JP7594368B2 - Method for producing bifunctional cyclic carbonate having a spiro structure and method for producing polyhydroxyurethane - Google Patents
Method for producing bifunctional cyclic carbonate having a spiro structure and method for producing polyhydroxyurethane Download PDFInfo
- Publication number
- JP7594368B2 JP7594368B2 JP2020083001A JP2020083001A JP7594368B2 JP 7594368 B2 JP7594368 B2 JP 7594368B2 JP 2020083001 A JP2020083001 A JP 2020083001A JP 2020083001 A JP2020083001 A JP 2020083001A JP 7594368 B2 JP7594368 B2 JP 7594368B2
- Authority
- JP
- Japan
- Prior art keywords
- polyhydroxyurethane
- reaction
- compound
- group
- mmol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000005676 cyclic carbonates Chemical class 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 55
- 230000001588 bifunctional effect Effects 0.000 title claims description 43
- 125000003003 spiro group Chemical group 0.000 title claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 117
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 95
- -1 diaryl carbonate Chemical compound 0.000 claims description 70
- 150000004985 diamines Chemical class 0.000 claims description 43
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical group C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 37
- 238000006116 polymerization reaction Methods 0.000 claims description 27
- 125000002947 alkylene group Chemical group 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- HSCKPPVOYSXXTJ-UHFFFAOYSA-N 2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-dione Chemical group C1OC(=O)OCC21COC(=O)OC2 HSCKPPVOYSXXTJ-UHFFFAOYSA-N 0.000 claims description 13
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 description 143
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 94
- 239000007787 solid Substances 0.000 description 30
- 239000000203 mixture Substances 0.000 description 27
- 238000005160 1H NMR spectroscopy Methods 0.000 description 26
- 238000005259 measurement Methods 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 23
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 22
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 17
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 16
- 239000002904 solvent Substances 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 12
- 238000007086 side reaction Methods 0.000 description 11
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 10
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 9
- 238000004566 IR spectroscopy Methods 0.000 description 8
- 239000007795 chemical reaction product Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 7
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 7
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- FEZYBKRIYUMPNT-UHFFFAOYSA-N ethyl n,n-dihydroxycarbamate Chemical class CCOC(=O)N(O)O FEZYBKRIYUMPNT-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 238000007142 ring opening reaction Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000001226 reprecipitation Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- IPKKHRVROFYTEK-UHFFFAOYSA-N dipentyl phthalate Chemical compound CCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCC IPKKHRVROFYTEK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- MQHNKCZKNAJROC-UHFFFAOYSA-N dipropyl phthalate Chemical compound CCCOC(=O)C1=CC=CC=C1C(=O)OCCC MQHNKCZKNAJROC-UHFFFAOYSA-N 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- YSIMAPNUZAVQER-UHFFFAOYSA-N octanenitrile Chemical compound CCCCCCCC#N YSIMAPNUZAVQER-UHFFFAOYSA-N 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- OBDUMNZXAIUUTH-HWKANZROSA-N (e)-tetradec-2-ene Chemical group CCCCCCCCCCC\C=C\C OBDUMNZXAIUUTH-HWKANZROSA-N 0.000 description 1
- JXTGICXCHWMCPM-UHFFFAOYSA-N (methylsulfinyl)benzene Chemical compound CS(=O)C1=CC=CC=C1 JXTGICXCHWMCPM-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XUKSWKGOQKREON-UHFFFAOYSA-N 1,4-diacetoxybutane Chemical compound CC(=O)OCCCCOC(C)=O XUKSWKGOQKREON-UHFFFAOYSA-N 0.000 description 1
- FILVIKOEJGORQS-UHFFFAOYSA-N 1,5-dimethylpyrrolidin-2-one Chemical compound CC1CCC(=O)N1C FILVIKOEJGORQS-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- LOWMYOWHQMKBTM-UHFFFAOYSA-N 1-butylsulfinylbutane Chemical compound CCCCS(=O)CCCC LOWMYOWHQMKBTM-UHFFFAOYSA-N 0.000 description 1
- QPKGDTBMWSPKDT-UHFFFAOYSA-N 1-methylsulfinylbutane Chemical compound CCCCS(C)=O QPKGDTBMWSPKDT-UHFFFAOYSA-N 0.000 description 1
- VTRRCXRVEQTTOE-UHFFFAOYSA-N 1-methylsulfinylethane Chemical compound CCS(C)=O VTRRCXRVEQTTOE-UHFFFAOYSA-N 0.000 description 1
- WOBARLJSXVAEGX-UHFFFAOYSA-N 1-methylsulfinylpropane Chemical compound CCCS(C)=O WOBARLJSXVAEGX-UHFFFAOYSA-N 0.000 description 1
- BQCCJWMQESHLIT-UHFFFAOYSA-N 1-propylsulfinylpropane Chemical compound CCCS(=O)CCC BQCCJWMQESHLIT-UHFFFAOYSA-N 0.000 description 1
- LNWWQYYLZVZXKS-UHFFFAOYSA-N 1-pyrrolidin-1-ylethanone Chemical compound CC(=O)N1CCCC1 LNWWQYYLZVZXKS-UHFFFAOYSA-N 0.000 description 1
- 125000001894 2,4,6-trinitrophenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1[N+]([O-])=O)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- MPAGVACEWQNVQO-UHFFFAOYSA-N 3-acetyloxybutyl acetate Chemical compound CC(=O)OC(C)CCOC(C)=O MPAGVACEWQNVQO-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- JRFXQKZEGILCCO-UHFFFAOYSA-N 5,5-dimethyl-1,3-dioxan-2-one Chemical compound CC1(C)COC(=O)OC1 JRFXQKZEGILCCO-UHFFFAOYSA-N 0.000 description 1
- ZMFWEWMHABZQNB-UHFFFAOYSA-N 6-acetyloxyhexyl acetate Chemical compound CC(=O)OCCCCCCOC(C)=O ZMFWEWMHABZQNB-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- JJHHIJFTHRNPIK-UHFFFAOYSA-N Diphenyl sulfoxide Chemical compound C=1C=CC=CC=1S(=O)C1=CC=CC=C1 JJHHIJFTHRNPIK-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 101000860173 Myxococcus xanthus C-factor Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- DJVJYUSJJPGJQA-UHFFFAOYSA-N bis(2,3-diethylphenyl) carbonate Chemical compound CCC1=CC=CC(OC(=O)OC=2C(=C(CC)C=CC=2)CC)=C1CC DJVJYUSJJPGJQA-UHFFFAOYSA-N 0.000 description 1
- XNSRUXGNTBMMNV-UHFFFAOYSA-N bis(2-ethyl-3-methylphenyl) carbonate Chemical compound CCC1=C(C)C=CC=C1OC(=O)OC1=CC=CC(C)=C1CC XNSRUXGNTBMMNV-UHFFFAOYSA-N 0.000 description 1
- POZGCGJFBOZPCM-UHFFFAOYSA-N bis(2-methylphenyl) carbonate Chemical compound CC1=CC=CC=C1OC(=O)OC1=CC=CC=C1C POZGCGJFBOZPCM-UHFFFAOYSA-N 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- JBSLOWBPDRZSMB-BQYQJAHWSA-N dibutyl (e)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C\C(=O)OCCCC JBSLOWBPDRZSMB-BQYQJAHWSA-N 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 125000004188 dichlorophenyl group Chemical group 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 125000004212 difluorophenyl group Chemical group 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- 125000005805 dimethoxy phenyl group Chemical group 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- MBHINSULENHCMF-UHFFFAOYSA-N n,n-dimethylpropanamide Chemical compound CCC(=O)N(C)C MBHINSULENHCMF-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 125000005062 perfluorophenyl group Chemical group FC1=C(C(=C(C(=C1F)F)F)F)* 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000008301 phosphite esters Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000004360 trifluorophenyl group Chemical group 0.000 description 1
- 125000001680 trimethoxyphenyl group Chemical group 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Landscapes
- Polyurethanes Or Polyureas (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Description
本発明は、スピロ構造を有する二官能性環状カーボナートの製造方法及びポリヒドロキシウレタンの製造方法に関する。 The present invention relates to a method for producing a bifunctional cyclic carbonate having a spiro structure and a method for producing polyhydroxyurethane.
二官能性環状カーボナートとジアミンとの開環重付加反応により合成されるポリヒドロキシウレタン(PHU)は、ジイソシアネートを用いないポリウレタン(PU)の新規な合成法として近年注目を集めている。また、この反応は開環する環状カーボナートの構造に起因して側鎖に第一級から第三級のヒドロキシ基が生成するため、PHUの側鎖を様々に修飾できる。しかし、ほとんどの二官能性の五員環及び六員環環状カーボナートは、2つの環状カーボナートをリンカーで連結する必要があり、その合成には数段階のステップを要する。また、五員環環状カーボナートに比べ、六員環環状カーボナートの方がアミンとの反応性が高いことが知られている。 Polyhydroxyurethane (PHU), synthesized by ring-opening polyaddition reaction of bifunctional cyclic carbonate with diamine, has attracted attention in recent years as a new method for synthesizing polyurethane (PU) without using diisocyanate. In addition, this reaction generates primary to tertiary hydroxyl groups in the side chain due to the structure of the ring-opening cyclic carbonate, so the side chain of PHU can be modified in various ways. However, most bifunctional five-membered and six-membered cyclic carbonates require two cyclic carbonates to be linked with a linker, and their synthesis requires several steps. It is also known that six-membered cyclic carbonates are more reactive with amines than five-membered cyclic carbonates.
一方、安価なポリオールであるペンタエリトリトール(PE)とジエチルカーボナート(炭酸ジメチル;DMC)の反応により1段階で合成可能な二官能性環状カーボナート2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneは、2つの六員環環状カーボナートからなるスピロ構造を有するため、リンカー部位を必要としない。さらに、2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneとアミンとの開環反応では、対称性の低い二官能性環状カーボナートと異なり、第一級のヒドロキシ基のみが生成する。例えば、特許文献1には、PEと、2,2,2-Trichloethyl Chloroformate(TrocCl)と、を反応させて、2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneが得られることが開示されている。
On the other hand, the bifunctional
しかしながら、PEとDMCとの反応には触媒が必要であり、且つ、煩雑な精製手順を必要とする。PEとTrocClとの反応では、TrocClは、有毒なホスゲン由来であり、また、塩素成分が含まれるため、着色等の原因となる。 However, the reaction between PE and DMC requires a catalyst and a complicated purification procedure. In the reaction between PE and TrocCl, TrocCl is derived from toxic phosgene and contains chlorine components, which can cause discoloration.
本発明は、上記事情に鑑みてなされたものであって、簡便且つ収率が向上した二官能性環状カーボナートの製造方法及び前記二官能性環状カーボナートを用いた新規のポリヒドロキシウレタンの製造方法を提供する。 The present invention has been made in consideration of the above circumstances, and provides a simple method for producing a bifunctional cyclic carbonate with improved yield, and a novel method for producing polyhydroxyurethane using the bifunctional cyclic carbonate.
すなわち、本発明は、以下の態様を含む。
(1) ペンタエリトリトールと炭酸ジアリールとを反応させて、スピロ構造を有する二官能性環状カーボナートを得る反応工程を含み、
前記スピロ構造を有する二官能性環状カーボナートが2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneであり、
前記反応工程において、触媒を用いない、スピロ構造を有する二官能性環状カーボナートの製造方法。
(2) 前記反応工程において、40℃以上100℃以下で反応を行う、(1)に記載の製造方法。
(3) 前記反応工程において、50℃以上100℃以下で反応を行う、(1)又は(2)に記載の製造方法。
(4) 前記反応工程において、ペンタエリトリトールに対する炭酸ジアリールのモル比が2/1以上10/1以下である、(1)~(3)のいずれか一つに記載の製造方法。
(5) 前記反応工程において、ペンタエリトリトールに対する炭酸ジアリールのモル比が4/1以上10/1以下である、(1)~(4)のいずれか一つに記載の製造方法。
(6) 前記反応工程において、ペンタエリトリトールの濃度が反応溶液の総容量に対して、10mmol/L以上100mmol/L以下である、(1)~(5)のいずれか一つに記載の製造方法。
(7) 前記反応工程において、ペンタエリトリトールの濃度が反応溶液の総容量に対して、10mmol/L以上80mmol/L以下である、(1)~(6)のいずれか一つに記載の製造方法。
(8) 前記炭酸ジアリールが炭酸ジフェニルである、(1)~(7)のいずれか一つに記載の製造方法。
(9) (1)~(8)のいずれか一項に記載の製造方法により、スピロ構造を有する二官能性環状カーボナートを製造し、前記スピロ構造を有する二官能性環状カーボナートと、下記一般式(Ia)で表されるジアミンとを反応させて、ポリヒドロキシウレタンを得る重合工程を含み、
前記スピロ構造を有する二官能性環状カーボナートが2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneである、ポリヒドロキシウレタンの製造方法。
That is, the present invention includes the following aspects.
(1) A reaction step of reacting pentaerythritol with a diaryl carbonate to obtain a bifunctional cyclic carbonate having a spiro structure,
The bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione,
A method for producing a bifunctional cyclic carbonate having a spiro structure, the method comprising the step of :
(2 ) The method according to (1) , wherein the reaction is carried out at a temperature of 40° C. or higher and 100° C. or lower in the reaction step.
( 3 ) The method according to (1) or (2) , wherein the reaction is carried out at a temperature of 50° C. or higher and 100° C. or lower in the reaction step.
( 4 ) The method according to any one of (1) to ( 3 ), wherein in the reaction step, a molar ratio of the diaryl carbonate to pentaerythritol is 2/1 or more and 10/1 or less.
( 5 ) The method according to any one of (1) to ( 4 ), wherein in the reaction step, a molar ratio of the diaryl carbonate to pentaerythritol is 4/1 or more and 10/1 or less.
( 6 ) The method according to any one of (1) to ( 5 ), wherein in the reaction step, the concentration of pentaerythritol is 10 mmol/L or more and 100 mmol/L or less with respect to the total volume of the reaction solution.
( 7 ) The method according to any one of (1) to ( 6 ), wherein in the reaction step, the concentration of pentaerythritol is 10 mmol/L or more and 80 mmol/L or less with respect to the total volume of the reaction solution.
( 8 ) The method according to any one of (1) to ( 7 ), wherein the diaryl carbonate is diphenyl carbonate.
( 9 ) A method for producing a bifunctional cyclic carbonate having a spiro structure by the method according to any one of (1) to (8), and reacting the bifunctional cyclic carbonate having a spiro structure with a diamine represented by the following general formula (Ia) to obtain a polyhydroxyurethane,
The method for producing polyhydroxyurethane, wherein the bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione.
(一般式(Ia)において、Xは、アルキレン基、アラルキレン基又は-R11-Ar11-R12-で表される基である。Ar11は2価の芳香族炭化水素基であり、R11及びR12はそれぞれ独立に、炭素数1以上20以下のアルキレン基である。) (In general formula (Ia), X is an alkylene group, an aralkylene group, or a group represented by -R 11 -Ar 11 -R 12 -. Ar 11 is a divalent aromatic hydrocarbon group, and R 11 and R 12 are each independently an alkylene group having 1 to 20 carbon atoms.)
(10) 前記重合工程において、5℃以下で重合反応を行い、分岐構造を有するポリヒドロキシウレタンの含有量がポリヒドロキシウレタンの総モル量に対して4モル%以下となるように制御する、(9)に記載の製造方法。
(11) 前記重合工程において、50℃以上で重合反応を行い、分岐構造を有するポリヒドロキシウレタンの含有量がポリヒドロキシウレタンの総モル量に対して11モル%以上となるように制御する、(9)に記載の製造方法。
( 10 ) The method according to ( 9 ), wherein in the polymerization step, the polymerization reaction is carried out at 5° C. or less, and the content of polyhydroxyurethane having a branched structure is controlled to be 4 mol % or less based on the total molar amount of polyhydroxyurethane.
( 11 ) The method according to ( 9 ), wherein in the polymerization step, the polymerization reaction is carried out at 50° C. or higher, and the content of polyhydroxyurethane having a branched structure is controlled to be 11 mol % or higher relative to the total molar amount of polyhydroxyurethane.
上記態様の二官能性環状カーボナートの製造方法によれば、簡便且つ収率が向上した二官能性環状カーボナートの製造方法を提供することができる。上記態様のポリヒドロキシウレタンの製造方法によれば、新規のポリヒドロキシウレタンを得ることができる。 The above-described method for producing a bifunctional cyclic carbonate can provide a method for producing a bifunctional cyclic carbonate that is simple and has an improved yield. The above-described method for producing a polyhydroxyurethane can produce a novel polyhydroxyurethane.
以下、本発明を実施するための形態(以下、「本実施形態」と略記する)について詳細に説明する。なお、本発明は、以下の実施の形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The following describes in detail the form for carrying out the present invention (hereinafter abbreviated as "the present embodiment"). Note that the present invention is not limited to the following embodiment, and can be carried out in various modifications within the scope of the gist of the invention.
<二官能性環状カーボナートの製造方法>
本実施形態のスピロ構造を有する二官能性環状カーボナートの製造方法(以下、「本実施形態の二官能性環状カーボナートの製造方法」ともいう)は、ペンタエリトリトール(PE)と炭酸ジアリールとを反応させて、スピロ構造を有する二官能性環状カーボナートを得る反応工程を含む。前記スピロ構造を有する二官能性環状カーボナートが2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneである。2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneは、下記式(I)で表される化合物(以下、「化合物(I)」と称する場合がある。)である。化合物(I)のCAS番号は、84056-48-4である。
<Method for producing bifunctional cyclic carbonate>
The method for producing a bifunctional cyclic carbonate having a spiro structure according to the present embodiment (hereinafter also referred to as "the method for producing a bifunctional cyclic carbonate according to the present embodiment") includes a reaction step of reacting pentaerythritol (PE) with a diaryl carbonate to obtain a bifunctional cyclic carbonate having a spiro structure. The bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione. 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione is a compound represented by the following formula (I) (hereinafter sometimes referred to as "compound (I)"). The CAS number of compound (I) is 84056-48-4.
従来の二官能性環状カーボナートの製造方法では、PEと炭酸ジメチルとを、触媒(1,4-Diazabicyclo[2.2.2]octane;DABCO)存在下で反応させて、スピロ構造を有する二官能性環状カーボナートを得る。
これに対して、本実施形態の二官能性環状カーボナートの製造方法では、触媒を用いずに1段階の反応で、スピロ構造を有する二官能性環状カーボナートである2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneが得られる。
In a conventional method for producing a difunctional cyclic carbonate, PE and dimethyl carbonate are reacted in the presence of a catalyst (1,4-Diazabicyclo[2.2.2]octane; DABCO) to obtain a difunctional cyclic carbonate having a spiro structure.
In contrast, in the method for producing a bifunctional cyclic carbonate of the present embodiment, 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione, which is a bifunctional cyclic carbonate having a spiro structure, is obtained in a one-step reaction without using a catalyst.
本実施形態の二官能性環状カーボナートの製造方法を構成する工程について、以下に詳細を説明する。 The steps constituting the method for producing the bifunctional cyclic carbonate of this embodiment are described in detail below.
[反応工程]
反応工程では、下記反応式に示すように、ペンタエリトリトールと炭酸ジアリールとを反応させて、スピロ構造を有する二官能性環状カーボナートである上記化合物(I)を得る。化合物(I)を得るこの反応は、公知の分子内環化反応(Intramolecular Cyclization)である。
[Reaction step]
In the reaction step, as shown in the following reaction formula, pentaerythritol is reacted with a diaryl carbonate to obtain the above-mentioned compound (I), which is a bifunctional cyclic carbonate having a spiro structure. This reaction to obtain compound (I) is a known intramolecular cyclization reaction.
(ペンタエリトリトール(PE))
ペンタエリトリトール(PE)は、上記反応式に示される構造を有する化合物である。PEは、例えば、アセトアルデヒドとホルムアルデヒドを塩基性環境下で縮合して合成することができる。また、PEは、市販のものを用いてもよい。PEのCAS番号は、115-77-5である。
(Pentaerythritol (PE))
Pentaerythritol (PE) is a compound having the structure shown in the above reaction formula. PE can be synthesized, for example, by condensing acetaldehyde and formaldehyde in a basic environment. Commercially available PE may also be used. The CAS number of PE is 115-77-5.
(炭酸ジアリール)
炭酸ジアリールは、例えば、下記一般式(III)で表される化合物(以下、「化合物(III)」と称する場合がある)等が挙げられる。
(Diaryl carbonate)
Examples of diaryl carbonates include a compound represented by the following general formula (III) (hereinafter, sometimes referred to as "compound (III)").
一般式(III)中、Ar31及びAr32はそれぞれ独立に、炭素数6以上20以下の1価の芳香族炭化水素基である。 In formula (III), Ar 31 and Ar 32 each independently represent a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
Ar31及びAr32としては、炭素数6以上20以下の芳香族炭化水素基であり、炭素数6以上12以下の芳香族炭化水素基が好ましく、炭素数6以上10以下の芳香族炭化水素基がより好ましい。芳香族炭化水素基は置換基を有していてもよい。芳香族炭化水素基における置換基としては、例えば、アルキル基、アルコキシ基、ジアルキルアミノ基、ハロゲン基、ニトロ基、トリフルオロメチル基、シアノ基等が挙げられる。
このようなAr31及びAr32として具体的には、フェニル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ナフチル基(各異性体)、メトキシフェニル基、ジメトキシフェニル基、トリメトキシフェニル基、ジメチルアミノフェニル基、クロロフェニル基、ジクロロフェニル基、トリクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、ペルフルオロフェニル基、ニトロフェニル基、ジニトロフェニル基、トリニトロフェニル基等が挙げられる。中でも、Ar31及びAr32としては、フェニル基が好ましい。
Ar31及びAr32は同一であってもよく、異なってもよいが、製造の容易さの観点から、同一であることが好ましい。
Ar 31 and Ar 32 are aromatic hydrocarbon groups having 6 to 20 carbon atoms, preferably aromatic hydrocarbon groups having 6 to 12 carbon atoms, more preferably aromatic hydrocarbon groups having 6 to 10 carbon atoms. The aromatic hydrocarbon group may have a substituent. Examples of the substituent in the aromatic hydrocarbon group include an alkyl group, an alkoxy group, a dialkylamino group, a halogen group, a nitro group, a trifluoromethyl group, and a cyano group.
Specific examples of such Ar 31 and Ar 32 include a phenyl group, a methylphenyl group (each isomer), an ethylphenyl group (each isomer), a propylphenyl group (each isomer), a butylphenyl group (each isomer), a pentylphenyl group (each isomer), a hexylphenyl group (each isomer), a dimethylphenyl group (each isomer), a methylethylphenyl group (each isomer), a methylpropylphenyl group (each isomer), a methylbutylphenyl group (each isomer), a methylpentylphenyl group (each isomer), a diethylphenyl group (each isomer), an ethylpropylphenyl group (each isomer), an ethyl Examples of such groups include a phenylbutylphenyl group (each isomer), a dipropylphenyl group (each isomer), a trimethylphenyl group (each isomer), a triethylphenyl group (each isomer), a naphthyl group (each isomer), a methoxyphenyl group, a dimethoxyphenyl group, a trimethoxyphenyl group, a dimethylaminophenyl group, a chlorophenyl group, a dichlorophenyl group, a trichlorophenyl group, a fluorophenyl group, a difluorophenyl group, a trifluorophenyl group, a perfluorophenyl group, a nitrophenyl group, a dinitrophenyl group, and a trinitrophenyl group. Among these, a phenyl group is preferable as Ar 31 and Ar 32 .
Ar 31 and Ar 32 may be the same or different, but from the viewpoint of ease of production, it is preferable that they are the same.
好ましい炭酸ジアリールとしては、Ar31及びAr32が炭素数6以上10以下の芳香族炭化水素基である炭酸ジアリール等が挙げられる。このような炭酸ジアリールとして具体的には、例えば、炭酸ジフェニル、炭酸ジ(メチルフェニル)(各異性体)、炭酸ジ(ジエチルフェニル)(各異性体)、炭酸ジ(メチルエチルフェニル)(各異性体)等が挙げられる。なお、これら化合物は、好ましい炭酸ジアリールの一例に過ぎず、好ましい炭酸ジアリールはこれに限定されない。また、これらの炭酸ジアリールを1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
中でも、炭酸ジアリールとしては、炭酸ジフェニルが特に好ましい。
Preferred diaryl carbonates include diaryl carbonates in which Ar 31 and Ar 32 are aromatic hydrocarbon groups having 6 to 10 carbon atoms. Specific examples of such diaryl carbonates include diphenyl carbonate, di(methylphenyl) carbonate (each isomer), di(diethylphenyl) carbonate (each isomer), and di(methylethylphenyl) carbonate (each isomer). Note that these compounds are merely examples of preferred diaryl carbonates, and preferred diaryl carbonates are not limited to these. Furthermore, these diaryl carbonates may be used alone or in combination of two or more.
Among these, diphenyl carbonate is particularly preferred as the diaryl carbonate.
炭酸ジアリールの製造方法としては、公知の方法を用いることができる。中でも、国際公開第2009/139061号(参考文献1)に記載されている、スズ-酸素-炭素結合を有する有機スズ化合物と二酸化炭素とを反応させて脂肪族炭酸エステルを製造し、該脂肪族炭酸エステルと芳香族ヒドロキシ化合物とから芳香族炭酸エステル(すなわち、炭酸ジアリール)を製造する方法が好ましい。また、上記炭酸ジアリールは、例えば国際公開第2009/139061号(参考文献1)に記載の製造装置を用いて製造できる。また、炭酸ジアリールは、市販のものを用いてもよい。 A known method can be used to produce diaryl carbonate. Among them, the method described in WO 2009/139061 (Reference 1) in which an organotin compound having a tin-oxygen-carbon bond is reacted with carbon dioxide to produce an aliphatic carbonate, and an aromatic carbonate (i.e., diaryl carbonate) is produced from the aliphatic carbonate and an aromatic hydroxy compound is preferred. The diaryl carbonate can be produced, for example, by using the production apparatus described in WO 2009/139061 (Reference 1). Commercially available diaryl carbonate may also be used.
反応工程は、溶媒存在下又は溶媒非存在下で行うことができる。溶媒としては、PEを溶解できるものであればよく、ヒドロキシ基を有しない高極性溶媒が好ましい。このような溶媒として具体的には、以下に示すものが挙げられる。 The reaction process can be carried out in the presence or absence of a solvent. The solvent may be any solvent capable of dissolving PE, and is preferably a highly polar solvent that does not have a hydroxyl group. Specific examples of such solvents include the following:
(1)アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;
(2)アセトニトリル、ブチロニトリル、カプリルニトリル等のニトリル類;
(3)ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジブチル、フタル酸ジアミル、フマル酸ジブチル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル等のエステル類;
(4)フラン、テトラヒドロフラン、プロピルオキシド、ジオキサン、ジベンジルエーテル、ジフェニルエーテル等のエーテル類;
(5)エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、シクロヘキサノールアセテート、プロピレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート等のグリコールエーテルエステル類;
(6)トリフェニルホスファイト等の亜リン酸エステル類;
(7)硫化ジメチル、チオフェン、二硫化炭素等の硫黄化合物類;
(8)塩化メチル、塩化エチル、ジクロロプロパン、ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、ペンタクロロエタン、クロロホルム、臭化メチル、臭化エチル、ヨウ化メチル、ヨウ化エチル等のハロゲン化炭化水素類;
(9)N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、1-メチル-2-ピロリドン、1-エチル-2-ピロリドン、1,5-ジメチル-2-ピロリドン;
(10)1-アセチルピロリジン等のピロリジン類;
(11)1,3-ジメチル-2-イミダゾリジノン等の尿素類;
(12)ジメチルスルホキシド(DMSO)、ジエチルスルホキシド、ジプロピルスルホキシド、ジブチルスルホキシド、ジフェニルスルホキシド、メチルエチルスルホキシド、メチルプロピルスルホキシド、メチルブチルスルホキシド、メチルフェニルスルホキシド等のスルホキシド化合物類。
(1) Ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone;
(2) Nitriles such as acetonitrile, butyronitrile, and caprylnitrile;
(3) Esters such as methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, diamyl phthalate, dibutyl fumarate, dimethyl maleate, diethyl maleate, and dibutyl maleate;
(4) Ethers such as furan, tetrahydrofuran, propyl oxide, dioxane, dibenzyl ether, and diphenyl ether;
(5) Glycol ether esters such as ethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, cyclohexanol acetate, propylene glycol diacetate, 1,4-butanediol diacetate, 1,3-butylene glycol diacetate, and 1,6-hexanediol diacetate;
(6) Phosphite esters such as triphenyl phosphite;
(7) Sulfur compounds such as dimethyl sulfide, thiophene, and carbon disulfide;
(8) Halogenated hydrocarbons such as methyl chloride, ethyl chloride, dichloropropane, dichloroethylene, trichloroethylene, tetrachloroethylene, pentachloroethane, chloroform, methyl bromide, ethyl bromide, methyl iodide, and ethyl iodide;
(9) N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N,N-dimethylpropionamide, 1-methyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone;
(10) Pyrrolidines such as 1-acetylpyrrolidine;
(11) Ureas such as 1,3-dimethyl-2-imidazolidinone;
(12) Sulfoxide compounds such as dimethyl sulfoxide (DMSO), diethyl sulfoxide, dipropyl sulfoxide, dibutyl sulfoxide, diphenyl sulfoxide, methyl ethyl sulfoxide, methyl propyl sulfoxide, methyl butyl sulfoxide, and methyl phenyl sulfoxide.
これら溶媒を1種単独で用いてもよく、2種以上組み合わせて用いてもよい。2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 These solvents may be used alone or in combination of two or more. When two or more types are used in combination, the combination and ratio of the solvents may be selected arbitrarily.
反応工程は、例えば、不活性ガスの雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガス等が挙げられる。
The reaction step is preferably carried out, for example, under an inert gas atmosphere.
Examples of the inert gas include argon gas, helium gas, and nitrogen gas.
反応工程において、PEの使用量、すなわち、反応溶液中のPEの濃度は、反応溶液の総容量に対して、10mmol/L以上100mmol/L以下が好ましく、10mmol/L以上80mmol/L以下がより好ましく、10mmol/L以上60mmol/L以下がさらに好ましく、10mmol/L以上40mmol/L以下が特に好ましく、10mmol/L以上30mmol/L以下が最も好ましい。
PEの濃度が上記下限値以上であることで、炭酸ジアリールとより十分に反応させることができる。一方、PEの濃度が上記上限値以下であることで、PEのカーボナート化を分子間よりも分子内でより優先的に起こすことができ、化合物(I)の収率(選択率)をより向上させることができる。
In the reaction step, the amount of PE used, i.e., the concentration of PE in the reaction solution, is preferably from 10 mmol/L to 100 mmol/L, more preferably from 10 mmol/L to 80 mmol/L, even more preferably from 10 mmol/L to 60 mmol/L, particularly preferably from 10 mmol/L to 40 mmol/L, and most preferably from 10 mmol/L to 30 mmol/L, relative to the total volume of the reaction solution.
When the concentration of PE is equal to or higher than the lower limit, the PE can be reacted more thoroughly with the diaryl carbonate. On the other hand, when the concentration of PE is equal to or lower than the upper limit, the carbonation of PE can be preferentially caused intramolecularly rather than intermolecularly, and the yield (selectivity) of compound (I) can be further improved.
反応工程において、炭酸ジアリールの使用量は、PEに対する炭酸ジアリールのモル比で表すことができる。PEに対する炭酸ジアリールのモル比は、2/1以上10/1以下が好ましく、4/1以上10/1以下がより好ましい。
PEに対する炭酸ジアリールのモル比が上記下限値以上であることで、PEのカーボナート化を分子間よりも分子内でより優先的に起こすことができ、化合物(I)の収率(選択率)をより向上させることができる。PEに対する炭酸ジアリールのモル比が上記上限値以下であることで、炭酸ジアリールの存在比が過剰量となりすぎることを抑制することができ、製造コストを抑えながら、より効率良く化合物(I)を生成することができる。
In the reaction step, the amount of diaryl carbonate used can be expressed as a molar ratio of diaryl carbonate to PE. The molar ratio of diaryl carbonate to PE is preferably 2/1 or more and 10/1 or less, more preferably 4/1 or more and 10/1 or less.
When the molar ratio of diaryl carbonate to PE is equal to or greater than the lower limit, carbonation of PE can occur preferentially intramolecularly rather than intermolecularly, and the yield (selectivity) of compound (I) can be further improved. When the molar ratio of diaryl carbonate to PE is equal to or less than the upper limit, the abundance ratio of diaryl carbonate can be prevented from becoming excessive, and compound (I) can be produced more efficiently while suppressing production costs.
反応工程において、反応温度は、20℃以上100℃以下とすることができ、40℃以上100℃以下が好ましく、50℃以上100℃以下がより好ましく、75℃以上100以下がさらに好ましい。
反応温度が上記下限値以上であることで、PEのカーボナート化を分子間よりも分子内でより優先的に起こすことができ、化合物(I)の収率(選択率)をより向上させることができる。一方、反応温度が上記上限値以下であることで、余分な熱量をかけることを抑制することができ、製造コストを抑えながら、より効率良く化合物(I)を生成することができる。
In the reaction step, the reaction temperature can be 20° C. or higher and 100° C. or lower, preferably 40° C. or higher and 100° C. or lower, more preferably 50° C. or higher and 100° C. or lower, and even more preferably 75° C. or higher and 100° C. or lower.
By setting the reaction temperature to the above lower limit, the carbonation of PE can be preferentially caused intramolecularly rather than intermolecularly, and the yield (selectivity) of compound (I) can be further improved. On the other hand, by setting the reaction temperature to the above upper limit or less, the application of excess heat can be suppressed, and compound (I) can be produced more efficiently while suppressing production costs.
反応時間は、例えば、1時間以上24時間以下とすることができ、6時間以上18時間とすることができる。 The reaction time can be, for example, from 1 hour to 24 hours, and can be from 6 hours to 18 hours.
[その他の工程]
本実施形態の二官能性環状カーボナートの製造方法は、反応工程の後、すなわち、反応終了後に、化合物(I)の精製工程を更に含んでもよい。
[Other steps]
The method for producing a bifunctional cyclic carbonate of this embodiment may further include a purification step of compound (I) after the reaction step, i.e., after completion of the reaction.
精製工程では、公知の手法によって、必要に応じて後処理を行い、化合物(I)を取り出す。具体的には、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、化合物(I)を粗精製する。 In the purification step, post-treatment is performed as necessary using known techniques to extract compound (I). Specifically, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination as necessary, and compound (I) is roughly purified by concentration, crystallization, reprecipitation, column chromatography, etc.
また、上記粗精製された化合物(I)の純度を高めるために、適宜必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて、さらに1回以上行うことが好ましい。 In addition, in order to increase the purity of the crudely purified compound (I), it is preferable to perform operations such as crystallization, reprecipitation, column chromatography, extraction, stirring and washing of the crystals with a solvent, either alone or in combination of two or more types, at least once, as necessary.
本実施形態の二官能性環状カーボナートの製造方法において、反応工程後、精製工程を行わずに、後述するポリヒドロキシウレタンの製造方法に用いてもよいが、ポリヒドロキシウレタンの収率を向上させる観点から、化合物(I)の精製工程を行うことが好ましい。 In the method for producing a bifunctional cyclic carbonate of this embodiment, the reaction step may be followed by the method for producing polyhydroxyurethane described below without carrying out a purification step, but from the viewpoint of improving the yield of polyhydroxyurethane, it is preferable to carry out a purification step of compound (I).
化合物(I)は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 The structure of compound (I) can be confirmed by known methods such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and infrared spectroscopy (IR).
<化合物(I)の使用用途>
本実施形態の製造方法で得られた化合物(I)は、例えば、後述するポリヒドロキシウレタンの原料や、化合物(I)とモノアミンとの反応により得られるウレタン基を2つ有するジオールの原料、ポリカーボネートの原料、ラクトン又はラクチドとの共重合の原料、架橋剤の原料等に好適に用いられる。
<Use of compound (I)>
Compound (I) obtained by the production method of the present embodiment can be suitably used, for example, as a raw material for polyhydroxyurethane described later, a raw material for a diol having two urethane groups obtained by a reaction of compound (I) with a monoamine, a raw material for a polycarbonate, a raw material for copolymerization with lactone or lactide, a raw material for a crosslinking agent, and the like.
<ポリヒドロキシウレタンの製造方法>
本実施形態のポリヒドロキシウレタンの製造方法は、スピロ構造を有する二官能性環状カーボナートと、上記一般式(Ia)で表されるジアミンとを反応させて、ポリヒドロキシウレタンを得る重合工程を含む。
前記スピロ構造を有する二官能性環状カーボナートは2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneである。
<Method of producing polyhydroxyurethane>
The method for producing polyhydroxyurethane of the present embodiment includes a polymerization step of reacting a bifunctional cyclic carbonate having a spiro structure with a diamine represented by the above general formula (Ia) to obtain polyhydroxyurethane.
The bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione.
本実施形態のポリヒドロキシウレタンの製造方法によれば、新規のポリヒドロキシウレタンを得ることができる。 The method for producing polyhydroxyurethane according to this embodiment makes it possible to obtain a new polyhydroxyurethane.
[重合工程]
重合工程では、下記反応式に示すように、スピロ構造を有する二官能性環状カーボナートと、下記一般式(Ia)で表されるジアミンとを反応させて、ポリヒドロキシウレタンを得る。
ポリヒドロキシウレタンを得るこの反応は、公知の開環重付加反応である。
[Polymerization process]
In the polymerization step, as shown in the reaction formula below, a bifunctional cyclic carbonate having a spiro structure is reacted with a diamine represented by the following general formula (Ia) to obtain polyhydroxyurethane.
This reaction to give polyhydroxyurethane is a known ring-opening polyaddition reaction.
なお、上記反応式において、Xは、アルキレン基、アラルキレン基又は-R11-Ar11-R12-で表される基である。Ar11は2価の芳香族炭化水素基であり、R11及びR12はそれぞれ独立に、炭素数1以上20以下のアルキレン基である。nは1以上の整数である。 In the above reaction formula, X is an alkylene group, an aralkylene group, or a group represented by -R 11 -Ar 11 -R 12 -. Ar 11 is a divalent aromatic hydrocarbon group, and R 11 and R 12 are each independently an alkylene group having 1 to 20 carbon atoms. n is an integer of 1 or more.
(スピロ構造を有する二官能性環状カーボナート)
スピロ構造を有する二官能性環状カーボナートは、2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione(化合物(I))である。化合物(I)は、市販のものを用いてもよく、公知の方法を用いて合成されてものでもよいが、簡便且つ良好な収率で化合物(I)が得られることから、上記二官能性環状カーボナートの製造方法で得られたものであることが好ましい。
(Bifunctional cyclic carbonate having a spiro structure)
The bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione (compound (I)). Compound (I) may be a commercially available product or may be synthesized by a known method. However, compound (I) is preferably obtained by the above-mentioned method for producing a bifunctional cyclic carbonate, since compound (I) can be obtained easily and in good yield.
(ジアミン)
ジアミンは、下記一般式(Ia)で表される化合物(以下、「ジアミン(Ia)」と称する場合がある)である。
(Diamine)
The diamine is a compound represented by the following general formula (Ia) (hereinafter, sometimes referred to as "diamine (Ia)").
(一般式(Ia)において、Xは、アルキレン基、アラルキレン基又は-R11-Ar11-R12-で表される基である。Ar11は2価の芳香族炭化水素基であり、R11及びR12はそれぞれ独立に、炭素数1以上20以下のアルキレン基である。) (In general formula (Ia), X is an alkylene group, an aralkylene group, or a group represented by -R 11 -Ar 11 -R 12 -. Ar 11 is a divalent aromatic hydrocarbon group, and R 11 and R 12 are each independently an alkylene group having 1 to 20 carbon atoms.)
Xにおけるアルキレン基としては、炭素数2以上20以下の直鎖状のアルキレン基が好ましく、具体的には、例えば、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基等が挙げられる。中でも、Xにおけるアルキレン基としては、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基又はデシレン基が好ましく、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基又はオクチレン基がより好ましい。 As the alkylene group in X, a linear alkylene group having 2 to 20 carbon atoms is preferred, and specific examples thereof include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tetradecylene group, a hexadecylene group, an octadecylene group, a nonylene group, or a decylene group. Among these, as the alkylene group in X, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, or a decylene group is preferred, and a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, or an octylene group is more preferred.
Xにおけるアラルキレン基としては、炭素数3以上20以下のアラルキレン基が好ましく、具体的には、例えば、ベンジレン基、フェネチレン基、フェニルブチレン基、ナフチルメチレン基、ナフチルエチレン基が挙げられる。中でも、Xにおけるアラルキレン基としては、ベンジレン基又はフェネチレン基が好ましい。 As the aralkylene group in X, an aralkylene group having 3 to 20 carbon atoms is preferred, and specific examples include a benzylene group, a phenethylene group, a phenylbutylene group, a naphthylmethylene group, and a naphthylethylene group. Of these, as the aralkylene group in X, a benzylene group or a phenethylene group is preferred.
Xにおける-R11-Ar11-R12-で表される基において、R11及びR12はそれぞれ同一であってもよく、異なっていてもよいが、同一であることが好ましい。
R11及びR12における炭素数1以上20以下のアルキレン基としては、例えば、メチレン基、及び、上記Xにおけるアルキレン基において例示されたものと同様のものが挙げられる。中でも、R11及びR12における炭素数1以上20以下のアルキレン基としては、メチレン基又はエチレン基が好ましい。
In the group represented by -R 11 -Ar 11 -R 12 - in X, R 11 and R 12 may be the same or different, but are preferably the same.
Examples of the alkylene group having 1 to 20 carbon atoms in R 11 and R 12 include a methylene group and the same as those exemplified in the alkylene group in X. Among them, the alkylene group having 1 to 20 carbon atoms in R 11 and R 12 is preferably a methylene group or an ethylene group.
Xにおける-R11-Ar11-R12-で表される基として具体的には、例えば、-CH2-Ph-CH2-で表される基(Phはフェニレン基である、以下同様である。)、-CH2CH2-Ph-CH2CH2-で表される基が挙げられる。中でも、Xにおける-R11-Ar11-R12-で表される基としては、-CH2-Ph-CH2-で表される基が好ましい。 Specific examples of the group represented by -R 11 -Ar 11 -R 12 - in X include a group represented by -CH 2 -Ph-CH 2 - (Ph is a phenylene group, the same applies below) and a group represented by -CH 2 CH 2 -Ph-CH 2 CH 2 -. Of these, the group represented by -R 11 -Ar 11 -R 12 - in X is preferably a group represented by -CH 2 -Ph-CH 2 -.
好ましいジアミン(Ia)としては、例えば、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、p-キシリレンジアミン等が挙げられる。中でも、ジアミン(Ia)としては、1,3-ジアミノプロパン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン又はp-キシリレンジアミンが好ましい。 Preferred diamines (Ia) include, for example, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, p-xylylenediamine, etc. Among them, preferred diamines (Ia) are 1,3-diaminopropane, 1,6-diaminohexane, 1,8-diaminooctane, and p-xylylenediamine.
重合工程は、溶媒存在下又は溶媒非存在下で行うことができる。溶媒としては、上記二官能性環状カーボナートの製造方法の反応工程において例示されたものと同様のものが挙げられる。
溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
The polymerization step can be carried out in the presence or absence of a solvent. Examples of the solvent include the same solvents as those exemplified in the reaction step of the above-mentioned method for producing a bifunctional cyclic carbonate.
The solvent may be used alone or in combination of two or more. When two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
重合工程は、触媒を用いずに行うことができる。 The polymerization process can be carried out without the use of a catalyst.
反応工程は、例えば、不活性ガスの雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガス等が挙げられる。
The reaction step is preferably carried out, for example, under an inert gas atmosphere.
Examples of the inert gas include argon gas, helium gas, and nitrogen gas.
重合工程において、ジアミン(Ia)の使用量は、化合物(I)の使用量の0.5倍モル量以上1.5倍モル量以下であることが好ましく、0.7倍モル量以上1.3倍モル量以下であることがより好ましい。 In the polymerization step, the amount of diamine (Ia) used is preferably 0.5 to 1.5 times the molar amount of compound (I) used, and more preferably 0.7 to 1.3 times the molar amount.
重合工程において、後述する実施例に示すように、反応後期では、生成されたポリヒドロキシウレタンのポリマー鎖末端のアミノ基のモル濃度が、生成するヒドロキシ基末端のモル濃度に比べて著しく低下する。そのため、化合物(I)がアミノ基ではなく、ヒドロキシ基と反応して、ポリマー鎖が架橋されて、ポリヒドロキシウレタンのゲル化が発生する虞がある。よって、ポリヒドロキシウレタンのゲル化を抑制するために、反応の途中、例えば、反応開始から30分後、1時間後、2時間後、3時間後に、ジアミン(Ia)を、化合物(I)の使用量の0.05倍モル量以上0.3倍モル量以下、好ましくは0.07モル量以上0.2倍モル量以下の量となるように添加することが好ましい。これにより、ポリヒドロキシウレタン中で架橋構造が形成されることを防ぐことができ、生成されたポリヒドロキシウレタンのゲル化を効果的に抑制することができる。
なお、反応全体を通してのジアミン(Ia)の使用量が上記範囲内となるようにすればよく、例えば、反応開始時に、反応全体を通してのジアミン(Ia)の使用量の半分以上の量のジアミン(Ia)を投入し、反応の途中に、反応全体を通してのジアミン(Ia)の使用量の半分未満の量のジアミン(Ia)をさらに投入することができる。また、例えば、反応開始時に、化合物(I)の使用量と等モル量のジアミン(Ia)を投入し、反応開始から3時間後に、化合物(I)の使用量の0.1倍モル量のジアミン(Ia)をさらに投入することが好ましい。
In the polymerization step, as shown in the examples described later, in the latter stage of the reaction, the molar concentration of the amino group at the polymer chain end of the polyhydroxyurethane produced is significantly lower than the molar concentration of the hydroxy group end produced. Therefore, there is a risk that the compound (I) reacts with the hydroxy group instead of the amino group, crosslinking the polymer chain, and gelling of the polyhydroxyurethane occurs. Therefore, in order to suppress the gelling of the polyhydroxyurethane, it is preferable to add diamine (Ia) in an amount of 0.05 times or more and 0.3 times or less, preferably 0.07 times or more and 0.2 times or less, of the amount of compound (I) used during the reaction, for example, 30 minutes, 1 hour, 2 hours, and 3 hours after the start of the reaction. This can prevent the formation of a crosslinked structure in the polyhydroxyurethane, and can effectively suppress the gelling of the polyhydroxyurethane produced.
In addition, it is sufficient that the amount of diamine (Ia) used throughout the entire reaction is within the above range, and for example, at the start of the reaction, diamine (Ia) is added in an amount of more than half the amount of diamine (Ia) used throughout the entire reaction, and during the reaction, diamine (Ia) in an amount less than half the amount of diamine (Ia) used throughout the entire reaction can be further added. Also, for example, it is preferable to add diamine (Ia) in an amount equimolar to the amount of compound (I) used at the start of the reaction, and then add diamine (Ia) in an amount 0.1 times the amount of compound (I) used 3 hours after the start of the reaction.
重合工程において、後述する実施例に示すように、重合温度を調整することで、得られるポリヒドロキシウレタンの構造を制御することができる。
分岐構造を有するポリヒドロキシウレタンが比較的多くなるように製造する、具体的には、分岐構造を有するポリヒドロキシウレタンの含有量が得られるポリヒドロキシウレタンの総モル量に対して11モル%以上となるように製造する場合には、重合温度を50℃以上とすることが好ましく、60℃以上とすることがより好ましい。
重合温度が上記下限値以上であることで、直鎖構造を有するポリヒドロキシウレタンの生成をより効果的に抑えることができ、分岐構造を有するポリヒドロキシウレタンの収率をより向上させることができる。一方、反応温度の上限値は特に限定されず、例えば、100℃とすることができる。
In the polymerization step, as shown in the examples described later, the structure of the resulting polyhydroxyurethane can be controlled by adjusting the polymerization temperature.
When producing polyhydroxyurethane having a branched structure in a relatively large amount, specifically when producing polyhydroxyurethane having a branched structure in an amount of 11 mol % or more relative to the total molar amount of polyhydroxyurethane obtained, the polymerization temperature is preferably 50° C. or higher, and more preferably 60° C. or higher.
By setting the polymerization temperature at or above the lower limit, the production of polyhydroxyurethane having a linear structure can be more effectively suppressed, and the yield of polyhydroxyurethane having a branched structure can be further improved. On the other hand, the upper limit of the reaction temperature is not particularly limited, and can be set to, for example, 100°C.
一方、直鎖構造を有するポリヒドロキシウレタンが比較的多くなるように製造する、具体的には、分岐構造を有するポリヒドロキシウレタンの含有量が得られるポリヒドロキシウレタンの総モル量に対して4モル%以下となるように製造する場合には、重合温度を5℃以下とすることが好ましく、0℃とすることがより好ましい。
重合温度が上記上限値以下であることで、分岐構造を有するポリヒドロキシウレタンの生成をより効果的に抑えることができ、直鎖構造を有するポリヒドロキシウレタンの収率をより向上させることができる。一方、反応温度の下限値は特に限定されず、例えば、0℃とすることができる。
On the other hand, when polyhydroxyurethane having a linear structure is produced in a relatively large amount, specifically, when the content of polyhydroxyurethane having a branched structure is produced to be 4 mol % or less of the total molar amount of polyhydroxyurethane obtained, the polymerization temperature is preferably 5° C. or less, and more preferably 0° C.
By setting the polymerization temperature to the above upper limit or lower, the production of polyhydroxyurethane having a branched structure can be more effectively suppressed, and the yield of polyhydroxyurethane having a linear structure can be further improved. On the other hand, the lower limit of the reaction temperature is not particularly limited, and can be, for example, 0°C.
また、アルケニル基の炭素数が7以上であるジアミン(Ia)を用いた際に、溶媒への溶解性が低い場合には、一時的に、重合温度を60℃超100℃以下程度に上昇させて、10分間以上1時間以下程度の短時間保持して、ジアミン(Ia)を溶解させて反応溶液を均一にした後、重合温度を低下させて、上記上限値以下の温度となるようにすることができる。 In addition, when using a diamine (Ia) having an alkenyl group with 7 or more carbon atoms, if the diamine (Ia) has low solubility in the solvent, the polymerization temperature can be temporarily raised to a temperature between more than 60°C and 100°C and maintained for a short period of time, such as between 10 minutes and 1 hour, to dissolve the diamine (Ia) and homogenize the reaction solution, and then the polymerization temperature can be lowered to a temperature below the upper limit value.
重合時間は、例えば、1時間以上24時間以下とすることができ、6時間以上20時間とすることができる。 The polymerization time can be, for example, from 1 hour to 24 hours, and can be from 6 hours to 20 hours.
[その他の工程]
本実施形態のポリヒドロキシウレタンの製造方法は、重合工程の後、すなわち、反応終了後に、ポリヒドロキシウレタンの精製工程を更に含んでもよい。
[Other steps]
The method for producing polyhydroxyurethane of the present embodiment may further include a step of purifying the polyhydroxyurethane after the polymerization step, i.e., after completion of the reaction.
精製工程では、公知の手法によって、必要に応じて後処理を行い、ポリヒドロキシウレタンを取り出す。具体的には、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、ポリヒドロキシウレタンを粗精製する。 In the purification process, post-treatment is carried out as necessary using known techniques to extract polyhydroxyurethane. Specifically, post-treatment procedures such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are carried out alone or in combination as necessary, and the polyhydroxyurethane is roughly purified by concentration, crystallization, reprecipitation, column chromatography, etc.
また、上記粗精製されたポリヒドロキシウレタンの純度を高めるために、適宜必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて、さらに1回以上行うことが好ましい。 In order to increase the purity of the crudely refined polyhydroxyurethane, it is preferable to carry out one or more of the following operations, such as crystallization, reprecipitation, column chromatography, extraction, and stirring and washing of the crystals with a solvent, either alone or in combination as necessary.
本実施形態のポリヒドロキシウレタンの製造方法において、反応工程後、精製工程を行わなくてもよいが、ポリヒドロキシウレタンの貯蔵安定性やポリヒドロキシウレタンを多種用途に利用する観点から、ポリヒドロキシウレタンの精製工程を行うことが好ましい。 In the method for producing polyhydroxyurethane of this embodiment, a purification step does not have to be performed after the reaction step, but it is preferable to perform a purification step of polyhydroxyurethane from the viewpoint of the storage stability of polyhydroxyurethane and the use of polyhydroxyurethane in various applications.
ポリヒドロキシウレタンは、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 The structure of polyhydroxyurethane can be confirmed by known techniques, such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and infrared spectroscopy (IR).
<ポリヒドロキシウレタンの使用用途>
本実施形態の製造方法で得られたポリヒドロキシウレタンは、例えば、成型材料や塗料用のバインダー等の工業材料等に好適に用いられる。
<Applications of polyhydroxyurethane>
The polyhydroxyurethane obtained by the production method of this embodiment is suitable for use as an industrial material, such as a molding material or a binder for paint.
以下、具体的な実施例及び比較例を挙げて本実施形態をさらに具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例及び比較例によって何ら限定されるものではない。後述する、実施例及び比較例において行われた各種の分析は、以下の方法により測定された。 The present embodiment will be described in more detail below with reference to specific examples and comparative examples. However, the present embodiment is not limited in any way by the following examples and comparative examples as long as the gist of the embodiment is not exceeded. The various analyses performed in the examples and comparative examples described below were measured by the following methods.
[評価1]
(化合物(I)の収率)
化合物(I)の収率(選択率ともいう)は、1H-NMR分析方法により求めた。分析条件は以下のとおりであった。
[Evaluation 1]
(Yield of Compound (I))
The yield (also referred to as selectivity) of compound (I) was determined by 1 H-NMR analysis under the following analysis conditions.
(分析条件)
装置:JEOL ECS-400 spectrometer
サンプル調整:反応溶液の一部(約0.1mL)を減圧濃縮し、重DMSO(DMSO-d6)(約0.55mL)に溶解させた。
(Analysis conditions)
Equipment: JEOL ECS-400 spectrometer
Sample preparation: A portion of the reaction solution (about 0.1 mL) was concentrated under reduced pressure and dissolved in deuterated DMSO (DMSO-d 6 ) (about 0.55 mL).
1H-NMR分析を用いた収率(選択率)の解析方法として具体的には、上記で調整したサンプルの1H-NMR測定を行い、目的化合物である2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione(化合物(I))と副生成物(不純物)に対応する1Hシグナルの積分比から化合物(I)の収率(選択率)を算出した。 Specifically, as a method for analyzing the yield (selectivity) using 1 H-NMR analysis, the sample prepared above was subjected to 1 H-NMR measurement, and the yield (selectivity) of compound (I) was calculated from the integral ratio of the 1 H signals corresponding to the target compound, 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione (compound (I)) and the by-products (impurities).
[実施例1]
下記反応式に示すように、ペンタエリトリトール(PE)と炭酸ジフェニル(ジフェニルカーボナート;DPC)を反応させることで、2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione(化合物(I))を得た。
[Example 1]
As shown in the reaction formula below, pentaerythritol (PE) and diphenyl carbonate (DPC) were reacted to obtain 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione (compound (I)).
詳細な反応条件は、以下に示すとおりである。
1000mLフラスコにDPC(29.15g、0.136mol)とN,N-ジメチルホルムアミド(DMF)(800mL)を加え、100℃に加熱した。ここに、PE(3.09g、0.023mol)のDMF溶液(40mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。室温に戻した後、DMFを減圧留去し、残渣に酢酸エチル(EtOAc)/n-ヘキサン(約100mL/約100mL)を加え、析出した白色固体を回収した。さらに、得られた白色固体を熱DMF(約60mL)に溶解させ、ジエチルエーテル(Et2O)(約120mL)を加えて再結晶することで、白色固体として化合物(I)(収量3.16g、収率74%)を得た。
Detailed reaction conditions are as follows.
DPC (29.15 g, 0.136 mol) and N,N-dimethylformamide (DMF) (800 mL) were added to a 1000 mL flask and heated to 100 ° C. A DMF solution (40 mL) of PE (3.09 g, 0.023 mol) was quickly added thereto, the flask was replaced with nitrogen, and the mixture was stirred at 100 ° C. for 12 hours. After returning to room temperature, DMF was distilled off under reduced pressure, and ethyl acetate (EtOAc) / n-hexane (about 100 mL / about 100 mL) was added to the residue, and the precipitated white solid was collected. Furthermore, the obtained white solid was dissolved in hot DMF (about 60 mL), and recrystallized by adding diethyl ether (Et 2 O) (about 120 mL), to obtain compound (I) (yield 3.16 g, yield 74%) as a white solid.
化合物(I)の、1H-NMR、13C-NMR、融点測定器、及び赤外分光光度計(IR)による分析結果を以下に示す。また、1H-NMRスペクトルを図1Aに、13C-NMRスペクトルを図1Bに示す。 The analytical results of compound (I) by 1 H-NMR, 13 C-NMR, melting point measuring instrument, and infrared spectrophotometer (IR) are shown below. The 1 H-NMR spectrum is shown in Figure 1A, and the 13 C-NMR spectrum is shown in Figure 1B.
1H NMR (400 MHz, DMSO-d6, rt): δ 4.42 (s, 8H, CH2).
13C NMR (100 MHz, DMSO-d6, rt): δ 147.056 (C=O), 68.84 (CH2-O-), 29.67 (-C-).
Mp: 220-225 ℃ (dec.).
IR (ATR, cm-1): 1737 (νC=O), 1254 (νC-O), 1171 (νC-O), 1125 (νC-O), 1094 νC-O).
1H NMR (400 MHz, DMSO- d6 , rt): δ 4.42 (s, 8H, CH2 ).
13C NMR (100 MHz, DMSO-d 6 , rt): δ 147.056 (C=O), 68.84 (CH 2 -O-), 29.67 (-C-).
Mp: 220-225℃(dec.).
IR (ATR, cm -1 ): 1737 (ν C=O ), 1254 (ν CO ), 1171 (ν CO ), 1125 (ν CO ), 1094 ν CO ).
なお、反応溶媒として使用したDMFを回収後、溶媒として再利用したが、収率や純度にほとんど影響はなく、最低でも5回程は繰り返し再利用が可能なことを確認した。 The DMF used as the reaction solvent was recovered and reused as a solvent, but this had almost no effect on the yield or purity, and it was confirmed that it could be reused at least five times.
<ペンタエリトリトール(PE)濃度の検討>
次いで、PE1モル等量に対して過剰量のDPC(10モル等量)存在下で、反応溶液中の初期ペンタエリトリトール(PE)濃度を100mM(mmol/L)から20mM(mmol/L)に変化させて、100℃で反応させた場合での、化合物(I)の収率を検討した。
<Study on Pentaerythritol (PE) Concentration>
Next, in the presence of an excess amount of DPC (10 molar equivalents) relative to 1 molar equivalent of PE, the initial pentaerythritol (PE) concentration in the reaction solution was changed from 100 mM (mmol/L) to 20 mM (mmol/L) and the reaction was carried out at 100° C., and the yield of compound (I) was examined.
[実施例2]
(初期PE濃度:100mM)
10mLフラスコにDPC(428mg、2.0mmol)とDMF(1.5mL)を加え、100℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は43.8%であった。なお、1H-NMR測定の結果を図2に示す。
[Example 2]
(Initial PE concentration: 100mM)
DPC (428 mg, 2.0 mmol) and DMF (1.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 43.8%. The results of the 1 H-NMR measurement are shown in FIG. 2.
[実施例3]
(初期PE濃度:80mM)
10mLフラスコにDPC(428mg、2.0mmol)とDMF(2.0mL)を加え、100℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は55.0%であった。
[Example 3]
(Initial PE concentration: 80mM)
DPC (428 mg, 2.0 mmol) and DMF (2.0 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 55.0%.
[実施例4]
(初期PE濃度:60mM)
10mLフラスコにDPC(428mg、2.0mmol)とDMF(2.8mL)を加え、100℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は64.0%であった。
[Example 4]
(Initial PE concentration: 60mM)
DPC (428 mg, 2.0 mmol) and DMF (2.8 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 64.0%.
[実施例5]
(初期PE濃度:40mM)
10mLフラスコにDPC(428mg、2.0mmol)とDMF(4.5mL)を加え、100℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は78.3%であった。
[Example 5]
(Initial PE concentration: 40mM)
DPC (428 mg, 2.0 mmol) and DMF (4.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 78.3%.
[実施例6]
(初期PE濃度:20mM)
25mLフラスコにDPC(428mg、2.0mmol)とDMF(9.5mL)を加え、100℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は86.8%であった。
[Example 6]
(Initial PE concentration: 20mM)
DPC (428 mg, 2.0 mmol) and DMF (9.5 mL) were added to a 25 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 86.8%.
図3は、実施例2~6で得られた化合物(I)の収率(選択率)と初期PE濃度との関係を示すグラフである。図3に示すように、初期PE濃度の減少に伴って、化合物(I)の選択率が43.8%から86.8%へと増加し、初期PE濃度と化合物(I)の生成比の間に直線関係が観測された。この結果から、低濃度ではPEのカーボナート化が分子間より分子内で優先的に起こり、その結果、化合物(I)がより選択的に生成したと考えられる。 Figure 3 is a graph showing the relationship between the yield (selectivity) of compound (I) obtained in Examples 2 to 6 and the initial PE concentration. As shown in Figure 3, the selectivity of compound (I) increased from 43.8% to 86.8% as the initial PE concentration decreased, and a linear relationship was observed between the initial PE concentration and the production ratio of compound (I). From this result, it is believed that at low concentrations, carbonation of PE occurs preferentially intramolecularly rather than intermolecularly, resulting in more selective production of compound (I).
<温度の検討>
上記実施例2~6における結果から、初期PE濃度の中でも最も選択率の高かった20mMで、PE1モル等量に対して過剰量のDPC(10モル等量)存在下で、反応温度を20℃から100℃まで変化させて反応させた場合での、化合物(I)の収率を検討した。
<Temperature considerations>
Based on the results of Examples 2 to 6 above, the yield of compound (I) was examined when the reaction was carried out at an initial PE concentration of 20 mM, which had the highest selectivity among the initial PE concentrations, in the presence of an excess amount of DPC (10 molar equivalents) relative to 1 molar equivalent of PE, and at a reaction temperature changed from 20° C. to 100° C.
[実施例7]
(反応温度:20℃)
25mLフラスコにDPC(428mg、2.0mmol)とDMF(9.5mL)を加え、20℃に調整した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、20℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させたところ、不溶部が見られた。当該溶液の可溶部を用いて1H-NMR測定を行った結果、化合物(I)の収率(選択率)は8.5%であった。
[Example 7]
(Reaction temperature: 20° C.)
DPC (428 mg, 2.0 mmol) and DMF (9.5 mL) were added to a 25 mL flask and the temperature was adjusted to 20° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 20° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO- d6 , whereupon an insoluble portion was observed. As a result of performing 1 H-NMR measurement using the soluble portion of the solution, the yield (selectivity) of compound (I) was 8.5%.
[実施例8]
(反応温度:50℃)
25mLフラスコにDPC(428mg、2.0mmol)とDMF(9.5mL)を加え、50℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、50℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は69.1%であった。
[Example 8]
(Reaction temperature: 50° C.)
DPC (428 mg, 2.0 mmol) and DMF (9.5 mL) were added to a 25 mL flask and heated to 50° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the flask was replaced with nitrogen, and the mixture was stirred at 50° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 69.1%.
[実施例9]
(反応温度:75℃)
25mLフラスコにDPC(428mg、2.0mmol)とDMF(9.5mL)を加え、75℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、75℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は84.5%であった。
[Example 9]
(Reaction temperature: 75° C.)
DPC (428 mg, 2.0 mmol) and DMF (9.5 mL) were added to a 25 mL flask and heated to 75° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 75° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 84.5%.
[実施例10]
(反応温度:100℃)
25mLフラスコにDPC(428mg、2.0mmol)とDMF(9.5mL)を加え、100℃に加熱した。ここにPE(27.2mg、0.20mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は86.8%であった。
[Example 10]
(Reaction temperature: 100° C.)
DPC (428 mg, 2.0 mmol) and DMF (9.5 mL) were added to a 25 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (27.2 mg, 0.20 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 86.8%.
図4は、実施例7~10で得られた化合物(I)の収率(選択率)と反応温度との関係を示すグラフである。図4に示すように、化合物(I)の選択率は温度の上昇とともに増加し、75℃付近でおおよそ横ばいになった。また、いずれにおいても未反応のPEは観測されなかった。このことから、下記反応式に示すように、高温では、PEのOH基の一部がDPCと反応して生じた中間体がエントロピー的に不利な環状カーボナートを形成しやすいのに対し、一方、低温では中間体がエントロピー的に有利な分子間での鎖状カーボナートの生成を優先するため、温度の低下により化合物(I)の選択率が減少したと考えられる。 Figure 4 is a graph showing the relationship between the yield (selectivity) of compound (I) obtained in Examples 7 to 10 and the reaction temperature. As shown in Figure 4, the selectivity of compound (I) increased with increasing temperature and leveled off at around 75°C. Furthermore, no unreacted PE was observed in any of the cases. From this, as shown in the reaction formula below, at high temperatures, the intermediate produced by the reaction of some of the OH groups of PE with DPC is likely to form an entropically disadvantageous cyclic carbonate, whereas at low temperatures, the intermediate prioritizes the formation of an intermolecular chain carbonate, which is entropically advantageous, and therefore the selectivity of compound (I) decreased with decreasing temperature.
<PEに対するDPCのモル比([DPC]0/[PE]0)の検討>
上記実施例2~10における結果から、初期PE濃度20mMで、反応温度を100℃に固定して、PEに対するDPCのモル比を10/1から2/1まで変化させて反応させた場合での、化合物(I)の収率を検討した。
<Study on the molar ratio of DPC to PE ([DPC] 0 /[PE] 0 )>
From the results of Examples 2 to 10 above, the yield of compound (I) was investigated when the reaction was carried out with an initial PE concentration of 20 mM, a fixed reaction temperature of 100° C., and the molar ratio of DPC to PE varied from 10/1 to 2/1.
[実施例11]
([DPC]0/[PE]0:10/1)
10mLフラスコにDPC(214mg、1.0mmol)とDMF(4.5mL)を加え、100℃に加熱した。ここにPE(13.6mg、0.10mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は86.8%であった。
[Example 11]
([DPC] 0 / [PE] 0 :10/1)
DPC (214 mg, 1.0 mmol) and DMF (4.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (13.6 mg, 0.10 mmol) was quickly added thereto, the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 86.8%.
[実施例12]
([DPC]0/[PE]0:8/1)
10mLフラスコにDPC(171.4mg、0.80mmol)とDMF(4.5mL)を加え、100℃に加熱した。ここにPE(13.6mg、0.10mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は94.2%であった。
[Example 12]
([DPC] 0 / [PE] 0 :8/1)
DPC (171.4 mg, 0.80 mmol) and DMF (4.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (13.6 mg, 0.10 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 94.2%.
[実施例13]
([DPC]0/[PE]0:6/1)
10mLフラスコにDPC(128.5mg、0.60mmol)とDMF(4.5mL)を加え、100℃に加熱した。ここにPE(13.6mg、0.10mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は93.9%であった。
[Example 13]
([DPC] 0 / [PE] 0 :6/1)
DPC (128.5 mg, 0.60 mmol) and DMF (4.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (13.6 mg, 0.10 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 93.9%.
[実施例14]
([DPC]0/[PE]0:4/1)
10mLフラスコにDPC(85.7mg、0.40mmol)とDMF(4.5mL)を加え、100℃に加熱した。ここにPE(13.6mg、0.10mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。その結果、化合物(I)の収率(選択率)は91.2%であった。
[Example 14]
([DPC] 0 / [PE] 0 :4/1)
DPC (85.7 mg, 0.40 mmol) and DMF (4.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (13.6 mg, 0.10 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, the yield (selectivity) of compound (I) was 91.2%.
[実施例15]
([DPC]0/[PE]0:2/1)
10mLフラスコにDPC(42.8mg、0.20mmol)とDMF(4.5mL)を加え、100℃に加熱した。ここにPE(13.6mg、0.10mmol)のDMF溶液(0.5mL)を素早く加え、フラスコ内を窒素置換し、100℃で12時間撹拌した。溶液の一部を減圧留去し、残渣をDMSO-d6に溶解させころ、不溶部が見られた。当該溶液の可溶部を用いて1H-NMR測定を行った結果、化合物(I)の収率(選択率)は86.6%であった。
[Example 15]
([DPC] 0 / [PE] 0 :2/1)
DPC (42.8 mg, 0.20 mmol) and DMF (4.5 mL) were added to a 10 mL flask and heated to 100° C. A DMF solution (0.5 mL) of PE (13.6 mg, 0.10 mmol) was quickly added thereto, the atmosphere in the flask was replaced with nitrogen, and the mixture was stirred at 100° C. for 12 hours. A part of the solution was distilled off under reduced pressure, and the residue was dissolved in DMSO- d6 , whereupon an insoluble portion was observed. As a result of performing 1 H-NMR measurement using the soluble portion of the solution, the yield (selectivity) of compound (I) was 86.6%.
実施例11~15の生成物の1H-NMR測定において、いずれの測定においても未反応のOH基のシグナルは観測されなかった。
図5は、実施例11~15で得られた化合物(I)の収率(選択率)とPEに対するDPCのモル比との関係を示すグラフである。図5に示すように、PEに対するDPCのモル比が2/1では不溶部が観測されたが、可溶部における化合物(I)の選択率は、PEに対するDPCのモル比が10/1から4/1までと比べて大きな差はなかった。一方、PEに対するDPCのモル比が10/1から4/1まででは不溶部は観測されず、選択率にも大きな差は見られなかった。
以上の結果から、PEに対するDPCのモル比が2/1では、上記反応温度の検討における20℃程度の低温での反応時と同様に、PEのOH基の一部がDPCと反応して生じた中間体に対して未反応のPEが過剰になり、その結果、中間体が分子内環化反応を起こす前にPE又は中間体のOH基と反応することで、オリゴマー等の副生成物が生じたと考えられる。
In the 1 H-NMR measurements of the products of Examples 11 to 15, no signals of unreacted OH groups were observed in any of the measurements.
5 is a graph showing the relationship between the yield (selectivity) of compound (I) obtained in Examples 11 to 15 and the molar ratio of DPC to PE. As shown in FIG. 5, an insoluble portion was observed when the molar ratio of DPC to PE was 2/1, but the selectivity of compound (I) in the soluble portion did not differ significantly from that when the molar ratio of DPC to PE was from 10/1 to 4/1. On the other hand, when the molar ratio of DPC to PE was from 10/1 to 4/1, no insoluble portion was observed, and no significant difference was observed in the selectivity.
From the above results, it is considered that when the molar ratio of DPC to PE was 2/1, as in the case of reaction at a low temperature of about 20°C in the above reaction temperature study, unreacted PE became excessive relative to the intermediate produced by the reaction of some of the OH groups of PE with DPC, and as a result, by-products such as oligomers were produced by reacting with the OH groups of PE or the intermediate before the intermediate could undergo an intramolecular cyclization reaction.
[実施例16]
(化合物(I)の反応性)
化合物(I)が2つの六員環環状カーボナートからなるスピロ構造を有することから、類似の六員環環状カーボナートに比べて環ひずみが大きく、反応性が高いと予想された。そこで、モデル化合物として5,5-dimethyl-1,3-dioxan-2-one(以下、「化合物(IV)」と称する場合がある)を用い、化合物(I)と化合物(IV)の共存下(モル比:[化合物(I)]0/[化合物(IV)]0=1/1)、DMSO-d6中、室温で0.9モル等量のモノアミン(1-hexylamine)と反応させることで、化合物(I)と化合物(IV)の反応性を比較した。各反応での生成物の1H-NMR測定結果を図6に示す。
[Example 16]
(Reactivity of Compound (I))
Since compound (I) has a spiro structure consisting of two six-membered cyclic carbonates, it was expected that the ring strain would be larger and the reactivity would be higher than similar six-membered cyclic carbonates. Therefore, 5,5-dimethyl-1,3-dioxan-2-one (hereinafter sometimes referred to as "compound (IV)") was used as a model compound, and in the presence of compound (I) and compound (IV) (molar ratio: [compound (I)] 0/ [compound (IV)] 0 = 1/1), the compound was reacted with 0.9 molar equivalent of monoamine (1-hexylamine) in DMSO-d 6 at room temperature to compare the reactivity of compound (I) and compound (IV). The 1 H-NMR measurement results of the products in each reaction are shown in Figure 6.
図6から、化合物(I)は選択的にモノアミン(1-hexylamine)と反応したのに対し、化合物(IV)はほとんど消費されなかった(収率:1%以下)。すなわち、化合物(I)のアミンとの反応性は、化合物(IV)に比べて100倍以上高いことが明らかになった。 As can be seen from Figure 6, compound (I) selectively reacted with monoamine (1-hexylamine), whereas compound (IV) was hardly consumed (yield: 1% or less). In other words, it was revealed that the reactivity of compound (I) with amines is more than 100 times higher than that of compound (IV).
<ポリヒドロキシウレタンの製造>
[実施例17]
(化合物(I)とジアミンの開環重付加挙動)
下記反応式に示すように、化合物(I)とジアミンを反応させることで、ポリヒドロキシウレタンが得られる。
<Production of Polyhydroxyurethane>
[Example 17]
(Ring-opening polyaddition behavior of compound (I) and diamine)
As shown in the following reaction formula, polyhydroxyurethane can be obtained by reacting compound (I) with a diamine.
なお、以下の反応式において、Xは、アルキレン基、アラルキレン基又は-R11-Ar11-R12-で表される基である。Ar11は2価の芳香族炭化水素基であり、R11及びR12はそれぞれ独立に、炭素数1以上20以下のアルキレン基である。nは1以上の整数である。nは1以上の整数である。 In the following reaction formula, X is an alkylene group, an aralkylene group, or a group represented by -R 11 -Ar 11 -R 12 -. Ar 11 is a divalent aromatic hydrocarbon group, and R 11 and R 12 are each independently an alkylene group having 1 to 20 carbon atoms. n is an integer of 1 or more. n is an integer of 1 or more.
スピロ型ビスカーボナートである化合物(I)と1,6-diaminohexaneの重付加をDMSO中、85℃で行い、ポリヒドロキシウレタン(C6)の合成を試みた。その結果、反応24時間後にはゲル化していた。
そこで、化合物(I)と1,6-diaminohexaneとの重付加挙動を検証するため、DMSO中、50℃で重付加挙動をゲルパーミエーションクロマトグラフ(GPC)測定により追跡した(下記反応式参照)。GPC測定の結果を図7に示す。また、図8は、化合物(I)及び1,6-ジアミノヘキサンの反応時間と、生成物の数平均分子量又は分子量分布との関係を示すグラフである。
The synthesis of polyhydroxyurethane (C6) was attempted by polyaddition of compound (I), which is a spiro-type biscarbonate, with 1,6-diaminohexane in DMSO at 85° C. As a result, gelation occurred after 24 hours of reaction.
In order to verify the polyaddition behavior of compound (I) and 1,6-diaminohexane, the polyaddition behavior was monitored by gel permeation chromatography (GPC) measurement in DMSO at 50°C (see the reaction formula below). The results of the GPC measurement are shown in Figure 7. Figure 8 is a graph showing the relationship between the reaction time of compound (I) and 1,6-diaminohexane and the number average molecular weight or molecular weight distribution of the product.
図7及び図8から、反応3時間あたりから高分子量側に新たにピークが出現し、さらに、反応時間の増加にともないピーク面積が増加するとともに高分子量側にシフトした。これは恐らく、反応後期ではポリマー鎖末端のアミノ基の濃度が生成するヒドロキシ基の濃度に比べ著しく低下するため、ポリマー鎖末端の六員環環状カーボナート基がアミノ基ではなく側鎖のヒドロキシ基と反応し、ポリマー鎖が架橋されたためだと考えられる。なお、同様のゲル化は他の二官能性六員環環状カーボナートとジアミンとの重付加においても報告されている。そこで、この副反応を防ぐため、反応3時間後に0.1モル等量の1,6-diaminohexaneを反応系に加えたところ、一晩たってもゲル化は観測されなかった。 Figures 7 and 8 show that a new peak appeared on the high molecular weight side after about 3 hours of reaction, and as the reaction time increased, the peak area increased and shifted to the high molecular weight side. This is probably because in the later stages of the reaction, the concentration of the amino groups at the polymer chain ends was significantly lower than the concentration of the hydroxyl groups produced, and the six-membered cyclic carbonate groups at the polymer chain ends reacted with the hydroxyl groups in the side chains instead of the amino groups, resulting in crosslinking of the polymer chains. Similar gelation has also been reported in the polyaddition of other bifunctional six-membered cyclic carbonates with diamines. To prevent this side reaction, 0.1 molar equivalents of 1,6-diaminohexane was added to the reaction system after 3 hours of reaction, but no gelation was observed even overnight.
以上の結果を踏まえ、下記反応式に示すように、DMSO中、50℃で、反応3時間後に0.1モル等量のジアミンを添加する重付加反応条件に統一し、ジアミンの異なる計4種類のポリヒドロキシウレタン(PHUs)(C3、C6、C8、p-Xyl)を製造した。 Based on the above results, the polyaddition reaction conditions were standardized as shown in the reaction formula below: DMSO, 50°C, 0.1 molar equivalent of diamine was added after 3 hours of reaction, and a total of four types of polyhydroxyurethanes (PHUs) with different diamines (C3, C6, C8, p-Xyl) were produced.
具体的な製造方法を以下の実施例18~21に示す。 Specific manufacturing methods are shown in Examples 18 to 21 below.
[実施例18]
(ポリヒドロキシウレタン(C3)の製造)
5mLのバイアルに化合物(I)(250mg、1.33mmol)を加え、シリコンセプタムで蓋をし、バイアル内を窒素置換した。ここにdry DMSO(2mL)を加えて懸濁させた後、1,3-diaminopropane(112μL、1.33mmol)を室温で加えた(すぐに均一溶液になった)。この溶液を50℃に加熱して窒素雰囲気下で撹拌した。3時間後、1,3-diaminopropane(11μL、0.13mmol)を加え、50℃で16時間撹拌した。室温に冷却した後、溶液をCHCl3(約125mL)に滴下し、約4℃で4時間静置した。析出した固体を回収し、これをDMF(約4mL)に溶かし、CHCl3(約100mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(C3)(330mg、収率95%)を得た。1H-NMRスペクトル及び13C-NMRスペクトルでポリヒドロキシウレタン(C3)の構造を確認した。ポリヒドロキシウレタン(C3)の1H-NMRスペクトルの積分比から算出された、副反応の割合は約22%であり、ポリヒドロキシウレタン(C3)の総モル量に対する分岐構造を有するポリヒドロキシウレタン(C3)の含有量は約11モル%であった。
[Example 18]
(Production of polyhydroxyurethane (C3))
Compound (I) (250 mg, 1.33 mmol) was added to a 5 mL vial, the vial was capped with a silicon septum, and the inside of the vial was replaced with nitrogen. Dry DMSO (2 mL) was added thereto to suspend the solution, and then 1,3-diaminopropane (112 μL, 1.33 mmol) was added at room temperature (immediately became a homogeneous solution). This solution was heated to 50° C. and stirred under a nitrogen atmosphere. After 3 hours, 1,3-diaminopropane (11 μL, 0.13 mmol) was added, and the solution was stirred at 50° C. for 16 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 125 mL) and allowed to stand at about 4° C. for 4 hours. The precipitated solid was collected, dissolved in DMF (about 4 mL), and added dropwise to CHCl 3 (about 100 mL) to collect the precipitated solid, which was then dried under reduced pressure to obtain polyhydroxyurethane (C3) (330 mg, yield 95%) as a white solid. The structure of polyhydroxyurethane (C3) was confirmed by 1 H-NMR spectrum and 13 C-NMR spectrum. The proportion of side reactions calculated from the integral ratio of the 1 H-NMR spectrum of polyhydroxyurethane (C3) was about 22%, and the content of polyhydroxyurethane (C3) having a branched structure relative to the total molar amount of polyhydroxyurethane (C3) was about 11 mol%.
[実施例19]
(ポリヒドロキシウレタン(C6)の製造)
5mLのバイアルに化合物(I)(250mg、1.33mmol)と1,6-diaminohexane(154mg、1.33mmol)を加え、シリコンセプタムで蓋をし、バイアル内を窒素置換した。ここにdry DMSO(2mL)を室温で加え(すぐに均一溶液になった)、50℃に加熱して窒素雰囲気下で撹拌した。3時間後、1,6-diaminohexane(15.4mg、0.13mmol)を加え、50℃で12時間撹拌した。室温に冷却した後、溶液をCHCl3(約125mL)に滴下し、約4℃で1時間静置した。析出した固体を回収し、これをMeOH(約5mL)に溶かし、CHCl3(約100mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(C6)(356mg、収率88%)を得た。1H-NMRスペクトル及び13C-NMRスペクトルでポリヒドロキシウレタン(C6)の構造を確認した。
[Example 19]
(Production of polyhydroxyurethane (C6))
Compound (I) (250 mg, 1.33 mmol) and 1,6-diaminohexane (154 mg, 1.33 mmol) were added to a 5 mL vial, the vial was capped with a silicon septum, and the inside of the vial was replaced with nitrogen. Dry DMSO (2 mL) was added thereto at room temperature (immediately became a homogeneous solution), and the mixture was heated to 50°C and stirred under a nitrogen atmosphere. After 3 hours, 1,6-diaminohexane (15.4 mg, 0.13 mmol) was added, and the mixture was stirred at 50°C for 12 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 125 mL) and allowed to stand at about 4°C for 1 hour. The precipitated solid was collected, dissolved in MeOH (about 5 mL) and added dropwise to CHCl 3 (about 100 mL), and the precipitated solid was collected and dried under reduced pressure to obtain polyhydroxyurethane (C6) (356 mg, yield 88%) as a white solid. The structure of polyhydroxyurethane (C6) was confirmed by 1 H-NMR spectrum and 13 C-NMR spectrum.
[実施例20]
(ポリヒドロキシウレタン(C8)の製造)
5mLのバイアルに化合物(I)(250mg、1.33mmol)と1,8-diaminooctane(191.7mg、1.33mmol)を加え、シリコンセプタムで蓋をし、バイアル内を窒素置換した。ここにdry DMSO(3mL)を室温で加え(一部不溶)、95℃に加熱して窒素雰囲気下で0.5時間、50℃で2.5時間撹拌した。ここに1,8-diaminooctane(19.7mg、0.13mmol)を加え、95℃で3.5時間、50℃で2.5時間撹拌した。室温に冷却した後、溶液をCHCl3(約125mL)に滴下し、約4℃で3時間静置した。析出した固体を回収し、これをMeOH(約5mL)に溶かし、CHCl3/n-ヘキサン(約100mL/約50mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(C8)(375mg、収率85%)を得た。1H-NMRスペクトル及び13C-NMRスペクトルでポリヒドロキシウレタン(C8)の構造を確認した。
[Example 20]
(Production of polyhydroxyurethane (C8))
Compound (I) (250 mg, 1.33 mmol) and 1,8-diaminooctane (191.7 mg, 1.33 mmol) were added to a 5 mL vial, the vial was capped with a silicon septum, and the inside of the vial was replaced with nitrogen. Dry DMSO (3 mL) was added thereto at room temperature (partially insoluble), and the mixture was heated to 95° C. and stirred under a nitrogen atmosphere for 0.5 hours and at 50° C. for 2.5 hours. 1,8-diaminooctane (19.7 mg, 0.13 mmol) was added thereto, and the mixture was stirred at 95° C. for 3.5 hours and at 50° C. for 2.5 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 125 mL) and allowed to stand at about 4° C. for 3 hours. The precipitated solid was collected, dissolved in MeOH (about 5 mL) and added dropwise to CHCl 3 /n-hexane (about 100 mL/about 50 mL), and the precipitated solid was collected and dried under reduced pressure to obtain polyhydroxyurethane (C8) (375 mg, yield 85%) as a white solid. The structure of polyhydroxyurethane (C8) was confirmed by 1 H-NMR spectrum and 13 C-NMR spectrum.
[実施例21]
(ポリヒドロキシウレタン(p-Xyl)の製造)
5mLのバイアルに化合物(I)(250mg、1.33mmol)とp-xylylenediamine(181mg、1.33mmol)を加え、シリコンセプタムで蓋をし、バイアル内を窒素置換した。ここにdry DMSO(2mL)を室温で加え(一部不溶)、5分間撹拌後、50℃に加熱して窒素雰囲気下で3時間撹拌した。ここにp-xylylenediamine(18.1mg、0.13mmol)を加え、50℃で12.5時間撹拌した。室温に冷却した後、溶液をCHCl3(約125mL)に滴下し、約4℃で1時間静置した。析出した固体を回収し、これをDMF(約5mL)に溶かし、CHCl3(約125mL)に滴下して析出した固体を回収、減圧乾燥して薄黄色固体であるポリヒドロキシウレタン(p-Xyl)(407mg、収率94%)を得た。1H-NMRスペクトル及び13C-NMRスペクトルでポリヒドロキシウレタン(p-Xyl)の構造を確認した。ポリヒドロキシウレタン(p-Xyl)の1H-NMRスペクトルの積分比から算出された、副反応の割合は約22%であり、ポリヒドロキシウレタン(p-Xyl)の総モル量に対する分岐構造を有するポリヒドロキシウレタン(p-Xyl)の含有量は約11モル%であった。
[Example 21]
(Production of polyhydroxyurethane (p-Xyl))
Compound (I) (250 mg, 1.33 mmol) and p-xylylenediamine (181 mg, 1.33 mmol) were added to a 5 mL vial, the vial was capped with a silicon septum, and the inside of the vial was replaced with nitrogen. Dry DMSO (2 mL) was added thereto at room temperature (partially insoluble), and after stirring for 5 minutes, the mixture was heated to 50° C. and stirred under a nitrogen atmosphere for 3 hours. p-xylylenediamine (18.1 mg, 0.13 mmol) was added thereto, and the mixture was stirred at 50° C. for 12.5 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 125 mL) and allowed to stand at about 4° C. for 1 hour. The precipitated solid was collected, dissolved in DMF (about 5 mL), and added dropwise to CHCl 3 (about 125 mL) to collect the precipitated solid, which was then dried under reduced pressure to obtain polyhydroxyurethane (p-Xyl) (407 mg, yield 94%) as a pale yellow solid. The structure of polyhydroxyurethane (p-Xyl) was confirmed by 1 H-NMR spectrum and 13 C-NMR spectrum. The proportion of side reactions calculated from the integral ratio of the 1 H-NMR spectrum of polyhydroxyurethane (p-Xyl) was about 22%, and the content of polyhydroxyurethane (p-Xyl) having a branched structure relative to the total molar amount of polyhydroxyurethane (p-Xyl) was about 11 mol%.
また、実施例18~21で得られた各ポリヒドロキシウレタンは、GPC測定、フーリエ変換赤外分光分析(FT-IR)により同定した。重合条件、収率、数平均分子量(Mn)、分子量分布(Mw/Mn)を表1にまとめた。 The polyhydroxyurethanes obtained in Examples 18 to 21 were identified by GPC measurement and Fourier transform infrared spectroscopy (FT-IR). The polymerization conditions, yield, number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) are summarized in Table 1.
FT-IRの結果から、いずれのポリヒドロキシウレタンにおいても、スピロ型環状カーボナートである化合物(I)のC=O伸縮振動に起因する1737cm-1ピークが完全に消失し、1686cm-1以上1690cm-1以下にウレタンのC=O伸縮振動に起因するピーク及び3310cm-1付近にN-H/O-H伸縮振動に起因するピークが観測された。
1H-NMRスペクトルから、いずれのポリヒドロキシウレタンにおいても、ウレタン基のNH(cis/trans mixture:6.8ppm以上7.1ppm以下)とヒドロキシ基のOH(4.3ppm以上4.7ppm以下)、及び、その他のプロトンに対応するシグナルが観測され、13C-NMRスペクトルから、いずれのポリヒドロキシウレタンにおいても、156ppm付近にウレタン基のC=Oに起因する13Cシグナルが観測された。
また、得られた各ポリヒドロキシウレタンの数平均分子量Mnは3.5×103以上14.2×103以下、分子量分布Mw/Mnは2.0以上5.8以下であった。
これらの結果から、製造されたた各ポリヒドロキシウレタンは、側鎖にヒドロキシ基を有するポリウレタンであり、目的のポリヒドロキシウレタンが生成していることが分かった。
The FT-IR results showed that in all polyhydroxyurethanes, the peak at 1737 cm −1 due to the C═O stretching vibration of compound (I), which is a spiro-type cyclic carbonate, completely disappeared, and a peak due to the C═O stretching vibration of urethane was observed between 1686 cm −1 and 1690 cm −1 , as well as a peak due to the N-H/O-H stretching vibration near 3310 cm −1 .
In the 1 H-NMR spectrum, signals corresponding to the NH of the urethane group (cis/trans mixture: 6.8 ppm to 7.1 ppm), the OH of the hydroxyl group (4.3 ppm to 4.7 ppm), and other protons were observed in all polyhydroxyurethanes, and in the 13 C-NMR spectrum, a 13 C signal due to the C═O of the urethane group was observed around 156 ppm in all polyhydroxyurethanes.
The number average molecular weight Mn of each of the obtained polyhydroxyurethanes was 3.5×10 3 or more and 14.2×10 3 or less, and the molecular weight distribution Mw/Mn was 2.0 or more and 5.8 or less.
From these results, it was found that each of the produced polyhydroxyurethanes was a polyurethane having a hydroxy group in the side chain, and the desired polyhydroxyurethane was produced.
表1に示すように、ポリヒドロキシウレタン(C8)の数平均分子量Mnが最も高かった。しかしながら、分子量分布Mw/Mnが5.5と広く、GPC測定から二峰性のピークが観測された。これらのことから、ポリヒドロキシウレタン(C8)は、部分的に分岐構造を含んでいると考えられ、これは反応初期に95℃で加熱したことが原因だと推定された。また、95℃で加熱していない、ポリヒドロキシウレタン(p-Xyl)も広い分子量分布(Mw/Mn=5.8)を示した。この理由については不明であるが、p-xylenediamineのベンジル位のアミノ基の求核性が他のジアミンに比べて低く、そのため、ポリマー鎖末端の六員環環状カーボナート基と側鎖のヒドロキシ基間での反応がより起こりやすくなったと考えられる。 As shown in Table 1, polyhydroxyurethane (C8) had the highest number-average molecular weight Mn. However, the molecular weight distribution Mw/Mn was broad at 5.5, and a bimodal peak was observed in the GPC measurement. From these findings, it is believed that polyhydroxyurethane (C8) partially contains a branched structure, and this is presumed to be due to heating at 95°C at the beginning of the reaction. In addition, polyhydroxyurethane (p-Xyl), which was not heated at 95°C, also showed a wide molecular weight distribution (Mw/Mn = 5.8). The reason for this is unclear, but it is thought that the nucleophilicity of the amino group at the benzyl position of p-xylenediamine is lower than that of other diamines, which makes it easier for the reaction to occur between the six-membered cyclic carbonate group at the end of the polymer chain and the hydroxy group in the side chain.
[実施例22]
(ポリヒドロキシウレタンの熱物性)
実施例18~21で得られた各ポリヒドロキシウレタンについて、熱重量示差熱分析(TGA-DTA)、及び、示差走査熱量分析(DSC)を行った。TGA-DTAの結果を図9に、DSCの結果を図10に示す。
[Example 22]
(Thermal properties of polyhydroxyurethane)
Thermogravimetric and differential thermal analysis (TGA-DTA) and differential scanning calorimetry (DSC) were performed on each of the polyhydroxyurethanes obtained in Examples 18 to 21. The results of TGA-DTA are shown in Figure 9, and the results of DSC are shown in Figure 10.
図9から、5%質量減少温度(Td5)は、ポリヒドロキシウレタン(p-Xyl)を除き、ジアミンの炭素数の増加にともない236℃以上286℃以下へと上昇した。これは恐らく、加熱によりポリヒドロキシウレタンが解重合を起こし、対応するモノマー(化合物(I)とジアミン)に変換され、沸点の高いジアミンが生じるポリヒドロキシウレタンほどTd5が高くなったと考えられる。一方、ポリヒドロキシウレタン(p-Xyl)の解重合により生じるジアミンのp-xylylenediamineの沸点が他の脂肪族ジアミンより高いにもかかわらず、ポリヒドロキシウレタン(C8)のTd5より低い269℃を示した。また、ポリヒドロキシウレタン(p-Xyl)の質量減少が500℃でも100%にならなかった。これらのことから、加熱により生じたp-xylylenediamineが炭化し、その結果、ポリヒドロキシウレタン(p-Xyl)のTd5がポリヒドロキシウレタン(C8)より低くなったと考えられる。実際、ポリヒドロキシウレタン(p-Xyl)のTGA-DTA後のサンプルを確認したところ、黒色の固形物が観測された。 From FIG. 9, the 5% mass reduction temperature (T d5 ) rose from 236° C. to 286° C. with an increase in the carbon number of the diamine, except for polyhydroxyurethane (p-Xyl). This is probably because the polyhydroxyurethane depolymerized by heating and converted to the corresponding monomer (compound (I) and diamine), and the polyhydroxyurethane that produces a diamine with a high boiling point had a higher T d5 . On the other hand, although the boiling point of p-xylylenediamine, the diamine produced by depolymerization of polyhydroxyurethane (p-Xyl), is higher than that of other aliphatic diamines, it showed a lower T d5 of 269° C. than that of polyhydroxyurethane (C8). In addition, the mass reduction of polyhydroxyurethane (p-Xyl) did not reach 100% even at 500° C. From these facts, it is considered that p-xylylenediamine produced by heating was carbonized, and as a result, Td5 of polyhydroxyurethane (p-Xyl) became lower than that of polyhydroxyurethane (C8). In fact, when the sample of polyhydroxyurethane (p-Xyl) after TGA-DTA was confirmed, black solid matter was observed.
図10から、ポリヒドロキシウレタン(C3)、(C6)及び(C8)のガラス転移温度Tgは42.5℃以上47.4℃以下であり、ジアミン残基の炭素鎖数とTg間に特に相関は見られなかった。Tgがポリマーの分子量に影響を受けることを考慮すると、相関が見られなかった原因として、ポリヒドロキシウレタン(C3)、(C6)及び(C8)の数平均分子量Mnが異なることが挙げられる。一方、主鎖に芳香族基を有するポリヒドロキシウレタン(p-Xyl)は、ポリヒドロキシウレタン(C3)、(C6)及び(C8)に比べて、より高いTg(85.7℃)を示した。また、いずれのポリヒドロキシウレタンにおいても融点は観測されず、非晶性であることが分かった。 As shown in Figure 10, the glass transition temperatures Tg of polyhydroxyurethanes (C3), (C6) and (C8) were 42.5°C or higher and 47.4°C or lower, and no particular correlation was observed between the number of carbon chains in the diamine residue and Tg. Considering that Tg is affected by the molecular weight of the polymer, the reason for the lack of correlation may be that the number average molecular weights Mn of polyhydroxyurethanes (C3), (C6) and (C8) are different. On the other hand, polyhydroxyurethane (p-Xyl) having an aromatic group in the main chain showed a higher Tg (85.7°C) than polyhydroxyurethanes (C3), (C6) and (C8). Furthermore, no melting point was observed in any of the polyhydroxyurethanes, indicating that they were amorphous.
[実施例23]
(化合物(I)のジヒドロキシウレタン誘導体への誘導)
化合物(I)1モル等量を2モル等量のモノアミンと反応させることで、対応するジヒドロキシウレタンへと誘導することができる。このジヒドロキシウレタン誘導体をジイソシアネートと重付加させることで、側鎖にウレタン基を有するポリウレタンの合成が可能となる。また、ジヒドロキシウレタン誘導体は、DPCとの反応により2つのウレタン基を有する新規な六員環環状カーボナートへ変換ができる可能性を有する。
これらのことから、化合物(I)のジヒドロキシウレタン誘導体の合成を検討した。
[Example 23]
(Conversion of compound (I) into dihydroxyurethane derivative)
By reacting 1 molar equivalent of compound (I) with 2 molar equivalents of monoamine, it is possible to derive the corresponding dihydroxyurethane. By polyaddition of this dihydroxyurethane derivative with diisocyanate, it is possible to synthesize polyurethane having urethane groups in the side chain. In addition, the dihydroxyurethane derivative has the possibility of being converted into a novel six-membered cyclic carbonate having two urethane groups by reaction with DPC.
Based on these findings, the synthesis of a dihydroxyurethane derivative of compound (I) was investigated.
以下の反応式に示すように、化合物(I)1モル等量を2モル等量のモノアミンと反応させることで、ジヒドロキシウレタン誘導体(以下、「化合物(V)」と称する場合がある)が得られた。具体的な合成手順を以下に述べる。 As shown in the reaction formula below, a dihydroxyurethane derivative (hereinafter sometimes referred to as "compound (V)") was obtained by reacting 1 molar equivalent of compound (I) with 2 molar equivalents of monoamine. The specific synthesis procedure is described below.
化合物(I)(500mg、2.66mmol)をdry DMF(5mL)に懸濁させ、1-hexylamine(592mg、5.85mmol)を室温でゆっくり加え、室温で14.5時間撹拌した。DMFを減圧留去し、残渣をシリカゲルカラム(eluent:EtOAc/n-ヘキサン=3/1、vol/vol)で精製し、白色固体である化合物(V)(744mg、収率72%)を得た。 Compound (I) (500 mg, 2.66 mmol) was suspended in dry DMF (5 mL), 1-hexylamine (592 mg, 5.85 mmol) was slowly added at room temperature, and the mixture was stirred at room temperature for 14.5 hours. DMF was removed under reduced pressure, and the residue was purified with a silica gel column (eluent: EtOAc/n-hexane = 3/1, vol/vol) to obtain compound (V) (744 mg, yield 72%) as a white solid.
化合物(V)の、エレクトロスプレーイオン化質量分析計(ESI-MS)、1H-NMR、13C-NMR、融点測定器、及び赤外分光光度計(IR)による分析結果を以下に示す。また、1H-NMRスペクトルを図11に示す。 The analytical results of compound (V) by electrospray ionization mass spectrometry (ESI-MS), 1 H-NMR, 13 C-NMR, melting point analyzer, and infrared spectrophotometer (IR) are shown below. The 1 H-NMR spectrum is shown in FIG.
HRMS (ESI-MS) (positive): m/z calcd for [M + Na]+, 413.2628, found, 413.2629.
1H NMR (400 MHz, DMSO-d6, rt): δ (trans-urethane isomer) 7.06 (t, J = 5.7 Hz, 2H, NH), 4.46 (t, J = 5.0 Hz, 2H, OH), 3.87 (s, 4H, -NHCOOCH2-), 3.36 (d, J = 5.3 Hz, partially overlapping with residual H2O signal, -CH2OH), 2.93 (q, J = 6.7 Hz, 4H, -NHCH2-), 1.37 (t, J = 6.7 Hz, 4H, -NHCH2CH2-), 1.29-1.21 (m, 12H, -CH2-(CH2)3-CH3), 0.85 (t, J = 6.8 Hz, 6H, -CH3).
13C NMR (100 MHz, DMSO-d6, rt): δ (trans-urethane isomer) 156.46, 62.59, 59.69, 44.39, 40.26, 31.06, 29.45, 26.00, 22.13, 13.97.
Mp: 79.0-81.0 ℃.
IR (ATR, cm-1): 3278 (νN-H and/or νO-H), 1687 (νC=O), 1545 (νN-H), 1252 (νC-O), 1048(νC-O).
HRMS (ESI-MS) (positive): m/z calcd for [M + Na]+, 413.2628, found, 413.2629.
1 H NMR (400 MHz, DMSO-d6, rt): δ (trans-urethane isomer) 7.06 (t, J = 5.7 Hz, 2H, NH), 4.46 (t, J = 5.0 Hz, 2H, OH), 3.87 (s, 4H, -NHCOOCH 2 -), 3.36 (d, J = 5.3 Hz, partially overlapping with residual H 2 O signal, -CH 2 OH), 2.93 (q, J = 6.7 Hz, 4H, -NHCH 2 -), 1.37 (t, J = 6.7 Hz, 4H, -NHCH 2 CH 2 -), 1.29-1.21 (m, 12H, -CH 2 -(CH 2 ) 3 -CH 3 ), 0.85 (t, J = 6.8 Hz, 6H, -CH3 ).
13C NMR (100 MHz, DMSO-d6, rt): δ (trans-urethane isomer) 156.46, 62.59, 59.69, 44.39, 40.26, 31.06, 29.45, 26.00, 22.13, 13.97.
Mp: 79.0-81.0℃.
IR (ATR, cm -1 ): 3278 (ν NH and/or ν OH ), 1687 (ν C=O ), 1545 (ν NH ), 1252 (ν CO ), 1048(ν CO ).
[実施例24]
(化合物(I)とモノアミンによるモデル反応による副生成物の同定)
化合物(I)とモノアミンによるモデル反応を行った。具体的な合成手順は以下に示すとおりである。
化合物(I)(500mg、2.66mmol)をdry DMF(5mL)に懸濁させ、1-hexylamine(592mg、5.85mmol)を室温でゆっくり加え、50℃で14.5時間撹拌した。反応溶液の一部について、DMFを減圧留去し、残渣をDMSO-d6に溶解させて1H-NMR測定を行った。また、反応溶液の残りについて、残渣をシリカゲルカラム(eluent:CHCl3/EtOAc=2/8、vol/vol)で精製し、得られた固体をDMSO-d6に溶解させて1H-NMR測定を行った。1H-NMR測定の結果を図12に示す。また、反応生成物について、ESI-MS分析により同定した。その結果、下記反応式に示すように、目的生成物である化合物(V)に加えて、副生成物として化合物(V’)及び化合物(V’’)が生成されていることが明らかとなった。なお、反応式中、Rはヘキシル基である。
[Example 24]
(Identification of by-products from model reactions of compound (I) with monoamines)
A model reaction was carried out using compound (I) and a monoamine. The specific synthesis procedure is as follows.
Compound (I) (500 mg, 2.66 mmol) was suspended in dry DMF (5 mL), 1-hexylamine (592 mg, 5.85 mmol) was slowly added at room temperature, and the mixture was stirred at 50° C. for 14.5 hours. DMF was removed from a part of the reaction solution by vacuum distillation, and the residue was dissolved in DMSO-d 6 , and 1 H-NMR measurement was performed. In addition, the residue of the remaining reaction solution was purified with a silica gel column (eluent: CHCl 3 /EtOAc = 2/8, vol/vol), and the obtained solid was dissolved in DMSO-d 6 , and 1 H-NMR measurement was performed. The results of the 1 H-NMR measurement are shown in FIG. 12. In addition, the reaction product was identified by ESI-MS analysis. As a result, it was revealed that in addition to the target product compound (V), compound (V') and compound (V'') were produced as by-products, as shown in the following reaction formula. In the reaction formula, R is a hexyl group.
<ポリヒドロキシウレタンの製造条件の検討>
[実施例25]
(反応温度:50℃)
5mLのバイアルに化合物(I)(250mg、1.33mmol)と1,6-diaminohexane(154mg、1.33mmol)を加え、シリコンセプタムで蓋をし、バイアル内を窒素置換した。ここにdry DMSO(2mL)を室温で加え、50℃に加熱して窒素雰囲気下で撹拌した。3時間後、1,6-diaminohexane(15.4mg、0.13mmol)を加え、50℃で12時間撹拌した。室温に冷却した後、溶液をCHCl3(約125mL)に滴下し、約4℃で1時間静置した。析出した固体を回収し、これをMeOH(約5mL)に溶かし、CHCl3(約100mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(C6)(356mg、収率88%)を得た。ポリヒドロキシウレタン(C6)の1H-NMRスペクトルを図13に示す。
<Study of manufacturing conditions for polyhydroxyurethane>
[Example 25]
(Reaction temperature: 50° C.)
Compound (I) (250 mg, 1.33 mmol) and 1,6-diaminohexane (154 mg, 1.33 mmol) were added to a 5 mL vial, the vial was capped with a silicon septum, and the inside of the vial was replaced with nitrogen. Dry DMSO (2 mL) was added thereto at room temperature, and the mixture was heated to 50° C. and stirred under a nitrogen atmosphere. After 3 hours, 1,6-diaminohexane (15.4 mg, 0.13 mmol) was added and stirred at 50° C. for 12 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 125 mL) and allowed to stand at about 4° C. for 1 hour. The precipitated solid was collected, dissolved in MeOH (about 5 mL), and added dropwise to CHCl 3 (about 100 mL), and the precipitated solid was collected and dried under reduced pressure to obtain polyhydroxyurethane (C6) (356 mg, yield 88%) as a white solid. The 1 H-NMR spectrum of polyhydroxyurethane (C6) is shown in FIG.
図13から、ポリヒドロキシウレタン(C6)に加えて、実施例24でのモデル反応で同定された副生成物である化合物(V’)及び化合物(V’’)に対応する副生成物が生成されていることが確かめられた。ポリヒドロキシウレタン(C6)、化合物(V’)及び化合物(V’’)の生成比を、1H-NMRスペクトルの積分比から算出した。生成比は、ポリヒドロキシウレタン(C6):化合物(V’):化合物(V’’)=6.3:1:1であり、副反応の割合は約24%であった。 13, it was confirmed that in addition to polyhydroxyurethane (C6), by-products corresponding to compound (V') and compound (V''), which were by-products identified in the model reaction in Example 24, were produced. The production ratio of polyhydroxyurethane (C6), compound (V'), and compound (V'') was calculated from the integral ratio of the 1 H-NMR spectrum. The production ratio was polyhydroxyurethane (C6): compound (V'): compound (V'') = 6.3:1:1, and the proportion of side reactions was approximately 24%.
以上の結果から、ポリヒドロキシウレタン(C6)は側鎖に2つヒドロキシ基を有するモノマー単位(化合物(V)の構造に対応)と、側鎖に1つのヒドロキシ基と1つのウレタン基を有するモノマー単位(化合物(V’)の構造に対応)を含んでおり、分岐構造をとっていることが示唆された。また、ポリヒドロキシウレタン(C6)の主鎖及び側鎖の末端構造は、アミノ末端以外にヒドロキシ基を3つ有する化合物(V’’)の構造に対応する末端構造を有していることが示唆された。 These results suggest that polyhydroxyurethane (C6) contains a monomer unit having two hydroxy groups in the side chain (corresponding to the structure of compound (V)) and a monomer unit having one hydroxy group and one urethane group in the side chain (corresponding to the structure of compound (V')), and that it has a branched structure. It also suggests that the terminal structures of the main chain and side chain of polyhydroxyurethane (C6) have terminal structures corresponding to the structure of compound (V''), which has three hydroxy groups in addition to the amino terminal.
[実施例26]
(反応温度:0℃)
5mLのバイアルに1,6-diaminohexane(154mg、1.33mmol)を加え、シリコンセプタムで蓋をし、バイアル内を窒素置換した。ここにdry DMF(2mL)を室温で加え、0℃に冷却し、化合物(I)(250mg、1.33mmol)を粉末で加えた。0℃で18時間撹拌した後、1,6-diaminohexane(15.4mg、0.13mmol)を0℃で加えた後、50℃で5時間撹拌した。室温に冷却した後、溶液をCHCl3(約125mL)に滴下し、約4℃で1時間静置した。析出した固体を回収し、これをMeOH(約5mL)に溶かし、CHCl3(約100mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(C6)(305mg、80%)を得た。ポリヒドロキシウレタン(C6)の1H-NMRスペクトルを図14に示す。ポリヒドロキシウレタン(C6)、化合物(V’)及び化合物(V’’)の生成比を、1H-NMRスペクトルの積分比から算出した。生成比は、ポリヒドロキシウレタン(C6):化合物(V’):化合物(V’’)=25:1:1であり、副反応の割合は約7%であり、ポリヒドロキシウレタン(C6)の総モル量に対する、分岐構造を有するポリヒドロキシウレタン(C6)の含有量は約3.5モル%であった。
[Example 26]
(Reaction temperature: 0° C.)
1,6-diaminohexane (154 mg, 1.33 mmol) was added to a 5 mL vial, the vial was capped with a silicon septum, and the inside of the vial was replaced with nitrogen. Dry DMF (2 mL) was added to the vial at room temperature, cooled to 0°C, and compound (I) (250 mg, 1.33 mmol) was added as a powder. After stirring at 0°C for 18 hours, 1,6-diaminohexane (15.4 mg, 0.13 mmol) was added at 0°C, and then stirred at 50°C for 5 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 125 mL) and allowed to stand at about 4°C for 1 hour. The precipitated solid was collected, dissolved in MeOH (about 5 mL), and added dropwise to CHCl 3 (about 100 mL) to collect the precipitated solid, which was then dried under reduced pressure to obtain polyhydroxyurethane (C6) (305 mg, 80%) as a white solid. The 1 H-NMR spectrum of polyhydroxyurethane (C6) is shown in FIG. 14. The production ratio of polyhydroxyurethane (C6), compound (V') and compound (V'') was calculated from the integral ratio of the 1 H-NMR spectrum. The production ratio was polyhydroxyurethane (C6): compound (V'): compound (V'') = 25:1:1, the proportion of side reactions was about 7%, and the content of polyhydroxyurethane (C6) having a branched structure relative to the total molar amount of polyhydroxyurethane (C6) was about 3.5 mol%.
以上の結果から、0℃でポリヒドロキシウレタン(C6)を合成した本実施例は、50℃でポリヒドロキシウレタン(C6)を合成した実施例25(副反応の割合:約24%)に比べて、副反応が著しく抑制されることが分かった。 The above results show that in this example, in which polyhydroxyurethane (C6) was synthesized at 0°C, side reactions were significantly suppressed compared to Example 25, in which polyhydroxyurethane (C6) was synthesized at 50°C (proportion of side reactions: approximately 24%).
[実施例27]
(ポリヒドロキシウレタン(C3)の製造:反応温度0℃)
5mLのバイアルに1,3-diaminopropane(112μL、1.33mmol)とdry DMF(2mL)を室温で加え、0℃に冷却し、化合物(I)(250mg、1.33mmol)を粉末で加え、0℃で18時間撹拌した。ここに1,3-diaminopropane(11μL、0.13mmol)を0℃で加えた後、50℃で5時間撹拌した。室温に冷却した後、溶液をCHCl3(約100mL)に滴下し、析出した固体を回収し、これをDMF(約4mL)に溶かし、CHCl3(約100mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(C3)(312mg、収率90%)を得た。1H-NMRスペクトルの積分比から算出された、副反応の割合は約8%であり、ポリヒドロキシウレタン(C3)の総モル量に対する、分岐構造を有するポリヒドロキシウレタン(C3)の含有量は約4モル%であった。
[Example 27]
(Production of polyhydroxyurethane (C3):
1,3-diaminopropane (112 μL, 1.33 mmol) and dry DMF (2 mL) were added to a 5 mL vial at room temperature, cooled to 0° C., and compound (I) (250 mg, 1.33 mmol) was added as a powder and stirred at 0° C. for 18 hours. 1,3-diaminopropane (11 μL, 0.13 mmol) was added to this at 0° C., and then stirred at 50° C. for 5 hours. After cooling to room temperature, the solution was added dropwise to CHCl 3 (about 100 mL), and the precipitated solid was collected, dissolved in DMF (about 4 mL), and added dropwise to CHCl 3 (about 100 mL), and the precipitated solid was collected and dried under reduced pressure to obtain polyhydroxyurethane (C3) (312 mg, yield 90%) as a white solid. The proportion of side reactions calculated from the integral ratio of the 1 H-NMR spectrum was about 8%, and the content of polyhydroxyurethane (C3) having a branched structure relative to the total molar amount of polyhydroxyurethane (C3) was about 4 mol %.
[実施例28]
(ポリヒドロキシウレタン(p-Xyl)の製造:反応温度0℃)
5mLのバイアルにp-xylylenediamine(181mg、1.33mmol)とdry DMF(2mL)を室温で加え、0℃に冷却し、化合物(I)(250mg、1.33mmol)を粉末で加え、0℃で18時間撹拌した。ここにp-xylylenediamine(18.1mg、0.13mmol)を0℃で加えた後、50℃で5時間撹拌した。室温に冷却した後、溶液をCHCl3(約100mL)に滴下し、析出した固体を回収し、これをDMF(約4mL)に溶かし、CHCl3(約100mL)に滴下して析出した固体を回収、減圧乾燥して白色固体であるポリヒドロキシウレタン(p-Xyl)(396mg、収率92%)を得た。1H-NMRスペクトルの積分比から算出された、副反応の割合は約8%であり、ポリヒドロキシウレタン(p-Xyl)の総モル量に対する、分岐構造を有するポリヒドロキシウレタン(p-Xyl)の含有量は約4モル%であった。
[Example 28]
(Production of polyhydroxyurethane (p-Xyl):
Add p-xylylenediamine (181 mg, 1.33 mmol) and dry DMF (2 mL) to a 5 mL vial at room temperature, cool to 0 ° C., add compound (I) (250 mg, 1.33 mmol) as a powder, and stir at 0 ° C. for 18 hours. Add p-xylylenediamine (18.1 mg, 0.13 mmol) to this at 0 ° C., and then stir at 50 ° C. for 5 hours. After cooling to room temperature, the solution was dropped into CHCl 3 (about 100 mL), and the precipitated solid was collected, dissolved in DMF (about 4 mL), and dropped into CHCl 3 (about 100 mL), and the precipitated solid was collected and dried under reduced pressure to obtain polyhydroxyurethane (p-Xyl) (396 mg, yield 92%) as a white solid. The proportion of side reactions calculated from the integral ratio of the 1 H-NMR spectrum was about 8%, and the content of polyhydroxyurethane (p-Xyl) having a branched structure relative to the total molar amount of polyhydroxyurethane (p-Xyl) was about 4 mol %.
以上の結果から、0℃でポリヒドロキシウレタン(C3)及びポリヒドロキシウレタン(p-Xyl)を合成した実施例27及び28では、50℃でポリヒドロキシウレタンポリヒドロキシウレタン(C3)及びポリヒドロキシウレタン(p-Xyl)を合成した実施例18及び実施例21(副反応の割合:約11%)に比べて、副反応が著しく抑制されることが分かった。 The above results show that in Examples 27 and 28, in which polyhydroxyurethane (C3) and polyhydroxyurethane (p-Xyl) were synthesized at 0°C, side reactions were significantly suppressed compared to Examples 18 and 21, in which polyhydroxyurethane (C3) and polyhydroxyurethane (p-Xyl) were synthesized at 50°C (proportion of side reactions: approximately 11%).
本実施形態の製造方法によれば、簡便且つ収率が向上した二官能性環状カーボナートの製造方法及び二官能性環状カーボナートを用いた新規のポリヒドロキシウレタンの製造方法を提供することができる。
According to the production method of this embodiment, it is possible to provide a simple method for producing a bifunctional cyclic carbonate with an improved yield, and a novel method for producing a polyhydroxyurethane using a bifunctional cyclic carbonate.
Claims (11)
前記スピロ構造を有する二官能性環状カーボナートが2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneであり、
前記反応工程において、触媒を用いない、スピロ構造を有する二官能性環状カーボナートの製造方法。 The method includes a reaction step of reacting pentaerythritol with a diaryl carbonate to obtain a bifunctional cyclic carbonate having a spiro structure,
The bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione,
A method for producing a bifunctional cyclic carbonate having a spiro structure, the method comprising the step of :
前記スピロ構造を有する二官能性環状カーボナートと、下記一般式(Ia)で表されるジアミンとを反応させて、ポリヒドロキシウレタンを得る重合工程を含み、
前記スピロ構造を有する二官能性環状カーボナートが2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dioneである、ポリヒドロキシウレタンの製造方法。
The method includes a polymerization step of reacting the bifunctional cyclic carbonate having a spiro structure with a diamine represented by the following general formula (Ia) to obtain polyhydroxyurethane,
The method for producing polyhydroxyurethane, wherein the bifunctional cyclic carbonate having a spiro structure is 2,4,8,10-tetraoxaspiro[5,5]-undecane-3,9-dione.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020083001A JP7594368B2 (en) | 2020-05-11 | 2020-05-11 | Method for producing bifunctional cyclic carbonate having a spiro structure and method for producing polyhydroxyurethane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020083001A JP7594368B2 (en) | 2020-05-11 | 2020-05-11 | Method for producing bifunctional cyclic carbonate having a spiro structure and method for producing polyhydroxyurethane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021178775A JP2021178775A (en) | 2021-11-18 |
JP7594368B2 true JP7594368B2 (en) | 2024-12-04 |
Family
ID=78510866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020083001A Active JP7594368B2 (en) | 2020-05-11 | 2020-05-11 | Method for producing bifunctional cyclic carbonate having a spiro structure and method for producing polyhydroxyurethane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7594368B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025004102A1 (en) * | 2023-06-26 | 2025-01-02 | Council Of Scientific And Industrial Research An Indian Registered Body Incorporated Under The Regn. Of Soc. Act (Act Xxi Of 1860) | Bio-derived cyclic bicarbonate monomers and isocyanate-free poly(hydroxy urethane)-based hot-melt adhesives/polymers therefrom |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006009001A (en) | 2004-05-26 | 2006-01-12 | Japan Paint Manufacturers Association | Method for producing polyhydroxyurethane |
JP2007204605A (en) | 2006-02-01 | 2007-08-16 | Nippon Zeon Co Ltd | Method for producing norbornene-based ring-opening polymer, norbornene-based ring-opening polymer and use thereof |
WO2008026733A1 (en) | 2006-08-31 | 2008-03-06 | Zeon Corporation | Hydrogenated norbornene-based ring-opening polymerization polymers, resin composition, and molded objects |
JP2010132895A (en) | 2008-10-31 | 2010-06-17 | Sanyo Chem Ind Ltd | Active energy line curing resin composition |
JP2013189613A (en) | 2011-07-29 | 2013-09-26 | Ricoh Co Ltd | Method of manufacturing polymer |
JP2014519498A (en) | 2011-05-14 | 2014-08-14 | ハッティ―カウル、ライニ | Method for producing cyclic carbonate |
WO2018109714A2 (en) | 2016-12-16 | 2018-06-21 | Chondronest Sa | Bis-cyclic carbonate molecule with bis(1,3)-dioxin-dione structure |
-
2020
- 2020-05-11 JP JP2020083001A patent/JP7594368B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006009001A (en) | 2004-05-26 | 2006-01-12 | Japan Paint Manufacturers Association | Method for producing polyhydroxyurethane |
JP2007204605A (en) | 2006-02-01 | 2007-08-16 | Nippon Zeon Co Ltd | Method for producing norbornene-based ring-opening polymer, norbornene-based ring-opening polymer and use thereof |
WO2008026733A1 (en) | 2006-08-31 | 2008-03-06 | Zeon Corporation | Hydrogenated norbornene-based ring-opening polymerization polymers, resin composition, and molded objects |
JP2010132895A (en) | 2008-10-31 | 2010-06-17 | Sanyo Chem Ind Ltd | Active energy line curing resin composition |
JP2014519498A (en) | 2011-05-14 | 2014-08-14 | ハッティ―カウル、ライニ | Method for producing cyclic carbonate |
JP2013189613A (en) | 2011-07-29 | 2013-09-26 | Ricoh Co Ltd | Method of manufacturing polymer |
WO2018109714A2 (en) | 2016-12-16 | 2018-06-21 | Chondronest Sa | Bis-cyclic carbonate molecule with bis(1,3)-dioxin-dione structure |
Also Published As
Publication number | Publication date |
---|---|
JP2021178775A (en) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3256508B1 (en) | Process for the synthesis of polyoxazolidinone compounds with high stability | |
EP3677616B1 (en) | Method for producing non-isocyanate polyurethanes | |
He et al. | Synthesis, characterization, and application of a bifunctional coupler containing a five-and a six-membered ring carbonate | |
Mommer et al. | A novel multifunctional coupler: The concept of coupling and proof of principle | |
US9926288B2 (en) | Five-membered cyclic biscarbonates bearing amide linkages, their preparation and their uses for the preparation of polymers | |
JP7594368B2 (en) | Method for producing bifunctional cyclic carbonate having a spiro structure and method for producing polyhydroxyurethane | |
Zhang et al. | Synthesis and characterization of energetic GAP‐b‐PAEMA block copolymer | |
KR101631481B1 (en) | Polymer using aziridine and method for preparing the same | |
JP5791768B2 (en) | Method for forming a polyaryl polymer | |
Parzuchowski et al. | Amine functionalized polyglycerols obtained by copolymerization of cyclic carbonate monomers | |
US6414146B1 (en) | Isocyanurate compound and method for producing the same | |
Kricheldorf et al. | Polymers of carbonic acid, 26. Synthesis and ionic polymerization of 1, 3‐dioxane‐2‐thione | |
Ambade et al. | Synthesis and characterization of N‐substituted hyperbranched polyureas | |
JP4243822B2 (en) | Isocyanurate compound and process for producing the same | |
CN108558705B (en) | Aryl carbamate monomer containing phenolic hydroxyl amino acid, preparation method and application | |
JP2022060897A (en) | Method for producing polyhydroxyurethane having ABAC type monomer sequence | |
JP3364691B2 (en) | Method for reducing molecular weight of polysilazane | |
KR101600557B1 (en) | New polyurethane reaction catalyst and synthesizing method thereof | |
Relles et al. | Dichloromaleimide chemistry. IV. Preparation of poly (maleimide–ethers) from the reaction of bisdichloromaleimides with bisphenols | |
Shimokawaji et al. | Synthesis of partially bio‐based triepoxides from naturally occurring myo‐inositol and their polyadditions | |
JP2012036155A (en) | Bis(oxetane vinyl ether) compound, and method for producing the same | |
Qiao et al. | Synthesis and characterization of hyperbranched polyurethane-benzyltetrazole | |
Okamoto et al. | Synthesis of reactive polyureas bearing vinylcyclopropane moiety in main chain and their radical cross‐linking with multifunctional thiols | |
JP2005281192A (en) | New catenane compound and method for producing the same and new cross-linked polycatenane and method for producing the same | |
Dolci et al. | THERMORESPONSIVE ISOCYANATE-FREE POLYURETHANES SYNTHESIZED BY DIELS-ALDER POLYADDITION. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7594368 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |