example, 40 μm or less, preferably 30 μm or less, more preferably 25 μm or less, and even more preferably 15 μm or less. The lower limit of the total thickness of the polarizing plate can be, for example, 10 μm.

さらに、上記A項に記載の偏光子保護用積層体を採用することにより、非常に薄いにもかかわらず、耐久性に優れた偏光板を実現することができる。具体的には、加熱加湿環境下においても光学特性の低下が抑制された偏光板を実現することができる。本発明の偏光板は、85℃および85%RHの環境下で48時間放置した後の単体透過率Tsの変化量ΔTsおよび偏光度Pの変化量ΔPが、それぞれ非常に小さい。単体透過率Tsは、例えば紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて測定され得る。偏光度Pは、紫外可視分光光度計を用いて測定される単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)から、次式により算出される。
偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。ΔTsおよびΔPは、それぞれ下記式により求められる。
ΔTs(%)=Ts48-Ts
ΔP(%)=P48-P
ここで、Tsは放置前(初期)の単体透過率であり、Ts48は放置後の単体透過率であり、Pは放置前(初期)の偏光度であり、P48は放置後の偏光度である。ΔTsは、好ましくは3.0%以下であり、より好ましくは2.7%以下であり、さらに好ましくは2.4%以下である。ΔPは、好ましくは-0.05%~0%であり、より好ましくは-0.03%~0%であり、さらに好ましくは-0.01%~0%である。
Furthermore, by adopting the laminate for protecting a polarizer described in the above item A, a polarizing plate having excellent durability despite being very thin can be realized. Specifically, a polarizing plate in which the deterioration of optical properties is suppressed even in a heated and humidified environment can be realized. The polarizing plate of the present invention has a very small change ΔTs in the single-piece transmittance Ts and a very small change ΔP in the degree of polarization P after being left for 48 hours in an environment of 85° C. and 85% RH. The single-piece transmittance Ts can be measured, for example, using a UV-Vis spectrophotometer (manufactured by JASCO Corporation, product name "V7100"). The degree of polarization P is calculated from the single-piece transmittance (Ts), parallel transmittance (Tp), and cross transmittance (Tc) measured using the UV-Vis spectrophotometer according to the following formula.
Degree of polarization (P) (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
The above Ts, Tp and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z 8701 and corrected for visibility. Ts and P are essentially characteristics of a polarizer. ΔTs and ΔP can be calculated by the following formulas.
ΔTs (%) = Ts 48 - Ts 0
ΔP (%) = P 48 - P 0
Here, Ts 0 is the single transmittance before being left standing (initial), Ts 48 is the single transmittance after being left standing, P 0 is the polarization degree before being left standing (initial), and P 48 is the polarization degree after being left standing. ΔTs is preferably 3.0% or less, more preferably 2.7% or less, and even more preferably 2.4% or less. ΔP is preferably -0.05% to 0%, more preferably -0.03% to 0%, and even more preferably -0.01% to 0%.

本発明の偏光板は上記のとおりきわめて薄いので、フレキシブルな画像表示装置に好適に適用され得る。より好ましくは、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。画像表示装置の具体例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。言うまでもなく、上記の説明は、本発明の偏光板が通常の画像表示装置に適用されることを妨げるものではない。 As described above, the polarizing plate of the present invention is extremely thin and can therefore be suitably applied to flexible image display devices. More preferably, the image display device has a curved shape (essentially a curved display screen) and/or can be bent or folded. Specific examples of image display devices include liquid crystal display devices and electroluminescence (EL) display devices (e.g., organic EL display devices, inorganic EL display devices). Needless to say, the above description does not prevent the polarizing plate of the present invention from being applied to ordinary image display devices.

B-1.偏光子
偏光子としては、任意の適切な偏光子が採用され得る。偏光子は、代表的には、二層以上の積層体を用いて作製され得る。偏光子の製造方法については、偏光板の製造方法としてB-2項で後述する。
B-1. Polarizer Any appropriate polarizer may be used as the polarizer. The polarizer may typically be produced using a laminate of two or more layers. A method for producing a polarizer will be described later in section B-2 as a method for producing a polarizing plate.

偏光子の厚みは、好ましくは1μm~8μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。The thickness of the polarizer is preferably 1 μm to 8 μm, more preferably 1 μm to 7 μm, and even more preferably 2 μm to 5 μm.

偏光子のホウ酸含有量は、好ましくは10重量%以上であり、より好ましくは13重量%~25重量%である。偏光子のホウ酸含有量がこのような範囲であれば、後述のヨウ素含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
The boric acid content of the polarizer is preferably 10% by weight or more, and more preferably 13% by weight to 25% by weight. When the boric acid content of the polarizer is in this range, due to a synergistic effect with the iodine content described below, it is possible to maintain ease of curl control during lamination and to improve appearance durability during heating while effectively suppressing curl during heating. The boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight, for example, using the following formula from the neutralization method.

偏光子のヨウ素含有量は、好ましくは2重量%以上であり、より好ましくは2重量%~10重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% by weight to 10% by weight. When the iodine content of the polarizer is in such a range, the synergistic effect with the boric acid content can maintain the ease of curl control during lamination, and can improve the appearance durability during heating while suppressing curl during heating. In this specification, the "iodine content" means the amount of all iodine contained in the polarizer (PVA-based resin film). More specifically, iodine exists in the polarizer in the form of iodine ion (I - ), iodine molecule (I 2 ), polyiodine ion (I 3 - , I 5 - ), etc., and the iodine content in this specification means the amount of iodine including all of these forms. The iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis. The polyiodine ion exists in the polarizer in the form of a PVA-iodine complex. The formation of such a complex can result in absorption dichroism in the wavelength range of visible light. Specifically, the complex of PVA and triiodide ion (PVA·I 3 ) has an absorption peak near 470 nm, and the complex of PVA and pentaiodide ion (PVA·I 5 ) has an absorption peak near 600 nm. As a result, polyiodine ions can absorb light in a wide range of visible light depending on their form. On the other hand, iodine ions (I ) have an absorption peak near 230 nm and are not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex state with PVA can mainly contribute to the absorption performance of the polarizer.

偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率Tsは、好ましくは40%~48%であり、より好ましくは41%~46%である。偏光子の偏光度Pは、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance Ts of the polarizer is preferably between 40% and 48%, and more preferably between 41% and 46%. The degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and even more preferably 99.9% or more.

B-2.偏光板の製造方法
B-2-1.偏光子の製造方法
上記B-1項に記載の偏光子の製造方法は、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは、60℃~120℃である。このような製造方法によれば、上記のような偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および偏光度)を有するとともに、光学特性のバラつきが抑制された偏光子を得ることができる。具体的には、乾燥収縮処理工程において加熱ロールを用いることにより、積層体を搬送しながら、積層体全体に亘って均一に収縮することができる。これにより、得られる偏光子の光学特性を高めることができるだけでなく、光学特性に優れる偏光子を安定して生産することができ、偏光子の光学特性(特に、単体透過率)のバラつきを抑制することができる。以下、ハロゲン化物および乾燥収縮処理について説明する。これら以外の製造方法の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
B-2. Manufacturing method of polarizing plate B-2-1. Manufacturing method of polarizer The manufacturing method of the polarizer described in the above B-1 includes forming a polyvinyl alcohol-based resin layer (PVA-based resin layer) containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin substrate to form a laminate, and subjecting the laminate to an auxiliary air stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order, in which the laminate is heated while being conveyed in the longitudinal direction to shrink the laminate by 2% or more in the width direction. The content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60° C. to 120° C. According to such a manufacturing method, the above-mentioned polarizer can be obtained. In particular, a laminate including a PVA-based resin layer containing a halide is prepared, the laminate is stretched in multiple stages including auxiliary air stretching and underwater stretching, and the stretched laminate is heated with a heating roll, whereby a polarizer having excellent optical properties (typically, single transmittance and polarization degree) and suppressed variation in optical properties can be obtained. Specifically, by using a heating roll in the drying shrinkage treatment step, the laminate can be uniformly shrunk throughout the laminate while being transported. This not only improves the optical properties of the obtained polarizer, but also allows a polarizer having excellent optical properties to be stably produced, and suppresses variation in the optical properties (particularly, single transmittance) of the polarizer. Hereinafter, the halide and the drying shrinkage treatment will be described. Details of the manufacturing method other than these are described in, for example, JP 2012-73580 A. The entire description of this publication is incorporated herein by reference.

B-2-1-1.ハロゲン化物
ハロゲン化物とPVA系樹脂とを含むPVA系樹脂層は、ハロゲン化物とPVA系樹脂とを含む塗布液を熱可塑性樹脂基材上に塗布し、塗布膜を乾燥することにより形成され得る。塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。
B-2-1-1. Halide The PVA-based resin layer containing a halide and a PVA-based resin can be formed by applying a coating liquid containing a halide and a PVA-based resin onto a thermoplastic resin substrate and drying the coating film. The coating liquid is typically a solution in which the above-mentioned halide and the above-mentioned PVA-based resin are dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferred. The concentration of the PVA-based resin in the solution is preferably 3 to 20 parts by weight relative to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film that is in close contact with the thermoplastic resin substrate can be formed.

ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。As the halide, any suitable halide may be employed. Examples include iodide and sodium chloride. Examples of the iodide include potassium iodide, sodium iodide, and lithium iodide. Of these, potassium iodide is preferred.

塗布液におけるハロゲン化物の量は、PVA系樹脂100重量部に対して好ましくは5重量部~20重量部であり、より好ましくは10重量部~15重量部である。ハロゲン化物の量が多すぎると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。The amount of halide in the coating solution is preferably 5 to 20 parts by weight, and more preferably 10 to 15 parts by weight, per 100 parts by weight of the PVA-based resin. If the amount of halide is too high, the halide may bleed out, causing the final polarizer to become cloudy.

一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性が向上し得る。Generally, the orientation of the polyvinyl alcohol molecules in the PVA-based resin increases when the PVA-based resin layer is stretched, but when the stretched PVA-based resin layer is immersed in a liquid containing water, the orientation of the polyvinyl alcohol molecules may become disordered, and the orientation may decrease. In particular, when a laminate of a thermoplastic resin substrate and a PVA-based resin layer is stretched in boric acid water, the tendency for the degree of orientation to decrease is remarkable when the laminate is stretched in boric acid water at a relatively high temperature to stabilize the stretching of the thermoplastic resin substrate. For example, while a PVA film alone is generally stretched in boric acid water at 60°C, a laminate of A-PET (thermoplastic resin substrate) and a PVA-based resin layer is stretched at a high temperature of around 70°C, in this case, the orientation of the PVA at the beginning of the stretching may decrease before it increases due to the stretching in water. In contrast, by preparing a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin substrate, and stretching the laminate at high temperature (auxiliary stretching) in air before stretching in boric acid water, the crystallization of the PVA-based resin in the PVA-based resin layer of the laminate after auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, the orientation disorder and the decrease in the orientation of the polyvinyl alcohol molecules can be suppressed compared to when the PVA-based resin layer does not contain a halide. This can improve the optical properties of the polarizer obtained by immersing the laminate in a liquid through a treatment process such as a dyeing treatment and an underwater stretching treatment.

B-2-1-2.乾燥収縮処理
乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行ってもよいし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。
B-2-1-2. Drying shrinkage treatment Drying shrinkage treatment may be performed by zone heating in which the entire zone is heated, or by heating the transport roll (using a so-called heating roll) (heat roll drying method). Preferably, both are used. By drying using a heating roll, it is possible to efficiently suppress the heat curl of the laminate and produce a polarizer with excellent appearance. Specifically, by drying the laminate in a state where it is aligned with the heating roll, it is possible to efficiently promote the crystallization of the thermoplastic resin substrate and increase the crystallinity, and even at a relatively low drying temperature, it is possible to satisfactorily increase the crystallinity of the thermoplastic resin substrate. As a result, the rigidity of the thermoplastic resin substrate increases and it becomes in a state where it can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. In addition, by using a heating roll, it is possible to dry the laminate while maintaining it in a flat state, so that it is possible to suppress not only curling but also wrinkles. At this time, the laminate can be shrunk in the width direction by the drying shrinkage treatment, thereby improving the optical properties. This is because the orientation of the PVA and the PVA/iodine complex can be effectively increased. The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment is preferably 2% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%. By using a heating roll, the laminate can be continuously shrunk in the width direction while being transported, and high productivity can be achieved.

図3は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 Figure 3 is a schematic diagram showing an example of a drying shrinkage process. In the drying shrinkage process, the laminate 200 is dried while being transported by transport rolls R1 to R6 heated to a predetermined temperature and guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin substrate, but, for example, the transport rolls R1 to R6 may be arranged so as to continuously heat only one surface of the laminate 200 (for example, the thermoplastic resin substrate surface).

搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, etc. The temperature of the heating roll is preferably 60°C to 120°C, more preferably 65°C to 100°C, and particularly preferably 70°C to 80°C. The crystallization degree of the thermoplastic resin can be increased well, curling can be suppressed well, and an optical laminate with extremely excellent durability can be produced. The temperature of the heating roll can be measured by a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular restriction as long as there are multiple transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 to 300 seconds, more preferably 1 to 20 seconds, and even more preferably 1 to 10 seconds.

加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。The heating roll may be installed in a heating furnace (e.g., an oven) or in a normal production line (at room temperature). It is preferably installed in a heating furnace equipped with a blowing means. By using both drying with a heating roll and hot air drying, it is possible to suppress abrupt temperature changes between the heating rolls, and it is possible to easily control shrinkage in the width direction. The hot air drying temperature is preferably 30°C to 100°C. The hot air drying time is preferably 1 second to 300 seconds. The hot air speed is preferably about 10 m/s to 30 m/s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.

好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。Preferably, after the underwater stretching process and before the drying shrinkage process, a cleaning process is performed. The cleaning process is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.

このようにして、熱可塑性樹脂基材/偏光子の積層体を得ることができる。In this manner, a thermoplastic resin substrate/polarizer laminate can be obtained.

B-2-2.偏光板の製造方法
上記B-2-1項で得られた積層体表面に、アクリル系樹脂の有機溶媒溶液を塗布して塗布膜を形成し、当該塗布膜を固化させることにより偏光子保護用積層体の第1層が形成される。
B-2-2. Manufacturing Method of Polarizing Plate A solution of an acrylic resin in an organic solvent is applied to the surface of the laminate obtained in the above B-2-1 to form a coating film, and the coating film is solidified to form the first layer of the polarizer protective laminate.

アクリル系樹脂については、上記A-2-1項で説明したとおりである。 Acrylic resins are as explained in section A-2-1 above.

有機溶媒としては、アクリル系樹脂を溶解または均一に分散し得る任意の適切な有機溶媒を用いることができる。有機溶媒の具体例としては、酢酸エチル、トルエン、メチリエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。As the organic solvent, any suitable organic solvent capable of dissolving or uniformly dispersing the acrylic resin can be used. Specific examples of organic solvents include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.

溶液のアクリル系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。The acrylic resin concentration in the solution is preferably 3 to 20 parts by weight per 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film that adheres closely to the polarizer can be formed.

溶液は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。溶液を基材に塗布する場合には、基材上に形成された塗布膜の固化物が偏光子に転写される。溶液を偏光子に塗布する場合には、塗布膜を乾燥(固化)させることにより、偏光子上に第1層が直接形成される。好ましくは、溶液は偏光子に塗布され、偏光子上に第1層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、偏光板をさらに薄くすることができる。溶液の塗布方法としては、任意の適切な方法を採用することができる。具体例としては、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。The solution may be applied to any suitable substrate or to a polarizer. When the solution is applied to a substrate, the solidified coating film formed on the substrate is transferred to the polarizer. When the solution is applied to a polarizer, the coating film is dried (solidified) to form the first layer directly on the polarizer. Preferably, the solution is applied to a polarizer, and the first layer is formed directly on the polarizer. With such a configuration, the adhesive layer or pressure-sensitive adhesive layer required for transfer can be omitted, so that the polarizing plate can be made even thinner. Any suitable method can be adopted as a method for applying the solution. Specific examples include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.).

溶液の塗布膜を乾燥(固化)させることにより、第1層が形成され得る。乾燥温度は、好ましくは100℃以下であり、より好ましくは50℃~70℃である。乾燥温度がこのような範囲であれば、偏光子に対する悪影響を防止することができる。乾燥時間は、乾燥温度に応じて変化し得る。乾燥時間は、例えば1分~10分であり得る。The first layer can be formed by drying (solidifying) the coating film of the solution. The drying temperature is preferably 100°C or less, and more preferably 50°C to 70°C. If the drying temperature is in this range, adverse effects on the polarizer can be prevented. The drying time can vary depending on the drying temperature. The drying time can be, for example, 1 minute to 10 minutes.

次いで、第1層の表面に活性エネルギー線硬化性樹脂を塗布し硬化させることにより第2層が形成される。活性エネルギー線硬化性樹脂の塗布方法は、第1層に関して上で説明したとおりである。活性エネルギー線硬化性樹脂(樹脂組成物)にはレベリング剤が含まれていてもよい。レベリング剤としては、例えば、フッ素系レベリング剤、シリコーン系レベリング剤が挙げられる。さらに、活性エネルギー線硬化性樹脂(樹脂組成物)には、添加剤が含まれていてもよい。添加剤としては、微粒子、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、酸化防止剤、チクソトロピー化剤などが挙げられる。硬化条件は、活性エネルギー線硬化性樹脂の種類に応じて適切に設定され得る。Next, the second layer is formed by applying and curing an active energy ray curable resin on the surface of the first layer. The method of applying the active energy ray curable resin is as described above for the first layer. The active energy ray curable resin (resin composition) may contain a leveling agent. Examples of the leveling agent include a fluorine-based leveling agent and a silicone-based leveling agent. Furthermore, the active energy ray curable resin (resin composition) may contain an additive. Examples of the additive include fine particles, a filler, a dispersant, a plasticizer, an ultraviolet absorber, a surfactant, an antioxidant, and a thixotropic agent. The curing conditions may be appropriately set depending on the type of active energy ray curable resin.

このようにして、偏光子保護用積層体が形成される。なお、上記においては偏光子に偏光子保護用積層体が直接形成される実施形態を説明したが、あらかじめ形成された偏光子保護用積層体が偏光子に転写されてもよい。例えば、任意の適切な基材に第2層および第1層をこの順に形成して基材/偏光子保護用積層体(第2層/第1層)の構成を有する積層体を作製し、この積層体から偏光子保護用積層体を偏光子に転写してもよい。In this manner, a polarizer protection laminate is formed. Although the above describes an embodiment in which a polarizer protection laminate is formed directly on a polarizer, a preformed polarizer protection laminate may be transferred to a polarizer. For example, a laminate having a substrate/polarizer protection laminate (second layer/first layer) configuration may be produced by forming the second layer and the first layer in this order on any suitable substrate, and the polarizer protection laminate may be transferred from this laminate to the polarizer.

上記の結果として、熱可塑性樹脂基材/偏光子/偏光子保護用積層体の構成を有する積層体を得ることができる。この積層体から熱可塑性樹脂基材を剥離することにより、図2に示すような偏光子120と偏光子保護用積層体100とを有する偏光板200を得ることができる。あるいは、熱可塑性樹脂基材/偏光子の積層体の偏光子表面に別の保護層を構成する樹脂フィルムを貼り合わせ、次いで熱可塑性樹脂基材を剥離し、当該剥離面に偏光子保護用積層体を形成してもよい。この場合には、別の保護層をさらに有する偏光板を得ることができる。As a result of the above, a laminate having a configuration of thermoplastic resin substrate/polarizer/polarizer protective laminate can be obtained. By peeling off the thermoplastic resin substrate from this laminate, a polarizing plate 200 having a polarizer 120 and a polarizer protective laminate 100 as shown in FIG. 2 can be obtained. Alternatively, a resin film constituting another protective layer may be attached to the polarizer surface of the thermoplastic resin substrate/polarizer laminate, and then the thermoplastic resin substrate may be peeled off to form a polarizer protective laminate on the peeled surface. In this case, a polarizing plate further having another protective layer can be obtained.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例における「部」および「%」は重量基準である。The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The methods for measuring each property are as follows. Unless otherwise specified, "parts" and "%" in the examples are by weight.

(1)ガラス転移温度Tg
実施例および比較例で用いた偏光子保護用積層体の第1層を構成するフィルムについて、加熱TMA分析装置(日立ハイテクサイエンス社製、製品名「TMA-7100C」)を用いて測定した。測定条件は以下のとおりであった:荷重2g;窒素雰囲気(200ml/分);25℃から150℃まで昇温し、150℃で5分間保持した後、25℃まで降温し、再度150℃まで昇温し、150℃で5分間保持;昇温速度2℃/分。
(2)弾性率および伸び率
実施例および比較例で用いた偏光子保護用積層体の第2層を構成するフィルムについて、JIS K 7161およびJIS K 7113に準拠して測定した。
(3)ひび
実施例および比較例で得られた偏光板から、偏光子の吸収軸方向に直交する方向および吸収軸方向をそれぞれ対向する二辺とする試験片(50mm×50mm)を切り出した。偏光子保護用積層体または保護層が外側となるようにして粘着剤で試験片をガラス板に貼り合わせ試験サンプルとし、当該試験サンプルを85℃および85%RHのオーブン内で48時間放置して加熱加湿し、加湿後の偏光板における偏光子保護用積層体または保護層の状態を目視または顕微鏡により調べ、以下の基準で評価した。
〇:ひびは認められなかった
△:一部にひびが認められた
×:ひびが顕著であり、割れも認められた
(4)単体透過率および偏光度
実施例および比較例で得られた偏光板について、紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて、単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)を測定し、偏光度(P)を次式により求めた。
偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、上記Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。また、TsおよびPは、実質的には偏光子の特性である。
次に、偏光板を85℃および85%RHのオーブン内で48時間放置して加熱加湿し(加熱試験)、加熱試験前の単体透過率Tsおよび加熱試験後の単体透過率Ts48から、下記式を用いて単体透過率変化量ΔTsを求めた。
ΔTs(%)=Ts48-Ts
同様に、加熱試験前の偏光度Pおよび加熱試験後の偏光度P48から、下記式を用いて偏光度変化量ΔPを求めた。
ΔP(%)=P48-P
なお、加熱試験は、上記のひびの場合と同様にして試験サンプルを作製して行った。
(1) Glass transition temperature Tg
The film constituting the first layer of the polarizer protection laminate used in the examples and comparative examples was measured using a heating TMA analyzer (manufactured by Hitachi High-Tech Science Corporation, product name "TMA-7100C") under the following measurement conditions: load 2 g; nitrogen atmosphere (200 ml/min); heating from 25°C to 150°C, holding at 150°C for 5 minutes, then cooling to 25°C, heating again to 150°C, and holding at 150°C for 5 minutes; heating rate 2°C/min.
(2) Elastic Modulus and Elongation Percentage The elastic modulus and elongation percentage of the film constituting the second layer of the polarizer protective laminate used in the examples and comparative examples were measured in accordance with JIS K 7161 and JIS K 7113.
(3) Cracks Test pieces (50 mm x 50 mm) were cut out from the polarizing plates obtained in the Examples and Comparative Examples, with two sides perpendicular to the absorption axis direction of the polarizer and facing the absorption axis direction, respectively. The test pieces were attached to a glass plate with an adhesive so that the polarizer protective laminate or protective layer was on the outside to prepare test samples, which were then left in an oven at 85°C and 85% RH for 48 hours to be heated and humidified, and the state of the polarizer protective laminate or protective layer in the humidified polarizing plate was visually or microscopically examined and evaluated according to the following criteria.
◯: No cracks were observed. △: Cracks were observed in some areas. ×: Significant cracks and cracks were also observed. (4) Single Transmittance and Degree of Polarization For the polarizing plates obtained in the Examples and Comparative Examples, the single transmittance (Ts), parallel transmittance (Tp) and crossed transmittance (Tc) were measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100"), and the degree of polarization (P) was calculated using the following formula.
Degree of polarization (P) (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
The above Ts, Tp and Tc are Y values measured with a 2-degree visual field (C light source) according to JIS Z 8701 and corrected for visibility. Ts and P are substantially the characteristics of a polarizer.
Next, the polarizing plate was left in an oven at 85° C. and 85% RH for 48 hours to be heated and humidified (heating test), and the amount of change in single unit transmittance ΔTs was calculated from the single unit transmittance Ts 0 before the heating test and the single unit transmittance Ts 48 after the heating test using the following formula.
ΔTs (%) = Ts 48 - Ts 0
Similarly, the change in the degree of polarization ΔP was calculated from the degree of polarization P 0 before the heating test and the degree of polarization P 48 after the heating test using the following formula.
ΔP (%) = P 48 - P 0
The heating test was carried out by preparing test samples in the same manner as in the case of cracks described above.

<実施例1>
1.偏光子/樹脂基材の積層体の作製
樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が41.5%±0.1%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
このようにして、樹脂基材上に厚み5μmの偏光子を形成し、偏光子/樹脂基材の積層体を作製した。
Example 1
1. Preparation of a laminate of a polarizer and a resin substrate As a resin substrate, a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of about 75° C. was used. One surface of the resin substrate was subjected to a corona treatment.
A PVA aqueous solution (coating solution) was prepared by adding 13 parts by weight of potassium iodide to 100 parts by weight of a PVA-based resin prepared by mixing polyvinyl alcohol (polymerization degree 4,200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "GOHSEFFIMER Z410") in a ratio of 9:1.
The above PVA aqueous solution was applied to the corona-treated surface of a resin substrate and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched at its free end to 2.4 times its original size in the machine direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130° C. (auxiliary air stretching treatment).
Next, the laminate was immersed in an insolubilizing bath (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
Next, the film was immersed in a dye bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 with 100 parts by weight of water) having a liquid temperature of 30° C. for 60 seconds while adjusting the concentration so that the single transmittance (Ts) of the finally obtained polarizer would be 41.5%±0.1% (dyeing treatment).
Next, the plate was immersed in a crosslinking bath (a boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (crosslinking treatment).
Thereafter, the laminate was immersed in an aqueous boric acid solution (boric acid concentration: 4.0% by weight, potassium iodide concentration: 5.0% by weight) at a liquid temperature of 62°C, and uniaxially stretched in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds to a total stretch ratio of 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven maintained at 90° C., the laminate was brought into contact with a SUS heated roll having a surface temperature maintained at 75° C. for about 2 seconds (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%.
In this manner, a polarizer having a thickness of 5 μm was formed on the resin substrate, and a laminate of polarizer/resin substrate was produced.

2.偏光板の作製
上記で得られた偏光子の表面に、別の保護層を構成するフィルムとしてシクロオレフィン系フィルム(日本ゼオン社製、ZT-12、厚み23μm)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をフィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離して別の保護層(ZT-12)/偏光子の構成を有する偏光板を得た。
2. Preparation of Polarizing Plate A cycloolefin film (ZT-12, 23 μm thick, manufactured by Zeon Corporation) was attached to the surface of the polarizer obtained above as a film constituting another protective layer via an ultraviolet-curing adhesive. Specifically, the curing adhesive was applied so that the total thickness of the adhesive became 1.0 μm, and the films were laminated using a rolling machine. Thereafter, the adhesive was cured by irradiating it from the film side with UV light. Next, the resin substrate was peeled off to obtain a polarizing plate having a configuration of another protective layer (ZT-12)/polarizer.

メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、製品名「B728」)20部をメチルエチルケトン80部に溶解し、アクリル系樹脂溶液(20%)を得た。このアクリル系樹脂溶液を、上記で得られた偏光板の偏光子表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成される偏光子保護用積層体の第1層を形成した。第1層の厚みは2μmであり、Tgは116℃であった。さらに、第1層表面に第2層形成用組成物を塗布した。第2層形成用組成物は、ハードコート層用紫外線硬化性ウレタンアクリレート樹脂(DIC社製、製品名「ユニディック 17-806」)100部、レベリング剤(DIC社製、製品名「GRANDIC PC4100」)0.01部および光重合開始剤(IGM Resins B.V.社製、製品名「Omnirad 907」)3部を含んでいた。塗布膜を90℃で1分間乾燥し、その後、高圧水銀ランプにて積算光量200mW/cmの紫外線を照射して、塗布膜の硬化物として構成される偏光子保護用積層体の第2層を形成した。第2層の厚みは3μmであり、弾性率は5000MPaであり、伸び率は3%より大きかった。このようにして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。 20 parts of an acrylic resin having a methyl methacrylate unit (manufactured by Kusumoto Chemical Industries, product name "B728") was dissolved in 80 parts of methyl ethyl ketone to obtain an acrylic resin solution (20%). This acrylic resin solution was applied to the polarizer surface of the polarizing plate obtained above using a wire bar, and the applied film was dried at 60°C for 5 minutes to form a first layer of a polarizer protection laminate constituted as a solidified coating film. The thickness of the first layer was 2 μm, and the Tg was 116°C. Furthermore, a composition for forming a second layer was applied to the surface of the first layer. The composition for forming the second layer contained 100 parts of a UV-curable urethane acrylate resin for hard coat layer (manufactured by DIC Corporation, product name "UNIDIC 17-806"), 0.01 parts of a leveling agent (manufactured by DIC Corporation, product name "GRANDIC PC4100"), and 3 parts of a photopolymerization initiator (manufactured by IGM Resins B.V., product name "Omnirad 907") The coating film was dried at 90°C for 1 minute, and then irradiated with UV light with an integrated light amount of 200 mW/ cm2 from a high-pressure mercury lamp to form a second layer of a polarizer protective laminate constituted as a cured product of the coating film. The thickness of the second layer was 3 μm, the elastic modulus was 5000 MPa, and the elongation rate was greater than 3%. In this way, a polarizing plate having a configuration of a polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained. The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<実施例2>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック ELS-888」(DIC社製)を用いて第2層を形成したこと以外は実施例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は3000MPaであり、伸び率は40%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
Example 2
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 1, except that the second layer was formed using "UNIDIC ELS-888" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 3000 MPa, and an elongation of 40%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<実施例3>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック V-4221」(DIC社製)を用いて第2層を形成したこと以外は実施例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は60MPaであり、伸び率は200%であった。
Example 3
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 1, except that the second layer was formed using "UNIDIC V-4221" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 60 MPa, and an elongation of 200%.

<実施例4>
アクリル系樹脂として「B728」の代わりにメチルアクリレート/ブチルアクリレート(モル比80/20)の共重合体を用いて第1層を形成したこと以外は実施例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第1層の厚みは2μmであり、Tgは95℃であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
Example 4
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 1, except that the first layer was formed using a copolymer of methyl acrylate/butyl acrylate (molar ratio 80/20) instead of "B728" as the acrylic resin. The first layer had a thickness of 2 μm and a Tg of 95° C.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<実施例5>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック ELS-888」(DIC社製)を用いて第2層を形成したこと以外は実施例4と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は3000MPaであり、伸び率は40%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
Example 5
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 4, except that the second layer was formed using "UNIDIC ELS-888" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 3000 MPa, and an elongation of 40%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<実施例6>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック V-4221」(DIC社製)を用いて第2層を形成したこと以外は実施例4と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は60MPaであり、伸び率は200%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
Example 6
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 4, except that the second layer was formed using "UNIDIC V-4221" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 60 MPa, and an elongation of 200%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例1>
アクリル系樹脂として「B728」の代わりに「B734」(楠本化成社製)を用いて第1層を形成したこと以外は実施例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第1層の厚みは2μmであり、Tgは71℃であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
<Comparative Example 1>
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 1, except that the first layer was formed using "B734" (manufactured by Kusumoto Chemicals Co., Ltd.) instead of "B728" as the acrylic resin. The first layer had a thickness of 2 μm and a Tg of 71° C.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例2>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック ELS-888」(DIC社製)を用いて第2層を形成したこと以外は比較例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は3000MPaであり、伸び率は40%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
<Comparative Example 2>
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Comparative Example 1, except that the second layer was formed using "UNIDIC ELS-888" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 3000 MPa, and an elongation of 40%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例3>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック V-4221」(DIC社製)を用いて第2層を形成したこと以外は比較例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は60MPaであり、伸び率は200%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
<Comparative Example 3>
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Comparative Example 1, except that the second layer was formed using "UNIDIC V-4221" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 60 MPa, and an elongation of 200%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例4>
アクリル系樹脂として「B728」の代わりに「B722」(楠本化成社製)を用いて第1層を形成したこと以外は実施例1と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第1層の厚みは2μmであり、Tgは39℃であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
<Comparative Example 4>
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Example 1, except that the first layer was formed using "B722" (manufactured by Kusumoto Chemicals Co., Ltd.) instead of "B728" as the acrylic resin. The first layer had a thickness of 2 μm and a Tg of 39° C.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例5>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック ELS-888」(DIC社製)を用いて第2層を形成したこと以外は比較例4と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は3000MPaであり、伸び率は40%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
<Comparative Example 5>
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Comparative Example 4, except that the second layer was formed using "UNIDIC ELS-888" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 3000 MPa, and an elongation of 40%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例6>
ハードコート層用紫外線硬化性ウレタンアクリレート樹脂として「ユニディック 17-806」の代わりに「ユニディック V-4221」(DIC社製)を用いて第2層を形成したこと以外は比較例4と同様にして、偏光子保護用積層体(第2層/第1層)/偏光子/別の保護層(ZT-12)の構成を有する偏光板を得た。第2層の厚みは3μmであり、弾性率は60MPaであり、伸び率は200%であった。
得られた偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
<Comparative Example 6>
A polarizing plate having a structure of polarizer protective laminate (second layer/first layer)/polarizer/another protective layer (ZT-12) was obtained in the same manner as in Comparative Example 4, except that the second layer was formed using "UNIDIC V-4221" (manufactured by DIC Corporation) instead of "UNIDIC 17-806" as the ultraviolet-curable urethane acrylate resin for the hard coat layer. The second layer had a thickness of 3 μm, an elastic modulus of 60 MPa, and an elongation of 200%.
The obtained polarizing plate was subjected to the above-mentioned evaluations (3) and (4), and the results are shown in Table 1.

<比較例7>
第2層を形成しなかったこと(すなわち、第1層のみで保護層を構成したこと)以外は実施例1と同様にして偏光板を作製した。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 7>
A polarizing plate was produced in the same manner as in Example 1, except that the second layer was not formed (i.e., the protective layer was composed of only the first layer). The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

<比較例8>
第2層を形成しなかったこと(すなわち、第1層のみで保護層を構成したこと)以外は実施例4と同様にして偏光板を作製した。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 8>
A polarizing plate was produced in the same manner as in Example 4, except that the second layer was not formed (i.e., the protective layer was composed of only the first layer). The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

<比較例9>
第2層を形成しなかったこと(すなわち、第1層のみで保護層を構成したこと)以外は比較例1と同様にして偏光板を作製した。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 9>
A polarizing plate was produced in the same manner as in Comparative Example 1, except that the second layer was not formed (i.e., the protective layer was composed of only the first layer). The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

<比較例10>
第2層を形成しなかったこと(すなわち、第1層のみで保護層を構成したこと)以外は比較例4と同様にして偏光板を作製した。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 10>
A polarizing plate was produced in the same manner as in Comparative Example 4, except that the second layer was not formed (i.e., the protective layer was composed of only the first layer). The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

Figure 0007528062000005
Figure 0007528062000005

<評価>
表1から明らかなように、本発明の実施例の偏光子保護用積層体は加熱加湿環境下においてもひびが抑制されている。このような偏光子保護用積層体を用いることにより、非常に薄いにもかかわらず、加熱加湿環境下においても光学特性の低下が抑制され、耐久性に優れた偏光板を実現できる。
<Evaluation>
As is clear from Table 1, the polarizer protective laminate of the examples of the present invention is suppressed from cracking even in a heated and humidified environment. By using such a polarizer protective laminate, a polarizing plate having excellent durability and suppressing deterioration in optical properties even in a heated and humidified environment can be realized, despite its very thinness.

本発明の偏光板は、画像表示装置に好適に用いられる。画像表示装置としては、例えば、携帯情報端末(PDA)、スマートフォン、携帯電話、時計、デジタルカメラ、携帯ゲーム機などの携帯機器;パソコンモニター,ノートパソコン,コピー機などのOA機器;ビデオカメラ、テレビ、電子レンジなどの家庭用電気機器;バックモニター、カーナビゲーションシステム用モニター、カーオーディオなどの車載用機器;デジタルサイネージ、商業店舗用インフォメーション用モニターなどの展示機器;監視用モニターなどの警備機器;介護用モニター、医療用モニターなどの介護・医療機器;が挙げられる。The polarizing plate of the present invention is suitable for use in image display devices. Examples of image display devices include portable devices such as personal digital assistants (PDAs), smartphones, mobile phones, watches, digital cameras, and portable game consoles; office automation devices such as personal computer monitors, notebook computers, and copy machines; household electrical appliances such as video cameras, televisions, and microwave ovens; in-vehicle devices such as rear monitors, monitors for car navigation systems, and car audio; exhibition devices such as digital signage and information monitors for commercial stores; security devices such as surveillance monitors; and nursing and medical devices such as nursing monitors and medical monitors.

10 第1層
20 第2層
100 偏光子保護用積層体
120 偏光子
200 偏光板
10 First layer 20 Second layer 100 Polarizer protection laminate 120 Polarizer 200 Polarizing plate

Claims (4)

偏光子と、該偏光子の一方の側に配置された偏光子保護用積層体と、を有し、
該偏光子保護用積層体が、
有機溶媒に溶解可能な熱可塑性アクリル系樹脂であって、ガラス転移温度が95℃以上の熱可塑性アクリル系樹脂から構成された第1層と、
硬化性樹脂の硬化物で構成された第2層と、を有し、
該第2層の厚みが1.0μm以上であり、
該第1層の厚みが7μm以下であり、
該第2層が該第1層の表面上に形成され、
該偏光子保護用積層体が、該第1層が該偏光子側となるよう配置されており、該偏光子に直接形成され、
該熱可塑性アクリル系樹脂の重量平均分子量が、10000以上であり、
該第2層の弾性率が50MPa以上であり、かつ、伸び率が2%以上である、
偏光板。
A polarizer and a polarizer protection laminate disposed on one side of the polarizer,
The polarizer protective laminate is
A first layer made of a thermoplastic acrylic resin that is soluble in an organic solvent and has a glass transition temperature of 95° C. or higher;
A second layer formed of a cured product of a curable resin,
The second layer has a thickness of 1.0 μm or more,
The first layer has a thickness of 7 μm or less,
the second layer is formed on a surface of the first layer;
the polarizer protection laminate is disposed so that the first layer faces the polarizer, and is formed directly on the polarizer;
The weight average molecular weight of the thermoplastic acrylic resin is 10,000 or more,
The second layer has an elastic modulus of 50 MPa or more and an elongation rate of 2% or more.
Polarizer.
前記第2層の鉛筆硬度が2H以上である、請求項に記載の偏光板。 The polarizing plate according to claim 1 , wherein the second layer has a pencil hardness of 2H or more. 前記第1層の面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-20nm~+10nmである、請求項1または2に記載の偏光板。 3. The polarizing plate according to claim 1, wherein the first layer has an in-plane retardation Re(550) of 0 nm to 10 nm and a retardation in a thickness direction Rth(550) of −20 nm to +10 nm. 画像表示装置の視認側に配置され、かつ、前記偏光子保護用積層体の前記第2層が視認側に配置される、請求項1からのいずれかに記載の偏光板。 The polarizing plate according to claim 1 , which is disposed on a viewer side of an image display device, and the second layer of the polarizer protection laminate is disposed on the viewer side.
JP2021513623A 2019-04-09 2020-04-06 Polarizing plate using laminate for protecting polarizer Active JP7528062B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019074007 2019-04-09
JP2019074007 2019-04-09
PCT/JP2020/015515 WO2020209222A1 (en) 2019-04-09 2020-04-06 Laminate for polarizer protection, and polarizing plate using said laminate

Publications (2)

Publication Number Publication Date
JPWO2020209222A1 JPWO2020209222A1 (en) 2021-11-18
JP7528062B2 true JP7528062B2 (en) 2024-08-05

Family

ID=72751697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021513623A Active JP7528062B2 (en) 2019-04-09 2020-04-06 Polarizing plate using laminate for protecting polarizer

Country Status (5)

Country Link
JP (1) JP7528062B2 (en)
KR (1) KR102740420B1 (en)
CN (1) CN113711093B (en)
TW (1) TW202043045A (en)
WO (1) WO2020209222A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124708U (en) 2006-01-24 2006-08-24 力特光電科技股▲ふん▼有限公司 Polarizing plate structure
WO2017170527A1 (en) 2016-03-29 2017-10-05 日東電工株式会社 Flexible polarizing film, manufacturing method for same and image display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183528A (en) * 1999-10-14 2001-07-06 Konica Corp Optical film and method of producing the same
CN101679710B (en) * 2007-06-14 2012-06-06 株式会社日本触媒 Thermoplastic resin composition, molded resin articles and polarizer protecting film made by using thr same, and process for production of the articles
JP5291919B2 (en) * 2007-11-20 2013-09-18 富士フイルム株式会社 Protective film for polarizing plate used for display surface or film for image display device front plate
JP5402925B2 (en) * 2008-05-12 2014-01-29 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
JP5300385B2 (en) * 2008-09-10 2013-09-25 株式会社日本触媒 Thermoplastic resin composition and film using the same
JP2010072111A (en) * 2008-09-16 2010-04-02 Dainippon Printing Co Ltd Polarizer protective optical film, polarizing plate and image display device
JP5478148B2 (en) * 2008-10-01 2014-04-23 ダイセル・オルネクス株式会社 Polarizing plate and manufacturing method thereof
JP2011064852A (en) * 2009-09-16 2011-03-31 Konica Minolta Opto Inc Optical compensation film and method of manufacturing the same
JP2013020135A (en) * 2011-07-12 2013-01-31 Keiwa Inc Optical sheet and touch panel
JP2014081413A (en) * 2012-10-12 2014-05-08 Fujifilm Corp Polarizing plate and liquid crystal display
JP6461455B2 (en) * 2013-04-26 2019-01-30 東洋紡株式会社 Digital image display device
KR101620188B1 (en) * 2013-09-30 2016-05-12 주식회사 엘지화학 Polarizing plate and image display apparatus comprising the same
JP2015210474A (en) 2014-04-30 2015-11-24 株式会社カネカ Polarizer protection film and polarizing plate
JP6122812B2 (en) * 2014-06-30 2017-04-26 富士フイルム株式会社 Polarizing plate and image display device
WO2017057255A1 (en) * 2015-09-30 2017-04-06 富士フイルム株式会社 Polarizing plate protective film, method for manufacturing same, polarizing plate, and image display device
WO2019022013A1 (en) * 2017-07-25 2019-01-31 日本ゼオン株式会社 Polarizing plate and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124708U (en) 2006-01-24 2006-08-24 力特光電科技股▲ふん▼有限公司 Polarizing plate structure
WO2017170527A1 (en) 2016-03-29 2017-10-05 日東電工株式会社 Flexible polarizing film, manufacturing method for same and image display device

Also Published As

Publication number Publication date
CN113711093B (en) 2024-11-05
KR102740420B1 (en) 2024-12-10
KR20210151803A (en) 2021-12-14
JPWO2020209222A1 (en) 2021-11-18
TW202043045A (en) 2020-12-01
WO2020209222A1 (en) 2020-10-15
CN113711093A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
KR20190129915A (en) Polarizer and Image Display
JP7596079B2 (en) Polarizing plate and polarizing plate with optically functional layer
JP7513594B2 (en) Polarizer
JP2025038087A (en) Polarizing plate, polarizing plate with retardation layer, and image display device
JP7527971B2 (en) Polarizing plates and polarizing plate rolls
JP7528062B2 (en) Polarizing plate using laminate for protecting polarizer
JP7527972B2 (en) Polarizing plate with retardation layer
JP7527970B2 (en) Polarizing plates and polarizing plate rolls
JP2014215509A (en) Adhesive film
JP7412972B2 (en) Polarizing plate and polarizing plate roll
JP7412973B2 (en) Polarizing plate and polarizing plate roll
CN115485592A (en) Polarizing plate and polarizing plate with retardation layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230922

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240724

R150 Certificate of patent or registration of utility model

Ref document number: 7528062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150