Nothing Special   »   [go: up one dir, main page]

JP7512316B2 - Resin composition, molded body, packaged body, and method for producing resin composition - Google Patents

Resin composition, molded body, packaged body, and method for producing resin composition Download PDF

Info

Publication number
JP7512316B2
JP7512316B2 JP2022010986A JP2022010986A JP7512316B2 JP 7512316 B2 JP7512316 B2 JP 7512316B2 JP 2022010986 A JP2022010986 A JP 2022010986A JP 2022010986 A JP2022010986 A JP 2022010986A JP 7512316 B2 JP7512316 B2 JP 7512316B2
Authority
JP
Japan
Prior art keywords
polyamide
resin composition
based resin
molded body
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022010986A
Other languages
Japanese (ja)
Other versions
JP2022151607A (en
Inventor
隆之 和田
寛 金子
日佳梨 脇田(中野)
修二 小林
正孝 椎野
良平 西田
真 石川
純久 勝西
雅之 衣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoeisha Chemical Co Ltd
Mitsubishi Chemical Corp
Original Assignee
Kyoeisha Chemical Co Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoeisha Chemical Co Ltd, Mitsubishi Chemical Corp filed Critical Kyoeisha Chemical Co Ltd
Publication of JP2022151607A publication Critical patent/JP2022151607A/en
Priority to JP2024102295A priority Critical patent/JP2024127901A/en
Application granted granted Critical
Publication of JP7512316B2 publication Critical patent/JP7512316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Wrappers (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、ポリアミド系樹脂組成物、ポリオレフィン系樹脂組成物、それら樹脂組成物を用いた成形体、包装体、及びそれら樹脂組成物の製造方法に関する。 The present invention relates to a polyamide-based resin composition, a polyolefin-based resin composition, a molded article and a packaged article using these resin compositions, and a method for producing these resin compositions.

プラスチックフィルムを用いた積層体(積層フィルム)は、食料品、医薬品、工業部材等の包装材として広く普及し利用されてきたが、近年は、環境問題から、リサイクルによる環境負荷低減の開発が早急に進められている。
一方で、プラスチックフィルムを用いた包装材は、耐久性、長期保管性、密封性などの要求性能を満たすため、多層化により各層の機能を複合して高機能化されてきた。例えば、食品ロスの低減に有効なガスバリア性の観点から芳香族ポリアミド樹脂層、エチレン-酢酸ビニル共重合体けん化物(EVOH)層、無機蒸着膜層など、包装材の機械的強度の観点から脂肪族ポリアミド樹脂層、ポリエステル系樹脂層など、密封性の観点からヒートシール適性の高いポリエチレン系樹脂層などを配し、また各機能を有する複数種のフィルムをドライラミネート法で積層し高機能化が行われてきた。
Laminates (laminate films) using plastic films have come into widespread use as packaging materials for food, medicines, industrial components, and the like. However, in recent years, due to environmental concerns, there has been an urgent push for the development of methods to reduce the environmental impact through recycling.
On the other hand, packaging materials using plastic films have been made highly functional by combining the functions of each layer through multi-layering in order to meet the required performance such as durability, long-term storage property, airtightness, etc. For example, from the viewpoint of gas barrier property effective for reducing food waste, an aromatic polyamide resin layer, a saponified ethylene-vinyl acetate copolymer (EVOH) layer, an inorganic vapor deposition film layer, etc., from the viewpoint of mechanical strength of the packaging material, an aliphatic polyamide resin layer, a polyester-based resin layer, etc., and from the viewpoint of airtightness, a polyethylene-based resin layer with high heat sealability, etc., have been arranged, and multiple types of films having each function have been laminated by a dry lamination method to achieve high functionality.

これら積層体(積層フィルム)のリサイクルのためには、各層ごとに剥離、分離することが必要であり、技術開発が為されてきた。
例えば、特許文献1には、工業材料、農業材料および包装材料等の用途に好適に用いられ、分離回収することができる優れたリサイクルを有する積層体として、酸またはアルカリ水溶液処理により、一部または全部が溶解可能な層を少なくとも一層、また回収可能なポリマー層を少なくとも一層を有することを特徴とする積層体を用いる技術が開示されている。
In order to recycle these laminates (laminated films), it is necessary to peel and separate each layer, and various technologies have been developed for this purpose.
For example, Patent Document 1 discloses a technology using a laminate that is suitably used for applications such as industrial materials, agricultural materials, and packaging materials, and has excellent recyclability because it can be separated and recovered. The laminate is characterized by having at least one layer that is partially or completely soluble by treatment with an acid or alkali aqueous solution, and at least one recoverable polymer layer.

特許文献2には、混合プラスチックからプラスチック、アルミ等を効率的に分離回収する方法として、「混合プラスチックが溶解しない湿式比重差選別液体にエチレングリコール(EG)を用い、PO(ポリオレフィン系樹脂,)、PS(ポリスチレン)、ABS(アクリロニトリル-ブタジエン-スチレンコポリマー)、とPET(ポリエチレンテレフタレート)、PVC(ポリ塩化ビニル)、アルミを融点近辺の加熱温度(120~170℃)で分離し、次いで水とエチレングリコール混合液体で、PVC、アルミ等を沈降分離する。EGは分離回収し、不足分はPET解重合工程から循環再使用する。更にPET、PVC,アルミ等はEG及びNaOH中で常圧加熱(170℃~186℃)解重合してテレフタル酸塩とEGを生成する。PVCは脱塩素化し塩化水素はNaClとなる。一方、PO、PVC,アルミ等の固形物はキシレン等の溶剤に溶解し、アルミ、固形物は、付着溶剤を乾燥除去して回収する。更にPO、テレフタル酸塩、NaOHの混合溶液は加熱真空蒸発して溶剤を分離し溶剤は再循環使用し、水洗してPOとテレフタル酸塩、NaOHに分離する。」という技術が開示されている。 Patent Document 2 describes a method for efficiently separating and recovering plastics, aluminum, etc. from mixed plastics, in which "ethylene glycol (EG) is used as a wet specific gravity separation liquid in which mixed plastics do not dissolve, and PO (polyolefin resin), PS (polystyrene), ABS (acrylonitrile-butadiene-styrene copolymer), PET (polyethylene terephthalate), PVC (polyvinyl chloride), and aluminum are separated at a heating temperature near their melting points (120 to 170°C), and then the PVC, aluminum, etc. are separated and separated in a mixed liquid of water and ethylene glycol. EG is separated and recovered. The remaining amount is recycled and reused from the PET depolymerization process. Furthermore, PET, PVC, aluminum, etc. are depolymerized in EG and NaOH by heating at normal pressure (170°C to 186°C) to produce terephthalate and EG. PVC is dechlorinated and hydrogen chloride becomes NaCl. Meanwhile, solids such as PO, PVC, and aluminum are dissolved in a solvent such as xylene, and the aluminum and solids are recovered by drying and removing the adhering solvent. Furthermore, a mixed solution of PO, terephthalate, and NaOH is heated and evaporated in a vacuum to separate the solvent, which is recycled and washed with water to separate into PO, terephthalate, and NaOH. "

特許文献3には、ポリエステル(PET)、ポリプロピレン(PP)およびポリエチレン(PE)を主成分とするプラスチック層とアルミニウム層を含む多層フィルムの再生方法と、さらに、アルミニウムの選択的な溶解段階、比重差分離段階、溶融点差による選択的な押し出し段階、および有機溶媒による選択的な溶解段階を用いて、リサイクルされないで廃棄される包装用多層プラスチックフィルム中の有価成分を分離してリサイクルするための方法として、多層フィルム廃棄物のアルミニウムを選択的に溶解させて層分離を誘導し、比重差を用いてPPとPEとの混合物層とPET層に分離する、また、比重差により分離されたPETの純度を高めるために、100℃ないし沸騰点の有機溶媒を用いてPET層に含まれたPPとPEを抽出することにより、多層フィルムの主構成成分をPET、PPとPEとの混合物、およびアルミニウム成分にそれぞれ分離する技術が開示されている。 Patent Document 3 discloses a method for recycling a multilayer film containing a plastic layer mainly composed of polyester (PET), polypropylene (PP) and polyethylene (PE) and an aluminum layer, and further discloses a method for separating and recycling valuable components in a multilayer plastic film for packaging that is discarded without being recycled, using a selective dissolution step of aluminum, a specific gravity difference separation step, a selective extrusion step due to melting point difference, and a selective dissolution step using an organic solvent. The method discloses a technology in which aluminum in the multilayer film waste is selectively dissolved to induce layer separation, and the layer is separated into a PP and PE mixture layer and a PET layer using the specific gravity difference, and in order to increase the purity of the PET separated due to the specific gravity difference, the PP and PE contained in the PET layer are extracted using an organic solvent at 100°C or boiling point, thereby separating the main components of the multilayer film into PET, a mixture of PP and PE, and an aluminum component.

特許文献4には、特定のハンセンパラメータを有する溶剤を用いて、混合物を液体濾過助剤と接触させた後、ポリオレフィンをこの混合物から分離することにより、ポリオレフィン含有廃棄物をリサイクルする方法に関する技術が開示されている。 Patent document 4 discloses a technique for recycling polyolefin-containing waste by contacting the mixture with a liquid filter aid using a solvent having specific Hansen parameters, and then separating the polyolefin from the mixture.

特開2001-58372号公報JP 2001-58372 A 特開2006-110531号公報JP 2006-110531 A 特開2006-205160号公報JP 2006-205160 A 特表2019-531212号公報JP 2019-531212 A

しかしながら、特許文献1~3には、接着剤層を含む成形体(積層体、積層フィルム)及び接着剤層の溶解に関する技術は開示されていないため、積層体からポリアミド系樹脂を分離することができなかった。仮にこれら開示技術を、ポリアミド系樹脂層を含む成形体(積層体、積層フィルム)に応用した場合は、酸アルカリを使用したり、有機溶剤を用い100℃前後~186℃の高温条件で処理したりする工程によって、ポリアミド系樹脂は、著しく加水分解し酸化劣化が生じてしまうため、そういったポリアミド系樹脂を再利用することはできない。
また、特許文献4には、ポリアミド系樹脂層や接着剤の記載はあるが、この技術を検討したところ、得られたポリアミド樹脂組成物は非常に強く酸化劣化し、茶色に変色することが判り、成形体の原材料として再利用するには不適合であった。
従って、再利用可能なポリアミド系樹脂を得ることができない状況であることから、ポリアミド系樹脂層を含む成形体は、再生樹脂を取り出す工程に回されることがなく廃棄され、そのため、成形体にポリオレフィン系樹脂層が含まれていてもポリオレフィン系樹脂の再生物が得られることはなかった。
However, Patent Documents 1 to 3 do not disclose any technology related to a molded body (laminate, laminate film) containing an adhesive layer or dissolving the adhesive layer, and therefore it was not possible to separate the polyamide-based resin from the laminate. If these disclosed technologies were applied to a molded body (laminate, laminate film) containing a polyamide-based resin layer, the polyamide-based resin would be significantly hydrolyzed and oxidized and deteriorated by the process of using an acid or alkali or treating the polyamide-based resin under high temperature conditions of about 100°C to 186°C using an organic solvent, and such polyamide-based resin would not be able to be reused.
Furthermore, although Patent Document 4 describes a polyamide resin layer and an adhesive, when this technology was examined, it was found that the obtained polyamide resin composition was subject to extremely strong oxidative deterioration and turned brown in color, making it unsuitable for reuse as a raw material for molded articles.
Therefore, since it is not possible to obtain reusable polyamide-based resin, molded articles containing polyamide-based resin layers are discarded without being sent to a process for extracting recycled resin, and therefore, even if a molded article contains a polyolefin-based resin layer, a recycled polyolefin-based resin cannot be obtained.

本発明は上記実情を鑑みてなされたものであり、その課題は、ポリアミド系樹脂層を含む成形体から分離することで、酸化劣化の程度が低く成形体用途に再利用可能なポリアミド系樹脂組成物、ポリオレフィン系樹脂組成物を得ることにある。 The present invention has been made in view of the above-mentioned circumstances, and its object is to obtain a polyamide-based resin composition or a polyolefin-based resin composition that is less susceptible to oxidative deterioration and can be reused for molding applications by separating it from a molded article containing a polyamide-based resin layer.

[1] JIS K7351:2018に準じ、窒素ガス雰囲気下、50℃から10℃/分で昇温し150℃で60分間保持したまでの間の化学発光積算値が3,500,000~20,000,000countsであることを特徴とするポリアミド系樹脂組成物(R1)。
[2] 質量平均分子量が40,000以上100,000以下である、[1]に記載のポリアミド系樹脂組成物(R1)。
[3] 黄色度b*が1.0以上30.0以下である、[1]または[2]に記載のポリアミド系樹脂組成物(R1)。
[1] A polyamide-based resin composition (R1) characterized in that, in accordance with JIS K7351:2018, a chemiluminescence integrated value during a period in which the temperature is raised from 50°C at a rate of 10°C/min under a nitrogen gas atmosphere and held at 150°C for 60 minutes is 3,500,000 to 20,000,000 counts.
[2] The polyamide-based resin composition (R1) according to [1], having a mass average molecular weight of 40,000 or more and 100,000 or less.
[3] The polyamide resin composition (R1) according to [1] or [2], having a yellowness index b* of 1.0 or more and 30.0 or less.

[4] 少なくともポリアミド系樹脂層を含む成形体(M0)からの分離物を含む、[1]~[3]の何れか1項に記載のポリアミド系樹脂組成物(R1)。
[5] 前記成形体(M0)が、接着剤層を含む積層体である、[4]に記載のポリアミド系樹脂組成物(R1)。
[6]
前記接着剤層が、ポリエステル系接着剤を含む、[5]に記載のポリアミド系樹脂組成物(R1)。
[4] The polyamide-based resin composition (R1) according to any one of [1] to [3], which contains a separated product from a molded article (M0) containing at least a polyamide-based resin layer.
[5] The polyamide resin composition (R1) according to [4], wherein the molded body (M0) is a laminate including an adhesive layer.
[6]
The polyamide-based resin composition (R1) according to [5], wherein the adhesive layer contains a polyester-based adhesive.

[7] [1]~[6]の何れか1項に記載のポリアミド系樹脂組成物(R1)の含有率が1質量%以上100質量%以下である、ポリアミド系樹脂成形体(M1)。
[8] JIS K7351:2018に準じ、窒素ガス雰囲気下、50℃から10℃/分で昇温し150℃で60分間保持したまでの間の化学発光積算値が3,500,000~20,000,000countsであることを特徴とするポリアミド系樹脂成形体(M1)。
[9]
形状がフィルム又はシートである、[7]又は[8]に記載のポリアミド系樹脂成形体(M1)。
[7] A polyamide-based resin molded product (M1), having a content of the polyamide-based resin composition (R1) according to any one of [1] to [6] in a range of 1 mass% to 100 mass%.
[8] A polyamide-based resin molded body (M1) characterized in that, in accordance with JIS K7351:2018, the chemiluminescence integrated value during the period in which the temperature is raised from 50 ° C. at a rate of 10 ° C./min under a nitrogen gas atmosphere and held at 150 ° C. for 60 minutes is 3,500,000 to 20,000,000 counts.
[9]
The polyamide resin molded product (M1) according to [7] or [8], which has a shape of a film or sheet.

[10] 黄色度b*が1.0以上30.0以下である、[7]~[9]の何れか1項に記載のポリアミド系樹脂成形体(M1)。
[11] 前記成形体(M1)を100質量%とする場合に、さらに酸化防止剤及び/又は熱安定化剤を1質量%以上20質量%以下含む、[7]~[10]の何れか1項に記載のポリアミド系樹脂成形体(M1)。
[12] [9]~[11]の何れか1項に記載のポリアミド系樹脂成形体(M1)を用いてなる包装体。
[10] The polyamide-based resin molded product (M1) according to any one of [7] to [9], wherein the yellowness index b* is 1.0 or more and 30.0 or less.
[11] The polyamide-based resin molded body (M1) according to any one of [7] to [10], further comprising an antioxidant and/or a heat stabilizer in an amount of 1 mass % to 20 mass % when the molded body (M1) is taken as 100 mass %.
[12] A packaging body comprising the polyamide resin molded body (M1) according to any one of [9] to [11].

[13] 少なくともポリアミド系樹脂層を含む成形体(M0)を長辺20mm以下の多角形に裁断し、剥離剤(A)に浸漬し、ポリアミド系樹脂組成物(R1)を含む樹脂組成物(R0)を得ることを特徴とする樹脂組成物(R0)の製造方法。
[14] 前記成形体(M0)が、接着剤層を含む積層体である[13]に記載の樹脂組成物(R0)の製造方法。
[15] [14]に記載の接着剤層が、ポリエステル系接着剤を含む、[14]に記載の樹脂組成物(R0)の製造方法。
[13] A method for producing a resin composition (R0), comprising cutting a molded article (M0) containing at least a polyamide-based resin layer into a polygon having a long side of 20 mm or less, and immersing the polygon in a release agent (A) to obtain a resin composition (R0) containing a polyamide-based resin composition (R1).
[14] The method for producing the resin composition (R0) according to [13], wherein the molded body (M0) is a laminate including an adhesive layer.
[15] The method for producing the resin composition (R0) according to [14], wherein the adhesive layer according to [14] contains a polyester-based adhesive.

[16] [13]~[15]のいずれか1項に記載の方法で得られた前記樹脂組成物(R0)から比重差分別してポリアミド系樹脂組成物(R1)を得るポリアミド系樹脂組成物(R1)の製造方法。
[17] JIS K7351:2018に準じ、窒素ガス雰囲気下、50℃から15℃/分で昇温し200℃で60分間保持したまでの間の化学発光積算値が700,000~15,000,000countsであることを特徴とするポリオレフィン系樹脂組成物(R2)。
[18] 質量平均分子量が40,000以上200,000以下である、[17]に記載のポリオレフィン系樹脂組成物(R2)。
[16] A method for producing a polyamide-based resin composition (R1), comprising: separating the resin composition (R0) obtained by the method according to any one of [13] to [15] by differential specific gravity to obtain a polyamide-based resin composition (R1).
[17] A polyolefin resin composition (R2) characterized in that, in accordance with JIS K7351:2018, the chemiluminescence integrated value during the period in which the temperature is raised from 50°C at a rate of 15°C/min under a nitrogen gas atmosphere and held at 200°C for 60 minutes is 700,000 to 15,000,000 counts.
[18] The polyolefin resin composition (R2) according to [17], having a mass average molecular weight of 40,000 or more and 200,000 or less.

[19] 黄色度b*が1.0以上10.0以下である、[17]または[18]に記載のポリオレフィン系樹脂組成物(R2)。
[20] 少なくともポリアミド系樹脂層を含む成形体(M0)からの分離物を含む[17]~[19]の何れか1項に記載のポリオレフィン系樹脂組成物(R2)。
[21] 前記成形体(M0)が、接着剤層を含む積層体である、[20]に記載のポリオレフィン系樹脂組成物(R2)。
[19] The polyolefin resin composition (R2) according to [17] or [18], having a yellowness index b* of 1.0 or more and 10.0 or less.
[20] The polyolefin resin composition (R2) according to any one of [17] to [19], comprising a separated product from a molded article (M0) comprising at least a polyamide resin layer.
[21] The polyolefin resin composition (R2) according to [20], wherein the molded body (M0) is a laminate including an adhesive layer.

[22] [21]に記載の接着剤層が、ポリエステル系接着剤を含む、[21]に記載のポリオレフィン系樹脂組成物(R2)。
[23] [17]~[22]の何れか1項に記載のポリオレフィン系樹脂組成物(R2)の含有率が1質量%以上100質量%以下である、ポリオレフィン系樹脂成形体(M2)。
[24] JIS K7351:2018に準じ、窒素ガス雰囲気下、50℃から15℃/分で昇温し200℃で60分間保持したまでの間の化学発光積算値が700,000~15,000,000countsであることを特徴とするポリオレフィン系樹脂成形体(M2)。
[22] The polyolefin resin composition (R2) according to [21], wherein the adhesive layer according to [21] contains a polyester-based adhesive.
[23] A polyolefin resin molded product (M2), having a content of the polyolefin resin composition (R2) according to any one of [17] to [22] of 1% by mass or more and 100% by mass or less.
[24] A polyolefin resin molded product (M2) characterized in that the chemiluminescence integrated value during the period in which the temperature is raised from 50 ° C. at a rate of 15 ° C./min and held at 200 ° C. for 60 minutes in a nitrogen gas atmosphere in accordance with JIS K7351:2018 is 700,000 to 15,000,000 counts.

[25] 形状がフィルム又はシートである、[23]又は[24]に記載のポリオレフィン系樹脂成形体(M2)。
[26] 黄色度b*が1.0以上10.0以下である[23]~[25]の何れか1項に記載のポリオレフィン系樹脂成形体(M2)。
[27] 前記ポリオレフィン系樹脂成形体(M2)を100質量%とする場合に、さらに酸化防止剤及び/又は熱安定化剤を1質量%以上20質量%以下含む、[23]~[26]の何れか1項に記載のポリオレフィン系樹脂成形体(M2)。
[25] The polyolefin resin molded product (M2) according to [23] or [24], which has a shape of a film or sheet.
[26] The polyolefin resin molded product (M2) according to any one of [23] to [25], wherein the yellowness index b* is 1.0 or more and 10.0 or less.
[27] The polyolefin-based resin molded body (M2) according to any one of [23] to [26], further comprising an antioxidant and/or a heat stabilizer in an amount of 1% by mass to 20% by mass, where the polyolefin-based resin molded body (M2) is taken as 100% by mass.

[28] [23]~[27]の何れか1項に記載のポリオレフィン系樹脂成形体(M2)を用いてなる包装体。
[29] [13]~[15]のいずれか1項に記載の方法で得られた前記樹脂組成物(R0)にポリオレフィン系樹脂層が含まれ、前記樹脂組成物(R0)から比重差分別してポリオレフィン系樹脂組成物(R2)を得るポリオレフィン系樹脂組成物(R2)の製造方法。
[28] A packaging body comprising the polyolefin resin molded body (M2) according to any one of [23] to [27].
[29] A method for producing a polyolefin-based resin composition (R2), comprising: the resin composition (R0) obtained by the method according to any one of [13] to [15] contains a polyolefin-based resin layer; and obtaining a polyolefin-based resin composition (R2) from the resin composition (R0) by specific gravity differential separation.

本発明によれば、ポリアミド系樹脂を含む成形体から分離することで、酸化劣化の程度が低く再利用可能なポリアミド系樹脂組成物、ポリオレフィン系樹脂組成物を得ることができ、それらをフィルム等の成形体に再利用することができる。つまり、本件は、環境負荷低減を目的に開発が進められているポリアミド系樹脂やポリオレフィン系樹脂のリサイクル技術に関する有用な発明である。そのため、石油資源の消費を低減すると共に循環型社会の構築に寄与することができる。 According to the present invention, by separating the polyamide-based resin from a molded article containing the polyamide-based resin, a reusable polyamide-based resin composition or polyolefin-based resin composition can be obtained that is less susceptible to oxidative degradation, and can be reused in molded articles such as films. In other words, this is a useful invention related to recycling technology for polyamide-based resins and polyolefin-based resins, which are being developed with the aim of reducing the environmental burden. This can reduce the consumption of petroleum resources and contribute to the creation of a recycling-oriented society.

本発明のポリアミド系樹脂組成物(R1)は、少なくともポリアミド系樹脂層を含む積層体(積層フィルム)等の成形体(M0)から溶剤を用いて分離して得ることができ、ポリアミド系樹脂組成物(R1)からフィルム、シート等のポリアミド系樹脂成形体(M1)を作製することができる。また、少なくともポリアミド系樹脂層を含む積層体(積層フィルム)等の成形体(M0)に、シーラントフィルム等のポリオレフィン系樹脂層が含まれる場合は、同様にしてポリオレフィン系樹脂組成物(R2)が得られ、このポリオレフィン系樹脂組成物(R2)からフィルム、シート等のポリオレフィン系樹脂成形体(M2)を作製することができる。
以下、ポリアミド系樹脂組成物(R1)を樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)を樹脂組成物(R2)、ポリアミド系樹脂成形体(M1)を成形体(M1)、ポリオレフィン系樹脂成形体(M2)を成形体(M2)と称することがある。
The polyamide resin composition (R1) of the present invention can be obtained by separating from a molded product (M0) such as a laminate (laminated film) containing at least a polyamide resin layer using a solvent, and a polyamide resin molded product (M1) such as a film or sheet can be produced from the polyamide resin composition (R1). In addition, when a polyolefin resin layer such as a sealant film is included in a molded product (M0) such as a laminate (laminated film) containing at least a polyamide resin layer, a polyolefin resin composition (R2) can be obtained in the same manner, and a polyolefin resin molded product (M2) such as a film or sheet can be produced from this polyolefin resin composition (R2).
Hereinafter, the polyamide-based resin composition (R1) may be referred to as resin composition (R1), the polyolefin-based resin composition (R2) as resin composition (R2), the polyamide-based resin molded body (M1) as molded body (M1), and the polyolefin-based resin molded body (M2) as molded body (M2).

従来の溶剤を用いた分離技術では、ポリアミド系樹脂は酸化劣化が酷く、分離はできても機械的物性強度が低下したり黄色味が強まったりし、包装体や射出成型体等の成形体に再利用することはできなかったところ、本発明のポリアミド系樹脂組成物(R1)は、酸化劣化の程度が低いので、成形体用途に再利用が可能である。また、再利用可能なポリアミド系樹脂組成物(R1)が得られるからこそ、ポリアミド系樹脂層を含む成形体(M0)にポリオレフィン系樹脂が含まれている場合には、ポリオレフィン系樹脂組成物(R2)も得て、再利用することができる。 With conventional separation techniques using solvents, polyamide resins are subject to severe oxidative degradation, and even if separation is possible, the mechanical strength decreases and the resin becomes yellowish, making it impossible to reuse the resin in molded articles such as packaging and injection molded articles. However, the polyamide resin composition (R1) of the present invention is subject to only a low degree of oxidative degradation, making it possible to reuse the resin in molded articles. Furthermore, because a reusable polyamide resin composition (R1) can be obtained, when a molded article (M0) containing a polyamide resin layer contains a polyolefin resin, a polyolefin resin composition (R2) can also be obtained and reused.

<樹脂組成物(R1)(R2)、成形体(M1)(M2)の特徴>
(化学発光積算値)
酸化劣化の程度は、樹脂が酸化劣化して生じたペルオキシラジカル(ROO・)が過酸化物(ROOH)となり、ROOHが分解して再び ROO・となり、高エネルギー状態の励起カルボニルと活性酸素の1つである一重項酸素とを生じ、これらの励起カルボニルと一重項酸素とが励起状態から基底状態に戻る際に発するエネルギーである極微弱な光を検出し発光量を測定することで、ROOHの生成量、すなわち酸化劣化の程度を調べることができる。
具体的には、JIS K7351:2018に準じ、ケミルミネッセンスアナライザーを用い、粉末状にした100mgのポリアミド系樹脂組成物(R1)やポリアミド系樹脂成形体(M1)を直径20mmのアルミ製カップに均一の厚さになるように入れ、窒素ガス雰囲気下で、50℃から150℃まで10℃/分で昇温し150℃で60分間保持する間、1秒間毎に化学発光量を測定する。また、バックグラウンド値を測定して差し引き、測定温度・時間範囲の化学発光量の合算値である化学発光積算値を求め、ポリアミド樹脂組成物(R1)やポリアミド系樹脂成形体(M1)の酸化劣化の程度を調べることができる。なお、被検体のポリアミド系樹脂組成物(R1)やポリアミド系樹脂成形体(M1)は、日本分析工業社製冷凍粉砕機を用い、[冷却5分間-粉砕5分間]のサイクルを2回行い、粉末状にする。
本発明のポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)は、化学発光積算値が低いほど好ましく、これらの化学発光積算値は、3,500,000~20,000,000countsであり、上限は19,000,000counts以下が好ましく、18,000,000counts以下がより好ましい。
<Characteristics of Resin Compositions (R1) and (R2) and Molded Products (M1) and (M2)>
(integrated chemiluminescence value)
The degree of oxidative degradation can be determined by detecting extremely weak light, which is the energy emitted when the excited carbonyl and singlet oxygen return from the excited state to the ground state, and measuring the amount of ROOH produced, i.e., the degree of oxidative degradation.
Specifically, in accordance with JIS K7351:2018, a chemiluminescence analyzer is used to place 100 mg of the powdered polyamide resin composition (R1) or polyamide resin molded body (M1) in a 20 mm diameter aluminum cup to a uniform thickness, and the chemiluminescence amount is measured every second while the temperature is raised from 50 ° C. to 150 ° C. at a rate of 10 ° C./min under a nitrogen gas atmosphere and held at 150 ° C. for 60 minutes. In addition, the background value is measured and subtracted to obtain a chemiluminescence integrated value, which is the total amount of chemiluminescence in the measurement temperature and time range, and the degree of oxidative deterioration of the polyamide resin composition (R1) or polyamide resin molded body (M1) can be examined. The polyamide resin composition (R1) or polyamide resin molded body (M1) to be tested is powdered by performing two cycles of [cooling for 5 minutes - pulverizing for 5 minutes] using a Japan Analytical Industry Co., Ltd. frozen pulverizer.
The polyamide resin composition (R1) and the polyamide resin molded product (M1) of the present invention preferably have a lower integrated chemiluminescence value. The integrated chemiluminescence value is 3,500,000 to 20,000,000 counts, with the upper limit being preferably 19,000,000 counts or less, and more preferably 18,000,000 counts or less.

また、ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)の場合は、ケミルミネッセンスアナライザーの温度条件を50℃から200℃まで15℃/分で昇温し200℃で60分間保持する他は、ポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)と同様にして化学発光積算値を求めることができる。
ポリオレフィン系樹脂組成物(R2)およびポリオレフィン系成形体(M2)の化学発光積算値は、700,000~15,000,000countsが好ましく、上限は14,000,000counts以下が好ましく、13,000,000counts以下がより好ましい。
In the case of the polyolefin resin composition (R2) and the polyolefin resin molded body (M2), the chemiluminescence integrated value can be determined in the same manner as in the polyamide resin composition (R1) and the polyamide resin molded body (M1), except that the temperature conditions of the chemiluminescence analyzer are increased from 50°C to 200°C at a rate of 15°C/min and maintained at 200°C for 60 minutes.
The polyolefin resin composition (R2) and the polyolefin molded article (M2) preferably have an integrated chemiluminescence value of 700,000 to 15,000,000 counts, with the upper limit being preferably 14,000,000 counts or less, and more preferably 13,000,000 counts or less.

(分子量)
また、樹脂は酸化劣化すると分子量が小さくなり、樹脂本来の機械的物性強度が低下するが、本発明のポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)、ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)は酸化劣化の程度が小さいので分子量の低下が軽微である。
ポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)の質量平均分子量は、40,000以上100,000以下であることが好ましい。下限は42,500以上がより好ましく、45,000以上がさらに好ましく、上限は、90,000以下がより好ましく、85,000以下がさらに好ましい。
ポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)の質量平均分子量は、公知の手法で無水トリフルオロ酢酸を用いて室温下で誘導体化(アシル化)し、次いで40℃の条件下で攪拌及び乾燥固化させ、ゲルの発生していない状態の固化物を溶離液テトラヒドロフランで溶解させ、膨潤していない液状態でゲル浸透クロマトグラフィー法、カラムオーブン温度40℃、RI(示差屈折)検出器を用い分析し、標準ポリスチレン換算で解析して得られる。
(Molecular Weight)
In addition, when a resin deteriorates by oxidation, its molecular weight decreases and its inherent mechanical strength decreases. However, the polyamide-based resin composition (R1), polyamide-based resin molded product (M1), polyolefin-based resin composition (R2) and polyolefin-based resin molded product (M2) of the present invention are only slightly deteriorated by oxidation, and therefore the decrease in molecular weight is only slight.
The mass average molecular weight of the polyamide resin composition (R1) and the polyamide resin molded product (M1) is preferably 40,000 or more and 100,000 or less. The lower limit is more preferably 42,500 or more, and even more preferably 45,000 or more, and the upper limit is more preferably 90,000 or less, and even more preferably 85,000 or less.
The mass average molecular weight of the polyamide resin composition (R1) and the polyamide resin molded product (M1) is determined by derivatizing (acylating) the polyamide resin composition (R1) and the polyamide resin molded product (M1) at room temperature using trifluoroacetic anhydride in a known manner, stirring and drying to solidify the mixture at 40°C, dissolving the solidified mixture in a state in which no gel has been generated in an eluent of tetrahydrofuran, and analyzing the mixture in a non-swollen liquid state using gel permeation chromatography at a column oven temperature of 40°C and an RI (differential refraction) detector, and converting the molecular weight into that of standard polystyrene.

ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)の質量平均分子量は、40,000以上110,000以下が好ましい。下限は42,500以上がより好ましく、45,000以上がさらに好ましく、上限は、100,000以下がより好ましく、90,000以下がさらに好ましい。
ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)の質量平均分子量は、高温ゲル浸透クロマトグラフィー(高温GPC法)で測定することができる。ジブチルヒドロキシトルエン(BHT)を添加した135℃のo-ジクロロベンゼンに溶解した後、高温GPCシステムにて測定した。標準試料はポリスチレン用い、質量平均分子量(Mw)を求めた。また分子量は標準試料ポリスチレンを用いて作成した較正曲線を汎用較正曲線よりポリエチレン換算して算出した。ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)の質量平均分子量は、40,000以上、200,000以下であることが好ましい。下限は42,500以上がより好ましく、45,000以上がさらに好ましく、上限は、180,000以下がより好ましく、150,000以下がさらに好ましい。
The mass average molecular weight of the polyolefin resin composition (R2) and the polyolefin resin molded product (M2) is preferably 40,000 or more and 110,000 or less. The lower limit is more preferably 42,500 or more, and even more preferably 45,000 or more, and the upper limit is more preferably 100,000 or less, and even more preferably 90,000 or less.
The mass average molecular weight of the polyolefin resin composition (R2) and the polyolefin resin molded body (M2) can be measured by high-temperature gel permeation chromatography (high-temperature GPC method). After dissolving in o-dichlorobenzene at 135 ° C. to which dibutylhydroxytoluene (BHT) was added, the measurement was performed using a high-temperature GPC system. The standard sample was polystyrene, and the mass average molecular weight (Mw) was obtained. The molecular weight was calculated by converting a calibration curve created using the standard sample polystyrene into polyethylene using a general-purpose calibration curve. The mass average molecular weight of the polyolefin resin composition (R2) and the polyolefin resin molded body (M2) is preferably 40,000 or more and 200,000 or less. The lower limit is more preferably 42,500 or more, and even more preferably 45,000 or more, and the upper limit is more preferably 180,000 or less, and even more preferably 150,000 or less.

(黄色度b*)
また、樹脂は酸化劣化すると、黄色味を帯びたり茶褐色を呈したりするが、本発明のポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)、ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)は、酸化劣化の程度が小さいので黄色味の呈色が少ない。
ポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)の黄色度b*は1.0以上30.0以下が好ましく、上限は27.0以下がより好ましく、25.0以下が更に好ましい。
ポリオレフィン系樹脂組成物(R2)、ポリオレフィン系樹脂成形体(M2)の黄色度b*は、1.0以上10.0以下が好ましく、上限は9.7以下が好ましく、9.5以下が更に好ましい。
黄色度b*は、JIS Z8722:2009に準じて測定することができる。
(Yellowness index b*)
In addition, when a resin deteriorates due to oxidation, it takes on a yellowish or brownish color. However, the polyamide-based resin composition (R1), the polyamide-based resin molded product (M1), the polyolefin-based resin composition (R2), and the polyolefin-based resin molded product (M2) of the present invention do not deteriorate due to oxidation to a large extent, and therefore do not take on a yellowish color.
The yellowness index b* of the polyamide resin composition (R1) and the polyamide resin molded product (M1) is preferably from 1.0 to 30.0, more preferably 27.0 or less, and even more preferably 25.0 or less.
The yellowness index b* of the polyolefin resin composition (R2) and the polyolefin resin molded product (M2) is preferably 1.0 or more and 10.0 or less, and the upper limit is preferably 9.7 or less, and more preferably 9.5 or less.
The yellowness index b* can be measured in accordance with JIS Z8722:2009.

(微量混入物)
また、本発明のポリアミド系樹脂組成物(R1)、ポリアミド系樹脂成形体(M1)は、成形体(M0)を粉砕する工程や、溶剤を用い樹脂種類に分別する工程を経ることで、成形体(M0)に含まれるポリアミド系樹脂以外の成分の混入が少ないほど好ましく、ポリアミド系樹脂以外の成分の含有率は3.0質量%以下が好ましく、2.0質量%以下がより好ましく、1.0質量%以下が更に好ましい。
混入物は、組成物(R1)、成形体(M1)を溶剤で溶解し、可溶分と不溶分とを分離して1H-NMRや赤外吸収分光法(IR)等で定性分析することができる。また、組成物(R1)、成形体(M1)の乾燥質量に対する、上述の可溶分、不溶分の乾燥質量から含有率を求めることができる。
(Trace contamination)
Furthermore, the polyamide-based resin composition (R1) and the polyamide-based resin molded body (M1) of the present invention are preferably subjected to a step of pulverizing the molded body (M0) or a step of separating the molded body (M0) into resin types, so that the amount of components other than the polyamide-based resin contained in the molded body (M0) is preferably as small as possible, and the content of components other than the polyamide-based resin is preferably 3.0 mass% or less, more preferably 2.0 mass% or less, and even more preferably 1.0 mass% or less.
The contaminants can be qualitatively analyzed by dissolving the composition (R1) and the molded body (M1) in a solvent, separating the soluble and insoluble components, and then using 1H-NMR, infrared absorption spectroscopy (IR), etc. The content can be calculated from the dry mass of the soluble and insoluble components relative to the dry mass of the composition (R1) and the molded body (M1).

成形体(M1)および成形性(M2)は、それらの機械的強度、熱物性、透明性などの要求仕様に応じて、樹脂組成物(R1)または樹脂組成物(R2)の含有量が決められるが、以下の特性を有することが好ましい。 The content of resin composition (R1) or resin composition (R2) in the molded body (M1) and moldability (M2) is determined according to the required specifications such as mechanical strength, thermal properties, and transparency, but it is preferable for them to have the following properties.

(引張破断伸度(MPa)、引張破断伸度(%))
引張破断伸度(MPa)、引張破断伸度(%)は、JIS K7129:1999に準じて測定される。具体的には、幅6mmのダンベル状の試験片をつかみ具間距離80.0mm、試験速度50mm/minにて試験し、引張破断強度および引張破断伸度が測定される。ポリアミド系樹脂成形体(M1)は、引張強度が50MPa以上が好ましく、60MPa以上がより好ましい。また、引張破断伸度が200%以上が好ましく、250%以上がより好ましい。
ポリオレフィン系樹脂成形体(M2)は、引張強度が10MPa以上が好ましく、13MPa以上がより好ましい。また、引張破断伸度が150%以上が好ましく、180%以上がより好ましい。
(Tensile elongation at break (MPa), tensile elongation at break (%))
The tensile breaking elongation (MPa) and tensile breaking elongation (%) are measured according to JIS K7129:1999. Specifically, a dumbbell-shaped test piece with a width of 6 mm is tested at a gripper distance of 80.0 mm and a test speed of 50 mm/min to measure the tensile breaking strength and tensile breaking elongation. The polyamide resin molded product (M1) preferably has a tensile strength of 50 MPa or more, more preferably 60 MPa or more. The tensile breaking elongation is preferably 200% or more, more preferably 250% or more.
The polyolefin resin molded product (M2) preferably has a tensile strength of 10 MPa or more, more preferably 13 MPa or more, and a tensile elongation at break of preferably 150% or more, more preferably 180% or more.

(破壊エネルギー(J))
破壊エネルギー(J)は、JIS K7211-2:2006に準じて測定される。具体的には、島津製作所社製ハイドロショット衝撃試験機HTM-1を用い、試験片をクランプで固定し、試験速度3m/sec、打抜治具1/2インチφ、ストライカ先端径1/2インチφ、打抜受台50mmφ、23℃雰囲気の条件で測定した際の破壊エネルギーを算出した。ポリアミド系樹脂成形体(M1)は、破壊エネルギーが1.5J以上が好ましく、1.8以上がより好ましい。
ポリオレフィン系樹脂成形体(M2)は、破壊エネルギーが0.5J以上が好ましく、0.8J以上がより好ましい。
(Breaking Energy (J))
The fracture energy (J) is measured in accordance with JIS K7211-2:2006. Specifically, the fracture energy was calculated using a Shimadzu Corporation Hydroshot impact tester HTM-1, with the test piece fixed by a clamp, under conditions of a test speed of 3 m/sec, a punching tool 1/2 inch φ, a striker tip diameter 1/2 inch φ, a punching table 50 mm φ, and an atmosphere of 23° C. The fracture energy of the polyamide resin molded product (M1) is preferably 1.5 J or more, more preferably 1.8 J or more.
The polyolefin resin molded product (M2) preferably has a fracture energy of 0.5 J or more, more preferably 0.8 J or more.

<ポリアミド系樹脂成形体(M1)の作製>
本発明のポリアミド系樹脂成形体(M1)は、上述のポリアミド系樹脂組成物(R1)を用いて作製することができる。
ポリアミド系樹脂成形体(M1)は、ポリアミド系樹脂層を少なくとも1層含む成形体(M0)から分離再生したポリアミド系樹脂組成物(R1)の他、新しいポリアミド系樹脂や他の熱可塑性樹脂を混合して形成してもよい。ポリアミド系樹脂成形体(M1)を100質量%とする場合、ポリアミド系樹脂組成物(R1)の含有比率は1質量%以上100質量%以下にすることができ、成形体(M1)の機械的強度、熱物性、透明性などの要求仕様に応じ、含有率を選定できる。また、分離再生したポリアミド系樹脂組成物(R1)の含有比率が高いほど、サーマル・エコノミーに適応し、環境負荷を低減する観点で好ましい。
<Preparation of polyamide resin molded body (M1)>
The polyamide resin molded article (M1) of the present invention can be produced using the above-mentioned polyamide resin composition (R1).
The polyamide resin molded body (M1) may be formed by mixing a new polyamide resin or other thermoplastic resin in addition to the polyamide resin composition (R1) separated and recycled from a molded body (M0) containing at least one polyamide resin layer. When the polyamide resin molded body (M1) is 100 mass%, the content ratio of the polyamide resin composition (R1) can be 1 mass% or more and 100 mass% or less, and the content can be selected according to the required specifications such as mechanical strength, thermal properties, and transparency of the molded body (M1). In addition, the higher the content ratio of the separated and recycled polyamide resin composition (R1), the more suitable it is for thermal economy and the more preferable it is in terms of reducing environmental load.

ポリアミド系樹脂成形体(M1)の形状は、特に制限はないが、例えば、各種形状の型を用いて作製する構造物、容器などの射出成形体、各種厚みのフィルム、シートなどが挙げられる。
ポリアミド系樹脂組成物(R1)をフィルムに再利用する場合は、フィルムを100質量%とする場合に、ポリアミド系樹脂組成物(R1)1質量%以上100質量%以下と、新しいポリアミド系樹脂0質量%以上99質量%以下とを含むことが好ましい。フィルムの機械的強度、透明性の点からは、ポリアミド樹脂組成物(R1)1質量%以上50質量%以下、新しいポリアミド系樹脂50質量%以上99質量%以下を含むことがより好ましい。新しいポリアミド系樹脂の種類は、特に制限はないが、相溶混和性の観点から、ポリアミド系樹脂組成物(R1)に含まれるポリアミド系樹脂と同種であることが好ましい。
The shape of the polyamide resin molded article (M1) is not particularly limited, and examples thereof include structures produced using molds of various shapes, injection molded articles such as containers, films and sheets of various thicknesses, and the like.
When the polyamide resin composition (R1) is reused for a film, it is preferable that the polyamide resin composition (R1) is 1% by mass or more and 100% by mass or less, and the new polyamide resin is 0% by mass or more and 99% by mass or less, when the film is 100% by mass. From the viewpoint of mechanical strength and transparency of the film, it is more preferable that the new polyamide resin composition (R1) is 1% by mass or more and 50% by mass or less, and the new polyamide resin is 50% by mass or more and 99% by mass or less. The type of the new polyamide resin is not particularly limited, but from the viewpoint of compatibility, it is preferable that the new polyamide resin is the same type as the polyamide resin contained in the polyamide resin composition (R1).

当該フィルムは、単層フィルムでもよく多層フィルムでもよく、未延伸、一軸延伸、二軸延伸の何れでもよい。
多層フィルムの場合は、ポリアミド系樹脂組成物(R1)を用いる層の位置に制限はないが、ポリアミド系樹脂組成物(R1)からの低分子量物等のブリードアウトを抑制するため、表層ではなく内側の層に用いることが好ましい。また、所望する用途、機能に応じて、ポリエチレン、ポリプロピレンのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、アクリル系樹脂、熱可塑性エラストマー及びそれらの酸変性物などを含む層を配することができる。
The film may be a single layer film or a multilayer film, and may be unstretched, uniaxially stretched, or biaxially stretched.
In the case of a multi-layer film, the position of the layer using the polyamide-based resin composition (R1) is not limited, but it is preferable to use it in an inner layer rather than a surface layer in order to suppress bleeding out of low molecular weight substances from the polyamide-based resin composition (R1). Also, depending on the desired use and function, layers containing polyolefin-based resins such as polyethylene and polypropylene, polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl alcohol-based resins, ethylene vinyl alcohol-based resins, polystyrene-based resins, polyvinyl chloride-based resins, acrylic-based resins, thermoplastic elastomers, and acid-modified products thereof, etc. can be arranged.

本発明のポリアミド系樹脂成形体(M1)は、各種公知の添加剤を混合することができる。例えば、フィラー、滑剤、アンチブロッキング剤、酸化防止剤、熱安定化剤、紫外線吸収剤、着色剤、防曇剤、離型剤、等が挙げられる。中でも、劣化を防止する目的で、成形体を100質量%とする場合に、酸化防止剤及び/又は熱安定化剤を1質量%以上20質量%以下含むことが好ましく、2質量%以上15質量%以下含むことがより好ましい。 The polyamide resin molded body (M1) of the present invention can be mixed with various known additives. Examples include fillers, lubricants, antiblocking agents, antioxidants, heat stabilizers, UV absorbers, colorants, antifogging agents, and release agents. In particular, for the purpose of preventing deterioration, it is preferable that the molded body contains 1% by mass or more and 20% by mass or less of an antioxidant and/or a heat stabilizer, and more preferably 2% by mass or more and 15% by mass or less, based on 100% by mass of the molded body.

フィルムの製造方法は、公知の方法を用いることができる。一例として、共押出多層フィルムの場合は、ポリアミド樹脂組成物(R1)や他の原材料樹脂を予め乾燥して水分含有率を0.1質量%以下とすることが望ましい。次いで、それら原材料を各押出機にそれぞれ投入し、溶融した樹脂をフィードブロック、またはマルチマニホールドのフラットダイ、または環状ダイで合流させてから、多層フィルムとして共押出した後、急冷することによりフラット状、または環状の未延伸フィルムを得ることができる。ポリアミド樹脂組成物(R1)を含む押出機の温度は、200~300℃が好ましい。 The film can be produced by any known method. For example, in the case of a coextruded multilayer film, it is desirable to dry the polyamide resin composition (R1) and other raw material resins in advance to reduce the moisture content to 0.1% by mass or less. Next, the raw materials are fed into each extruder, and the molten resins are joined in a feed block, or a flat die or annular die of a multi-manifold, and then coextruded as a multilayer film, followed by rapid cooling to obtain a flat or annular unstretched film. The temperature of the extruder containing the polyamide resin composition (R1) is preferably 200 to 300°C.

二軸延伸フィルムを得るには、未延伸フィルムをテンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法を用い、フィルムの流れ方向(縦方向、MD)とこれに直角な幅方向(横方向、TD)に二軸延伸する。例えば、テンター式逐次二軸延伸方法の場合には、未延伸フィルムを40~100℃の温度範囲に加熱し、ロール式縦延伸機によって縦方向に延伸し、続いてテンター式横延伸機によって150~230℃の温度範囲内で横方向に延伸することにより製造することができる。また、テンター式同時二軸延伸やチューブラー式同時二軸延伸方法の場合は、例えば、40~230℃の温度範囲において、縦横同時に各軸方向に延伸することにより製造することができる。
延伸倍率は、フィルムの流れ方向(縦方向、MD)、幅方向(横方向、TD)において、各々1.5~5.0倍が好ましく、各々2.0~4.5倍がより好ましい。二軸延伸方向の延伸倍率が係る範囲であることにより延伸配向が進み、フィルム強度などの機械物性が良好となる。
To obtain a biaxially stretched film, an unstretched film is biaxially stretched in the flow direction (machine direction, MD) of the film and in the width direction (transverse direction, TD) perpendicular thereto, using a known method such as tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, or tubular-type simultaneous biaxial stretching. For example, in the case of the tenter-type sequential biaxial stretching method, the unstretched film can be produced by heating the unstretched film to a temperature range of 40 to 100°C, stretching it in the machine direction using a roll-type machine-type stretching machine, and then stretching it in the transverse direction within a temperature range of 150 to 230°C using a tenter-type transverse stretching machine. In addition, in the case of the tenter-type simultaneous biaxial stretching method or the tubular-type simultaneous biaxial stretching method, the film can be produced by simultaneously stretching it in the machine direction and the transverse direction at a temperature range of 40 to 230°C.
The stretching ratio is preferably 1.5 to 5.0 times, more preferably 2.0 to 4.5 times, in each of the machine direction (machine direction, MD) and width direction (transverse direction, TD) of the film. When the stretching ratio in the biaxial stretching direction is within the above range, stretch orientation proceeds, and mechanical properties such as film strength become good.

更に、フィルムの寸法安定性を向上させるために、上記の二軸延伸フィルムを熱固定することができる。熱固定温度は、200℃~225℃が好ましく、205~220℃がより好ましい。これにより、常温寸法安定性のよい二軸延伸フィルムを得ることが出来る。
熱固定による結晶化収縮の応力を緩和させるために、熱固定中に幅方向に0~15%、好ましくは3~10%の範囲で弛緩処理を行うこともできる。
また、弛緩処理の後、140℃~200℃の温度で、幅方向に2~9%、好ましくは3~7%、更に好ましくは4~7%の範囲で再延伸を行うことができる。再延伸温度が上記範囲内にあれば、適度な延伸時の応力が得られて均質な延伸となり、幅方向の横収縮率が均等になりやすい。
Furthermore, in order to improve the dimensional stability of the film, the biaxially stretched film can be heat-set. The heat-setting temperature is preferably 200° C. to 225° C., more preferably 205° C. to 220° C. This makes it possible to obtain a biaxially stretched film with good dimensional stability at room temperature.
In order to relax the stress caused by crystallization shrinkage due to heat setting, a relaxation treatment can be carried out in the width direction during heat setting within a range of 0 to 15%, preferably 3 to 10%.
After the relaxation treatment, the film can be re-stretched in the width direction by 2 to 9%, preferably 3 to 7%, and more preferably 4 to 7%, at a temperature of 140° C. to 200° C. If the re-stretching temperature is within the above range, an appropriate stress during stretching is obtained, resulting in homogeneous stretching and tending to result in a uniform transverse shrinkage rate in the width direction.

<ポリオレフィン系樹脂成形体(M2)の作製>
ポリオレフィン系樹脂成形体(M2)は、上述のポリオレフィン系樹脂組成物(R2)を用いて作製することができる。
ポリオレフィン系樹脂成形体(M2)は、ポリアミド系樹脂層を少なくとも1層含む成形体(M0)から分離再生したポリオレフィン系樹脂組成物(R2)の他、新しいポリオレフィン系樹脂や他の熱可塑性樹脂を混合して形成してもよい。成形体を100質量%とする場合、ポリオレフィン系樹脂組成物(R2)の含有比率は1質量%以上100質量%以下にすることができ、成形体(M2)の機械的強度、熱物性、透明性などの要求仕様に応じ、含有率を選定できる。また、分離再生したポリアミド系樹脂組成物(R2)の含有比率が高いほど、サーマル・エコノミーに適応し、環境負荷を低減する観点で好ましい。
<Preparation of polyolefin resin molded body (M2)>
The polyolefin resin molded article (M2) can be produced using the above-mentioned polyolefin resin composition (R2).
The polyolefin resin molded body (M2) may be formed by mixing a new polyolefin resin or other thermoplastic resin in addition to the polyolefin resin composition (R2) separated and recycled from the molded body (M0) containing at least one polyamide resin layer. When the molded body is 100% by mass, the content ratio of the polyolefin resin composition (R2) can be 1% by mass or more and 100% by mass or less, and the content can be selected according to the required specifications such as mechanical strength, thermal properties, and transparency of the molded body (M2). In addition, the higher the content ratio of the separated and recycled polyamide resin composition (R2), the more suitable it is for thermal economy and from the viewpoint of reducing environmental load.

ポリオレフィン系樹脂成形体(M2)の形状は、特に制限はないが、例えば、各種形状の型を用いて作製する構造物、容器などの射出成形体、各種厚みのフィルム、シートなどが挙げられる。
本発明のポリオレフィン系樹脂組成物(R2)をフィルムに再利用する場合は、フィルムを100質量%とする場合に、ポリオレフィン系樹脂組成物(R2)1質量%以上100質量%以下と、新しいポリオレフィン系樹脂0質量%以上99質量%以下とを含むことが好ましい。フィルムの機械的強度、透明性の点からは、ポリオレフィン樹脂組成物(R2)1質量%以上50質量%以下、新しいポリオレフィン系樹脂50質量%以上99質量%以下を含むことがより好ましい。新しいポリオレフィン系樹脂の種類は、特に制限はないが、相溶混和性の観点から、ポリオレフィン系樹脂組成物(R2)に含まれるポリオレフィン系樹脂と同種であることが好ましい。
The shape of the polyolefin resin molded article (M2) is not particularly limited, and examples thereof include structures produced using molds of various shapes, injection molded articles such as containers, films and sheets of various thicknesses, and the like.
When the polyolefin resin composition (R2) of the present invention is reused as a film, it is preferable that the polyolefin resin composition (R2) is 1% by mass or more and 100% by mass or less, and the new polyolefin resin is 0% by mass or more and 99% by mass or less, when the film is 100% by mass. From the viewpoint of mechanical strength and transparency of the film, it is more preferable that the polyolefin resin composition (R2) is 1% by mass or more and 50% by mass or less, and the new polyolefin resin is 50% by mass or more and 99% by mass or less. The type of the new polyolefin resin is not particularly limited, but from the viewpoint of compatibility, it is preferable that the new polyolefin resin is the same type as the polyolefin resin contained in the polyolefin resin composition (R2).

当該フィルムは、単層フィルムでもよく多層フィルムでもよい。多層フィルムの場合は、ポリオレフィン系樹脂組成物(R2)を含む層の位置に制限はないが、ポリオレフィン系樹脂組成物(R2)からの低分子量物等のブリードアウトを抑制するため、表層ではなく内側の層に用いることが好ましい。また、所望する用途、機能に応じて、ポリアミド6、ポリアミド66等のポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンなフタレート等のポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、アクリル系樹脂、熱可塑性エラストマー及びそれらの酸変性物などを含む層を配することができる。 The film may be a single layer film or a multilayer film. In the case of a multilayer film, there is no restriction on the position of the layer containing the polyolefin resin composition (R2), but in order to suppress the bleed-out of low molecular weight substances from the polyolefin resin composition (R2), it is preferable to use it as an inner layer rather than a surface layer. In addition, depending on the desired application and function, layers containing polyamide resins such as polyamide 6 and polyamide 66, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene phthalate, polyvinyl alcohol resins, ethylene vinyl alcohol resins, polystyrene resins, polyvinyl chloride resins, acrylic resins, thermoplastic elastomers, and acid-modified products thereof, etc. may be arranged.

フィルムは、未延伸、一軸延伸、二軸延伸の何れでもよく、公知の方法を用いて製造することができ、シーラントフィルムとする場合は未延伸フィルムが多用される。
未延伸フィルムは、例えば、樹脂組成物を150~250℃の設定温度で一軸または二軸押出機により溶融混錬して押出し、公知のインフレーション法、Tダイ法などにより製造することができる。
The film may be unstretched, uniaxially stretched, or biaxially stretched, and can be produced by a known method. When the film is used as a sealant film, an unstretched film is often used.
The unstretched film can be produced, for example, by melt-kneading and extruding the resin composition at a set temperature of 150 to 250° C. using a single-screw or twin-screw extruder, and then using a known inflation method, T-die method or the like.

本発明のポリオレフィン系樹脂成形体(M2)は、各種公知の添加剤を混合することができる。例えば、フィラー、滑剤、アンチブロッキング剤、酸化防止剤、熱安定化剤、紫外線吸収剤、着色剤、防曇剤、離型剤、等が挙げられる。中でも、劣化を防止する目的で、成形体を100質量%とする場合に、酸化防止剤及び/又は熱安定化剤を1質量%以上20質量%以下含むことが好ましく、2質量%以上15質量%以下含むことがより好ましい。 The polyolefin resin molded body (M2) of the present invention can be mixed with various known additives. Examples include fillers, lubricants, antiblocking agents, antioxidants, heat stabilizers, UV absorbers, colorants, antifogging agents, and release agents. In particular, for the purpose of preventing deterioration, it is preferable that the molded body contains 1% by mass or more and 20% by mass or less of an antioxidant and/or a heat stabilizer, and more preferably 2% by mass or more and 15% by mass or less, based on 100% by mass of the molded body.

<包装体>
本発明のポリアミド系樹脂組成物(R1)を含むフィルム等のポリアミド系樹脂成形体(M1)を用いて包装体を作製することができる。同様に、ポリオレフィン系樹脂組成物(R2)を含むフィルム等のポリオレフィン系樹脂成形体(M2)を用いて包装体を作製することができる。
包装体の構成、形状、製法は限定しないが、例えば、袋体やパウチ;蓋材;カップ、トレー、深絞り成形体等の底材などが挙げられ、公知の方法で製造できる。
<Packaging>
A package can be produced using a polyamide-based resin molded product (M1) such as a film containing the polyamide-based resin composition (R1) of the present invention. Similarly, a package can be produced using a polyolefin-based resin molded product (M2) such as a film containing the polyolefin-based resin composition (R2).
The configuration, shape, and manufacturing method of the packaging body are not limited, and examples thereof include bags and pouches; lid materials; and base materials for cups, trays, deep-drawn bodies, etc., which can be manufactured by known methods.

<ポリアミド系樹脂層を含む成形体(M0)>
本発明のポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)は、少なくともポリアミド系樹脂層を含む成形体(M0)から分離して得ることができる。成形体(M0)は、特に制限はないが、例えば、各種形状の型を用いて作製する構造物、容器などの射出成形体、各種厚みのフィルム、シートなどが挙げられる。中でも、成形体としての商品の使用期間が短く、多くが廃棄され、海洋汚染や石油資源枯渇を抑制する観点でリサイクル化が必要とされていること、成形体(M0)からポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)を比較的に分離し易い形状であることから、食料品、医薬品、工業部品等の包装資材に使用されるフィルムを積層した積層フィルム等の積層体が好ましい。例えば、少なくともポリアミド系樹脂層を1層含むフィルム(以下、ポリアミド系樹脂フィルムと称する)や、ポリアミド系樹脂フィルムとシーラントフィルム等の他のフィルムとを接着剤を介してドライラミネートした積層体(積層フィルム)が好ましい。
<Molded body including polyamide-based resin layer (M0)>
The polyamide-based resin composition (R1) and the polyolefin-based resin composition (R2) of the present invention can be obtained by separating them from a molded body (M0) containing at least a polyamide-based resin layer. The molded body (M0) is not particularly limited, and examples thereof include structures and injection molded bodies such as containers produced using molds of various shapes, and films and sheets of various thicknesses. Among them, laminates such as laminated films in which films used for packaging materials for foodstuffs, medicines, industrial parts, etc. are laminated are preferred because the product as a molded body has a short life span and many of them are discarded, and recycling is required from the viewpoint of suppressing marine pollution and depletion of petroleum resources, and the polyamide-based resin composition (R1) and the polyolefin-based resin composition (R2) are relatively easily separated from the molded body (M0). For example, a film containing at least one polyamide-based resin layer (hereinafter referred to as a polyamide-based resin film) and a laminate (laminated film) in which a polyamide-based resin film and another film such as a sealant film are dry laminated via an adhesive are preferred.

(ポリアミド系樹脂フィルム)
成形体(M0)を構成する、少なくともポリアミド系樹脂層を1層含むポリアミド系樹脂フィルムは、単層フィルムでもよいし多層フィルムでもよく、1枚でもよく複数枚を用いてもよい。また、未延伸フィルムでもよく一軸延伸フィルム、二軸延伸フィルムでもよい。
ポリアミド系樹脂フィルムに用いるポリアミド系樹脂としては、特に制限はなく、脂肪族ポリアミド、芳香族ポリアミド、半芳香族ポリアミドの公知の各種樹脂を用いることができる。
脂肪族ポリアミドとしては、例えば、ポリアミド4、ポリアミド6、ポリアミド7、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド410、ポリアミド510、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド611、ポリアミド6/66、ポリアミド6/610、ポリアミド6/611、ポリアミド612、ポリアミド6/612、ポリアミド810、ポリアミド910、ポリアミド1010、ポリアミド1012等が挙げられる。芳香族ポリアミド樹脂としては、例えばポリメタキシリレンアジパミド(ポリアミドMXD6)、メタキシリレン/パラキシリレンアジパミド共重合体、並びにこれらに脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、芳香族ジカルボン酸、ラクタム、ω-アミノカルボン酸、芳香族アミノカルボン酸等を共重合した共重合体が挙げられる。半芳香族ポリアミドとしては、ポリアミド4T、ポリアミド5T、ポリアミドM-5T、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミド10T、ポリアミド11T、ポリアミド12T、等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
中でも、フィルムの機械物性、強靭性の点からポリアミド6、ポリアミド66等、ガスバリア性を付与する点からメタキシリレンジアミンアジパミドが、汎用のポリアミド系樹脂フィルムに用いられているポリアミド樹脂として挙げることができ、これらのポリアミド系樹脂を成形体(M0)から分離して再生ポリアミド系樹脂組成物(R1)として再利用することは、サーキュラー・エコノミー、循環型社会を形成していく上で重要な事項である。
また、環境負荷の低減の観点で、バイオマス由来のポリアミド610、ポリアミド1010、ポリアミド11を含む成形体(M0)から、ポリアミド系樹脂組成物(R1)を再生することは、更にサーキュラー・エコノミー、循環型社会の形成に向けて貢献できる。
また、フィルムに柔軟性を付与する目的で、ポリアミド系樹脂を含む層を100質量%とする場合、ポリオレフィン系、ポリアミド系、ポリエステル系、ポリスチレン系、ポリ塩化ビニル系等の熱可塑性エラストマー1~30質量%を含有してもよい。
(Polyamide resin film)
The polyamide-based resin film constituting the molded body (M0) and including at least one polyamide-based resin layer may be a single-layer film or a multilayer film, may be a single sheet or a plurality of sheets, and may be an unstretched film, a uniaxially stretched film, or a biaxially stretched film.
The polyamide resin used in the polyamide resin film is not particularly limited, and various known resins such as aliphatic polyamides, aromatic polyamides, and semi-aromatic polyamides can be used.
Examples of aliphatic polyamides include polyamide 4, polyamide 6, polyamide 7, polyamide 11, polyamide 12, polyamide 46, polyamide 410, polyamide 510, polyamide 66, polyamide 69, polyamide 610, polyamide 611, polyamide 6/66, polyamide 6/610, polyamide 6/611, polyamide 612, polyamide 6/612, polyamide 810, polyamide 910, polyamide 1010, and polyamide 1012. Examples of aromatic polyamide resins include polymetaxylylene adipamide (polyamide MXD6), metaxylylene/paraxylylene adipamide copolymers, and copolymers of these with aliphatic diamines, alicyclic diamines, aromatic diamines, aromatic dicarboxylic acids, lactams, ω-aminocarboxylic acids, and aromatic aminocarboxylic acids. Examples of semi-aromatic polyamides include polyamide 4T, polyamide 5T, polyamide M-5T, polyamide 6T, polyamide 6I, polyamide 9T, polyamide 10T, polyamide 11T, polyamide 12T, etc. These may be used alone or in combination of two or more.
Among these, polyamide resins used in general-purpose polyamide resin films include polyamide 6, polyamide 66, etc., which are used in view of the mechanical properties and toughness of the film, and metaxylylenediamine adipamide, which is used in view of imparting gas barrier properties. Separating these polyamide resins from the molded body (M0) and reusing them as a recycled polyamide resin composition (R1) is an important factor in forming a circular economy and a recycling-oriented society.
In addition, from the viewpoint of reducing the environmental load, regenerating the polyamide-based resin composition (R1) from the molded body (M0) containing biomass-derived polyamide 610, polyamide 1010, and polyamide 11 can further contribute to the formation of a circular economy and a recycling-oriented society.
In addition, for the purpose of imparting flexibility to the film, when the layer containing the polyamide-based resin is taken as 100% by mass, the film may contain 1 to 30% by mass of a thermoplastic elastomer such as a polyolefin-based, polyamide-based, polyester-based, polystyrene-based, or polyvinyl chloride-based elastomer.

ポリアミド系樹脂フィルムが多層フィルムの場合は、共押出多層フィルムが好ましく、ポリアミド系樹脂層の他に、ポリエチレン、ポリプロピレンのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、アクリル系樹脂、熱可塑性エラストマー及びそれらの酸変性物などを含む層を配することができる。
また、ポリアミド系樹脂フィルムの表面は、加飾性、包装品説明を目的とした印刷層や、ガスバリア性、導電性、非導電性等を目的とした無機蒸着膜層、ガスバリア性等を目的としたポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール等を含むコート層などを設けてもよい。
ポリアミド系樹脂フィルムの1枚当たりの厚みは、特に制限はないが、5~50μmが好ましく、8~30μmがより好ましく、10~25μmが更に好ましい。
When the polyamide-based resin film is a multilayer film, a coextruded multilayer film is preferable, and in addition to the polyamide-based resin layer, layers containing polyolefin-based resins such as polyethylene and polypropylene, polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl alcohol-based resins, ethylene vinyl alcohol-based resins, polyvinyl chloride-based resins, acrylic resins, thermoplastic elastomers, and acid-modified products thereof can be arranged.
The surface of the polyamide-based resin film may be provided with a printed layer for the purpose of decoration or package description, an inorganic vapor deposition film layer for the purpose of gas barrier properties, electrical conductivity, non-conductivity, or the like, or a coating layer containing polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, or the like for the purpose of gas barrier properties, or the like.
The thickness of each polyamide resin film is not particularly limited, but is preferably from 5 to 50 μm, more preferably from 8 to 30 μm, and even more preferably from 10 to 25 μm.

(他フィルム)
成形体(M0)は、ポリアミド系樹脂フィルムと他のフィルムとを接着剤層を用い積層した積層体(積層フィルム)でもよい。
他のフィルムとしては、特に制限はないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリ塩化ビニル系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、アクリル系樹脂等からなる各種フィルムが挙げられる。それらは未延伸フィルムでも延伸フィルムでもよい。また、フィルム表面に加飾性、包装品説明を目的とした印刷層や、ガスバリア性、導電性、非導電性等を目的とした無機蒸着膜層、ガスバリア性等を目的としたポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール等を含むコート層などを設けてもよい。中でも、ヒートシールして包装体を形成するために、ポリオレフィンからなるシーラントフィルムが多用される。
他フィルムの1枚当たりの厚みは、特に制限はなく、各種フィルムの機能に応じて適宜選択できる。大概的には、フィルムの取り扱い性、経済性の点から、3~200μmが好ましく、5~100μmがより好ましい。
(Other films)
The molded body (M0) may be a laminate (laminated film) in which a polyamide resin film and another film are laminated with an adhesive layer.
The other films are not particularly limited, and examples thereof include various films made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl chloride resins, polyvinyl alcohol resins, ethylene vinyl alcohol resins, polyvinyl chloride resins, acrylic resins, and the like. They may be unstretched or stretched films. In addition, a printed layer for the purpose of decoration and package description, an inorganic vapor deposition film layer for the purpose of gas barrier properties, conductivity, non-conductivity, and the like, and a coating layer containing polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, and the like for the purpose of gas barrier properties, and the like may be provided on the film surface. Among them, a sealant film made of polyolefin is often used to form a package by heat sealing.
The thickness of each of the other films is not particularly limited and can be appropriately selected depending on the function of each film. In general, from the viewpoints of film handling and economy, the thickness is preferably 3 to 200 μm, and more preferably 5 to 100 μm.

(シーラントフィルム)
成形体(M0)(積層体、積層フィルム)を構成するシーラントフィルムは、単層フィルムでもよいし多層フィルムでもよく、未延伸フィルムでもよく一軸延伸フィルム、二軸延伸フィルムでもよい。また、成形体の少なくとも片面に配すればよく、両面に配してもよい。
シーラントフィルムに用いる樹脂としては、特に制限はなく、ポリエチレン系樹脂、ポリプロピレン系樹脂などの公知のポリオレフィン系樹脂を用いることができる。ポリエチレン系樹脂としては、エチレン単独重合体でもよく、エチレンと炭素数3~20のα-オレフィンとの共重合体でもよく、超低密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンの何れでもよく、ヒートシール性、汎用性の点から、低密度ポリエチレン、直鎖状低密度ポリエチレンが好ましい。
ポリプロピレン系樹脂としては、プロピレン単独重合体でもよく、プロピレンと炭素数2~20のα-オレフィンとの共重合体でもよく、ヒートシール性、汎用性の点から、プロピレン-エチレンランダム共重合体が好ましい。これらは1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
更に、環境負荷の低減の観点で、バイオマス原料由来のバイオエタノールやバイオイソプロパノールから作製したポリエチレンやポリプロピレンを含む成形体(M0)から、ポリオレフィン系樹脂組成物(R2)を再生することは、サーキュラー・エコノミー、循環型社会の形成を進める上で意義が大きい。
また、易開封性を目的として、ポリエチレン系樹脂及び/又はポリプロピレン系樹脂を含む層を100質量%とする場合、ポリブテン系樹脂、ポリスチレン系樹脂等を0~50質量%を含有してもよい。
(Sealant film)
The sealant film constituting the molded body (M0) (laminate, laminate film) may be a single layer film or a multilayer film, and may be an unstretched film, a uniaxially stretched film, or a biaxially stretched film. In addition, it is sufficient to arrange the sealant film on at least one side of the molded body, and it may be arranged on both sides.
The resin used in the sealant film is not particularly limited, and known polyolefin resins such as polyethylene resins and polypropylene resins can be used. The polyethylene resin may be an ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, and may be any of ultra-low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene, with low density polyethylene and linear low density polyethylene being preferred from the standpoint of heat sealability and versatility.
The polypropylene-based resin may be a propylene homopolymer or a copolymer of propylene and an α-olefin having 2 to 20 carbon atoms, and from the viewpoints of heat sealability and versatility, a propylene-ethylene random copolymer is preferred. These may be used alone or in combination of two or more.
Furthermore, from the viewpoint of reducing the environmental load, regenerating a polyolefin resin composition (R2) from a molded body (M0) containing polyethylene or polypropylene produced from bioethanol or bioisopropanol derived from biomass raw materials is of great significance in promoting the formation of a circular economy and a recycling-oriented society.
For the purpose of easy opening, when the layer containing a polyethylene resin and/or a polypropylene resin is taken as 100% by mass, a polybutene resin, a polystyrene resin, or the like may be contained in an amount of 0 to 50% by mass.

シーラントフィルムは、包装用成形体(積層体、積層フィルム)の大半に用いられており、これらのポリオレフィン系樹脂を成形体(M0)から分離して再利用することもまた、サーキュラー・エコノミー、循環型社会を形成していく上で重要な事項であり、成形体(M0)から分離再生して得られるポリアミド系樹脂組成物(R1)と同様に、別個に分離再生して得られるポリオレフィン系樹脂組成物(R2)を、それぞれ再利用することが成形体(M0)(積層体、積層フィルム)のリサイクル率を大幅に向上させることに繋がる。 Sealant films are used in the majority of packaging molded products (laminates, laminated films), and separating and reusing these polyolefin-based resins from the molded products (M0) is also an important factor in creating a circular economy and recycling-oriented society. Reusing the polyamide-based resin composition (R1) obtained by separating and regenerating from the molded products (M0), as well as the polyolefin-based resin composition (R2) obtained by separately separating and regenerating, will lead to a significant increase in the recycling rate of the molded products (M0) (laminates, laminated films).

シーラントフィルムが多層フィルムの場合は、共押出多層フィルムが多用され、ポリオレフィン系樹脂層の他に、脂肪族ポリアミド、芳香族ポリアミド、半芳香族ポリアミド等のポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンなフタレート等のポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、アクリル系樹脂、熱可塑性エラストマー及びそれらの酸変性物などを含む層を配することができ、シーラントフィルムの少なくとも一方の表面にポリオレフィン系樹脂層を配する。
シーラントフィルムの1枚当たりの厚みは、特に制限はないが、3~100μmが好ましく、5~80μmがより好ましい。
When the sealant film is a multilayer film, a coextruded multilayer film is often used, and in addition to a polyolefin-based resin layer, layers containing polyamide-based resins such as aliphatic polyamides, aromatic polyamides, and semi-aromatic polyamides, polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl alcohol-based resins, ethylene vinyl alcohol-based resins, polyvinyl chloride-based resins, acrylic resins, thermoplastic elastomers, and acid-modified products thereof, etc. can be arranged, and a polyolefin-based resin layer is arranged on at least one surface of the sealant film.
The thickness of each sealant film is not particularly limited, but is preferably from 3 to 100 μm, and more preferably from 5 to 80 μm.

(添加剤)
ポリアミド系樹脂層を含む成形体(M0)には、主原料の樹脂の他に、公知の添加剤を含有することができる。例えば、フィラー、滑剤、アンチブロッキング剤、酸化防止剤、熱安定化剤、紫外線吸収剤、着色剤、防曇剤、離型剤、等を挙げることができる。
(Additive)
The molded article (M0) including the polyamide resin layer may contain known additives in addition to the main raw material resin, such as fillers, lubricants, antiblocking agents, antioxidants, heat stabilizers, UV absorbers, colorants, antifogging agents, and release agents.

(接着剤層)
少なくともポリアミド系樹脂層を1層含む成形体(M0)は、例えばポリアミド系樹脂層を1層含むフィルムと、シーラントフィルム等の他フィルムとを公知のドライラミネート法により積層して作製した積層体(積層フィルム)でもよい。
接着剤は、公知のドライラミネート用接着剤を用いることができ、一液系でもよく二液系でもよく、さらに架橋剤を添加して用いてもよい。層間密着性の点から、ポリエステル系接着剤を用いることが好ましく、また、ポリオールと架橋剤とからなる二液系が好ましく、ポリオールとしては、ポリエステル系、ポリエーテル系、アクリル系等の各種ポリオールが挙げられ、硬化剤、架橋剤としては、芳香族系イソシアネート系、脂肪族系イソシアネート系、カルボジイミド系、エポキシ系等が挙げられる。なお、後述の剥離剤(A)による溶解のし易さの点から、ポリエステル系ポリオールと脂肪族イソシアネートとを化合してなるポリエステル系ポリウレタン系からなる接着剤が好ましい。
接着剤層の厚みは、特に制限はないが、一般に1~10μmが好ましく、2~5μmがより好ましい。
(Adhesive Layer)
The molded body (M0) including at least one polyamide-based resin layer may be, for example, a laminate (laminated film) prepared by laminating a film including one polyamide-based resin layer and another film such as a sealant film by a known dry lamination method.
The adhesive can be a known adhesive for dry lamination, and may be a one-liquid system or a two-liquid system, and may further include a crosslinking agent. From the viewpoint of interlayer adhesion, it is preferable to use a polyester adhesive, and a two-liquid system consisting of a polyol and a crosslinking agent is preferable, and the polyol can be various polyols such as polyester, polyether, and acrylic, and the curing agent and crosslinking agent can be aromatic isocyanate, aliphatic isocyanate, carbodiimide, and epoxy. In addition, from the viewpoint of ease of dissolution by the release agent (A) described later, a polyester polyurethane adhesive consisting of a polyester polyol and an aliphatic isocyanate is preferably used.
The thickness of the adhesive layer is not particularly limited, but is generally preferably 1 to 10 μm, more preferably 2 to 5 μm.

本発明のポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)は、成形体(M0)から剥離剤(A)を用いて分離した樹脂組成物から得ることができる。
<剥離剤(A)>
本発明に用いる剥離剤(A)は、極性溶媒と第四級アンモニウム塩、水とを含有するものである。
極性溶媒として、具体的には、ジエチレングリコールモノブチルエーテル、イソプロパノール、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ベンジルアルコール等が挙げられる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
第四級アンモニウム塩として、具体的には、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、モノメチルトリス(2-ヒドロキシエチル)アンモニウムヒドロキシド、トリメチル-2-ヒドロキシエチルアンモニウムヒドロキシド、1%水溶液におけるpHが11.5以上であるテトラアルキルアンモニウムヒドロキシド(一例としてテトラメチルアンモニウムヒドロキシド)等が挙げられる。
The polyamide resin composition (R1) and polyolefin resin composition (R2) of the present invention can be obtained from a resin composition separated from a molded product (M0) using a release agent (A).
<Release Agent (A)>
The release agent (A) used in the present invention contains a polar solvent, a quaternary ammonium salt, and water.
Specific examples of polar solvents include diethylene glycol monobutyl ether, isopropanol, N-methyl-2-pyrrolidone, dimethylformamide, dimethylsulfoxide, benzyl alcohol, etc. These may be used alone or in combination of two or more.
Specific examples of quaternary ammonium salts include dimethylbis(2-hydroxyethyl)ammonium hydroxide, monomethyltris(2-hydroxyethyl)ammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide, and tetraalkylammonium hydroxides (e.g., tetramethylammonium hydroxide) having a pH of 11.5 or higher in a 1% aqueous solution.

剥離剤(A)は、成形体(M0)のうち、接着剤層、ポリエチレンテレフタレート等のポリエステル樹脂の層及び/又はフィルム、エチレンビニルアルコール系樹脂の層及び/又はフィルム、印刷層などを溶解することができる。他方、ポリアミド系樹脂の層及び/又はフィルム、ポリオレフィン系樹脂の層及び/又はフィルムは、剥離剤(A)には溶解しない。
剥離剤(A)による溶解、分離は、酸を用いず、また、100℃を超えるような高温加熱工程を経ないため、成形体(M0)を構成するポリアミド系樹脂の加水分解や劣化を抑制して、ポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)を得ることができ、バージンペレットと呼称される新しいポリアミド系樹脂、ポリオレフィン系樹脂と同様に成形体に再利用することができる。
The release agent (A) can dissolve, of the molded body (M0), the adhesive layer, the layer and/or film of a polyester resin such as polyethylene terephthalate, the layer and/or film of an ethylene vinyl alcohol-based resin, the printed layer, etc. On the other hand, the layer and/or film of a polyamide-based resin, and the layer and/or film of a polyolefin-based resin are not dissolved in the release agent (A).
The dissolution and separation using the release agent (A) does not use acid and does not involve a high-temperature heating step exceeding 100°C. Therefore, hydrolysis and deterioration of the polyamide-based resin constituting the molded body (M0) can be suppressed, and a polyamide-based resin composition (R1) or a polyolefin-based resin composition (R2) can be obtained, which can be reused for molded bodies in the same way as new polyamide-based resins and polyolefin-based resins called virgin pellets.

<樹脂組成物(R1)(R2)の製造方法>
成形体(M0)から剥離剤(A)を用いて分離再生することにより、ポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)を得る手順、方法は次の通りである。
先ず、成形体(M0)を粉砕機で裁断し、フラフを作製する。
次いで、フラフを常圧及び加温の条件下で、フラフを剥離剤(A)に浸漬及び攪拌して、接着剤層、印刷層、各種樹脂等を溶解させる。浸漬及び攪拌する温度、時間は、例えば、20℃以上60℃未満の条件では1~5日間が好ましく、2~4日間がより好ましい。60℃以上の条件では1~5時間が好ましく、2~4時間がより好ましい。
その後、剥離剤(A)に不溶な樹脂組成物(R0)を取り出し、剥離剤(A)を除去する目的で水等を用いて洗浄する。樹脂組成物(R0)には、剥離剤(A)に不溶なポリアミド系樹脂のフラフとポリオレフィン系樹脂のフラフが含まれる。
その後、例えば水を用い、25℃の条件で樹脂組成物(R0)を水中で攪拌後、静置することによって、ポリアミド系樹脂の比重1.00~1.25とポリオレフィン系樹脂の比重0.870~0.970との比重差を利用して両者を分別(比重差分別)し、温風条件等で乾燥する。
なお、成形体(M0)に、複数種のポリアミド系樹脂が含まれる場合は、まとめてポリアミド系樹脂のフラフとして分別される。複数種のポリオレフィン系樹脂が含まれる場合も同様に、まとめてポリオレフィン系樹脂のフラフとして分別される。
<Method for producing resin compositions (R1) and (R2)>
The procedure and method for obtaining the polyamide resin composition (R1) and the polyolefin resin composition (R2) by separating and regenerating the molded body (M0) using the release agent (A) are as follows.
First, the molded body (M0) is cut by a crusher to prepare fluff.
Next, the fluff is immersed in and stirred in the release agent (A) under normal pressure and heating conditions to dissolve the adhesive layer, the printing layer, various resins, etc. The temperature and time for immersion and stirring are, for example, preferably 1 to 5 days, more preferably 2 to 4 days, under conditions of 20° C. or higher and lower than 60° C., and preferably 1 to 5 hours, more preferably 2 to 4 hours, under conditions of 60° C. or higher.
Thereafter, the resin composition (R0) insoluble in the release agent (A) is taken out and washed with water or the like in order to remove the release agent (A). The resin composition (R0) contains polyamide-based resin fluff and polyolefin-based resin fluff that are insoluble in the release agent (A).
Thereafter, for example, using water, the resin composition (R0) is stirred in water at 25° C., and then allowed to stand, whereby the two resins are separated (separated by specific gravity difference) by utilizing the specific gravity difference between the polyamide resin, which has a specific gravity of 1.00 to 1.25, and the polyolefin resin, which has a specific gravity of 0.870 to 0.970, and then dried under hot air conditions or the like.
In addition, when the molded body (M0) contains multiple types of polyamide-based resins, they are collectively separated as polyamide-based resin fluff. Similarly, when the molded body (M0) contains multiple types of polyolefin-based resins, they are collectively separated as polyolefin-based resin fluff.

分別したポリアミド系樹脂のフラフは、押出機を用いて200~300℃の条件で溶融押出し、ストランドカット法、ホットカット法等の公知の方法を用いてポリアミド系樹脂組成物からなる再生ペレットを作製できる。同様に、分別したポリオレフィン系樹脂のフラフは、100~250℃の条件で溶融押出し、ポリオレフィン系樹脂組成物からなる再生ペレットを作製できる。 The separated polyamide-based resin fluff can be melt-extruded at 200-300°C using an extruder, and recycled pellets made of a polyamide-based resin composition can be produced using known methods such as the strand cut method and hot cut method. Similarly, the separated polyolefin-based resin fluff can be melt-extruded at 100-250°C, and recycled pellets made of a polyolefin-based resin composition can be produced.

なお、剥離剤(A)を用いて分離、分別したポリアミド系樹脂のフラフ、及び当該フラフを用いて作製した再生ペレットの両方をポリアミド系樹脂組成物(R1)と呼称する。
同様に、剥離剤(A)を用いて分離、分別したポリオレフィン系樹脂のフラフ、及び当該フラフを用いて作製した再生ペレットの両方をポリオレフィン系樹脂組成物(R2)と呼称する。
Both the polyamide resin fluff separated and fractionated using the release agent (A) and the recycled pellets produced using the fluff are referred to as a polyamide resin composition (R1).
Similarly, both the polyolefin resin fluff separated and fractionated using the release agent (A) and the recycled pellets produced using the fluff are referred to as a polyolefin resin composition (R2).

成形体(M0)(積層体、積層フィルム)の粉砕は、公知のフィルム用粉砕機等の粉砕機を用いて行うことができ、成形体、粉砕物(フラフ)が熱劣化しないよう、装置内部と成形体、フラフとの摩擦などによる過分な熱が、成形体やフラフに負荷されないことが好ましい。
フラフの形状は、特に制限はなく、一般に不定形または多角形であるが、フラフ同士が絡み合わないように、縦横長さが同等程度の形状が好ましく、略方形状がより好ましい。
フラフの大きさは、溶解分離用の剥離剤(A)が成形体(M0)を裁断した端面から成形体(M0)の内部に浸透していく観点から、長辺は20mm以下が好ましく15mm以下がより好ましい。また裁断、粉砕工程におけるフラフの滞留のし難さや、後工程の比重差分別における分別回収のし易さの観点から、長辺は3mm以上が好ましく、5mm以上がより好ましい。特に好ましくは8~12mmである。
The molded body (M0) (laminate, laminate film) can be crushed using a crusher such as a known film crusher, and it is preferable that excessive heat caused by friction between the inside of the device and the molded body or fluff is not applied to the molded body or fluff so that the molded body and the crushed material (fluff) do not deteriorate due to heat.
The shape of the fluff is not particularly limited and is generally amorphous or polygonal, but a shape with approximately equal length and width is preferred to prevent the fluffs from becoming entangled, and a roughly rectangular shape is more preferred.
The size of the fluff is preferably 20 mm or less, more preferably 15 mm or less, on the long side, from the viewpoint of the penetration of the release agent (A) for dissolution and separation into the inside of the molded body (M0) from the end surface of the cut molded body (M0). Also, from the viewpoint of the difficulty of the fluff remaining in the cutting and crushing process and the ease of separation and recovery in the subsequent process of separating by specific gravity difference, the long side is preferably 3 mm or more, more preferably 5 mm or more. Particularly preferably, it is 8 to 12 mm.

以下、実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。
<原材料、各種フィルム>
実施例、比較例、参考例に用いた各種フィルムの構成は次の通りである。なお、ポリアミド6を「PA6」、ポリメタキシリレンアジパミドを「MXD6」、低密度ポリエチレンを「PE」、ドライラミネート用接着剤を「ad」と略記した。また「△△μm」は、層又はフィルムの厚みである。
また、樹脂の融点は、JIS K7121:2012に準拠して測定された値し、PA6は215℃、MXD6は237℃、PEは113℃であった。
The present invention will be specifically explained below using examples, but it is not limited to these.
<Raw materials, various films>
The structures of the various films used in the Examples, Comparative Examples, and Reference Examples are as follows. Polyamide 6 is abbreviated as "PA6", polymetaxylylene adipamide as "MXD6", low density polyethylene as "PE", and dry lamination adhesive as "ad". "△△μm" is the thickness of the layer or film.
The melting points of the resins were measured in accordance with JIS K7121:2012, and were 215°C for PA6, 237°C for MXD6, and 113°C for PE.

(ポリアミド系樹脂フィルム)
・a1: PA6(5.5μm)/MXD6(4.0μm)/PA6(5.5μm)、共押出二軸延伸フィルム、片面コロナ放電処理
・a2: PA6(10.5μm)/MXD6(4.0μm)/PA6(10.5μm)、共押出二軸延伸フィルム、片面コロナ放電処理
(Polyamide resin film)
a1: PA6 (5.5 μm) / MXD6 (4.0 μm) / PA6 (5.5 μm), coextruded biaxially stretched film, corona discharge treatment on one side a2: PA6 (10.5 μm) / MXD6 (4.0 μm) / PA6 (10.5 μm), coextruded biaxially stretched film, corona discharge treatment on one side

(シーラントフィルム)
・p1; PE(60μm)、未延伸フィルム、片面コロナ放電処理、「東洋紡社製リックス(登録商標)フィルム L4102」
・p2; PE(40μm)、未延伸フィルム、片面コロナ放電処理、「東洋紡社製リックス(登録商標)フィルム L4102」
(Sealant film)
p1: PE (60 μm), unstretched film, corona discharge treatment on one side, "Toyobo Rix (registered trademark) film L4102"
p2: PE (40 μm), unstretched film, corona discharge treatment on one side, "Toyobo Rix (registered trademark) film L4102"

(ドライラミネート用接着剤)
・ad; ポリエステル系ポリオールと脂肪族イソシアネートの2液系を用い、水酸基とイソシアネート基とのモル当量比を1.0で混合し、希釈溶媒に酢酸エチルを用い、乾燥後厚みは3μmとなるようにした。
(Dry lamination adhesive)
ad: A two-liquid system of polyester polyol and aliphatic isocyanate was used, mixed at a molar equivalent ratio of 1.0 between hydroxyl groups and isocyanate groups, and ethyl acetate was used as the dilution solvent so that the thickness after drying would be 3 μm.

<ポリアミド系樹脂組成物(R1)およびポリオレフィン系樹脂組成物(R2)の作製>
以下、実施例、比較例、参考例の要領で成形体、フラフを作製し、樹脂組成物(R1)、(R2)を得て、後述の評価を行った。
(実施例1)
コロナ放電処理面に5色(黒色、青色、赤色、黄色、白色)のグラビア印刷を施したポリアミド系樹脂フィルムa1の印刷面と、シーラントフィルムp1のコロナ放電処理面とを対向させ、ドライラミネート用接着剤(ad)を介して成形体(M0)(積層フィルム)を得た。得られた成形体(M0)は、フィルム用裁断機で粉砕し、長辺10mmの略方形状または多角形状のフラフを作製した。
<Preparation of polyamide-based resin composition (R1) and polyolefin-based resin composition (R2)>
Molded articles and fluffs were prepared in the manner described in the following Examples, Comparative Examples, and Reference Examples to obtain resin compositions (R1) and (R2), which were then evaluated as described below.
Example 1
The printed surface of the polyamide resin film a1, which had been subjected to gravure printing in five colors (black, blue, red, yellow, and white) on the corona discharge-treated surface, was placed opposite the corona discharge-treated surface of the sealant film p1, and a molded body (M0) (laminated film) was obtained via a dry lamination adhesive (ad). The obtained molded body (M0) was pulverized with a film cutter to produce fluffs of approximately rectangular or polygonal shape with long sides of 10 mm.

成形体(M0)のフラフからの再生樹脂組成物の分離は、N-メチル-2-ピロリドン70部、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド5部、水25部の組成の剥離剤(A)を用い、次の手順で行った。フラフ50gと剥離剤(A)2,000gとを混合し、浸漬及び攪拌を常圧条件下80℃の温度条件で3時間行った。その後、剥離剤(A)に不溶なフラフを取り出し、水で洗浄した。その後、水を溜めた水槽を用い、25℃の条件下で、比重1.00以下のフラフと比重1.00超のフラフとに区分した。またその後、60℃の送風で各フラフを乾燥した。
比重1.00未満のフラフとしてポリオレフィン系樹脂組成物(R2)の再生樹脂組成物を得て、比重1.00以上のフラフとしてポリアミド系樹脂組成物(R1)の再生樹脂組成物を得た。
The separation of the recycled resin composition from the fluff of the molded body (M0) was carried out using a release agent (A) having a composition of 70 parts of N-methyl-2-pyrrolidone, 5 parts of dimethylbis(2-hydroxyethyl)ammonium hydroxide, and 25 parts of water, according to the following procedure. 50 g of the fluff was mixed with 2,000 g of the release agent (A), and immersed and stirred at normal pressure and at a temperature of 80°C for 3 hours. Then, the fluff insoluble in the release agent (A) was taken out and washed with water. Then, using a water tank filled with water, the fluff was divided into fluff with a specific gravity of 1.00 or less and fluff with a specific gravity of more than 1.00 under conditions of 25°C. Then, each fluff was dried by blowing air at 60°C.
A recycled resin composition of polyolefin resin composition (R2) was obtained as fluff having a specific gravity of less than 1.00, and a recycled resin composition of polyamide resin composition (R1) was obtained as fluff having a specific gravity of 1.00 or more.

(実施例2)
コロナ放電処理面に4色(青色、赤色、黄色、白色)のグラビア印刷を施したポリアミド系樹脂フィルムa2の印刷面と、シーラントフィルムp2のコロナ放電処理面とを対向させ、ドライラミネート用接着剤を介して成形体(M0)(積層フィルム)を得た。得られた成形体(M0)は、フィルム用裁断機で粉砕し、長辺10mmの略方形状または多角形状のフラフを作製した。
Example 2
The printed surface of the polyamide resin film a2, which had been subjected to gravure printing in four colors (blue, red, yellow, and white) on the corona discharge-treated surface, was placed opposite the corona discharge-treated surface of the sealant film p2, and a molded body (M0) (laminated film) was obtained via a dry lamination adhesive. The obtained molded body (M0) was pulverized with a film cutter to produce fluffs of approximately rectangular or polygonal shape with long sides of 10 mm.

成形体(M0)のフラフからの再生樹脂組成物の分離は、実施例1と同様にして、比重1.00未満のフラフとしてポリオレフィン系樹脂組成物(R2)の再生樹脂組成物を得て、比重1.00以上のフラフとしてポリアミド系樹脂組成物(R1)の再生樹脂組成物を得た。 The recycled resin composition was separated from the fluff of the molded body (M0) in the same manner as in Example 1, to obtain a recycled resin composition of polyolefin-based resin composition (R2) as fluff with a specific gravity of less than 1.00, and a recycled resin composition of polyamide-based resin composition (R1) as fluff with a specific gravity of 1.00 or more.

<ポリアミド系樹脂成形体(M1)の作製>
(実施例3)
東洋精機製ラボプラストミル4C150を用い、表3に示す配合割合にて各成分を配合した。スクリュー回転速度50rpm、240℃、5分間、窒素雰囲気の条件で混錬した。得られた混錬物を、240℃に予熱した熱板により、50kg/cmの圧力下で8分間熱プレスを行い、圧力解放後、水冷して200μmのポリアミド系樹脂成形体(M1)を作製した。
<Preparation of polyamide resin molded body (M1)>
Example 3
Using a Labo Plastomill 4C150 manufactured by Toyo Seiki Seisakusho, each component was blended in the blending ratio shown in Table 3. The components were mixed in a nitrogen atmosphere at a screw rotation speed of 50 rpm and at 240°C for 5 minutes. The resulting mixture was hot-pressed for 8 minutes under a pressure of 50 kg/ cm2 using a hot plate preheated to 240°C, and after the pressure was released, the mixture was water-cooled to produce a polyamide resin molded product (M1) of 200 μm.

(実施例4)
東洋精機製ラボプラストミル4C150を用い、表3に示す配合割合にて各成分を配合した。実施例2で得られたR1を40質量%含む以外は、実施例3と同様の方法でポリアミド系樹脂成形体(M1)を作製した。
Example 4
Using a Labo Plastomill 4C150 manufactured by Toyo Seiki Seisakusho, the components were mixed in the mixing ratios shown in Table 3. A polyamide resin molded product (M1) was produced in the same manner as in Example 3, except that 40% by mass of R1 obtained in Example 2 was included.

(実施例5)
東洋精機製ラボプラストミル4C150を用い、表3に示す配合割合にて各成分を配合した。実施例2で得られたR1を100質量%含む以外は、実施例3と同様の方法でポリアミド系樹脂成形体(M1)を作製した。
Example 5
Using a Labo Plastomill 4C150 manufactured by Toyo Seiki Seisakusho, the components were mixed in the mixing ratios shown in Table 3. A polyamide resin molded product (M1) was produced in the same manner as in Example 3, except that 100% by mass of R1 obtained in Example 2 was contained.

(参考例1)
東洋精機製ラボプラストミル4C150を用い、表3に示す配合割合にて各成分を配合した。PAを100質量%含む以外は、実施例3と同様の方法でポリアミド系樹脂成形体を作製した。
(Reference Example 1)
Using a Labo Plastomill 4C150 manufactured by Toyo Seiki Seisakusho, the components were blended in the blending ratios shown in Table 3. A polyamide resin molded body was produced in the same manner as in Example 3, except that 100% by mass of PA was included.

<ポリオレフィン系樹脂成形体(M2)の作製>
(実施例6)
東洋精機製ラボプラストミル4C150を用い、表3に示す配合割合にて各成分を配合した。スクリュー回転速度50rpm、220℃、5分間、窒素雰囲気の条件で混錬した。得られた混錬物を、220℃に予熱した熱板により、50kg/cmの圧力下で8分間熱プレスを行い、圧力解放後、水冷して200μmのポリオレフィン系樹脂成形体(M2)を作製した。
<Preparation of polyolefin resin molded body (M2)>
Example 6
Using a Labo Plastomill 4C150 manufactured by Toyo Seiki Seisakusho, each component was blended in the blending ratio shown in Table 3. The components were mixed under the conditions of a screw rotation speed of 50 rpm, 220°C, and 5 minutes in a nitrogen atmosphere. The resulting mixture was hot-pressed for 8 minutes under a pressure of 50 kg/ cm2 using a hot plate preheated to 220°C, and after the pressure was released, it was cooled with water to produce a polyolefin resin molded body (M2) of 200 μm.

(参考例2)
東洋精機製ラボプラストミル4C150を用い、表3に示す配合割合にて各成分を配合した。PEを100質量%含む以外は、実施例6と同様の方法でポリオレフィン系樹脂成形体を作製した。
(Reference Example 2)
Using a Labo Plastomill 4C150 manufactured by Toyo Seiki Seisakusho, the components were blended in the blending ratios shown in Table 3. A polyolefin resin molded article was produced in the same manner as in Example 6, except that 100% by mass of PE was included.

<評価>
実施例1、2で得られた再生樹脂組成物について、以下の評価を行い、表1に纏めた。また、実施例1、2に使用したポリアミド系樹脂フィルムa1、a2、シーラントフィルムp1、p2単体についても、再生樹脂組成物の比較対象として、化学発光積算値、質量平均分子量、および、黄色度b*を評価した。
<Evaluation>
The recycled resin compositions obtained in Examples 1 and 2 were evaluated as follows, and the results are summarized in Table 1. In addition, the polyamide resin films a1 and a2 and the sealant films p1 and p2 used in Examples 1 and 2 were also evaluated for chemiluminescence integrated value, mass average molecular weight, and yellowness index b* as comparison objects of the recycled resin compositions.

(再生樹脂組成物の分離)
フーリエ変換赤外吸収分光分析により組成分析を行い標準スペクトルと対比し、分離再生したポリアミド系樹脂組成物(R1)とポリオレフィン系樹脂組成物(R2)との明確な分離ができたか否かを〇×で表1に記した。
(Separation of Recycled Resin Composition)
The composition was analyzed by Fourier transform infrared absorption spectroscopy and compared with a standard spectrum. Whether or not the separated and regenerated polyamide-based resin composition (R1) and polyolefin-based resin composition (R2) were clearly separated was indicated in Table 1 with a circle (○) or an X.

(樹脂組成物の粉末作製)
実施例1、2で得られたポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)について、ならびに、ポリアミド系樹脂フィルムa1、a2、シーラントフィルムp1、p2単体のそれぞれ、日本分析工業社製冷凍粉砕機を用い、[冷却5分間-粉砕5分間]のサイクルを2回行い、粉末状にした。
(Preparation of resin composition powder)
The polyamide-based resin compositions (R1) and polyolefin-based resin compositions (R2) obtained in Examples 1 and 2, as well as the polyamide-based resin films a1 and a2, and the sealant films p1 and p2 alone, were each powdered using a freezing and crushing machine manufactured by Japan Analytical Industry Co., Ltd., by performing two cycles of [cooling for 5 minutes - crushing for 5 minutes].

(ポリアミド系樹脂組成物(R1)の化学発光積算値)
JIS K7351:2018に準じ、ケミルミネッセンスアナライザーを用い、粉末状にしたポリアミド系樹脂組成物(R1)100mgを直径20mmのアルミ製カップに均一の厚さになるように入れ、窒素ガス雰囲気下で、50℃から150℃まで10℃/分で昇温し150℃で60分間保持したまでの間の化学発光積算値(counts)を測定した。また、バックグラウンド値を測定して差し引き、測定温度・時間範囲の化学発光量の合算値である化学発光積算値を求めた。
(Accumulated chemiluminescence value of polyamide resin composition (R1))
In accordance with JIS K7351:2018, 100 mg of the powdered polyamide resin composition (R1) was placed in an aluminum cup with a diameter of 20 mm to a uniform thickness using a chemiluminescence analyzer, and the temperature was raised from 50° C. to 150° C. at a rate of 10° C./min under a nitrogen gas atmosphere, and the chemiluminescence integrated value (counts) was measured during the period up to the time of holding at 150° C. for 60 minutes. In addition, the background value was measured and subtracted to obtain the chemiluminescence integrated value, which is the sum of the amount of chemiluminescence in the measurement temperature and time range.

(ポリオレフィン系樹脂組成物(R2)の化学発光積算値)
ケミルミネッセンスアナライザーの温度条件を50℃から200℃まで15℃/分で昇温し200℃で60分間保持する他は、ポリアミド系樹脂組成物(R1)と同様にしてポリオレフィン系樹脂組成物(R2)の化学発光積算値を求めた。
(Accumulated chemiluminescence value of polyolefin resin composition (R2))
The chemiluminescence integrated value of the polyolefin resin composition (R2) was determined in the same manner as for the polyamide resin composition (R1), except that the temperature conditions of the chemiluminescence analyzer were such that the temperature was increased from 50°C to 200°C at a rate of 15°C/min and then maintained at 200°C for 60 minutes.

(a1、a2、p1、p2の化学発光積算値)
実施例1、2に使用したポリアミド系樹脂フィルムa1、a2、シーラントフィルムp1、p2単体についても、再生樹脂組成物の比較対象として、同様に化学発光積算値を測定し、表2に纏めた。なお、ポリアミド系樹脂フィルムa1、a2については、ポリアミド系樹脂組成物(R1)の化学発光積算値の測定方法に準じており、シーラントフィルムp1、p2については、ポリオレフィン系樹脂組成物(R2)の化学発光積算値の測定方法に準じている。
(A1, a2, p1, and p2 chemiluminescence integrated values)
The polyamide resin films a1 and a2 and the sealant films p1 and p2 used in Examples 1 and 2 were also similarly measured for their integrated chemiluminescence values as comparative objects for the recycled resin compositions, and the results are summarized in Table 2. The polyamide resin films a1 and a2 were measured according to the method for measuring the integrated chemiluminescence values of the polyamide resin composition (R1), and the sealant films p1 and p2 were measured according to the method for measuring the integrated chemiluminescence values of the polyolefin resin composition (R2).

(ポリアミド系樹脂組成物(R1)の質量平均分子量)
ポリアミド系樹脂組成物(R1)にジクロロメタンと無水トリフルオロ酢酸を添加して室温下で攪拌して誘導体化(アシル化)し、次いで40℃の条件下で攪拌及び乾燥固化させ、誘導体化直後にゲルの発生していない状態の固化物を、溶離液テトラヒドロフランで溶解させ、その後10分間以内で膨潤していない液状態でゲル浸透クロマトグラフィー法、RI(示唆屈折)検出器を用い、濃度約10mg/3.4ml、注入量100μL、TSKgelガードカラム、流速1.0mL/分の条件で分析し、標準ポリスチレン換算で質量平均分子量を求めた。
(Weight average molecular weight of polyamide resin composition (R1))
Dichloromethane and trifluoroacetic anhydride were added to the polyamide resin composition (R1), and the mixture was stirred at room temperature to perform derivatization (acylation), followed by stirring and drying at 40°C to solidify. The solidified product in a state in which no gel had been generated immediately after the derivatization was dissolved in the eluent tetrahydrofuran, and within 10 minutes, the solidified product in a non-swollen liquid state was analyzed by gel permeation chromatography using an RI (refractive index) detector under conditions of a concentration of about 10 mg/3.4 ml, an injection amount of 100 μL, a TSKgel guard column, and a flow rate of 1.0 mL/min to determine the mass average molecular weight in terms of standard polystyrene.

(ポリオレフィン系樹脂組成物(R2)の質量平均分子量)
ポリオレフィン系樹脂組成物(R2)10mgを、135℃、0.5g/LのBHTを添加したo-ジクロロベンゼン 10gに溶解した後、東ソー社製の高温GPCシステムHLC-8321GPC/HTを用い、東ソー社製のカラムTSKgel guardcolumn HHR(30)HT(7.5mm I.D.×7.5cmL)+TSKgel GMHHR-H(20)HT(7.8mm I.D.×30cmL×3)を使用した。標準試料はポリスチレン用い、温度135℃の条件で、質量平均分子量(Mw)を求めた。また分子量は標準試料ポリスチレンを用いて作成した較正曲線を汎用較正曲線よりポリエチレン換算から変換した。
(Mass average molecular weight of polyolefin resin composition (R2))
10 mg of polyolefin resin composition (R2) was dissolved in 10 g of o-dichlorobenzene containing 0.5 g/L of BHT at 135 ° C., and then a high-temperature GPC system HLC-8321GPC/HT manufactured by Tosoh Corporation was used, and a column TSKgel guardcolumn HHR (30) HT (7.5 mm 2 ID x 7.5 cmL) + TSKgel GMHHR-H (20) HT (7.8 mm 2 ID x 30 cmL x 3) manufactured by Tosoh Corporation was used. The standard sample was polystyrene, and the mass average molecular weight (Mw) was determined under the condition of a temperature of 135 ° C. The molecular weight was also converted from polyethylene equivalent to a general-purpose calibration curve prepared using a standard sample polystyrene.

(ポリアミド系樹脂組成物(R1)およびポリオレフィン系樹脂組成物(R2)の黄色度)
粉末状にしたポリアミド系樹脂組成物(R1)およびポリオレフィン系樹脂組成物(R2)をアスクル製0.04mm厚無色透明チャック付き袋に入れ、JIS Z8722:2009に準じ、日本電色工業製簡易型分光色差計NF333機を用いて黄色度b*を測定した。
(Yellowness index of polyamide resin composition (R1) and polyolefin resin composition (R2))
The powdered polyamide-based resin composition (R1) and polyolefin-based resin composition (R2) were placed in a 0.04 mm thick colorless, transparent, zippered bag manufactured by Askul, and the yellowness index b* was measured using a simplified spectrophotometer NF333 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS Z8722:2009.

実際例3~6、参考例1、2で得られた成形体(M1)、(M2)についても、M1についてはR1と同様にして、また、M2についてはR2と同様にして、化学発光積算値および黄色度b*を測定し、表3に纏めた。また、引張破断強度、引張破断伸度、および、破壊エネルギーについては、以下の基準で評価して、それぞれ表3に纏めた。 For the molded bodies (M1) and (M2) obtained in Actual Examples 3 to 6 and Reference Examples 1 and 2, the chemiluminescence integrated value and yellowness index b* were measured for M1 in the same manner as for R1, and for M2 in the same manner as for R2, and the results are summarized in Table 3. In addition, the tensile breaking strength, tensile breaking elongation, and breaking energy were evaluated according to the following criteria, and the results are summarized in Table 3.

(引張試験)
JIS K7129:1999に準じて測定した。幅6mmのダンベル状の試験片をつかみ具間距離80.0mm、試験速度50mm/minにて試験し、引張破断強度、および引張破断伸度を測定した。ポリアミド系樹脂成形体(M1)は、引張強度が50MPa以上、引張破断伸度が200%以上のものを合格とし、ポリオレフィン系樹脂成形体(M2)は、引張強度が10MPa以上、引張破断伸度が150%以上のものを合格とした。
(Tensile test)
The measurements were made in accordance with JIS K7129:1999. Dumbbell-shaped test pieces with a width of 6 mm were tested at a gripping distance of 80.0 mm and a test speed of 50 mm/min to measure the tensile strength and elongation at break. The polyamide resin molded product (M1) was deemed to have passed the test if it had a tensile strength of 50 MPa or more and a tensile elongation at break of 200% or more, and the polyolefin resin molded product (M2) was deemed to have passed the test if it had a tensile strength of 10 MPa or more and a tensile elongation at break of 150% or more.

(ハイドロショット衝撃試験)
JIS K7211-2:2006に準じて、島津製作所社製ハイドロショット衝撃試験機HTM-1を用い、試験片をクランプで固定し、試験速度3m/sec、打抜治具1/2インチφ、ストライカ先端径1/2インチφ、打抜受台50mmφ、23℃雰囲気の条件で測定した際の破壊エネルギーを算出した。ポリアミド系樹脂成形体(M1)は、破壊エネルギーが1.5J以上のものを合格とし、ポリオレフィン系樹脂成形体(M2)は、破壊エネルギーが0.5J以上のものを合格とした。
(Hydroshot impact test)
In accordance with JIS K7211-2:2006, a hydroshot impact tester HTM-1 manufactured by Shimadzu Corporation was used to fix the test piece with a clamp, and the fracture energy was calculated when the test was performed under the conditions of a test speed of 3 m/sec, a punching jig of 1/2 inch φ, a striker tip diameter of 1/2 inch φ, a punching receiving table of 50 mm φ, and an atmosphere of 23° C. The polyamide resin molded body (M1) was deemed to have passed if its fracture energy was 1.5 J or more, and the polyolefin resin molded body (M2) was deemed to have passed if its fracture energy was 0.5 J or more.

<ポリアミド系樹脂組成物(R1)、ポリオレフィン系樹脂組成物(R2)>
実施例1、2では、ドライラミネート用接着剤層が溶解し、印刷層がある場合は該印刷層が溶解または剥離し、分離再生したポリアミド系樹脂組成物(R1)とポリオレフィン系樹脂組成物(R2)とを明確に分離して得ることができた。
実施例1、2のポリアミド系樹脂フィルムa1を構成したPA6とMXD6は、ポリアミド樹脂フィルム組成物(R1)として両者を含む状態で得られた。
<Polyamide-based resin composition (R1) and polyolefin-based resin composition (R2)>
In Examples 1 and 2, the dry lamination adhesive layer dissolved, and if a printed layer was present, the printed layer dissolved or peeled off, and the polyamide-based resin composition (R1) and the polyolefin-based resin composition (R2) were clearly separated and regenerated.
The PA6 and MXD6 constituting the polyamide resin film a1 in Examples 1 and 2 were obtained in a state in which both were contained as a polyamide resin film composition (R1).

実施例1で得られたポリアミド系樹脂組成物(R1)は、化学発光積算値16,891,852counts、質量平均分子量55,300、黄色度b*2.0であり、酸化劣化の程度は軽微であり、また他樹脂の混入は無く、再生原料としてフィルム、包装体などに利用できるものであった。 The polyamide resin composition (R1) obtained in Example 1 had a chemiluminescence integrated value of 16,891,852 counts, a mass average molecular weight of 55,300, and a yellowness index b* of 2.0. The degree of oxidative deterioration was slight, and no other resins were mixed in. The composition could be used as a recycled raw material for films, packaging, etc.

実施例1で得られたポリオレフィン系樹脂組成物(R2)は、化学発光積算値9,966,109countsで、酸化劣化の程度は軽微であり、また他樹脂の混入は無く、再生原料としてフィルム、包装体などに利用できるものであった。 The polyolefin resin composition (R2) obtained in Example 1 had an integrated chemiluminescence value of 9,966,109 counts, and the degree of oxidative degradation was slight. In addition, no other resins were mixed in, and the composition could be used as a recycled raw material for films, packaging, etc.

実施例2で得られたポリアミド系樹脂組成物(R1)は、化学発光積算値3,545,484counts、質量平均分子量73,500、黄色度b*8.94であり、酸化劣化の程度は軽微であり、また他樹脂の混入は無く、再生原料としてフィルム、包装体などに利用できるものであった。 The polyamide resin composition (R1) obtained in Example 2 had a chemiluminescence integrated value of 3,545,484 counts, a mass average molecular weight of 73,500, and a yellowness index b* of 8.94. The degree of oxidative deterioration was slight, and no other resins were mixed in. The composition could be used as a recycled raw material for films, packaging, etc.

実施例2で得られたポリオレフィン系樹脂組成物(R2)は、化学発光積算値794,987counts、質量平均分子量83,308、黄色度b*1.21であり、酸化劣化の程度は軽微であり、また他樹脂の混入は無く、再生原料としてフィルム、包装体などに利用できるものであった。 The polyolefin resin composition (R2) obtained in Example 2 had a chemiluminescence integrated value of 794,987 counts, a mass average molecular weight of 83,308, and a yellowness index b* of 1.21. The degree of oxidative deterioration was slight, and no other resins were mixed in. The composition could be used as a recycled raw material for films, packaging, etc.

<ポリアミド系樹脂成形体(M1)、ポリオレフィン系樹脂成形体(M2)>
実施例3~5で得られたポリアミド系樹脂組成物(M1)は、化学発光積算値、黄色度b*が所定の範囲内であり、酸化劣化の程度は軽微であり、また、引張破断強度、引張破断伸度、および、破壊エネルギーが所望以上であり、再生原料を含む包装体として好適なものであった。
<Polyamide-based resin molded body (M1), polyolefin-based resin molded body (M2)>
The polyamide resin compositions (M1) obtained in Examples 3 to 5 had a chemiluminescence integrated value and a yellowness index b* within the specified range, a slight degree of oxidative deterioration, and tensile breaking strength, tensile breaking elongation, and fracture energy that were greater than the desired levels, and were therefore suitable for use as packaging materials containing recycled raw materials.

実施例6で得られたポリオレフィン系樹脂組成物(M2)は、化学発光積算値、黄色度b*が所定の範囲内であり、酸化劣化の程度は軽微であり、また、引張破断強度、引張破断伸度、および、破壊エネルギーが所望以上であり、再生原料を含む包装体として好適なものであった。 The polyolefin resin composition (M2) obtained in Example 6 had a chemiluminescence integrated value and yellowness index b* within the specified range, a slight degree of oxidative deterioration, and tensile breaking strength, tensile breaking elongation, and fracture energy that were above the desired levels, making it suitable for use as a package containing recycled raw materials.

本発明により、成形体から再利用可能な再生ポリアミド系樹脂組成物を得ることができ、また、再利用可能な再生ポリオレフィン系樹脂組成物も得ることができる。これらの再生樹脂組成物は、酸や100℃を超える高温工程を用いずに得られるため、劣化を抑制することができ、フィルム等の成形体の再利用に有効である。
包装材に多用されるドライラミネートされた積層フィルムから、使用量の多大なポリアミド系樹脂、ポリオレフィン系樹脂をリサイクルして使用できることは、サーキュラー・エコノミー、循環型社会の構築に大いに役立つものである。
According to the present invention, a reusable recycled polyamide-based resin composition can be obtained from a molded body, and a reusable recycled polyolefin-based resin composition can also be obtained. These recycled resin compositions can be obtained without using acids or high-temperature processes exceeding 100° C., so that deterioration can be suppressed and they are effective for reusing molded bodies such as films.
The ability to recycle and reuse polyamide and polyolefin resins, which are used in large quantities in dry-laminated films that are widely used in packaging, will be of great help in building a circular economy and a recycling-oriented society.

Claims (13)

脂肪族ポリアミド、芳香族ポリアミド、半芳香族ポリアミドから選ばれる少なくとも1種のポリアミド系樹脂を含む成形体(M0)からの極性溶媒と第四級アンモニウム塩、水とを含有する剥離剤(A)による分離物を含み、該分離物が脂肪族ポリアミド、芳香族ポリアミド、半芳香族ポリアミドから選ばれる少なくとも1種のポリアミド系樹脂を含み、質量平均分子量が40,000以上100,000以下であり、JIS K7351:2018に準じ、窒素ガス雰囲気下、50℃から10℃/分で昇温し150℃で60分間保持したまでの間の化学発光積算値が3,500,000~20,000,000countsであることを特徴とするポリアミド系樹脂組成物(R1)。 A polyamide-based resin composition (R1) comprising a product separated from a molded article (M0) containing at least one polyamide-based resin selected from aliphatic polyamides, aromatic polyamides, and semi-aromatic polyamides using a release agent (A) containing a polar solvent, a quaternary ammonium salt, and water, wherein the separated product comprises at least one polyamide-based resin selected from aliphatic polyamides, aromatic polyamides, and semi-aromatic polyamides, has a mass average molecular weight of 40,000 or more and 100,000 or less, and exhibits a chemiluminescence integrated value of 3,500,000 to 20,000,000 counts during a temperature increase from 50°C at a rate of 10°C/min under a nitrogen gas atmosphere and a retention time of 60 minutes at 150°C in accordance with JIS K7351:2018. 前記成形体(M0)からの分離物が、100℃以下で分離した分離物である、請求項1に記載のポリアミド系樹脂組成物(R1)。 The polyamide resin composition (R1) according to claim 1, wherein the separated product from the molded body (M0) is separated at 100°C or less. 前記成形体(M0)が、接着剤層を含む積層体である、請求項1または2に記載のポリアミド系樹脂組成物(R1)。 The polyamide resin composition (R1) according to claim 1 or 2, wherein the molded body (M0) is a laminate including an adhesive layer. 前記接着剤層が、ポリエステル系接着剤を含む、請求項3に記載のポリアミド系樹脂組成物(R1)。 The polyamide resin composition (R1) according to claim 3, wherein the adhesive layer contains a polyester adhesive. 前記ポリエステル系接着剤が、ポリエステル系ポリオールと脂肪族イソシアネートの2液系である、請求項4に記載のポリアミド系樹脂組成物(R1)。 The polyamide resin composition (R1) according to claim 4, wherein the polyester adhesive is a two-component system of a polyester polyol and an aliphatic isocyanate. フラフ又はペレットである、請求項1~の何れか1項に記載のポリアミド系樹脂組成物(R1)。 The polyamide resin composition (R1) according to any one of claims 1 to 5 , which is in the form of fluff or pellets. 黄色度b*が1.0以上30.0以下である、請求項1~の何れか1項に記載のポリアミド系樹脂組成物(R1)。 The polyamide resin composition (R1) according to any one of claims 1 to 6 , wherein the yellowness index b* is 1.0 or more and 30.0 or less. 請求項1~の何れか1項に記載のポリアミド系樹脂組成物(R1)の含有率が1質量%以上100質量%以下である、ポリアミド系樹脂成形体(M1)。 A polyamide-based resin molded product (M1), having a content of the polyamide-based resin composition (R1) according to any one of claims 1 to 7 in a range of 1 mass% to 100 mass%. 形状がフィルム又はシートである、請求項に記載のポリアミド系樹脂成形体(M1)。 The polyamide resin molded product (M1) according to claim 8 , which has a shape of a film or sheet. 黄色度b*が1.0以上30.0以下である、請求項またはに記載のポリアミド系樹脂成形体(M1)。 The polyamide resin molded product (M1) according to claim 8 or 9 , having a yellowness index b* of 1.0 or more and 30.0 or less. 前記成形体(M1)を100質量%とする場合に、さらに酸化防止剤及び/又は熱安定化剤を1質量%以上20質量%以下含む、請求項10の何れか1項に記載のポリアミド系樹脂成形体(M1)。 The polyamide-based resin molded body (M1) according to any one of claims 8 to 10 , further comprising 1 mass% to 20 mass% of an antioxidant and/or a heat stabilizer, where the molded body (M1) is taken as 100 mass%. 請求項11の何れか1項に記載のポリアミド系樹脂成形体(M1)を用いてなる包装体。 A packaging body comprising the polyamide resin molded body (M1) according to any one of claims 8 to 11 . 少なくともポリアミド系樹脂層及び接着剤層(ただし、水性媒体中に可溶なデンプン成形材料より成る剥離接着層を除く。)を含む積層体からなる成形体からの極性溶媒と第四級アンモニウム塩、水とを含有する剥離剤(A)による分離物を含むフラフ又はペレットであって、
前記フラフ又はペレットは、脂肪族ポリアミド、芳香族ポリアミド、半芳香族ポリアミドから選ばれる少なくとも1種のポリアミド系樹脂含み、前記ポリアミド系樹脂の質量平均分子量が40,000以上100,000以下であり、JIS K7351:2018に準じ、窒素ガス雰囲気下、50℃から10℃/分で昇温し150℃で60分間保持したまでの間の化学発光積算値が3,500,000~20,000,000countsであるポリアミド系樹脂フラフ又はペレット。
A fluff or pellet containing a material separated from a molded product consisting of a laminate including at least a polyamide-based resin layer and an adhesive layer (excluding a peelable adhesive layer made of a starch molding material soluble in an aqueous medium) by a release agent (A) containing a polar solvent, a quaternary ammonium salt, and water,
The fluff or pellet contains at least one polyamide-based resin selected from aliphatic polyamides, aromatic polyamides, and semi-aromatic polyamides, the polyamide-based resin having a mass average molecular weight of 40,000 or more and 100,000 or less, and the polyamide-based resin fluff or pellet has a chemiluminescence integrated value of 3,500,000 to 20,000,000 counts during a temperature increase from 50°C at a rate of 10°C/min under a nitrogen gas atmosphere and a retention time of 60 minutes at 150°C in accordance with JIS K7351:2018.
JP2022010986A 2021-03-24 2022-01-27 Resin composition, molded body, packaged body, and method for producing resin composition Active JP7512316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024102295A JP2024127901A (en) 2021-03-24 2024-06-25 Resin composition, molded body, packaged body, and method for producing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021050565 2021-03-24
JP2021050565 2021-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024102295A Division JP2024127901A (en) 2021-03-24 2024-06-25 Resin composition, molded body, packaged body, and method for producing resin composition

Publications (2)

Publication Number Publication Date
JP2022151607A JP2022151607A (en) 2022-10-07
JP7512316B2 true JP7512316B2 (en) 2024-07-08

Family

ID=83465282

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022010986A Active JP7512316B2 (en) 2021-03-24 2022-01-27 Resin composition, molded body, packaged body, and method for producing resin composition
JP2024102295A Pending JP2024127901A (en) 2021-03-24 2024-06-25 Resin composition, molded body, packaged body, and method for producing resin composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024102295A Pending JP2024127901A (en) 2021-03-24 2024-06-25 Resin composition, molded body, packaged body, and method for producing resin composition

Country Status (1)

Country Link
JP (2) JP7512316B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320890B1 (en) * 2022-05-18 2023-08-04 共栄社化学株式会社 Pretreatment Agent for Recovery of Multilayered Resin Molded Body and Pretreatment Method for Recovery of Multilayered Resin Molded Body
WO2023223466A1 (en) * 2022-05-18 2023-11-23 共栄社化学株式会社 Multilayer resin molded product recovery pretreatment agent, and pretreatment method for recovery of multilayer resin molded product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059516A1 (en) 2018-09-19 2020-03-26 Dic株式会社 Method for separating and recovering layered film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125217C2 (en) * 1991-07-30 1995-02-02 Inventa Ag Multilayer molding, adhesive layer (s) for the same and use of this multilayer molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059516A1 (en) 2018-09-19 2020-03-26 Dic株式会社 Method for separating and recovering layered film

Also Published As

Publication number Publication date
JP2024127901A (en) 2024-09-20
JP2022151607A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
JP2024127901A (en) Resin composition, molded body, packaged body, and method for producing resin composition
TWI781086B (en) Laminated Sheets and Formed Containers
US5089353A (en) Multi-layer material having gas barrier properties
US20070120283A1 (en) Polypropylene films employing recycled commercially used polypropylene based films and labels
CN105051098B (en) Oxygen removes plastic material
KR102261130B1 (en) Polyethylene Multi-film for super-impact resistant eco-friendly packaing of ice packs and ice packs containing the same
CN107848657B (en) Cup-shaped multilayer container
WO2020136674A1 (en) Recyclable laminate
CN111433000A (en) Polyamide film and method for producing same
US20080233413A1 (en) Polypropylene films employing recycled commercially used polypropylene based films and labels
JP2003305817A (en) Multilayered film or sheet
CA2605628C (en) Biaxially stretched, multi-layereded polyamide film and production method thereof
US20070160806A1 (en) Layered polyamide film
US20110288266A1 (en) Heat-shrinkable film
WO2023054541A1 (en) Method for recovering cyclic olefin resin
KR20240123804A (en) Biaxially stretched polyamide film roll
JPS63114645A (en) Heating oriented multilayer structure
JP2009154294A (en) Biaxially oriented laminated polyamide film
TW202142607A (en) Biaxially stretched polyamide film, laminate film, and packaging body
JP2023009437A (en) Battery packaging laminate
EP2535185B1 (en) Multilayer film made of recyclable plastic material, container comprising said film and related package
CN110462715B (en) Heat-shrinkable label, package, and method for producing heat-shrinkable label
EP4427937A1 (en) Multilayered biodegradable barrier film, manufacturing method therefor, and eco-friendly packaging material comprising same
WO2023031971A1 (en) Polyester based monomaterial film as &#34;sustainable alternate&#34; to multilayered laminates
WO2021229922A1 (en) Biaxially stretched polyamide film

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240626