Nothing Special   »   [go: up one dir, main page]

JP7557289B2 - Thermally expandable fireproof material - Google Patents

Thermally expandable fireproof material Download PDF

Info

Publication number
JP7557289B2
JP7557289B2 JP2020103395A JP2020103395A JP7557289B2 JP 7557289 B2 JP7557289 B2 JP 7557289B2 JP 2020103395 A JP2020103395 A JP 2020103395A JP 2020103395 A JP2020103395 A JP 2020103395A JP 7557289 B2 JP7557289 B2 JP 7557289B2
Authority
JP
Japan
Prior art keywords
thermally expandable
expandable graphite
resin
fire
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020103395A
Other languages
Japanese (ja)
Other versions
JP2021195461A (en
Inventor
健一 大月
美香 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2020103395A priority Critical patent/JP7557289B2/en
Publication of JP2021195461A publication Critical patent/JP2021195461A/en
Application granted granted Critical
Publication of JP7557289B2 publication Critical patent/JP7557289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱膨張性黒鉛を含有する熱膨張性耐火材に関する。 The present invention relates to a thermally expandable fire-resistant material containing thermally expandable graphite.

建築分野では、防火のために、建具、柱、壁材等の建築材料に耐火材が用いられる。耐火材としては、樹脂に、難燃剤、無機充填剤などに加えて、熱膨張性黒鉛が配合された熱膨張性耐火材等が用いられている(例えば、特許文献1参照)。このような熱膨張性耐火材は、加熱により膨張して燃焼残渣が耐火断熱層を形成し、耐火断熱性能を発現する。
熱膨張性黒鉛を含有する熱膨張性耐火材は、例えば、建築物の開口部に設けられるドア、窓などの建具と、これらを包囲するドア枠、窓枠などの枠との隙間に設けられ、火災時には該シートが厚み方向に膨張して、建具と枠材の隙間を閉塞し、延焼を防止することができる。
In the field of construction, fireproof materials are used in building materials such as fittings, pillars, and wall materials for fire prevention. As fireproof materials, thermally expandable fireproof materials in which thermally expandable graphite is blended with resin in addition to flame retardants, inorganic fillers, etc. are used (see, for example, Patent Document 1). Such thermally expandable fireproof materials expand when heated, and the combustion residue forms a fireproof insulation layer, thereby exhibiting fireproof insulation performance.
A thermally expandable fire-resistant material containing thermally expandable graphite is placed, for example, in the gap between fittings such as doors and windows installed in openings of a building and the frames surrounding them, such as door frames and window frames, and in the event of a fire, the sheet expands in the thickness direction to close the gap between the fittings and the frames and prevent the fire from spreading.

特開2017-141463号公報JP 2017-141463 A

ところが、熱膨張性黒鉛を含む熱膨張性耐火材を用いた場合であっても、火災時において、長時間経過すると、熱によりドアや窓等の建具が反ってしまい、建具と枠材の隙間が広がってしまうことがあり、その際に、熱膨張性耐火材が、隙間を閉塞するほど膨張できず、延焼を防止できなくなる場合があることが分った。
そこで、本発明は、従来の耐火材よりも、火災時において長時間経過した後の熱膨張性(後期膨張性)に優れ、建具と枠材の隙間が広がった後でも、隙間を閉塞しやすく、延焼を防止できる熱膨張性耐火材を提供することを目的とする。
However, it has been found that even when a heat-expandable fire-resistant material containing heat-expandable graphite is used, in the event of a fire, over a long period of time, heat can cause fittings such as doors and windows to warp, widening the gap between the fittings and the frames. In such cases, the heat-expandable fire-resistant material may not be able to expand sufficiently to close the gap, making it impossible to prevent the fire from spreading.
Therefore, the present invention aims to provide a heat-expandable fire-resistant material that has superior heat expansion properties (late expansion properties) after a long period of time has passed during a fire compared to conventional fire-resistant materials, and that can easily close the gap between the building material and the frame material even after the gap has widened, thereby preventing the spread of fire.

上記課題を解決すべく鋭意検討した結果、本発明者は、樹脂、熱膨張性黒鉛A、及び前記熱膨張性黒鉛Aの膨張開始を遅延させる膨張開始遅延剤を含有する熱膨張性耐火材により、上記課題を解決できることを見出した。
すなわち、本発明は、下記[1]~[15]に関する。
[1]樹脂、熱膨張性黒鉛A、及び前記熱膨張性黒鉛Aの膨張開始を遅延させる膨張開始遅延剤を含有する熱膨張性耐火材。
[2]前記膨張開始遅延剤が、前記熱膨張性黒鉛Aよりも膨張開始温度が低い熱膨張性黒鉛B、及び吸熱剤から選択される少なくとも1種である、上記[1]に記載の熱膨張性耐火材。
[3]前記熱膨張性黒鉛Aの熱膨張開始温度をTA、前記熱膨張性黒鉛Bの熱膨張開始温度をTBとした場合、TAとTBの差(TA-TB)が40℃以上である、上記[2]に記載の熱膨張性耐火材。
[4]前記熱膨張性黒鉛Aの含有量と熱膨張性黒鉛Bの含有量の比(熱膨張性黒鉛Aの含有量/熱膨張性黒鉛Bの含有量)が10/90~90/10である、上記[2]又は[3]に記載の熱膨張性耐火材。
[5]前記熱膨張性黒鉛Aの熱膨張性開始温度をTA、前記吸熱剤の吸熱開始温度をTCとした場合に、TAとTCとの差(TA-TC)が30℃以上である、上記[2]~[4]のいずれかに記載の熱膨張性耐火材。
[6]前記熱膨張性黒鉛Aの含有量と吸熱剤の含有量の比(熱膨張性黒鉛Aの含有量/吸熱剤の含有量)が90/10~99/1である、上記[2]~[5]のいずれかに記載の熱膨張性耐火材。
[7]全熱膨張性黒鉛の含有量が、樹脂100質量部に対して20~500質量部である、上記[1]~[6]のいずれかに記載の熱膨張性耐火材。
[8]さらに難燃剤を含有する、上記[1]~[7]のいずれかに記載の熱膨張性耐火材。
[9]前記樹脂が熱可塑性樹脂である、上記[1]~[8]のいずれかに記載の熱膨張性耐火材。
[10]前記樹脂が、エチレン-酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、クロロプレンゴム、フェノール樹脂、ポリアクリロニトリル樹脂、及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種である、上記[1]~[9]のいずれかに記載の熱膨張性耐火材。
[11]前記樹脂が、酢酸ビニル含量が20質量%以上の高Vac成分を含有するエチレン-酢酸ビニル共重合体、及びポリ酢酸ビニル樹脂から選択される少なくとも1種である、上記[1]~[10]のいずれかに記載の熱膨張性耐火材。
[12]前記エチレン-酢酸ビニル共重合体が、190℃におけるメルトフローレート(MFR)が、8.0g/10min以下である低MFR成分を含有する、上記[10]又は[11]に記載の熱膨張性耐火材。
[13]前記樹脂がフェノール樹脂である、上記[1]~[12]のいずれかに記載の熱膨張性耐火材。
[14]前記フェノール樹脂がノボラック型である、上記[13]に記載の熱膨張性耐火材。
[15]さらに架橋剤を含有する、上記[1]~[14]のいずれかに記載の熱膨張性耐火材。
As a result of intensive research to solve the above problems, the present inventors have found that the above problems can be solved by a thermally expandable fireproof material containing a resin, thermally expandable graphite A, and an expansion initiation retarder that delays the initiation of expansion of the thermally expandable graphite A.
That is, the present invention relates to the following [1] to [15].
[1] A thermally expandable fire-resistant material comprising a resin, thermally expandable graphite A, and an expansion initiation retarder that delays the initiation of expansion of the thermally expandable graphite A.
[2] The thermally expandable fireproof material according to the above [1], wherein the expansion initiation retarder is at least one selected from thermally expandable graphite B having a lower expansion initiation temperature than the thermally expandable graphite A, and a heat absorbing agent.
[3] The thermally expandable refractory material according to the above item [2], wherein the thermal expansion onset temperature of the thermally expandable graphite A is TA and the thermal expansion onset temperature of the thermally expandable graphite B is TB, and the difference between TA and TB (TA-TB) is 40°C or more.
[4] The ratio of the content of the thermally expandable graphite A to the content of the thermally expandable graphite B (content of the thermally expandable graphite A/content of the thermally expandable graphite B) is 10/90 to 90/10. The thermally expandable fireproof material according to [2] or [3] above.
[5] The thermally expandable refractory material according to any one of the above [2] to [4], wherein the thermal expansion onset temperature of the thermally expandable graphite A is TA and the endothermic onset temperature of the heat-absorbing agent is TC, and the difference between TA and TC (TA-TC) is 30°C or more.
[6] The ratio of the content of the thermally expandable graphite A to the content of the heat-absorbing agent (content of the thermally expandable graphite A/content of the heat-absorbing agent) is 90/10 to 99/1. The thermally expandable fireproof material according to any one of [2] to [5] above.
[7] The thermally expandable fireproof material according to any one of [1] to [6] above, wherein the total thermally expandable graphite content is 20 to 500 parts by mass per 100 parts by mass of the resin.
[8] The thermally expandable fire-resistant material according to any one of [1] to [7] above, further comprising a flame retardant.
[9] The thermally expandable fire-resistant material according to any one of [1] to [8] above, wherein the resin is a thermoplastic resin.
[10] The resin is at least one selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl acetate resin, chloroprene rubber, phenol resin, polyacrylonitrile resin, and polycarbonate resin. The thermally expandable fire-resistant material according to any one of [1] to [9] above.
[11] The resin is at least one selected from an ethylene-vinyl acetate copolymer containing a high Vac component having a vinyl acetate content of 20% by mass or more, and a polyvinyl acetate resin. The thermally expandable fire-resistant material according to any one of [1] to [10] above.
[12] The thermally expandable fire-resistant material according to the above [10] or [11], wherein the ethylene-vinyl acetate copolymer contains a low MFR component having a melt flow rate (MFR) at 190°C of 8.0 g/10 min or less.
[13] The thermally expandable fire-resistant material according to any one of [1] to [12] above, wherein the resin is a phenolic resin.
[14] The thermally expandable fire-resistant material according to the above [13], wherein the phenolic resin is a novolac type.
[15] The thermally expandable fireproof material according to any one of [1] to [14] above, further comprising a crosslinking agent.

本発明によれば、火災時に長時間経過しても熱膨張性に優れ、建具と枠材の隙間が広がった後でも、隙間を閉塞しやすく、延焼を防止できる熱膨張性耐火材を提供することができる。なお、本明細書において、火災時に長時間経過しても熱膨張性に優れることを、後期膨張性に優れるということもある。 According to the present invention, it is possible to provide a heat-expandable fire-resistant material that has excellent heat expansion properties even after a long time has passed during a fire, and that can easily close the gap between the fitting and the frame material even after the gap has widened, thereby preventing the spread of fire. In this specification, excellent heat expansion properties even after a long time has passed during a fire are also referred to as excellent late-stage expansion properties.

[熱膨張性耐火材]
本発明の熱膨張性耐火材は、樹脂、熱膨張性黒鉛A、及び前記熱膨張性黒鉛Aの膨張開始を遅延させる膨張開始遅延剤を含有する熱膨張性耐火材である。以下、本発明の熱膨張性耐火材のことを、単に耐火材という場合もある。
[Thermal expansion fireproof material]
The thermally expandable fireproof material of the present invention is a thermally expandable fireproof material containing a resin, thermally expandable graphite A, and an expansion start retarder that delays the start of expansion of the thermally expandable graphite A. Hereinafter, the thermally expandable fireproof material of the present invention may also be simply referred to as a fireproof material.

本発明の耐火材は、熱膨張性黒鉛Aを含有する。これにより、火災時おいて建具と枠材の隙間が閉塞され、延焼を防止することができる。
本発明において、耐火材に含まれる熱膨張性黒鉛が1種類の場合、該1種類の熱膨張性黒鉛を熱膨張性黒鉛Aとし、耐火材に含まれる熱膨張性黒鉛が2種以上の場合は、最も熱膨張開始温度が高い熱膨張性黒鉛を熱膨張性黒鉛Aとし、その他を熱膨張性黒鉛Bとする。
The fire-resistant material of the present invention contains thermally expandable graphite A. This allows the gap between the fittings and the frame material to be blocked in the event of a fire, thereby preventing the spread of fire.
In the present invention, when the fire-resistant material contains one type of thermally-expandable graphite, the one type of thermally-expandable graphite is referred to as thermally-expandable graphite A, and when the fire-resistant material contains two or more types of thermally-expandable graphite, the thermally-expandable graphite having the highest thermal expansion initiation temperature is referred to as thermally-expandable graphite A, and the others are referred to as thermally-expandable graphite B.

(膨張開始遅延剤)
本発明の熱膨張性耐火材は、熱膨張性黒鉛Aの膨張開始を遅延させる膨張開始遅延剤を含有する。膨張開始遅延剤を含有することにより、耐火材の後期膨張性が向上し、そのため、建具と枠材の隙間が広がった後でも、隙間を閉塞しやすくなり、延焼を防止できる。
膨張開始遅延剤は、断熱、又は吸熱の作用などにより熱膨張性黒鉛Aの膨張開始を遅延させうる化合物であり、その種類は限定されない。膨張開始遅延剤としては、例えば、熱膨張性黒鉛Aよりも膨張開始温度が低い熱膨張性黒鉛B、吸熱剤、及び発泡剤などが挙げられるが、後期膨張性を高める観点から、熱膨張性黒鉛B及び吸熱剤から選択される少なくとも1種であることが好ましい。
(Expansion start retarder)
The thermally expandable fireproof material of the present invention contains an expansion start retarder that delays the start of expansion of the thermally expandable graphite A. By containing the expansion start retarder, the later expansion property of the fireproof material is improved, and therefore, even after the gap between the fitting and the frame material has widened, the gap can be easily blocked, and the spread of fire can be prevented.
The expansion start retarder is a compound capable of delaying the expansion start of thermally expandable graphite A by the action of heat insulation or heat absorption, and the type thereof is not limited. Examples of the expansion start retarder include thermally expandable graphite B, which has a lower expansion start temperature than thermally expandable graphite A, heat absorption agents, and foaming agents, but from the viewpoint of enhancing the later expansion property, it is preferable that the expansion start retarder be at least one selected from thermally expandable graphite B and heat absorption agents.

(熱膨張性黒鉛)
前記熱膨張性黒鉛Aの膨張開始遅延剤である熱膨張性黒鉛Bは、熱膨張性黒鉛Aよりも膨張開始温度が低い。これにより、火災時には熱膨張性黒鉛Aよりも熱膨張性黒鉛Bの方が先に膨張して、熱膨張性黒鉛Aの周囲に膨張断熱層を形成させ、その結果熱膨張性黒鉛Aの膨張開始が遅延するものと考えられる。これにより、耐火材の後期膨張性が高くなる。
(Thermal Expandable Graphite)
The thermally expandable graphite B, which is an expansion initiation retarder for the thermally expandable graphite A, has a lower expansion initiation temperature than the thermally expandable graphite A. As a result, in the event of a fire, the thermally expandable graphite B expands before the thermally expandable graphite A, forming an expansion insulating layer around the thermally expandable graphite A, which is thought to delay the initiation of expansion of the thermally expandable graphite A. This increases the later expansion of the fire-resistant material.

熱膨張性黒鉛Aの膨張開始をより遅延させる観点から、熱膨張性黒鉛Aの熱膨張開始温度をTA、前記熱膨張性黒鉛Bの熱膨張開始温度をTBとした場合、TAとTBの差(TA-TB)が40℃以上であることが好ましく、60℃以上であることがより好ましく、80℃以上であることがさらに好ましい。
後期膨張性を高める観点から、TAは160℃以上が好ましく、170℃以上がより好ましく、190℃以上がさらに好ましく、そして通常は300℃以下である。また、TBは、TAとTBの差を所望の範囲に調整し易くする観点から、160℃以下が好ましく、150℃以下がより好ましく、130℃以下がさらに好ましく、そして、通常は100℃以上である。
本発明の耐火材は、熱膨張性黒鉛Bを複数含んでもよく、この場合TBは、該複数の熱膨張性黒鉛の個々の膨張開始温度と含有量から計算される加重平均値とする。
なお、熱膨張性黒鉛の膨張開始温度は、レオメーターを用いて測定することができ、一定の昇温速度で熱膨張性黒鉛を加熱し、膨張性黒鉛の膨張により荷重が大きくなった温度を膨張開始温度とする。詳しい測定方法は、実施例に記載する通りである。
From the viewpoint of further delaying the onset of expansion of the thermally-expandable graphite A, when the thermal expansion onset temperature of the thermally-expandable graphite A is TA and the thermal expansion onset temperature of the thermally-expandable graphite B is TB, the difference between TA and TB (TA-TB) is preferably 40°C or more, more preferably 60°C or more, and even more preferably 80°C or more.
From the viewpoint of enhancing the late expansion property, TA is preferably 160° C. or more, more preferably 170° C. or more, even more preferably 190° C. or more, and usually 300° C. or less. From the viewpoint of easily adjusting the difference between TA and TB within a desired range, TB is preferably 160° C. or less, more preferably 150° C. or less, even more preferably 130° C. or less, and usually 100° C. or more.
The fireproof material of the present invention may contain a plurality of thermally expandable graphites B. In this case, TB is a weighted average value calculated from the expansion start temperatures and contents of the individual thermally expandable graphites.
The expansion starting temperature of the thermally expandable graphite can be measured using a rheometer, and the expansion starting temperature is determined as the temperature at which the load increases due to the expansion of the thermally expandable graphite when the thermally expandable graphite is heated at a constant heating rate. The detailed measurement method is as described in the Examples.

前記熱膨張性黒鉛Aの含有量と熱膨張性黒鉛Bの含有量の比(熱膨張性黒鉛Aの含有量/熱膨張性黒鉛Bの含有量)は、耐火材の後期膨張性を高める観点から、10/90~90/10であることが好ましく、20/80~80/20であることがより好ましく、40/60~60/40であることがさらに好ましい。 The ratio of the content of thermally expandable graphite A to the content of thermally expandable graphite B (content of thermally expandable graphite A/content of thermally expandable graphite B) is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, and even more preferably 40/60 to 60/40, from the viewpoint of enhancing the later expansion properties of the fireproof material.

熱膨張性黒鉛A及び熱膨張性黒鉛Bを併用する場合において、耐火材の後期膨張性を高める観点から、熱膨張性黒鉛Aの含有量は、樹脂100質量部に対して、好ましくは10~250質量部であり、より好ましくは25~150質量部であり、さらに好ましくは50~100質量部である。熱膨張性黒鉛Bの含有量は、樹脂100質量部に対して、好ましくは10~250質量部であり、より好ましくは25~150質量部であり、さらに好ましくは50~100質量部である。 When thermally expandable graphite A and thermally expandable graphite B are used in combination, from the viewpoint of increasing the later expansion of the fireproof material, the content of thermally expandable graphite A is preferably 10 to 250 parts by mass, more preferably 25 to 150 parts by mass, and even more preferably 50 to 100 parts by mass, relative to 100 parts by mass of resin. The content of thermally expandable graphite B is preferably 10 to 250 parts by mass, more preferably 25 to 150 parts by mass, and even more preferably 50 to 100 parts by mass, relative to 100 parts by mass of resin.

また、耐火材に含まれる全熱膨張性黒鉛の含有量は、耐火材の後期膨張性を高める観点から、樹脂100質量部に対して、好ましくは20~500質量部であり、より好ましくは50~300質量部であり、さらに好ましくは100~250質量部であり、さらに好ましくは110~200質量部である。熱膨張性黒鉛の含有量がこれら下限値以上であると、熱膨張性耐火材の膨張圧力を高めやすくなる。熱膨張性黒鉛の含有量がこれら上限値以下であると、形状保持性、加工性などが良好になる。 The total content of thermally expandable graphite contained in the fireproof material is preferably 20 to 500 parts by mass, more preferably 50 to 300 parts by mass, even more preferably 100 to 250 parts by mass, and even more preferably 110 to 200 parts by mass, per 100 parts by mass of resin, from the viewpoint of increasing the later expansion property of the fireproof material. If the content of thermally expandable graphite is equal to or greater than these lower limits, it becomes easier to increase the expansion pressure of the thermally expandable fireproof material. If the content of thermally expandable graphite is equal to or less than these upper limits, shape retention, processability, etc. are improved.

本発明の耐火材は、上記した熱膨張性黒鉛A、必要に応じて配合される熱膨張性黒鉛Bを含有する。これら熱膨張性黒鉛は、加熱時に膨張する従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の原料粉末を、強酸化剤で酸処理してグラファイト層間化合物を生成させたものである。強酸化剤としては、濃硫酸、硝酸、セレン酸等の無機酸、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等が挙げられる。熱膨張性黒鉛は炭素の層状構造を維持したままの結晶化合物である。
熱膨張性黒鉛は中和処理されてもよい。つまり、上記のように強酸化剤などで処理して得られた熱膨張性黒鉛を、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和してもよい。
The fireproof material of the present invention contains the above-mentioned thermally expandable graphite A and, if necessary, thermally expandable graphite B. These thermally expandable graphites are conventionally known substances that expand when heated, and are produced by treating raw material powders such as natural scaly graphite, pyrolytic graphite, and kish graphite with a strong oxidizing agent to produce graphite intercalation compounds. Examples of the strong oxidizing agent include inorganic acids such as concentrated sulfuric acid, nitric acid, and selenic acid, concentrated nitric acid, perchloric acid, perchlorates, permanganates, dichromates, and hydrogen peroxide. Thermally expandable graphite is a crystalline compound that maintains the layered structure of carbon.
The thermally expandable graphite may be subjected to a neutralization treatment. That is, the thermally expandable graphite obtained by treating with a strong oxidizing agent or the like as described above may be further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.

本発明における熱膨張性黒鉛は、平均アスペクト比が好ましくは15以上であり、より好ましくは20以上であり、そして通常は1000以下である。熱膨張性黒鉛の平均アスペクト比がこれら下限値以上であると、耐火材の膨張圧力を高めやすくなる。
熱膨張性黒鉛のアスペクト比は、10個以上(例えば50個)の熱膨張性黒鉛を対象にして、最大寸法(長径)と最小寸法(短径)を測定し、これらの比(最大寸法/最小寸法)の平均値として求める。なお、本発明における熱膨張性黒鉛A及びBは、平均アスペクト比は同一であっても異なっていてもよい。
The thermally expandable graphite in the present invention has an average aspect ratio of preferably at least 15, more preferably at least 20, and usually at most 1000. When the average aspect ratio of the thermally expandable graphite is equal to or more than these lower limit values, the expansion pressure of the refractory material is easily increased.
The aspect ratio of the thermally expandable graphite is determined by measuring the maximum dimension (major axis) and the minimum dimension (minor axis) of 10 or more (e.g., 50) pieces of thermally expandable graphite, and averaging the ratio (maximum dimension/minimum dimension). Note that the thermally expandable graphites A and B in the present invention may have the same or different average aspect ratios.

熱膨張性黒鉛の平均粒径は、好ましくは50~500μmであり、より好ましくは100~400μmである。なお、熱膨張性黒鉛の平均粒径は、10個以上(例えば50個)の熱膨張性黒鉛を対象にして、最大寸法の平均値として求める。
上記した熱膨張性黒鉛の最小寸法及び最大寸法は、例えば、電界放出形走査電子顕微鏡(FE-SEM)を用いて測定することができる。なお、本発明における熱膨張性黒鉛A及びBは、平均粒径は同一であっても異なっていてもよい。
The average particle size of the thermally expandable graphite is preferably 50 to 500 μm, and more preferably 100 to 400 μm. The average particle size of the thermally expandable graphite is determined as the average value of the maximum dimensions of 10 or more (e.g., 50) pieces of thermally expandable graphite.
The minimum and maximum dimensions of the thermally expandable graphite can be measured, for example, by using a field emission scanning electron microscope (FE-SEM). The thermally expandable graphites A and B in the present invention may have the same or different average particle diameters.

(吸熱剤)
本発明において、膨張開始遅延剤として吸熱剤を用いることができる。吸熱剤を用いることにより、火災時に熱膨張性黒鉛Aの周辺が、吸熱剤により吸熱されるため、熱膨張性黒鉛Aの膨張が遅延され、耐火材の後期膨張性が高まると考えられる。
膨張開始遅延剤として用いられる吸熱剤は、熱膨張性黒鉛Aの膨張開始温度と同等以下の吸熱開始温度を有するものである。すなわち、吸熱剤の吸熱開始温度をTCとした場合に、熱膨張性黒鉛Aの熱膨張開始温度TAとTCとの差(TA-TC)は0℃以上である。TAとTCとの差(TA-TC)は10℃以上であることが好ましく、30℃以上であることがより好ましい。TA-TCの値がこのような範囲であると、熱膨張性黒鉛Aの膨張開始が遅延されやすくなる。
本発明の耐火材は、吸熱剤を複数含んでもよく、この場合TCは、該複数の吸熱剤の個々の吸熱開始温度と含有量から計算される加重平均値とする。
吸熱剤の吸熱開始温度は、熱重量示差熱分析装置(TG-DTA)により測定することができ、具体的には実施例に記載の方法により測定することができる。
(Thermal absorption agent)
In the present invention, a heat absorbing agent can be used as an expansion start retarder. It is considered that by using the heat absorbing agent, the periphery of the thermally expandable graphite A is absorbed by the heat absorbing agent during a fire, so that the expansion of the thermally expandable graphite A is delayed and the later expansion property of the fireproof material is enhanced.
The endothermic agent used as the expansion initiation retarder has an endothermic onset temperature equal to or lower than the expansion initiation temperature of thermally expandable graphite A. That is, when the endothermic onset temperature of the endothermic agent is taken as TC, the difference (TA-TC) between the thermal expansion initiation temperature TA of thermally expandable graphite A and TC is 0°C or more. The difference (TA-TC) between TA and TC is preferably 10°C or more, and more preferably 30°C or more. When the value of TA-TC is in such a range, the expansion initiation of thermally expandable graphite A is easily delayed.
The fireproof material of the present invention may contain a plurality of endothermic agents. In this case, TC is a weighted average value calculated from the endothermic onset temperatures and contents of the plurality of endothermic agents.
The endothermic onset temperature of the endothermic agent can be measured by a thermogravimetric differential thermal analyzer (TG-DTA), specifically, by the method described in the Examples.

耐火材における熱膨張性黒鉛Aの含有量と吸熱剤の含有量の比(熱膨張性黒鉛Aの含有量/吸熱剤の含有量)は、耐火材の後期膨張性を高める観点から、90/10~99/1であることが好ましく、92/8~98/2であることがより好ましく、94/6~96/4であることがさらに好ましい。
また、耐火材における吸熱剤の含有量は、耐火材の後期膨張性を高める観点、成形性を良好にする観点などから、樹脂100質量部に対して、好ましくは0.5~15質量部であり、より好ましくは2~10質量部であり、さらに好ましくは4~8質量部である。
The ratio of the content of thermally expandable graphite A to the content of the heat-absorbing agent in the fire-resistant material (content of thermally expandable graphite A/content of heat-absorbing agent) is preferably 90/10 to 99/1, more preferably 92/8 to 98/2, and further preferably 94/6 to 96/4, from the viewpoint of enhancing the late expansion property of the fire-resistant material.
The content of the heat-absorbing agent in the fire-resistant material is preferably 0.5 to 15 parts by mass, more preferably 2 to 10 parts by mass, and even more preferably 4 to 8 parts by mass, relative to 100 parts by mass of the resin, from the viewpoint of increasing the late expansion property of the fire-resistant material and improving moldability.

前記吸熱剤の吸熱量は、好ましくは500J/g以上、より好ましくは600J/g以上、さらに好ましくは900J/g以上である。吸熱剤の吸熱量が上記範囲内であると、熱の吸収性が向上するため、耐火性がより良好となる。前記吸熱剤の吸熱量は、通常、4000J/g以下、好ましくは3000J/g以下、さらに好ましくは2000J/g以下である。
なお、吸熱量は熱重量示差熱分析装置(TG-DTA)を用いて測定することができ、具体的には実施例に記載の方法により測定することができる。
The endothermic amount of the endothermic agent is preferably 500 J/g or more, more preferably 600 J/g or more, and even more preferably 900 J/g or more. When the endothermic amount of the endothermic agent is within the above range, the heat absorption is improved, and the fire resistance is better. The endothermic amount of the endothermic agent is usually 4000 J/g or less, preferably 3000 J/g or less, and even more preferably 2000 J/g or less.
The endothermic heat can be measured using a thermogravimetric differential thermal analyzer (TG-DTA), specifically, by the method described in the examples.

吸熱剤の平均粒子径は、0.5~60μmがより好ましく、0.8~40μmがさらに好ましく、0.8~10μmがよりさらに好ましい。吸熱剤の平均粒子径が上記範囲内であると、耐火材における吸熱剤の分散性が向上し、吸熱剤を樹脂中に均一に分散させることができる。
なお、吸熱剤及び後述する難燃剤の平均粒子径は、レーザー回折/散乱式粒度分布測定装置により測定したメディアン径(D50)の値である。
The average particle size of the heat absorbing agent is more preferably 0.5 to 60 μm, further preferably 0.8 to 40 μm, and even more preferably 0.8 to 10 μm. When the average particle size of the heat absorbing agent is within the above range, the dispersibility of the heat absorbing agent in the fireproof material is improved, and the heat absorbing agent can be uniformly dispersed in the resin.
The average particle size of the heat absorbing agent and the flame retardant described below is the median diameter (D50) value measured by a laser diffraction/scattering type particle size distribution measuring device.

吸熱剤の種類は特に限定されないが、例えば、金属水酸化物、ホウ素系化合物、金属塩などが挙げられる。
金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、ハイドロタルサイト等が挙げられる。
ホウ素系化合物としては、ホウ酸亜鉛等が挙げられる。ホウ酸亜鉛は例えば2ZnO・3B・3.5HOなどの水和物であってもよい。
金属塩としては、硫酸カルシウム、硫酸マグネシウムなどが挙げられ、金属塩は水和物であってもい。
これらの中でも、吸熱剤としては、硫酸カルシウム、水酸化アルミニウム、水酸化カルシウムなどが好ましい。
The type of the heat absorbing agent is not particularly limited, but examples thereof include metal hydroxides, boron compounds, and metal salts.
Examples of metal hydroxides include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and hydrotalcite.
The boron-based compound may be zinc borate, etc. Zinc borate may be a hydrate such as 2ZnO.3B 2 O 5.3.5H 2 O.
The metal salts include calcium sulfate, magnesium sulfate, etc., and the metal salts may be hydrates.
Among these, calcium sulfate, aluminum hydroxide, calcium hydroxide, etc. are preferred as the heat absorbing agent.

本発明の耐火材は、膨張開始遅延剤として発泡剤を含有してもよい。発泡剤としては、有機系発泡剤でも無機系発泡剤でも特に制限なく使用することができる。
有機系発泡剤としては、例えば、N,N′-ジニトロソペンタメチレンテトラミン等のニトロソ基を有する化合物、アゾジカルボンアミド、アゾジカルボン酸バリウム等のアゾ基を有する化合物、4,4-オキシビス(ベンゼンスルホニルヒドラジド)、ヒドラゾジカルボンアミド等を挙げることができる。無機系発泡剤としては、炭酸水素ナトリウム等を挙げることができる。
発泡剤を使用する場合の発泡剤の量は、特に制限されないが、樹脂100質量部に対して、好ましくは0.05~10質量部であり、より好ましくは0.1~8質量部である。
The fireproof material of the present invention may contain a foaming agent as an expansion start retarder. As the foaming agent, either an organic foaming agent or an inorganic foaming agent can be used without any particular limitation.
Examples of organic foaming agents include compounds having a nitroso group such as N,N'-dinitrosopentamethylenetetramine, compounds having an azo group such as azodicarbonamide and barium azodicarboxylate, 4,4-oxybis(benzenesulfonylhydrazide), hydrazodicarbonamide, etc. Examples of inorganic foaming agents include sodium hydrogen carbonate, etc.
When a foaming agent is used, the amount of the foaming agent is not particularly limited, but is preferably 0.05 to 10 parts by mass, and more preferably 0.1 to 8 parts by mass, per 100 parts by mass of the resin.

(樹脂)
本発明の耐火材は、樹脂を含有し該樹脂中に熱膨張性黒鉛A、膨張開始遅延剤などが分散している。
本発明の耐火材に含まれる樹脂は、特に限定されないが、好ましくは熱可塑性樹脂である。前記樹脂としては、特に制限されないが、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体などのポリオレフィン樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、クロロプレンゴムなどのゴム系樹脂、ポリテトラフルオロエチレンなどのフッ素樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂などが挙げられる。
これらの中でも、耐火材の後期膨張性及び膨張圧力を高め、耐火性を向上させる観点から、樹脂としては、エチレン-酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、クロロプレンゴム、フェノール樹脂、ポリアクリロニトリル樹脂、及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種であることが好ましい。
(resin)
The fire-resistant material of the present invention contains a resin in which thermally expandable graphite A, an expansion initiation retarder, etc. are dispersed.
The resin contained in the fireproof material of the present invention is not particularly limited, but is preferably a thermoplastic resin. Examples of the resin include, but are not particularly limited to, polyolefin resins such as polypropylene resin, polyethylene resin, and ethylene-vinyl acetate copolymer, polyvinyl acetate resin, polyvinyl chloride resin, and rubber-based resins such as chloroprene rubber, fluororesins such as polytetrafluoroethylene, phenol resins, polycarbonate resins, and polyacrylonitrile resins.
Among these, from the viewpoint of increasing the late expansion property and expansion pressure of the fireproof material and improving the fire resistance, the resin is preferably at least one selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl acetate resin, chloroprene rubber, phenol resin, polyacrylonitrile resin, and polycarbonate resin.

<エチレン-酢酸ビニル共重合体、ポリ酢酸ビニル>
上記した樹脂の中でも、耐火材の後期膨張性を高めて耐火性を向上させる観点から、酢酸ビニル含量の多い樹脂が好ましい。具体的には、樹脂としては、酢酸ビニル含量が20質量%以上の高Vac成分を含有するエチレン-酢酸ビニル共重合体、及びポリ酢酸ビニル樹脂から選択される少なくとも1種であることが好ましく、ポリ酢酸ビニル樹脂であることがより好ましい。なお、酢酸ビニル含量が20質量%以上の高Vac成分とは、酢酸ビニル含量が20質量%以上のエチレン-酢酸ビニル共重合体成分を意味する。エチレン-酢酸ビニル共重合体及びポリ酢酸ビニル樹脂は、非塩素系樹脂であるため、ダイオキシンなどが発生し難く、かつ、可塑剤を含有させることなく、比較的低温で熱膨張性黒鉛などと共に混練でき、また耐火材の成形性も良好になるため、耐火材に含まれる樹脂として使用することが好ましい。
<Ethylene-vinyl acetate copolymer, polyvinyl acetate>
Among the above-mentioned resins, resins having a high vinyl acetate content are preferred from the viewpoint of increasing the later expansion property of the fireproof material and improving its fire resistance. Specifically, the resin is preferably at least one selected from ethylene-vinyl acetate copolymers containing a high Vac component with a vinyl acetate content of 20% by mass or more, and polyvinyl acetate resins, and more preferably polyvinyl acetate resins. The high Vac component with a vinyl acetate content of 20% by mass or more means an ethylene-vinyl acetate copolymer component with a vinyl acetate content of 20% by mass or more. Ethylene-vinyl acetate copolymers and polyvinyl acetate resins are non-chlorine-based resins, so they are unlikely to generate dioxins, and can be kneaded with thermally expandable graphite at relatively low temperatures without containing a plasticizer, and the moldability of the fireproof material is also good, so they are preferably used as resins contained in the fireproof material.

高Vac成分の酢酸ビニル含有量は、耐火材の後期膨張性を高める観点から、好ましくは25質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは50質量%以上であり、さらに好ましくは70質量%以上である。 The vinyl acetate content of the high Vac component is preferably 25% by mass or more, more preferably 30% by mass or more, even more preferably 50% by mass or more, and even more preferably 70% by mass or more, from the viewpoint of increasing the late expansion property of the fireproof material.

エチレン-酢酸ビニル共重合体は、本発明の効果を阻害しない範囲で、酢酸ビニル含有量が、20質量%未満のエチレン-酢酸ビニル共重合体成分(低Vac成分)を含んでもよい。耐火材の後期膨張性及び膨張圧力を高める観点から、エチレン-酢酸ビニル共重合体全量基準で、高Vac成分の含有量は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは100質量%である。 The ethylene-vinyl acetate copolymer may contain an ethylene-vinyl acetate copolymer component (low Vac component) having a vinyl acetate content of less than 20% by mass, as long as the effect of the present invention is not impaired. From the viewpoint of increasing the late expansion property and expansion pressure of the fireproof material, the content of the high Vac component is preferably 50% by mass or more, more preferably 70% by mass or more, and even more preferably 100% by mass, based on the total amount of the ethylene-vinyl acetate copolymer.

エチレン-酢酸ビニル共重合体は、耐火材の膨張圧力を高める観点及び成形性を良好にする観点から、190℃におけるメルトフローレート(MFR)が、8.0g/10min以下のエチレン-酢酸ビニル共重合体成分(以下、低MFR成分ともいう)を含むことが好ましい。該低MFR成分の190℃におけるメルトフローレート(MFR)は、6.0g/10min以下であることがより好ましく、1.0g/10min以下であることが更に好ましい。低MFR成分の190℃におけるメルトフローレート(MFR)は、耐火材の成形性の観点から、0.05g/10min以上であることが好ましく、0.1g/10min以上であることがより好ましく、0.3g/10min以上であることがさらに好ましい。
エチレン-酢酸ビニル共重合体の190℃におけるメルトフローレートは、荷重2.16kgにおける測定値であり、JIS K7210:1999に準拠して測定される。
From the viewpoint of increasing the expansion pressure of the fireproof material and improving the moldability, the ethylene-vinyl acetate copolymer preferably contains an ethylene-vinyl acetate copolymer component (hereinafter also referred to as a low MFR component) having a melt flow rate (MFR) at 190° C. of 8.0 g/10 min or less. The melt flow rate (MFR) of the low MFR component at 190° C. is more preferably 6.0 g/10 min or less, and even more preferably 1.0 g/10 min or less. From the viewpoint of the moldability of the fireproof material, the melt flow rate (MFR) of the low MFR component at 190° C. is preferably 0.05 g/10 min or more, more preferably 0.1 g/10 min or more, and even more preferably 0.3 g/10 min or more.
The melt flow rate of the ethylene-vinyl acetate copolymer at 190° C. is a value measured under a load of 2.16 kg in accordance with JIS K7210:1999.

エチレン-酢酸ビニル共重合体全量基準で、低MFR成分の含有量は、好ましくは70質量%以上であり、より好ましくは90質量%以上である。 Based on the total amount of ethylene-vinyl acetate copolymer, the content of low MFR components is preferably 70% by mass or more, and more preferably 90% by mass or more.

なお、MFRと酢酸ビニル含有量は、エチレン-酢酸ビニル共重合体の構造を表す別々のパラメーターであるため、低MFR成分に該当し、かつ高Vac成分にも該当する成分も存在する。 Note that MFR and vinyl acetate content are separate parameters that describe the structure of an ethylene-vinyl acetate copolymer, so there are components that are both low MFR components and high Vac components.

エチレン-酢酸ビニル共重合体の中でも、酢酸ビニル含量が20質量%以上50質量%未満の高Vac成分を使用する場合は、膨張圧力を高め、耐火性を向上させる観点などから、該高Vac成分は上記した低MFR成分であることが好ましい。言い換えると、該高Vac成分のMFR(190℃)は、好ましくは8.0g/10min以下、より好ましくは6.0g/10min以下、更に好ましくは1.0g/10min以下であり、そして好ましくは0.05g/10min以上であり、より好ましくは0.1g/10min以上であり、さらに好ましくは0.3g/10min以上である。
エチレン-酢酸ビニル共重合体の中でも、酢酸ビニル含量が50質量%以上の高Vac成分を使用する場合は、膨張圧力を高め、耐火性を向上させる観点などから、該高Vac成分の100℃におけるムーニー粘度ML(1+4)は、好ましくは10~50、より好ましくは20~40である。
When using a high Vac component having a vinyl acetate content of 20% by mass or more and less than 50% by mass among ethylene-vinyl acetate copolymers, the high Vac component is preferably the above-mentioned low MFR component from the viewpoint of increasing the expansion pressure and improving fire resistance, etc. In other words, the MFR (190°C) of the high Vac component is preferably 8.0 g/10 min or less, more preferably 6.0 g/10 min or less, even more preferably 1.0 g/10 min or less, and preferably 0.05 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.3 g/10 min or more.
When using a high Vac component having a vinyl acetate content of 50% by mass or more among ethylene-vinyl acetate copolymers, the Mooney viscosity ML(1+4) of the high Vac component at 100°C is preferably 10 to 50, more preferably 20 to 40, from the viewpoints of increasing the expansion pressure and improving fire resistance.

ポリ酢酸ビニル樹脂は、酢酸ビニルの単独重合体であり、これを耐火材に含まれる樹脂として用いることで、耐火材の後期膨張性がより高まり、耐火性が効果的に向上する。ポリ酢酸ビニル樹脂の重量平均分子量は、耐火材の成形性を良好にしつつ、膨張圧力を高める観点から、好ましくは10万~100万であり、より好ましくは20万~60万であり、さらに好ましくは30万~50万である。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定して得られる標準ポリスチレン換算値である。 Polyvinyl acetate resin is a homopolymer of vinyl acetate, and by using this as the resin contained in the fireproof material, the late expansion property of the fireproof material is further increased, and the fire resistance is effectively improved. From the viewpoint of improving the moldability of the fireproof material while increasing the expansion pressure, the weight average molecular weight of the polyvinyl acetate resin is preferably 100,000 to 1,000,000, more preferably 200,000 to 600,000, and even more preferably 300,000 to 500,000. In this specification, the weight average molecular weight is a standard polystyrene equivalent value obtained by measurement by gel permeation chromatography (GPC).

<樹脂:クロロプレンゴム>
クロロプレンゴムは、耐火材における含有炭素の割合を低くすることができるため、耐火性を高める観点から、耐火材に含まれる樹脂として使用することが好ましい。
クロロプレンゴムとしては、硫黄変性タイプ(Gタイプ)、非硫黄変性タイプ(Wタイプ)等も用いることができる。
クロロプレンゴムの100℃におけるムーニー粘度ML(1+4)は、60~120が好ましく、70~90がより好ましい。100℃におけるムーニー粘度ML(1+4)が上記の範囲にあるクロロプレンゴムは、耐火材の膨張圧力を高めやすい。
なお、本明細書においてムーニー粘度はJIS K6300に準拠して測定される。
<Resin: Chloroprene rubber>
Chloroprene rubber can reduce the proportion of carbon contained in the fire-resistant material, and is therefore preferably used as a resin contained in the fire-resistant material from the viewpoint of enhancing fire resistance.
As the chloroprene rubber, a sulfur-modified type (G type), a non-sulfur-modified type (W type), etc. can also be used.
The Mooney viscosity ML(1+4) of the chloroprene rubber at 100° C. is preferably from 60 to 120, more preferably from 70 to 90. The chloroprene rubber having the Mooney viscosity ML(1+4) at 100° C. in the above range is likely to increase the expansion pressure of the fire-resistant material.
In this specification, the Mooney viscosity is measured in accordance with JIS K6300.

クロロプレンゴムを用いる場合は、耐火材は、後述する可塑剤を含有することが好ましい。耐火材の成形性を高める観点から、後述する可塑剤の中でも脂肪族エステル系可塑剤が好ましく、中でもエーテル結合を有する脂肪族エステル系可塑剤がより好ましく、アジピン酸ジブトキシエトキシエチルがさらに好ましい。アジピン酸ジブトキシエトキシエチルの市販品としては、例えば、(株)ADEKA製のアデカサイザーRS-107等が該当し、アジピン酸エーテルエステル系と称される。なお、樹脂に対する可塑剤の使用量については後述する。 When chloroprene rubber is used, the fireproof material preferably contains a plasticizer, which will be described later. From the viewpoint of improving the moldability of the fireproof material, among the plasticizers described later, aliphatic ester plasticizers are preferred, among which aliphatic ester plasticizers having an ether bond are more preferred, and dibutoxyethoxyethyl adipate is even more preferred. Commercially available products of dibutoxyethoxyethyl adipate include, for example, Adeka Cizer RS-107 manufactured by ADEKA Corporation, which is called an ether ester adipate type. The amount of plasticizer used relative to the resin will be described later.

<樹脂:フェノール樹脂>
本発明の耐火材は、樹脂としてフェノール樹脂を使用することも好ましい。フェノール樹脂を使用することにより、耐火材の後期膨張性が高まりやすく、耐火性が向上しやすくなる。
フェノール樹脂としては特に制限されないが、耐火材の成形性を良好にする観点から、ノボラック型のフェノール樹脂が好ましい。
ノボラック型のフェノール樹脂は、酸触媒下においてフェノール類とアルデヒド類を反応させて得られる樹脂である。ここで、フェノール類とは、フェノール骨格を有する化合物であり、主にフェノールのことであるが、他にクレゾール、アルキルフェノールなどが挙げられる。前記アルキルフェノールとしては、例えば、p-t-ブチルフェノール、p-オクチルフェノール、p-ノニルフェノールなどが挙げられる。
上記アルデヒド類としては、例えば、ホルムアルデヒド、フルフラール、高級アルデヒド類等を使用できる。また、上記酸触媒としては、有機酸でも無機酸でもよく、例えば、シュウ酸、硫酸、パラトルエンスルホン酸等の強酸類、Ca、Zn、Cd、Pb、Co等の金属塩触媒などを使用することができる。
<Resin: Phenol resin>
The fireproof material of the present invention preferably uses a phenolic resin as the resin. By using a phenolic resin, the late expansion property of the fireproof material is likely to be increased, and the fire resistance is likely to be improved.
The phenolic resin is not particularly limited, but from the viewpoint of improving the moldability of the fireproof material, a novolac type phenolic resin is preferred.
Novolac-type phenolic resins are resins obtained by reacting phenols with aldehydes in the presence of an acid catalyst. Here, the phenols are compounds having a phenol skeleton, mainly phenol, but also cresol, alkylphenols, etc. Examples of the alkylphenols include p-t-butylphenol, p-octylphenol, and p-nonylphenol.
Examples of the aldehydes that can be used include formaldehyde, furfural, higher aldehydes, etc. The acid catalysts can be organic or inorganic acids, and examples of the acid catalysts that can be used include strong acids such as oxalic acid, sulfuric acid, and paratoluenesulfonic acid, and metal salt catalysts such as Ca, Zn, Cd, Pb, and Co.

<樹脂:特定樹脂>
本発明の耐火材は、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリイミド、ポリエーテルエーテルケトン(PEEK)、及びフッ素樹脂からなる少なくとも1種の特定樹脂を含有させることで、耐火材の後期膨張性を高めることが可能となる。例えば、樹脂として上記した低Vac成分のみからなるエチレン-酢酸ビニル共重合体を用いた場合でも、特定樹脂と併用することで、耐火材の後期膨張性を高めて、耐火性を向上させることができる。特定樹脂としては、ポリカーボネート樹脂及びポリアクリロニトリル樹脂から選択される少なくとも1種であることが好ましい。
耐火材の成形性も良好にする観点から、エチレン-酢酸ビニル共重合体及びポリ酢酸ビニルから選択される少なくとも1種の樹脂と、特定樹脂を併用することが好ましく、エチレン-酢酸ビニル共重合体と特定樹脂とを併用することがより好ましい。
特定樹脂を用いる場合、特定樹脂の含有量は、耐火材に含まれる樹脂全量基準において、好ましくは5質量%以上、より好ましくは10質量%以上であり、そして好ましくは50質量%以下、より好ましくは30質量%以下である。特定樹脂の含有量がこれら下限値以上であると、耐火材の後期膨張性を高めて、耐火性を向上させることができる。特定樹脂の含有量がこれら上限値以下であると、耐火材の成形性を向上させることができる。
<Resin: Specific resin>
The fireproof material of the present invention can enhance the late expansion property of the fireproof material by containing at least one specific resin selected from polycarbonate resin, polyacrylonitrile resin, polyimide, polyether ether ketone (PEEK), and fluororesin. For example, even when an ethylene-vinyl acetate copolymer consisting of only the low Vac component is used as the resin, the late expansion property of the fireproof material can be enhanced and the fire resistance can be improved by using the specific resin in combination. The specific resin is preferably at least one selected from polycarbonate resin and polyacrylonitrile resin.
From the viewpoint of improving the moldability of the fire-resistant material, it is preferable to use at least one resin selected from ethylene-vinyl acetate copolymer and polyvinyl acetate in combination with the specific resin, and it is more preferable to use the ethylene-vinyl acetate copolymer in combination with the specific resin.
When the specific resin is used, the content of the specific resin is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 50% by mass or less, more preferably 30% by mass or less, based on the total amount of resin contained in the fireproof material. When the content of the specific resin is equal to or more than these lower limits, the late expansion property of the fireproof material can be increased, and the fire resistance can be improved. When the content of the specific resin is equal to or less than these upper limits, the moldability of the fireproof material can be improved.

樹脂として、特定樹脂のみを単独で用いてもよいが、この場合は、耐火材の成形性を良好にする観点から、可塑剤を併用することが好ましい。可塑剤の種類及び使用量については後述する。 As the resin, only the specific resin may be used alone, but in this case, it is preferable to use a plasticizer in combination from the viewpoint of improving the moldability of the fireproof material. The type and amount of plasticizer to be used will be described later.

(可塑剤)
本発明の耐火材は、可塑剤を含有してもよい。可塑剤を用いることにより、成形性が良好になりやすい。可塑剤を使用する場合において、可塑剤の含有量は、特に限定されないが、樹脂100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~60質量部である。可塑剤の含有量がこれら下限値以上であると耐火材の成形性が向上する。可塑剤の含有量がこれら上限値以下であると耐火材の後期膨張性を向上させやすくなり、また膨張圧力を高めやすくなるため耐火性が向上する。
(Plasticizer)
The fireproof material of the present invention may contain a plasticizer. By using a plasticizer, moldability is likely to be good. When a plasticizer is used, the content of the plasticizer is not particularly limited, but is preferably 10 to 200 parts by mass, more preferably 20 to 60 parts by mass, relative to 100 parts by mass of the resin. When the content of the plasticizer is equal to or greater than these lower limits, the moldability of the fireproof material is improved. When the content of the plasticizer is equal to or less than these upper limits, the late expansion property of the fireproof material is easily improved, and the expansion pressure is easily increased, thereby improving the fireproofness.

可塑剤の具体例としては、ジ-2-エチルヘキシルフタレート(DOP)、ジ-n-オクチルフタレート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート(DIDP)、ジウンデシルフタレート(DUP)、又は炭素原子数10~13程度の高級アルコール又は混合アルコールのフタル酸エステル等のフタル酸エステル系可塑剤、ジ-2-エチルヘキシルアジペート(DOA)、ジイソブチルアジペート(DIBA)、ジブチルアジペート(DBA)、ジ-n-オクチルアジペート、ジ-n-デシルアジペート、ジイソデシルアジペート、ジ-2-エチルヘキシルアゼレート、ジブチルセバケート、ジ-2-エチルヘキシルセバケート、アジピン酸ジブトキシエトキシエチル等の脂肪族エステル系可塑剤、トリ-2-エチルヘキシルトリメリテート(TOTM)、トリ-n-オクチルトリメリテート、トリデシルトリメリテート、トリイソデシルトリメリテート、ジ-n-オクチル-n-デシルトリメリレート等のトリメリット酸エステル系可塑剤、鉱油等のプロセスオイル等が挙げられる。 Specific examples of plasticizers include di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), or phthalate esters of higher alcohols or mixed alcohols having 10 to 13 carbon atoms, di-2-ethylhexyl adipate (DOA), diisobutyl adipate (DIBA), dibutyl adipate (DBA), di-n-octyl adipate, di- Examples include aliphatic ester plasticizers such as n-decyl adipate, diisodecyl adipate, di-2-ethylhexyl azelate, dibutyl sebacate, di-2-ethylhexyl sebacate, and dibutoxyethoxyethyl adipate; trimellitic acid ester plasticizers such as tri-2-ethylhexyl trimellitate (TOTM), tri-n-octyl trimellitate, tridecyl trimellitate, triisodecyl trimellitate, and di-n-octyl-n-decyl trimellitate; and process oils such as mineral oil.

(架橋剤)
本発明の耐火材は、架橋剤を含んでもよい。架橋剤を用いることで、火災の際の熱により、樹脂の架橋が進行して、耐火材の後期膨張性が高くなり耐火性が向上する。また、樹脂の架橋が進行すると粘度が高くなるため、膨張圧力も大きくなり耐火性が向上する。
(Crosslinking Agent)
The fireproof material of the present invention may contain a crosslinking agent. By using the crosslinking agent, crosslinking of the resin proceeds due to heat during a fire, and the later expansion property of the fireproof material increases, improving the fireproof property. In addition, as the crosslinking of the resin proceeds, the viscosity increases, and the expansion pressure also increases, improving the fireproof property.

架橋剤としては、公知のものが制限なく使用でき、例えば、有機過酸化物、アゾ化合物などを挙げることができる。
有機過酸化物としては、例えば、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、3-ジ-t-ブチルパーオキサイド、t-ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、ジクミルパーオキサイド、α,α’ -ビス(t-ブチルパーオキシイソプロピル)ベンゼン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキシルカーボネート等が挙げられる。
アゾ化合物としては、例えば、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。
As the crosslinking agent, any known agent can be used without limitation, and examples thereof include organic peroxides and azo compounds.
Examples of organic peroxides include 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 3-di-t-butyl peroxide, t-dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, dicumyl peroxide, α,α'-bis(t-butylperoxyisopropyl)benzene, n-butyl-4,4-bis(t-butylperoxy)butane, 2,2-bis(t-butylperoxy)butane, 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, t-butylperoxybenzoate, benzoyl peroxide, and t-butylperoxy-2-ethylhexyl carbonate.
Examples of the azo compound include azobisisobutyronitrile and azobis(2,4-dimethylvaleronitrile).

上記した架橋剤の中でも、耐火材を製造する際に、各成分を混練する温度(例えば70℃~150℃)で架橋反応が生じ難く、火災時の熱により、樹脂の架橋反応が生じやすいものが好ましい。このような観点から、架橋剤は、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、などが好ましい。 Among the above-mentioned crosslinking agents, those that are unlikely to undergo a crosslinking reaction at the temperature at which the components are kneaded when manufacturing the fireproof material (e.g., 70°C to 150°C) and that are likely to undergo a crosslinking reaction of the resin due to the heat of a fire are preferred. From this perspective, preferred crosslinking agents include dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, and t-butylperoxy-2-ethylhexyl monocarbonate.

耐火材が架橋剤を含有する場合は、架橋剤の含有量は、樹脂100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.5~7質量部であり、さらに好ましくは1~5質量部である。 When the fireproof material contains a crosslinking agent, the content of the crosslinking agent is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and even more preferably 1 to 5 parts by mass, per 100 parts by mass of the resin.

(難燃剤)
本発明の耐火材は、難燃剤を含有することが好ましい。難燃剤を含有することにより、耐火性が向上する。
難燃剤としては、例えば、トリフェニルホスフェート(リン酸トリフェニル)、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、及びキシレニルジフェニルホスフェート等の各種リン酸エステル、リン酸ナトリウム、リン酸カリウム、及びリン酸マグネシウム等のリン酸金属塩、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸アルミニウム等の亜リン酸金属塩、ポリリン酸アンモニウム、赤リン等が挙げられる。難燃剤としては、下記一般式(1)で表される化合物等も挙げられる。
(Flame retardant)
The fire-resistant material of the present invention preferably contains a flame retardant, which improves fire resistance.
Examples of the flame retardant include various phosphoric acid esters such as triphenyl phosphate (triphenyl phosphate), tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, and xylenyl diphenyl phosphate, metal phosphates such as sodium phosphate, potassium phosphate, and magnesium phosphate, metal phosphites such as sodium phosphite, potassium phosphite, magnesium phosphite, and aluminum phosphite, ammonium polyphosphate, red phosphorus, etc. Examples of the flame retardant also include compounds represented by the following general formula (1).

前記一般式(1)中、R及びRは、同一又は異なって、水素、炭素数1~16の直鎖状もしくは分岐状のアルキル基、又は炭素数6~16のアリール基を示す。Rは、水酸基、炭素数1~16の直鎖状もしくは分岐状のアルキル基、炭素数1~16の直鎖状もしくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は炭素数6~16のアリールオキシ基を示す。 In the general formula (1), R1 and R3 are the same or different and represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R2 represents a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or an aryloxy group having 6 to 16 carbon atoms.

前記一般式(1)で表される化合物の具体例としては、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、n-プロピルホスホン酸、n-ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。前記難燃剤は、単独でも、2種以上を組み合わせて用いてもよい。 Specific examples of the compound represented by the general formula (1) include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, n-propylphosphonic acid, n-butylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, diethylphenylphosphinic acid, diphenylphosphinic acid, and bis(4-methoxyphenyl)phosphinic acid. The flame retardants may be used alone or in combination of two or more.

本発明の難燃剤としては、ホウ素系化合物及び金属水酸化物を使用することもできる。
ホウ素系化合物としては、ホウ酸亜鉛等が挙げられる。
金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、及びハイドロタルサイト等が挙げられる。金属水酸化物を用いた場合、発火により生じた熱によって水が生成し、速やかに消火することができる。
As the flame retardant of the present invention, boron compounds and metal hydroxides can also be used.
The boron-based compound may, for example, be zinc borate.
Examples of metal hydroxides include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, hydrotalcite, etc. When a metal hydroxide is used, water is generated by the heat generated by ignition, and the fire can be quickly extinguished.

前記難燃剤の中でも、安全性やコスト等の観点からから、赤リン、トリフェニルホスフェート(リン酸トリフェニル)等のリン酸エステル、亜リン酸アルミニウム、ポリリン酸アンモニウム、及びホウ酸亜鉛が好ましい。中でも、亜リン酸アルミニウム、及びポリリン酸アンモニウムがより好ましく、亜リン酸アルミニウムがさらに好ましい。亜リン酸アルミニウムは、膨張性があるため、これを含む耐火材は、膨張圧力が高まりやすく、より効果的に耐火性を向上させ易い。 Among the flame retardants, from the standpoint of safety, cost, etc., red phosphorus, phosphate esters such as triphenyl phosphate (triphenyl phosphate), aluminum phosphite, ammonium polyphosphate, and zinc borate are preferred. Among these, aluminum phosphite and ammonium polyphosphate are more preferred, and aluminum phosphite is even more preferred. Aluminum phosphite has expansive properties, so that fireproof materials containing it tend to increase the expansion pressure and more effectively improve fire resistance.

難燃剤の平均粒子径は、1~200μmが好ましく、1~60μmがより好ましく、3~40μmがさらに好ましく、5~20μmがさらに好ましい。難燃剤の平均粒子径が上記範囲内であると、耐火材における難燃剤の分散性が向上し、難燃剤を樹脂中に均一に分散させたり、樹脂に対する難燃剤の配合量を多くしたりすることができる。また、平均粒子径が上記範囲外となると、樹脂中に難燃剤が分散しにくくなり、樹脂中に難燃剤を均一に分散させたり、多量に配合させたりすることが難しくなる。
なお、難燃剤の平均粒子径は、レーザー回折/散乱式粒度分布測定装置により測定したメディアン径(D50)の値である。
The average particle size of the flame retardant is preferably 1 to 200 μm, more preferably 1 to 60 μm, even more preferably 3 to 40 μm, and even more preferably 5 to 20 μm. When the average particle size of the flame retardant is within the above range, the dispersibility of the flame retardant in the fire-resistant material is improved, and the flame retardant can be uniformly dispersed in the resin and the amount of the flame retardant mixed in the resin can be increased. When the average particle size is outside the above range, the flame retardant is difficult to disperse in the resin, and it becomes difficult to uniformly disperse the flame retardant in the resin and to mix a large amount of the flame retardant in the resin.
The average particle size of the flame retardant is the median diameter (D50) measured by a laser diffraction/scattering type particle size distribution measuring device.

本発明の耐火材の難燃剤の含有量は、樹脂100質量部に対して、15~1000質量部であることが好ましく、20~300質量部がより好ましく、30~100質量部が更に好ましい。難燃剤の含有量がこれら下限値以上であると、耐火材の耐火性が向上する。また、難燃剤の含有量がこれら上限値以下であると、樹脂中に均一に分散しやすくなり、成形性などが優れたものとなる。 The content of the flame retardant in the fire-resistant material of the present invention is preferably 15 to 1000 parts by mass, more preferably 20 to 300 parts by mass, and even more preferably 30 to 100 parts by mass, per 100 parts by mass of resin. If the content of the flame retardant is equal to or greater than these lower limits, the fire resistance of the fire-resistant material is improved. If the content of the flame retardant is equal to or less than these upper limits, the flame retardant is easily dispersed uniformly in the resin, resulting in excellent moldability, etc.

(無機充填剤)
本発明の耐火材は、難燃剤及び熱膨張性黒鉛以外の無機充填剤を更に含有してもよい。
難燃剤及び熱膨張性黒鉛以外の無機充填剤としては特に制限されず、例えば、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト等の金属酸化物、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、及び炭酸バリウム等の金属炭酸塩、シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルーン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、及び脱水汚泥等が挙げられる。これらの無機充填剤は、単独でも、2種以上を組み合わせて用いてもよい。
(Inorganic filler)
The fire-resistant material of the present invention may further contain an inorganic filler other than the flame retardant and the thermally expandable graphite.
The inorganic filler other than the flame retardant and the thermally expandable graphite is not particularly limited, and examples thereof include metal oxides such as alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrite, metal carbonates such as basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate, and barium carbonate, silica, diatomaceous earth, dawsonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balloons, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balloons, charcoal powder, various metal powders, potassium titanate, magnesium sulfate, lead zirconate titanate, zinc stearate, calcium stearate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, various magnetic powders, slag fiber, fly ash, and dewatered sludge. These inorganic fillers may be used alone or in combination of two or more kinds.

無機充填剤の平均粒子径は、0.5~100μmが好ましく、1~50μmがより好ましい。無機充填剤は、含有量が少ないときは分散性を向上させる観点から粒子径が小さいものが好ましく、含有量が多いときは高充填が進むにつれて、耐火材の粘度が高くなり成形性が低下するため粒子径が大きいものが好ましい。 The average particle size of the inorganic filler is preferably 0.5 to 100 μm, and more preferably 1 to 50 μm. When the content is low, inorganic fillers with a small particle size are preferred from the viewpoint of improving dispersibility, while when the content is high, the viscosity of the refractory material increases and moldability decreases as the content increases, so a large particle size is preferred.

本発明の耐火材が、難燃剤及び熱膨張性黒鉛以外の無機充填剤を含有する場合、その含有量は樹脂100質量部に対して、好ましくは10~300質量部、より好ましくは10~200質量部である。無機充填剤の含有量が前記範囲内であると、耐火材の機械的物性を向上させることができる。 When the fire-resistant material of the present invention contains an inorganic filler other than a flame retardant and thermally expandable graphite, the content is preferably 10 to 300 parts by mass, more preferably 10 to 200 parts by mass, per 100 parts by mass of resin. When the content of the inorganic filler is within the above range, the mechanical properties of the fire-resistant material can be improved.

本発明の耐火材は、本発明の目的が損なわれない範囲で、必要に応じて各種の添加成分を含有させることができる。
この添加成分の種類は特に限定されず、各種添加剤を用いることができる。このような添加剤として、例えば、滑剤、収縮防止剤、結晶核剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、分散剤、ゲル化促進剤、充填剤、補強剤、難燃助剤、帯電防止剤、界面活性剤、加硫剤、及び表面処理剤等が挙げられる。添加剤の添加量は成形性等を損なわない範囲で適宜選択できる。添加剤は、単独でも、2種以上を組み合わせて用いてもよい。
The fireproof material of the present invention can contain various additive components as required within the range that does not impair the object of the present invention.
The type of the additive component is not particularly limited, and various additives can be used. Examples of such additives include lubricants, shrinkage inhibitors, crystal nucleating agents, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, antiaging agents, dispersants, gelation accelerators, fillers, reinforcing agents, flame retardant assistants, antistatic agents, surfactants, vulcanizing agents, and surface treatment agents. The amount of additive added can be appropriately selected within a range that does not impair moldability, etc. The additives may be used alone or in combination of two or more.

(膨張圧力)
本発明の耐火材は、膨張圧力が3.0N/cm以上であることが好ましい。耐火材の膨張圧力が3.0N/cm以上であると、火災の際に、長期間炎に晒されても、建具の隙間を閉塞する力が維持でき、耐火材が建具から剥がれ落ち難くなり、耐火性が向上する。
耐火性をより良好にする観点から、熱膨張性耐火材の膨張圧力は、好ましくは5.0N/cm以上であり、より好ましくは7.0N/cm以上であり、さらに好ましくは10.0N/cm以上である。熱膨張性耐火材の膨張圧力は、高ければ高い方がよいが、実用的には50N/cm以下である。
耐火材の膨張圧力は、熱膨張性黒鉛の配合量、樹脂の種類、架橋剤の使用の有無などにより調節することができる。
(Expansion Pressure)
The fireproof material of the present invention preferably has an expansion pressure of 3.0 N/cm 2 or more. When the fireproof material has an expansion pressure of 3.0 N/cm 2 or more, even if it is exposed to flames for a long period of time in the event of a fire, the force for closing the gaps in the fittings can be maintained, the fireproof material is less likely to peel off from the fittings, and the fire resistance is improved.
From the viewpoint of improving fire resistance, the expansion pressure of the thermally expandable fireproof material is preferably 5.0 N/cm 2 or more, more preferably 7.0 N/cm 2 or more, and even more preferably 10.0 N/cm 2 or more. The higher the expansion pressure of the thermally expandable fireproof material, the better, but in practical use, it is 50 N/cm 2 or less.
The expansion pressure of the fireproof material can be adjusted by the amount of thermally expandable graphite, the type of resin, whether or not a crosslinking agent is used, and the like.

本発明における膨張圧力とは、500℃における膨張圧力であり、以下のように測定される。
(1)厚み1.8mm、幅25mm、長さ25mmのシート状の耐火材を準備する。
(2)ホットプレートと、ホットプレートの表面から1.2cm離れた位置にフォースゲージを設置する。
(3)ホットプレート表面を500℃に加熱して、該ホットプレートの表面に上記シート状の耐火材を置き、さらに耐火材の上にセラミック製の板(材質はケイ酸カルシウム、厚さ2mm、幅30mm、長さ30mm)を配置する。
(4)上記耐火材をホットプレート上で、500℃にて、250秒間加熱したときに、フォースゲージで測定される最大の応力を、治具の面積で除した値を膨張圧力とする。
The expansion pressure in the present invention is the expansion pressure at 500° C., and is measured as follows.
(1) Prepare a sheet-like fireproof material having a thickness of 1.8 mm, a width of 25 mm, and a length of 25 mm.
(2) Place a hot plate and a force gauge 1.2 cm away from the surface of the hot plate.
(3) The surface of the hot plate is heated to 500°C, the above-mentioned sheet-like fireproof material is placed on the surface of the hot plate, and a ceramic plate (made of calcium silicate, thickness 2 mm, width 30 mm, length 30 mm) is further placed on the fireproof material.
(4) When the fireproof material is heated on a hot plate at 500° C. for 250 seconds, the maximum stress measured with a force gauge is divided by the area of the jig to obtain the expansion pressure.

本発明の耐火材の膨張倍率は、特に限定されないが、耐火性を良好とする観点から、好ましくは10~500倍であり、より好ましくは50~300倍であり、更に好ましくは100~250倍である。
膨張倍率は、厚み1.8mm、幅25mm、長さ25mmのシート状の耐火材を、600℃で30分加熱し、加熱後の耐火材の厚さを加熱前の耐火材の厚さで除することにより求めることができる。
The expansion ratio of the fireproof material of the present invention is not particularly limited, but from the viewpoint of obtaining good fire resistance, it is preferably 10 to 500 times, more preferably 50 to 300 times, and even more preferably 100 to 250 times.
The expansion ratio can be determined by heating a sheet-like refractory material having a thickness of 1.8 mm, a width of 25 mm and a length of 25 mm at 600°C for 30 minutes and dividing the thickness of the refractory material after heating by the thickness of the refractory material before heating.

耐火材は、シート状であることが好ましく、その厚さは特に限定されないが、耐火性及び取扱い性の観点から、0.2~10mmが好ましく、0.5~3.0mmがより好ましい。 The fireproof material is preferably in sheet form, and the thickness is not particularly limited, but from the standpoint of fire resistance and ease of handling, a thickness of 0.2 to 10 mm is preferable, and 0.5 to 3.0 mm is more preferable.

(耐火材の製造方法)
本発明の耐火材は例えば下記のようにして製造することができる。
まず、所定量の熱膨張性黒鉛A、樹脂、膨張開始遅延剤、必要に応じて配合される可塑剤、難燃剤、架橋剤、無機充填材、及びその他の成分を、混練ロールなどの混練機で混練して、耐火性樹脂組成物を得る。
次に、得られた耐火性樹脂組成物を、例えば、プレス成形、カレンダー成形、押出成形等、公知の成形方法によりシート状などに成形することで耐火材を得ることができる。
混練する際の温度及びシート状に成形する温度は、熱膨張性黒鉛の膨張開始温度未満であることが好ましく、架橋剤を配合する場合は、架橋剤が架橋し難い温度であることが好ましい。そのため、混練する温度は、70~150℃が好ましく、90~140℃がより好ましい。シート状に成形する温度は、80~130℃が好ましく、90~120℃がより好ましい。
(Method of manufacturing fireproof material)
The fireproof material of the present invention can be produced, for example, as follows.
First, predetermined amounts of thermally expandable graphite A, resin, expansion initiation retarder, plasticizer which is blended as necessary, flame retardant, crosslinking agent, inorganic filler, and other components are kneaded in a kneading machine such as a kneading roll to obtain a fire-resistant resin composition.
Next, the obtained fire-resistant resin composition is molded into a sheet or the like by a known molding method such as press molding, calendar molding, extrusion molding, etc., to obtain a fire-resistant material.
The temperature during kneading and the temperature during molding into a sheet are preferably lower than the expansion initiation temperature of the thermally expandable graphite, and when a crosslinking agent is added, the temperature is preferably such that the crosslinking agent is unlikely to crosslink. Therefore, the kneading temperature is preferably 70 to 150° C., more preferably 90 to 140° C. The temperature during molding into a sheet is preferably 80 to 130° C., more preferably 90 to 120° C.

(積層シート)
本発明の耐火材は、他のシート部材や粘着剤層が積層され積層シートを構成してもよい。積層シートは、例えば、基材と、基材の片面又は両面に積層される耐火材とを備える。基材は通常、織布又は不織布である。織布又は不織布に使用される繊維としては、特に限定はされないが、不燃性材料又は準不燃材料が好ましく、例えば、ガラス繊維、セラミック繊維、セルロース繊維、ポリエステル繊維、炭素繊維、グラファイト繊維、熱硬化性樹脂繊維等が好ましい。
上記積層シートは、例えば、耐火性樹脂組成物を基材の上にシート状に成形して得ることができる。
(Laminated sheet)
The fireproof material of the present invention may be laminated with other sheet members or pressure-sensitive adhesive layers to form a laminate sheet. The laminate sheet includes, for example, a substrate and a fireproof material laminated on one or both sides of the substrate. The substrate is usually a woven fabric or nonwoven fabric. The fibers used for the woven fabric or nonwoven fabric are not particularly limited, but are preferably noncombustible or semi-noncombustible materials, such as glass fibers, ceramic fibers, cellulose fibers, polyester fibers, carbon fibers, graphite fibers, and thermosetting resin fibers.
The laminate sheet can be obtained, for example, by forming the fire-resistant resin composition into a sheet on a substrate.

また、積層シートは、耐火材と粘着剤層を備えるものであってもよい。粘着剤層は、例えば、耐火材の片面又は両面に積層されてもよい。
さらに、積層シートは、耐火材と、基材と、粘着剤層とを備えてもよい。そのような積層シートは、基材の一方の面に耐火材、他方の面に粘着剤層が設けられてもよいし、基材の一方の面の上に、耐火材及び粘着剤層がこの順に設けられてもよい。粘着剤層は、例えば、離型紙に塗工した粘着剤を積層シートに転写することで形成できる。
The laminate sheet may also include a fireproof material and an adhesive layer. The adhesive layer may be laminated on one or both sides of the fireproof material, for example.
Furthermore, the laminate sheet may include a fireproof material, a substrate, and an adhesive layer. Such a laminate sheet may have a fireproof material on one side of the substrate and an adhesive layer on the other side, or a fireproof material and an adhesive layer may be provided in this order on one side of the substrate. The adhesive layer can be formed, for example, by transferring an adhesive coated on a release paper to the laminate sheet.

本発明の耐火材は、及びこれを用いた積層シートは、具体的には、一戸建住宅、集合住宅、高層住宅、高層ビル、商業施設、公共施設等の各種の建具、自動車、電車などの各種車両、船舶、航空機などに使用できるが、これらの中では建具に使用されることが好ましい。建具としては、具体的には、壁、梁、柱、床、レンガ、屋根、板材、窓、障子、扉、ドア、戸、ふすま、欄間、配線、配管などに使用することができるが、これらに限定されない。本発明の耐火材は、及びこれを用いた積層シートは、特に、窓、扉、ドアなどの建具の隙間に適用することで、火災等の際に炎が隙間を通過して侵入するのを防止することができる。 The fireproof material of the present invention and the laminated sheet using the same can be used specifically for various fittings in detached houses, apartment buildings, high-rise houses, high-rise buildings, commercial facilities, public facilities, and the like, various vehicles such as automobiles and trains, ships, and aircraft, among which it is preferable to use it for fittings. Specific examples of fittings that can be used include, but are not limited to, walls, beams, pillars, floors, bricks, roofs, boards, windows, shoji screens, doors, sliding doors, transoms, wiring, and piping. The fireproof material of the present invention and the laminated sheet using the same can be applied, particularly to gaps in fittings such as windows and doors, to prevent flames from penetrating through the gaps in the event of a fire, etc.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these.

[評価方法]
(I)後期膨張性
各実施例、及び比較例の耐火材を所定のサイズにした(厚み1.8mm、幅25mm、長さ25mm)。該所定のサイズの耐火材をステンレス製の板(98mm角・厚み0.3mm)の底面に設置し、160℃に設定した電気炉に供給した。昇温速度5℃/minで400℃まで加熱を行い、300℃、400℃で、耐火材を取り出し、300℃及び400℃での膨張倍率を測定した。
300℃での膨張倍率は、「300℃における耐火材の厚さ/加熱前の耐火材の厚さ」であり、400℃での膨張倍率は、「400℃における耐火材の厚さ/加熱前の耐火材の厚さ」である。
そして、以下の式(I)により後期膨張性を評価した。式(I)の値が高いほど、後期膨張性に優れると判断される。
式(I) (400℃での膨張倍率)/(300℃での膨張倍率)
以下の基準で評価した。
A:式(I)の値が1.7以上
B:式(I)の値が1.5以上1.7未満
C:式(I)の値が1.2以上1.5未満
D:式(I)の値が1.2未満
[Evaluation method]
(I) Late Expansion The fireproof materials of each Example and Comparative Example were cut to a predetermined size (thickness 1.8 mm, width 25 mm, length 25 mm). The fireproof materials of the predetermined size were placed on the bottom surface of a stainless steel plate (98 mm square, thickness 0.3 mm) and fed into an electric furnace set at 160°C. The temperature was increased to 400°C at a rate of 5°C/min, and the fireproof materials were removed at 300°C and 400°C, and the expansion ratios at 300°C and 400°C were measured.
The expansion ratio at 300°C is "thickness of the fireproof material at 300°C/thickness of the fireproof material before heating", and the expansion ratio at 400°C is "thickness of the fireproof material at 400°C/thickness of the fireproof material before heating".
The later stage expansion property was evaluated by the following formula (I). The higher the value of formula (I), the better the later stage expansion property is judged to be.
Formula (I) (Expansion ratio at 400°C)/(Expansion ratio at 300°C)
The evaluation was based on the following criteria.
A: The value of formula (I) is 1.7 or more. B: The value of formula (I) is 1.5 or more and less than 1.7. C: The value of formula (I) is 1.2 or more and less than 1.5. D: The value of formula (I) is less than 1.2.

(II)膨張圧力
以下の手順で、膨張圧力を測定した。
(1)各実施例、及び比較例の耐火材を所定のサイズとした(厚み1.8mm、幅25mm、長さ25mm)
(2)ホットプレートと、ホットプレートの表面から1.2cm離れた位置にフォースゲージ(マキタ社製、「ZTA-500N」)を設置した。治具として直径1.6cm(面積2cm)のプレート状治具を用いた。
(3)ホットプレート表面を500℃に加熱して、該ホットプレートの表面に上記シート状の耐火材を置き、さらに耐火材の上にセラミック製の板(材質はケイ酸カルシウム、厚さ2mm、幅30mm、長さ30mm)を配置した。
(4)上記耐火材をホットプレート上で、500℃にて、250秒間加熱したときに、フォースゲージで測定される最大の応力を、治具の面積で除した値を膨張圧力とした。
(II) Expansion Pressure The expansion pressure was measured by the following procedure.
(1) The fireproof materials of each of the examples and comparative examples were cut to a predetermined size (thickness 1.8 mm, width 25 mm, length 25 mm).
(2) A hot plate and a force gauge ("ZTA-500N" manufactured by Makita Corporation) were placed 1.2 cm away from the surface of the hot plate. A plate-shaped jig with a diameter of 1.6 cm (area of 2 cm 2 ) was used as the jig.
(3) The surface of the hot plate was heated to 500° C., the above-mentioned sheet-like fireproof material was placed on the surface of the hot plate, and a ceramic plate (made of calcium silicate, thickness 2 mm, width 30 mm, length 30 mm) was further placed on the fireproof material.
(4) The above fireproof material was heated on a hot plate at 500° C. for 250 seconds, and the maximum stress measured with a force gauge was divided by the area of the jig to obtain the expansion pressure.

(III)膨張倍率
膨張倍率は、各実施例、及び比較例の耐火材を所定のサイズにした(厚み1.8mm、幅25mm、長さ25mm)。該所定のサイズの耐火材をステンレス製の板(98mm角・厚み0.3mm)の底面に設置し、電気炉に供給し600℃で30分間加熱させた。加熱後の耐火材の厚さを加熱前の耐火材の厚さで除することにより、膨張倍率を求めた。
(III) Expansion Ratio The expansion ratio was determined by cutting the refractory material of each Example and Comparative Example to a predetermined size (thickness 1.8 mm, width 25 mm, length 25 mm). The refractory material of the predetermined size was placed on the bottom surface of a stainless steel plate (98 mm square, thickness 0.3 mm), fed into an electric furnace, and heated at 600° C. for 30 minutes. The thickness of the refractory material after heating was divided by the thickness of the refractory material before heating to determine the expansion ratio.

(IV)耐火時間
ケイ酸カルシウム板(日本インシュレーション社製)で作製したドアと、ドア枠とからなる耐火時間評価用ドア部材を作製した。該耐火時間評価用ドア部材のドアの側面と、ドア枠とは1cmの隙間が空いている。ドアの側面に、所定のサイズにした各実施例及び比較例の耐火材(厚み1.8mm、幅25mm、長さ1000mm)を取り付けた。次いで耐火炉にて、ISO834の標準加熱曲線に従って加熱して、耐火材が剥がれ落ちるまでの時間を測定した。剥がれ落ちるまでの時間が長いほど、耐火性に優れた耐火材である。以下の基準で評価した
S:剥がれ落ちるまでの時間が110分以上
A:剥がれ落ちるまでの時間が105分以上110分未満
B:剥がれ落ちるまでの時間が100分以上105分未満
C:剥がれ落ちるまでの時間が95分以上100分未満
D:剥がれ落ちるまでの時間が95分未満
(IV) Fire Resistance Time A door member for evaluating fire resistance time was prepared, which was made of a calcium silicate board (manufactured by Nippon Insulation Co., Ltd.) and a door frame. A gap of 1 cm was provided between the side of the door of the door member for evaluating fire resistance time and the door frame. A fireproof material (thickness 1.8 mm, width 25 mm, length 1000 mm) of each example and comparative example cut to a predetermined size was attached to the side of the door. Then, the fireproof material was heated in a fireproof furnace according to the standard heating curve of ISO834, and the time until the fireproof material peeled off was measured. The longer the time until the fireproof material peeled off, the more excellent the fire resistance of the fireproof material. Evaluation was performed according to the following criteria: S: Time until peeling off is 110 minutes or more; A: Time until peeling off is 105 minutes or more but less than 110 minutes; B: Time until peeling off is 100 minutes or more but less than 105 minutes; C: Time until peeling off is 95 minutes or more but less than 100 minutes; D: Time until peeling off is less than 95 minutes.

(VI)成形性
ロールで混錬する際、硬すぎて流動しなかったり、柔らかすぎて流れやすくなり、形を保つことが出来なかったりすると収率が悪化する。成形性は、投入した材料のうち、混錬後シート状態で取り出せた収率で下記の通りで判定した。
A:90%以上
B:70%以上90%未満
C:50%以上70%未満
D:50%未満
(VI) Moldability When kneading with rolls, if the material is too hard to flow or too soft to flow and cannot maintain its shape, the yield will decrease. Moldability was judged as the yield of the material that could be taken out in sheet form after kneading, as shown below.
A: 90% or more B: 70% or more but less than 90% C: 50% or more but less than 70% D: Less than 50%

(VII)熱膨張性黒鉛の膨張開始温度
レオメーター(「Discovery HR―2」、TAインスツルメント社製)において、試料台に熱膨張性黒鉛のサンプルを0.5g置き、粉末が落ちないようにアルミホイルで巻く。25mmφコーンプレートで荷重0[N]になるところまで接地させた。その状態からペルチェヒーターにより設定温度50℃から一定昇温速度(10℃/分)でサンプルを加熱し、荷重0.1Nとなったときを膨張開始温度とした。
(VII) Expansion Start Temperature of Thermally Expandable Graphite In a rheometer ("Discovery HR-2", manufactured by TA Instruments), 0.5 g of a sample of thermally expandable graphite was placed on the sample stage and wrapped in aluminum foil to prevent the powder from falling off. The sample was grounded with a 25 mmφ cone plate until the load became 0 [N]. From that state, the sample was heated at a constant heating rate (10°C/min) from a set temperature of 50°C using a Peltier heater, and the point when the load became 0.1 N was taken as the expansion start temperature.

(VIII)吸熱剤の吸熱開始温度
熱重量示差熱分析装置(TG-DTA)を用いて測定した。測定条件は、室温から1000℃まで、昇温速度4℃/min、吸熱剤重量10mgであった。得られたTG曲線から重量が減少し始める温度を吸熱開始温度とした。
(VIII) Endothermic onset temperature of endothermic agent Measured using a thermogravimetric differential thermal analyzer (TG-DTA). The measurement conditions were: from room temperature to 1000° C., a heating rate of 4° C./min, and an endothermic agent weight of 10 mg. The temperature at which the weight started to decrease from the obtained TG curve was determined as the endothermic onset temperature.

各実施例、比較例で使用した各種成分は以下のとおりである。
(熱可塑性樹脂)
1.エチレン-酢酸ビニル共重合体
・EVA(1) 三井・ダウポリケミカル株式会社製「EV180」
190℃におけるMFR:0.2g/10min
酢酸ビニル含量:33質量%
・EVA(2) 三井・ダウポリケミカル株式会社製「EV260」
190℃におけるMFR:6.0g/10min
酢酸ビニル含量:28質量%
・EVA(3) 三井・ダウポリケミカル株式会社製「V422」
190℃におけるMFR:0.9g/10min
酢酸ビニル含量:20質量%
・EVM(1) ランクサス社製「レバプレン800」
100℃におけるムーニー粘度ML(1+4):27
酢酸ビニル含量:80質量%
The various components used in each of the examples and comparative examples are as follows.
(Thermoplastic resin)
1. Ethylene-vinyl acetate copolymer, EVA (1) "EV180" manufactured by Dow Mitsui Polychemical Co., Ltd.
MFR at 190 ° C: 0.2 g / 10 min
Vinyl acetate content: 33% by mass
・EVA (2) "EV260" manufactured by Dow Polychemicals Co., Ltd.
MFR at 190 ° C: 6.0 g / 10 min
Vinyl acetate content: 28% by mass
-EVA (3) "V422" manufactured by Dow Polychemicals, Inc.
MFR at 190 ° C: 0.9 g / 10 min
Vinyl acetate content: 20% by mass
・EVM (1) "Revaprene 800" manufactured by Lanxus
Mooney viscosity ML(1+4) at 100°C: 27
Vinyl acetate content: 80% by mass

2.ポリ酢酸ビニル樹脂
・ポリ酢酸ビニル(1) 巴化学工業株式会社製「VINNAPAS 4FS」
重量平均分子量:30万 g/mol
・ポリ酢酸ビニル(2) 巴化学工業株式会社製「VINNAPAS 25FS」
重量平均分子量:50万 g/mol
2. Polyvinyl acetate resin: Polyvinyl acetate (1) "VINNAPAS 4FS" manufactured by Tomoe Chemical Industry Co., Ltd.
Weight average molecular weight: 300,000 g/mol
Polyvinyl acetate (2) "VINNAPAS 25FS" manufactured by Tomoe Chemical Industry Co., Ltd.
Weight average molecular weight: 500,000 g/mol

3.クロロプレンゴム
・クロロプレン1 東ソー株式会社製「スカイプレンTSR-56」
100℃におけるムーニー粘度ML(1+4):70
・クロロプレン2 東ソー株式会社製「スカイプレン640」
100℃におけるムーニー粘度ML(1+4):85
3. Chloroprene rubber, Chloroprene 1: Skyprene TSR-56, manufactured by Tosoh Corporation
Mooney viscosity ML(1+4) at 100°C: 70
・Chloroprene 2 "Skyprene 640" manufactured by Tosoh Corporation
Mooney viscosity ML(1+4) at 100°C: 85

4.ポリアクリロニトリル樹脂
・Shaoxing Gimel Advanced Materials Technology社製「P-90H」
5.ポリカーボネート樹脂
・出光興産株式会社製「タフロン」
6.フェノール樹脂
・ノボラック型のフェノール樹脂 住友ベークライト社製「PR-50235」
4. Polyacrylonitrile resin: "P-90H" manufactured by Shaoxing Gimel Advanced Materials Technology Co., Ltd.
5. Polycarbonate resin: "Toughlon" manufactured by Idemitsu Kosan Co., Ltd.
6. Phenolic resin - Novolac type phenolic resin "PR-50235" manufactured by Sumitomo Bakelite Co., Ltd.

(熱膨張性黒鉛)
・熱膨張性黒鉛 富士黒鉛株式会社製「EXP-50S120K」、膨張開始温度120℃
・熱膨張性黒鉛 富士黒鉛株式会社製「EXP50S160」、膨張開始温度160℃
・熱膨張性黒鉛 ADT社製「ADT351」、熱膨張開始温度170℃
・熱膨張性黒鉛 富士黒鉛株式会社製「EXP50HO」、膨張開始温度200℃
(Thermal Expandable Graphite)
・Thermal expandable graphite: Fuji Graphite Co., Ltd. "EXP-50S120K", expansion start temperature 120℃
- Thermally expandable graphite: Fuji Graphite Co., Ltd. "EXP50S160", expansion start temperature 160℃
- Thermally expandable graphite: ADT351, thermal expansion starting temperature 170°C
・Thermal expandable graphite: Fuji Graphite Co., Ltd. "EXP50HO", expansion start temperature 200℃

(吸熱剤)
・硫酸カルシウム、太平化学株式会社製、吸熱開始温度160℃、吸熱量700J/g
・水酸化アルミニウム、日本軽金属株式会社製「BF013」、吸熱開始温度200℃、吸熱量900J/g
・水酸化カルシウム、鈴木工業株式会社製「CAOH-2」、吸熱開始温度421℃、吸熱量980J/g
(Thermal absorption agent)
Calcium sulfate, manufactured by Taihei Chemical Co., Ltd., endothermic start temperature 160°C, endothermic amount 700 J/g
Aluminum hydroxide, "BF013" manufactured by Nippon Light Metal Co., Ltd., endothermic start temperature 200°C, endothermic amount 900 J/g
Calcium hydroxide, "CAOH-2" manufactured by Suzuki Kogyo Co., Ltd., endothermic onset temperature 421°C, endothermic amount 980 J/g

(難燃剤)
・亜リン酸アルミニウム 太平化学産業株式会社製「APA100」
(Flame retardant)
・Aluminum phosphite "APA100" manufactured by Taihei Chemical Industry Co., Ltd.

(液状可塑剤)
・アジピン酸エーテルエステル系 (株)ADEKA製「アデカサイザーRS-107」
(Liquid plasticizer)
・Adipic acid ether ester type "Adeka Cizer RS-107" manufactured by ADEKA Corporation

(実施例1~33、比較例1~6)
表1~4に示す配合にて、樹脂、熱膨張性黒鉛、吸熱剤、難燃剤、及び可塑剤をロールに投入して、120℃で5分間混練して、耐火性樹脂組成物を得た。得られた耐火性樹脂組成物を、100℃で3分間プレス成形して、厚さ1.8mmのシート状の耐火材を得た。評価結果を表1に示した。
(Examples 1 to 33, Comparative Examples 1 to 6)
Resin, thermally expandable graphite, heat absorbing agent, flame retardant, and plasticizer were put into a roll and kneaded at 120° C. for 5 minutes according to the formulations shown in Tables 1 to 4 to obtain a fire-resistant resin composition. The obtained fire-resistant resin composition was press-molded at 100° C. for 3 minutes to obtain a sheet-shaped fire-resistant material having a thickness of 1.8 mm. The evaluation results are shown in Table 1.

以上の実施例に示すように、膨張開始遅延剤である熱膨張性黒鉛又は吸熱剤を含有する本発明の耐火材は、後期膨張性に優れ、耐火時間が長く、耐火性に優れることが分かった。これに対して、膨張開始遅延剤を含有しない各比較例の耐火材は、後期膨張性に劣り、耐火時間が短く、耐火性に劣ることが分かった。 As shown in the above examples, it was found that the fireproof material of the present invention, which contains the expansion start retarder, heat expandable graphite or heat endothermic agent, has excellent late expansion properties, a long fire resistance time, and excellent fire resistance. In contrast, it was found that the fireproof materials of each comparative example, which do not contain the expansion start retarder, have poor late expansion properties, a short fire resistance time, and poor fire resistance.

Claims (7)

樹脂、熱膨張性黒鉛A、及び前記熱膨張性黒鉛Aの膨張開始を遅延させる膨張開始遅延剤を含有し、
前記樹脂が、エチレン-酢酸ビニル共重合体を含み
前記エチレン-酢酸ビニル共重合体が、酢酸ビニル含量が20質量%以上の高Vac成分を含有するエチレン-酢酸ビニル共重合体であり、
前記膨張開始遅延剤が、前記熱膨張性黒鉛Aよりも膨張開始温度が低い熱膨張性黒鉛Bである、熱膨張性耐火材(但し、酸化亜鉛を含有するものを除く。)
The composition contains a resin, thermally expandable graphite A, and an expansion start retarder that delays the expansion start of the thermally expandable graphite A,
the resin comprises an ethylene-vinyl acetate copolymer;
The ethylene-vinyl acetate copolymer is an ethylene-vinyl acetate copolymer containing a high Vac component having a vinyl acetate content of 20% by mass or more,
A thermally expandable fire-resistant material (excluding those containing zinc oxide) , wherein the expansion initiation retarder is thermally expandable graphite B having a lower expansion initiation temperature than the thermally expandable graphite A.
前記熱膨張性黒鉛Aの熱膨張開始温度をTA、前記熱膨張性黒鉛Bの熱膨張開始温度をTBとした場合、TAとTBの差(TA-TB)が40℃以上である、請求項に記載の熱膨張性耐火材。 2. The thermally expandable refractory material according to claim 1, wherein the thermal expansion start temperature of the thermally expandable graphite A is TA and the thermal expansion start temperature of the thermally expandable graphite B is TB, and the difference between TA and TB (TA-TB) is 40°C or more. 前記熱膨張性黒鉛Aの含有量と熱膨張性黒鉛Bの含有量の比(熱膨張性黒鉛Aの含有量/熱膨張性黒鉛Bの含有量)が10/90~90/10である、請求項1又は2に記載の熱膨張性耐火材。 The thermally expandable fire-resistant material according to claim 1 or 2, in which the ratio of the content of thermally expandable graphite A to the content of thermally expandable graphite B (content of thermally expandable graphite A/content of thermally expandable graphite B) is 10/90 to 90/10. 全熱膨張性黒鉛の含有量が、樹脂100質量部に対して20~500質量部である、請求項1~3のいずれかに記載の熱膨張性耐火材。 The thermally expandable fire-resistant material according to any one of claims 1 to 3, wherein the total thermally expandable graphite content is 20 to 500 parts by mass per 100 parts by mass of resin. さらに難燃剤を含有する、請求項1~4のいずれかに記載の熱膨張性耐火材。 The thermally expandable fire-resistant material according to any one of claims 1 to 4, further comprising a flame retardant. 前記エチレン-酢酸ビニル共重合体が、190℃におけるメルトフローレート(MFR)が、8.0g/10min以下である低MFR成分を含有する、請求項1~のいずれかに記載の熱膨張性耐火材。 The thermally expandable fire-resistant material according to any one of claims 1 to 5 , wherein the ethylene-vinyl acetate copolymer contains a low MFR component having a melt flow rate (MFR) at 190°C of 8.0 g/10 min or less. さらに架橋剤を含有する、請求項1~のいずれかに記載の熱膨張性耐火材。 The thermally expandable fireproof material according to any one of claims 1 to 6 , further comprising a crosslinking agent.
JP2020103395A 2020-06-15 2020-06-15 Thermally expandable fireproof material Active JP7557289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020103395A JP7557289B2 (en) 2020-06-15 2020-06-15 Thermally expandable fireproof material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103395A JP7557289B2 (en) 2020-06-15 2020-06-15 Thermally expandable fireproof material

Publications (2)

Publication Number Publication Date
JP2021195461A JP2021195461A (en) 2021-12-27
JP7557289B2 true JP7557289B2 (en) 2024-09-27

Family

ID=79197268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020103395A Active JP7557289B2 (en) 2020-06-15 2020-06-15 Thermally expandable fireproof material

Country Status (1)

Country Link
JP (1) JP7557289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118891153A (en) * 2022-03-17 2024-11-01 东丽株式会社 Refractory sheet and coated article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214646A (en) 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Thermally expandable resin composition
JP2014159731A (en) 2013-01-22 2014-09-04 Sekisui Chem Co Ltd Thermally-expansible bond for external wall
WO2016136896A1 (en) 2015-02-25 2016-09-01 積水化学工業株式会社 Refractory resin composition
JP2016164217A (en) 2015-03-06 2016-09-08 出光ライオンコンポジット株式会社 Resin composition and molded body
JP2018162397A (en) 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 Resin composition for thermally-expandable refractory sheets, and thermally-expandable refractory sheet prepared therewith
JP2019215072A (en) 2017-07-28 2019-12-19 積水化学工業株式会社 Pipe structure body, and method for manufacturing pipe material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838780B2 (en) * 1998-05-20 2006-10-25 積水化学工業株式会社 Refractory sheet-like molded body and sheet laminate
JP6374756B2 (en) * 2013-10-18 2018-08-15 積水化学工業株式会社 Thermally expandable joint material for outer wall
JP6949499B2 (en) * 2016-01-27 2021-10-13 積水化学工業株式会社 Refractory resin composition
JP7222672B2 (en) * 2018-11-20 2023-02-15 古河電気工業株式会社 Refractory materials and compartment penetration refractory members

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214646A (en) 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Thermally expandable resin composition
JP2014159731A (en) 2013-01-22 2014-09-04 Sekisui Chem Co Ltd Thermally-expansible bond for external wall
WO2016136896A1 (en) 2015-02-25 2016-09-01 積水化学工業株式会社 Refractory resin composition
JP2016164217A (en) 2015-03-06 2016-09-08 出光ライオンコンポジット株式会社 Resin composition and molded body
JP2018162397A (en) 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 Resin composition for thermally-expandable refractory sheets, and thermally-expandable refractory sheet prepared therewith
JP2019215072A (en) 2017-07-28 2019-12-19 積水化学工業株式会社 Pipe structure body, and method for manufacturing pipe material

Also Published As

Publication number Publication date
JP2021195461A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
JP6225287B1 (en) Fireproof resin composition
JP3838780B2 (en) Refractory sheet-like molded body and sheet laminate
JP2018021212A (en) Fire-resistant resin composition
JP6438623B1 (en) Thermal expansion fireproof sheet
JP7530344B2 (en) Fire-resistant resin composition, fire-resistant sheet and fittings
JP2022164720A (en) Fire-resistant resin composition, and thermally expandable sheet
JP2019112938A (en) Fireproof material and its wound body
JP7557289B2 (en) Thermally expandable fireproof material
JP2000001927A (en) Fire resistant sheet-like molding
JP7503033B2 (en) Thermally expandable fireproof material
JP7201465B2 (en) thermoplastic resin sheet
JP2024088660A (en) Fire-resistant resin composition, fire-resistant material, fire-resistant laminate, partition penetration processing structure and partition penetration processing method
JP2015189975A (en) Thermally expandable fire-resistant resin composition and method for manufacturing molded product of the same
JP3691945B2 (en) Fireproof multilayer sheet
JPH11270019A (en) Covering sheet for fire resistance
JP2021195460A (en) Thermally expansive fire resistant material
JP2024146319A (en) Thermally expandable fireproof material
JP7127170B1 (en) Inflatable refractory material
JP2021031605A (en) Thermally-expandable refractory material
JP2000006289A (en) Fireproof multilayer sheet
JPH11270018A (en) Fire-resistive construction
JPH11270020A (en) Fire-resistant panel
JP2000291176A (en) Fire resistant panel
JPH1136481A (en) Fire resistive composite plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240913

R150 Certificate of patent or registration of utility model

Ref document number: 7557289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150