Nothing Special   »   [go: up one dir, main page]

JP7557274B2 - Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody - Google Patents

Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody Download PDF

Info

Publication number
JP7557274B2
JP7557274B2 JP2020068613A JP2020068613A JP7557274B2 JP 7557274 B2 JP7557274 B2 JP 7557274B2 JP 2020068613 A JP2020068613 A JP 2020068613A JP 2020068613 A JP2020068613 A JP 2020068613A JP 7557274 B2 JP7557274 B2 JP 7557274B2
Authority
JP
Japan
Prior art keywords
antibody
amino acid
seq
legionella
ribosomal protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020068613A
Other languages
Japanese (ja)
Other versions
JP2021164414A (en
Inventor
智康 相沢
博之 久米田
佳宗 原田
佳彦 渡邉
康博 橋本
健二 松山
浩志 前花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2020068613A priority Critical patent/JP7557274B2/en
Publication of JP2021164414A publication Critical patent/JP2021164414A/en
Application granted granted Critical
Publication of JP7557274B2 publication Critical patent/JP7557274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、レジオネラ菌(Legionella pneumophila)が検体中に存在するか否かを検出するための抗体、並びに斯かる抗体を用いて検体中のレジオネラ菌を検出するための方法、試薬、及びキットに関する。 The present invention relates to an antibody for detecting the presence or absence of Legionella pneumophila in a sample, as well as a method, reagent, and kit for detecting Legionella in a sample using the antibody.

微生物感染症に罹患した患者の治療に当たっては、感染症の迅速な診断が極めて重要である。微生物感染症の診断手法としては、感染症の原因菌を感染部位や血清・体液等から検出する手法や、原因菌に対する抗体を血液・体液等から検出する手法が挙げられるが、診断の確実性・迅速性の観点からは、原因菌を直接検出する手法が好ましい。 When treating patients suffering from microbial infections, rapid diagnosis of the infection is extremely important. Methods for diagnosing microbial infections include methods for detecting the causative bacteria from the infected site or from serum or body fluids, and methods for detecting antibodies against the causative bacteria from blood or body fluids, but from the standpoint of the accuracy and speed of diagnosis, methods that directly detect the causative bacteria are preferred.

微生物感染症の原因菌の検出手法は、原因菌の分離培養を経て、その生化学的性状を基に菌の同定を行う培養同定法、原因菌特異的遺伝子をポリメラーゼ連鎖反応(polymerase chain reaction:PCR)法等により増幅して菌の同定を行う遺伝子診断法、及び、原因菌の表面抗原マーカーに対する抗体の特異反応を利用して菌の同定を行う免疫的手法に大別される。しかし、培養同定法及び遺伝子診断法は、検出結果を得るまでに時間がかかり、且つ、検出感度の面でも課題がある場合が多い。よって、短時間で高感度に原因菌を検出できる点で、免疫的手法による診断が汎用されている。 Methods for detecting the causative bacteria of microbial infections can be broadly divided into culture identification methods, in which the causative bacteria are isolated and cultured, and then the bacteria are identified based on their biochemical properties; genetic diagnostic methods, in which the causative bacteria-specific genes are amplified using methods such as polymerase chain reaction (PCR) to identify the bacteria; and immunological methods, in which the bacteria are identified by utilizing the specific reaction of antibodies to the surface antigen markers of the causative bacteria. However, culture identification methods and genetic diagnostic methods take time to obtain detection results, and there are often problems with detection sensitivity. For this reason, immunological methods are widely used for diagnosis, as they can detect the causative bacteria with high sensitivity in a short period of time.

従来免疫法による感染症原因菌の検出には、菌種によって様々なマーカー抗原と抗体との組み合わせが使われている。 Conventional immunological methods for detecting infectious disease-causing bacteria use a variety of combinations of marker antigens and antibodies depending on the bacterial species.

レジオネラ菌(Legionella pneumophila)は、レジオネラ(Legionella)属のグラム陰性桿菌であり、ヒトに感染すると、高熱、咳、頭痛、筋肉痛、悪寒などの症状を伴う非定型肺炎であるレジオネラ症を引き起こすことが知られている。レジオネラ症の治療としては、食細胞内への移行性が高いマクロライド系、ニューキノロン系、リファンピシン系、テトラサイクリン系等の抗菌薬の投与が一般的である。しかし、レジオネラ症が進行すると治療は困難となり、呼吸困難や意識障害等を併発し、最悪の場合は死に至ることから、レジオネラ菌の感染に対する早期の検出及び治療が求められている。 Legionella pneumophila is a gram-negative bacillus of the Legionella genus that, when it infects humans, is known to cause Legionnaires' disease, an atypical form of pneumonia accompanied by symptoms such as high fever, cough, headache, muscle pain, and chills. Legionnaires' disease is generally treated with antibiotics such as macrolides, new quinolones, rifampicin, and tetracyclines, which have a high translocation rate into phagocytes. However, as Legionnaires' disease progresses, treatment becomes difficult, and symptoms such as difficulty breathing and impaired consciousness occur, and in the worst case, it can lead to death, so early detection and treatment of Legionnaires' disease infection is required.

レジオネラ菌は、一般的にL-システインや鉄などを添加したBCYE寒天培地や、GVPC寒天培地にて培養する事により分離、検出されるが、同培地による分離培養には通常2日以上かかるため検査時間が長い等の課題があった。これに対してケイ質化合物を培地に加えることで培養の迅速化を図る方法(特許文献1:特許第5769174号公報)が知られているが依然として検査時間の短縮が必要であった。また、16SリボソーマルRNA遺伝子を標的としたLAMP法(特許文献2:特開2003-219878号公報)が知られているが、迅速性が不十分であることや装置が必要になることなどの課題があり、満足のいくものではなかった。 Legionella bacteria are generally isolated and detected by culturing them on BCYE agar medium or GVPC agar medium supplemented with L-cysteine or iron, but isolation and culturing using such media usually takes more than two days, posing problems such as long test times. To address this issue, a method is known that aims to speed up culturing by adding a siliceous compound to the medium (Patent Document 1: Japanese Patent No. 5769174), but there is still a need to shorten the test time. In addition, the LAMP method (Patent Document 2: Japanese Patent Publication No. 2003-219878) is known, which targets the 16S ribosomal RNA gene, but it has problems such as insufficient speed and the need for equipment, and is not satisfactory.

本発明者等は、全ての微生物細胞に存在し、しかもそのアミノ酸構造が微生物間である程度の相違点をもつ細胞内分子として、リボソームタンパク質(Ribosomal protein)L7/L12に着目し、斯かるタンパク質に対する抗体を利用することにより、様々な微生物を各々特異的に、且つ、同一菌種内の種々の血清型を網羅的に検出することが可能な手法を見出した(特許文献3:国際公開第2000/006603号)。その上で、特にレジオネラ菌については、これを他の属の細菌と区別して検出できる抗体を取得し、斯かる抗体を用いた検出方法を提案している(特許文献4:特開2010-248129号公報)。しかし、斯かる既存の抗体は、その検出精度(菌種特異性)や、その検出精度を担保するためのレジオネラ菌のリボソームタンパク質(Ribosomal protein)L7/L12への特異的抗体の結合パターンが不明であった事など、改善の余地があった。 The present inventors have focused on ribosomal protein L7/L12 as an intracellular molecule that exists in all microbial cells and whose amino acid structure differs to some extent between microorganisms, and have discovered a method that can detect various microorganisms specifically and comprehensively detect various serotypes within the same species by using an antibody against such a protein (Patent Document 3: International Publication No. 2000/006603). In addition, for Legionella bacteria in particular, they have obtained an antibody that can detect Legionella bacteria in distinction from bacteria of other genera, and have proposed a detection method using such an antibody (Patent Document 4: Japanese Patent Application Laid-Open No. 2010-248129). However, there is room for improvement in such existing antibodies, such as the detection accuracy (bacterial species specificity) and the binding pattern of a specific antibody to the ribosomal protein L7/L12 of Legionella bacteria that ensures the detection accuracy, which is unknown.

特許第5769174号公報Patent No. 5769174 特開2003-219878号公報JP 2003-219878 A 国際公開第2000/006603号International Publication No. 2000/006603 特開2010-248129号公報JP 2010-248129 A

本発明は、検出感度及び検出精度(菌種特異性)に優れたレジオネラ菌検出用抗体を提供することを目的とする。 The present invention aims to provide an antibody for detecting Legionella bacteria that has excellent detection sensitivity and detection accuracy (bacterial species specificity).

本発明者等は鋭意検討の結果、レジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基からなるC末端ドメイン(CTD)内に、抗原抗体反応性及び特異性に優れたエピトープとなりうる部分アミノ酸配列が存在することを見出した。その上で、斯かる部分アミノ酸配列と抗原抗体反応を生じる複数の抗体を実際に作製し、これらの抗体を用いることにより、検体中のレジオネラ菌を高い感度且つ精度で検出できることを検証し、本発明に到達した。 After extensive research, the inventors discovered that within the C-terminal domain (CTD) consisting of amino acid residues 58 to 125 of the ribosomal protein L7/L12 of Legionella bacteria, there exists a partial amino acid sequence that can serve as an epitope with excellent antigen-antibody reactivity and specificity. Based on this, they actually produced multiple antibodies that undergo an antigen-antibody reaction with this partial amino acid sequence, and verified that Legionella bacteria in samples can be detected with high sensitivity and accuracy by using these antibodies, which led to the present invention.

即ち、本発明の主旨は以下に存する。
[1]レジオネラ菌(Legionella pneumophila)を検出するための抗体であって、配列番号1に示すレジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基からなるC末端ドメイン(CTD)内に存在するエピトープと抗原抗体反応を生じる、抗体もしくはその断片、又はそれらの誘導体。
[2]前記エピトープが、配列番号1の102~114位のアミノ酸残基から選択される1又は2以上のアミノ酸残基を含む、項[1]に記載の抗体もしくはその断片、又はそれらの誘導体。
[3]マイコプラズマ(Mycoplasma)属、エシェリキア(Escherichia)属、クラミジア(Chlamydia)属、サルモネラ(Salmonella)属、シュードモナス(Pseudomonas)属、スタフィロコッカス(Staphylococcus)属、ナイセリア(Neisseria)属、ヘモフィルス(Haemophilus)属、ボルデテラ(Bordetella)属、モラクセラ(Moraxella)属、及びストレプトコッカス(Streptococcus)属から選択される1以上の属の細菌と交差反応しない、項[1]又は[2]に記載の抗体、もしくはその断片、又はそれらの誘導体。
[4]重鎖可変領域配列として、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列、及び、
軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列
をそれぞれ含む、項[1]~[3]の何れか一項に記載の抗体、もしくはその断片、又はそれらの誘導体。
[5]重鎖可変領域配列として、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列、及び、
軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列
をそれぞれ含む抗体、もしくはその断片、又はそれらの誘導体。
[6]項[1]~[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体をコードする核酸分子。
[7]項[6]に記載の核酸分子を含むベクター又はプラスミド。
[8]項[6]に記載の核酸分子又は項[7]に記載のベクター若しくはプラスミドで形質転換された宿主細胞。
[9]宿主細胞が哺乳動物細胞、昆虫細胞、酵母細胞、及び植物細胞から選ばれる真核細胞、又は細菌細胞である、項[8]に記載の宿主細胞。
[10]項[1]~[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を発現するハイブリドーマ。
[11]検体中のレジオネラ菌の有無を検出するための方法であって、項[1]~[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を検体と接触させ、抗原抗体反応の有無を検出することを含む方法。
[12]検体中のレジオネラ菌の有無を検出するための試薬であって、項[1]~[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を含む、試薬。
[13]検体中のレジオネラ菌の有無を検出するためのキットであって、項[1]~[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体と、前記抗体を用いて検体中のレジオネラ菌の有無を検出するための指示を含む指示書とを含む、キット。
That is, the gist of the present invention is as follows.
[1] An antibody for detecting Legionella pneumophila, which undergoes an antigen-antibody reaction with an epitope present in the C-terminal domain (CTD) consisting of amino acid residues at positions 58 to 125 of the ribosomal protein L7/L12 of Legionella pneumophila as shown in SEQ ID NO: 1, or a fragment thereof, or a derivative thereof.
[2] The antibody or fragment thereof, or a derivative thereof according to item [1], wherein the epitope comprises one or more amino acid residues selected from the amino acid residues at positions 102 to 114 of SEQ ID NO: 1.
[3] The antibody, or a fragment thereof, or a derivative thereof, according to item [1] or [2], which does not cross-react with bacteria of one or more genera selected from the genera Mycoplasma, Escherichia, Chlamydia, Salmonella, Pseudomonas, Staphylococcus, Neisseria, Haemophilus, Bordetella, Moraxella, and Streptococcus.
[4] A heavy chain variable region sequence having 80% or more homology to any one of the amino acid sequences selected from SEQ ID NO:5, SEQ ID NO:9, and SEQ ID NO:13; and
The antibody or fragment thereof according to any one of items [1] to [3], or a derivative thereof, comprising, as a light chain variable region sequence, an amino acid sequence having 80% or more homology to any one of the amino acid sequences selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15.
[5] A heavy chain variable region sequence having 80% or more homology to any one of the amino acid sequences selected from SEQ ID NO:5, SEQ ID NO:9, and SEQ ID NO:13; and
An antibody, or a fragment thereof, or a derivative thereof, comprising, as a light chain variable region sequence, an amino acid sequence having 80% or more homology to any one of the amino acid sequences selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15.
[6] A nucleic acid molecule encoding the antibody or a fragment thereof, or a derivative thereof, according to any one of [1] to [5].
[7] A vector or plasmid comprising the nucleic acid molecule according to [6].
[8] A host cell transformed with the nucleic acid molecule according to [6] or the vector or plasmid according to [7].
[9] The host cell according to item [8], wherein the host cell is a eukaryotic cell selected from a mammalian cell, an insect cell, a yeast cell, and a plant cell, or a bacterial cell.
[10] A hybridoma expressing the antibody or a fragment thereof, or a derivative thereof, according to any one of [1] to [5].
[11] A method for detecting the presence or absence of Legionella bacteria in a sample, comprising contacting the sample with the antibody or fragment thereof, or a derivative thereof, according to any one of items [1] to [5], and detecting the presence or absence of an antigen-antibody reaction.
[12] A reagent for detecting the presence or absence of Legionella bacteria in a sample, comprising the antibody or fragment thereof, or a derivative thereof, according to any one of items [1] to [5].
[13] A kit for detecting the presence or absence of Legionella bacteria in a sample, comprising the antibody or fragment thereof, or a derivative thereof, according to any one of items [1] to [5], and an instruction manual containing instructions for detecting the presence or absence of Legionella bacteria in a sample using the antibody.

本発明の抗体によれば、検体中のレジオネラ菌を高い感度且つ精度で検出することが可能である。 The antibody of the present invention makes it possible to detect Legionella bacteria in a sample with high sensitivity and accuracy.

図1は、レジオネラ菌のリボソームタンパク質L7/L12の立体構造を模式的に示す図である。FIG. 1 is a diagram showing a schematic representation of the three-dimensional structure of ribosomal protein L7/L12 of Legionella pneumophila. 図2は、モラクセラ・カタラーリス菌のリボソームタンパク質L7/L12の立体構造を模式的に示す図である。FIG. 2 is a schematic diagram showing the three-dimensional structure of ribosomal protein L7/L12 of Moraxella catarrhalis. 図3は、淋菌のリボソームタンパク質L7/L12の立体構造を模式的に示す図である。FIG. 3 is a schematic diagram showing the three-dimensional structure of ribosomal protein L7/L12 of N. gonorrhoeae. 図4は、レジオネラ菌、淋菌、及びモラクセラ・カタラーリス菌のリボソームタンパク質L7/L12のC末端ドメイン(CTD)部分の立体構造をそれぞれ模式的に示す図である。FIG. 4 is a schematic diagram showing the three-dimensional structures of the C-terminal domain (CTD) portions of ribosomal proteins L7/L12 of Legionella pneumophila, Neisseria gonorrhoeae, and Moraxella catarrhalis. 図5は、レジオネラ菌、淋菌、及びモラクセラ・カタラーリス菌のリボソームタンパク質L7/L12のC末端ドメイン(CTD)部分のアミノ酸配列のアラインメントを示す図である。FIG. 5 shows an alignment of amino acid sequences of the C-terminal domain (CTD) portions of ribosomal proteins L7/L12 from Legionella pneumophila, Neisseria gonorrhoeae, and Moraxella catarrhalis. 図6Aは、モノクローナル抗体4B1とレジオネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析結果を模式的に示す図である。FIG. 6A is a schematic diagram showing the results of NMR analysis of the interaction between monoclonal antibody 4B1 and ribosomal protein L7/L12 of Legionella pneumophila. 図6Bは、モノクローナル抗体36A2とレジオネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析結果を模式的に示す図である。FIG. 6B is a schematic diagram showing the results of NMR analysis of the interaction between monoclonal antibody 36A2 and Legionella ribosomal protein L7/L12. 図6Cは、モノクローナル抗体54A3とレジオネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析結果を模式的に示す図である。FIG. 6C is a schematic diagram showing the results of NMR analysis of the interaction between monoclonal antibody 54A3 and Legionella ribosomal protein L7/L12.

以下、本発明を具体的な実施の形態に即して詳細に説明する。但し、本発明は以下の実施の形態に束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。 The present invention will be described in detail below with reference to specific embodiments. However, the present invention is not limited to the following embodiments, and can be implemented in any form without departing from the spirit of the present invention.

なお、本明細書において引用される特許公報、特許出願公開公報、及び非特許公報を含む全ての文献は、その全体が援用により、あらゆる目的において本明細書に組み込まれる。 All documents cited in this specification, including patent publications, patent application publications, and non-patent publications, are hereby incorporated by reference in their entirety for all purposes.

また、本明細書に記載のアミノ酸配列を表す式では、別途記載のある場合を除き、アミノ酸を1文字コードで表すものとする。 In addition, in the formulas representing amino acid sequences described in this specification, amino acids are represented by single-letter codes unless otherwise specified.

1.レジオネラ菌を検出するための抗体:
本発明の第1の態様は、レジオネラ菌を検出するための抗体(以下適宜「本発明の抗体」と称する。)に関する。
1. Antibodies for detecting Legionella:
A first aspect of the present invention relates to an antibody for detecting Legionella bacteria (hereinafter appropriately referred to as the "antibody of the present invention").

(1)緒言:
本発明において「レジオネラ菌」(Legionella pneumophila)は、レジオネラ(Legionella)属に属するグラム陰性桿菌を意味する。レジオネラ菌は、ヒトに感染すると、高熱、咳、頭痛、筋肉痛、悪寒などの症状を伴う非定型肺炎であるレジオネラ症を引き起こすことが知られている。レジオネラ症の治療としては、食細胞内への移行性が高いマクロライド系、ニューキノロン系、リファンピシン系、テトラサイクリン系等の抗菌薬の投与が一般的である。しかし、レジオネラ症が進行すると治療は困難となり、呼吸困難や意識障害等を併発し、最悪の場合は死に至ることから、レジオネラ菌の感染に対する早期の検出及び治療が求められている。
(1) Introduction:
In the present invention, "Legionella pneumophila" refers to a gram-negative bacillus belonging to the Legionella genus. It is known that Legionella bacteria, when infected by humans, cause Legionnaires' disease, an atypical pneumonia accompanied by symptoms such as high fever, cough, headache, muscle pain, and chills. Legionnaires' disease is generally treated by administering antibacterial agents such as macrolides, new quinolones, rifampicin, and tetracyclines, which have high translocation properties into phagocytes. However, as Legionnaires' disease progresses, treatment becomes difficult, and symptoms such as dyspnea and impaired consciousness occur, and in the worst case, it can lead to death, so early detection and treatment of infection with Legionella bacteria are required.

本発明者等は、レジオネラ菌を検出する抗体を作製するに当たり、そのリボソームタンパク質L7/L12に着目した。本発明において「リボソームタンパク質L7/L12」、或いは単に「L7/L12」とは、微生物のタンパク質合成に必須のリボゾームタンパク質の1種であり、種々の細菌が共通して有するタンパク質である。レジオネラ菌のリボソームタンパク質L7/L12は、125個のアミノ酸残基から構成される単量体分子が2コピー連結された二量体構造を有する。各単量体の一次構造のアミノ酸配列を配列番号1に示す。本発明者等の解析結果によると、レジオネラ菌のリボソームタンパク質L7/L12の単量体は、1~40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、17個のアミノ酸残基からなる、立体構造を形成していないリンカーを経て、更に58~125位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成している。また、斯かる立体構造を有する単量体分子が2コピー、互いのNTD同士で会合することにより、二量体構造を形成している(後述の実施例1及び図1参照)。 The present inventors focused on the ribosomal protein L7/L12 when preparing an antibody for detecting Legionella bacteria. In the present invention, "ribosomal protein L7/L12" or simply "L7/L12" is a type of ribosomal protein essential for protein synthesis in microorganisms, and is a protein that is commonly found in various bacteria. The ribosomal protein L7/L12 of Legionella bacteria has a dimeric structure in which two copies of a monomer molecule consisting of 125 amino acid residues are linked. The amino acid sequence of the primary structure of each monomer is shown in SEQ ID NO: 1. According to the analysis results of the present inventors, the monomer of the ribosomal protein L7/L12 of Legionella bacteria forms one three-dimensional structure (NTD: N-Terminal Domain) with amino acid residues 1 to 40, and further forms another three-dimensional structure (CTD: C-Terminal Domain) with amino acid residues 58 to 125 via a linker consisting of 17 amino acid residues that does not form a three-dimensional structure. Furthermore, two copies of the monomer molecule having such a three-dimensional structure form a dimer structure by associating with each other's NTDs (see Example 1 and Figure 1 below).

また、モラクセラ・カタラーリス菌(Moraxella catarrhalis)及び淋菌(Neisseria gonorrhoeae)のリボソームタンパク質L7/L12も同様に、2分子がNTD(N-Terminal Domain、1~40位のアミノ酸残基)で会合して二量体を形成し、ランダムコイル構造のリンカー(41~57位のアミノ酸残基)を経て、更にCTD(C-Terminal Domain、モラクセラ・カタラーリス菌の場合は58~124位のアミノ酸残基、淋菌の場合は58~123位のアミノ酸残基)を形成していることが分かった(後述の実施例2及び実施例3並びに図2及び図3参照)。 It was also found that the ribosomal protein L7/L12 of Moraxella catarrhalis and Neisseria gonorrhoeae forms a dimer by two molecules associating with each other at the NTD (N-Terminal Domain, amino acid residues 1-40), which then forms a CTD (C-Terminal Domain, amino acid residues 58-124 in the case of Moraxella catarrhalis and amino acid residues 58-123 in the case of Neisseria gonorrhoeae) via a random coil structure linker (amino acid residues 41-57) (see Examples 2 and 3 and Figures 2 and 3 below).

本発明者等は、レジオネラ菌のL7/L12が有するこうした立体構造の中でも、以下の検討に基づき、免疫原性に優れたエピトープの候補として、特にCTDに着目した。 Of the three-dimensional structures possessed by Legionella bacteria L7/L12, the present inventors have focused in particular on the CTD as a candidate epitope with superior immunogenicity, based on the following considerations.

レジオネラ菌、モラクセラ・カタラーリス菌、淋菌のL7/L12のCTDの立体構造を比較すると、表面形状と電荷分布に大きな差があり、特に、レジオネラ菌L7/L12の102~114位のアミノ酸残基からなる領域は、立体構造上で菌種間差が大きいことが判った(図4の点線部)。当該領域は、モラクセラ・カタラーリス菌(MC)の場合は疎水性(白色)~非電荷親水性領域(薄青、薄赤色)の占める割合が高く、レジオネラ菌(LP)および淋菌(NG)の場合は負電荷領域(赤色)が支配的である。また、レジオネラ菌と淋菌を比較した場合、レジオネラ菌の当該領域の大部分を負電荷(赤色)が占めているが、淋菌の場合は上部に負電荷領域(赤色)が、下部に疎水性(白色)~非電荷親水性領域(薄青、薄赤色)が位置している(後述の実施例4及び図4の点線部参照)。 Comparing the three-dimensional structures of the L7/L12 CTDs of Legionella, Moraxella catarrhalis, and Neisseria gonorrhoeae, it was found that there were large differences in the surface shape and charge distribution, and that in particular, the region consisting of amino acid residues 102 to 114 of Legionella L7/L12 shows large differences in three-dimensional structure between bacterial species (dotted area in Figure 4). In the case of Moraxella catarrhalis (MC), this region is dominated by hydrophobic (white) to uncharged hydrophilic regions (light blue, light red), while in the cases of Legionella (LP) and Neisseria gonorrhoeae (NG), negatively charged regions (red) are dominant. In addition, when comparing Legionella and Neisseria gonorrhoeae, most of the region in Legionella is negatively charged (red), whereas in Neisseria gonorrhoeae, the negatively charged region (red) is located at the top and the hydrophobic (white) to non-charged hydrophilic region (light blue, light red) is located at the bottom (see Example 4 below and the dotted line in Figure 4).

さらに、レジオネラ菌、モラクセラ・カタラーリス菌、淋菌のリボソームタンパク質L7/L12のアミノ酸配列を比較すると、レジオネラ菌の102~114位のアミノ酸残基と当該領域に相当するモラクセラ・カタラーリス菌の101~113位のアミノ酸残基、淋菌の100~112位のアミノ酸残基において菌種間の差異が大きいことも判った(図5)。例えば、レジオネラ菌のL7/L12の109~110位のアミノ酸残基は、モラクセラ・カタラーリス菌の108~109位のアミノ酸残基、淋菌の107~108位のアミノ酸残基に相当し、レジオネラ菌の場合はA(アラニン:疎水性)、S(セリン:親水性、非電荷)であるのに対し、モラクセラ・カタラーリス菌の場合はE(グルタミン酸:親水性、負電荷)、E(グルタミン酸:親水性、負電荷)、淋菌の場合はE(グルタミン酸:親水性、負電荷)、D(アスパラギン酸:親水性、負電荷)であり、アミノ酸の種類および極性の順序が菌種ごとに異なっている(図5)。 Furthermore, when comparing the amino acid sequences of ribosomal protein L7/L12 from Legionella, Moraxella catarrhalis, and Neisseria gonorrhoeae, it was found that there were significant differences between the bacterial species in the amino acid residues at positions 102 to 114 of Legionella and the corresponding regions at positions 101 to 113 of Moraxella catarrhalis and 100 to 112 of Neisseria gonorrhoeae (Figure 5). For example, the amino acid residues at positions 109-110 of L7/L12 of Legionella pneumophila correspond to the amino acid residues at positions 108-109 of Moraxella catarrhalis and 107-108 of Neisseria gonorrhoeae. In the case of Legionella pneumophila, the residues are A (alanine: hydrophobic) and S (serine: hydrophilic, uncharged), whereas in the case of Moraxella catarrhalis, the residues are E (glutamic acid: hydrophilic, negative charge), E (glutamic acid: hydrophilic, negative charge), and in the case of Neisseria gonorrhoeae, the residues are E (glutamic acid: hydrophilic, negative charge), D (aspartic acid: hydrophilic, negative charge), and the order of the types of amino acids and polarity differs for each bacterial species (Figure 5).

同様に、レジオネラ菌の112~114位のアミノ酸残基と、当該領域に相当するモラクセラ・カタラーリス菌の111~113位のアミノ酸残基、淋菌の110~112位のアミノ酸残基においても菌種間の差異が大きいことも判った。レジオネラ菌の112~114位のアミノ酸残基はK(リジン:親水性、正電荷)、K(リジン:親水性、正電荷)、E(グルタミン酸:親水性、負電荷)であるのに対し、モラクセラ・カタラーリス菌の111~113位のアミノ酸残基はK(リジン:親水性、正電荷)、K(リジン:親水性、正電荷)、K(リジン:親水性、正電荷)、淋菌の110~112位のアミノ酸残基はQ(グルタミン:親水性、非電荷)、K(リジン:親水性、正電荷)、Q(グルタミン:親水性、非電荷)であり、アミノ酸の種類および極性の順序が菌種ごとに異なっている(図5)。 Similarly, it was found that there are large differences between the bacterial species in the amino acid residues at positions 112 to 114 of Legionella and the corresponding regions at positions 111 to 113 of Moraxella catarrhalis and 110 to 112 of Neisseria gonorrhoeae. The amino acid residues at positions 112-114 of Legionella are K (lysine: hydrophilic, positive charge), K (lysine: hydrophilic, positive charge), and E (glutamic acid: hydrophilic, negative charge), whereas the amino acid residues at positions 111-113 of Moraxella catarrhalis are K (lysine: hydrophilic, positive charge), K (lysine: hydrophilic, positive charge), K (lysine: hydrophilic, positive charge), and the amino acid residues at positions 110-112 of Neisseria gonorrhoeae are Q (glutamine: hydrophilic, uncharged), K (lysine: hydrophilic, positive charge), and Q (glutamine: hydrophilic, uncharged), and the type of amino acids and the order of polarity differ for each bacterial species (Figure 5).

以上のように、レジオネラ菌のリボソームタンパク質L7/L12は、CTDに菌種間差異の大きなアミノ酸配列及び立体構造(表面形状、表面電荷)を有する。こうした知見から、本発明者等は、L7/L12全長ではなく、CTDを標的とした方が、より特異的な抗体を取得できるとの発想に至った。 As described above, the Legionella ribosomal protein L7/L12 has an amino acid sequence and three-dimensional structure (surface shape, surface charge) in the CTD that differs significantly between bacterial species. Based on this knowledge, the inventors came up with the idea that more specific antibodies could be obtained by targeting the CTD rather than the full length of L7/L12.

そして、L7/L12のCTDと同様のアミノ酸配列を有するペプチドを発現させ、これに特異的に結合する抗体を作製し、スクリーニングを行うことにより、抗体4B1、36A2、及び54A3を取得した(後述の実施例5参照)。その上で、これらの抗体が何れも、レジオネラ菌のL7/L12のCTD、特に特定のアミノ酸残基を含んで構成されるエピトープと抗原抗体反応を生じていることを確認した(後述の実施例6及び図6A~C参照)。更に、これらの抗体が何れも、優れた検出感度及び検出精度(菌種特異性)を有していることを確認し(後述の実施例7参照)、本発明を完成させた。以下、より具体的に説明する。 Then, a peptide having an amino acid sequence similar to the CTD of L7/L12 was expressed, and antibodies that specifically bind to this were produced and screened to obtain antibodies 4B1, 36A2, and 54A3 (see Example 5 below). It was then confirmed that all of these antibodies reacted with the CTD of L7/L12 of Legionella bacteria, particularly with an epitope that contains specific amino acid residues (see Example 6 and Figures 6A-C below). Furthermore, it was confirmed that all of these antibodies have excellent detection sensitivity and detection accuracy (bacterial species specificity) (see Example 7 below), completing the present invention. A more detailed explanation is given below.

(2)抗体の概要:
本発明において「抗体」とは、特定の抗原又は物質を認識しそれに結合するタンパク質で、免疫グロブリン(Ig)という場合もある。一般的な抗体は、通常、ジスルフィド結合により相互結合された2つの軽鎖(軽鎖)及び2つの重鎖(重鎖)を有する。軽鎖にはλ鎖及びκ鎖と呼ばれる2種類が存在し、重鎖にはγ鎖、μ鎖、α鎖、δ鎖及びε鎖と呼ばれる5種類が存在する。その重鎖の種類によって、抗体には、それぞれIgG、IgM、IgA、IgD及びIgEという5種類のアイソタイプが存在する。
(2) Overview of the antibody:
In the present invention, an "antibody" refers to a protein that recognizes and binds to a specific antigen or substance, and is sometimes called an immunoglobulin (Ig). A typical antibody usually has two light chains and two heavy chains that are mutually bonded by disulfide bonds. There are two types of light chains, called λ chains and κ chains, and there are five types of heavy chains, called γ chains, μ chains, α chains, δ chains, and ε chains. Depending on the type of heavy chain, there are five types of antibody isotypes, namely IgG, IgM, IgA, IgD, and IgE.

重鎖は各々、重鎖定常(CH)領域及び重鎖可変(VH)領域を含む。軽鎖は各々、軽鎖定常(CL)領域及び軽鎖可変(VL)領域を含む。軽鎖定常(CL)領域は単一のドメインから構成される。重鎖定常(CL)領域は、3つのドメイン、即ちCH1、CH2及びCH3から構成される。軽鎖可変(VL)領域及び重鎖可変(VH)領域は各々、フレームワーク領域(FR)と呼ばれる保存性の高い4つの領域(FR-1、FR-2、FR-3、FR-4)と、相補性決定領域(CDR)と呼ばれる超可変性の3つの領域(CDR-1、CDR-2、CDR-3)とから構成される。重鎖定常(CH)領域は、3つのCDR(CDR-H1、CDR-H2、CDR-H3)及び4つのFR(FR-H1、FR-H2、FR-H3、FR-H4)を有し、これらはアミノ末端からカルボキシ末端へと、FR-H1、CDR-H1、FR-H2、CDR-H2、FR-H3、CDR-H3、FR-H4の順番で配列される。軽鎖定常(CL)領域は、3つのCDR(CDR-L1、CDR-L2、CDR-L3)及び4つのFR(FR-L1、FR-L2、FR-L3、FR-L4)を有し、これらはアミノ末端からカルボキシ末端へと、FR-L1、CDR-L1、FR-L2、CDR-L2、FR-L3、CDR-L3、FR-L4の順番で配列される。重鎖及び軽鎖の可変領域は、抗原と相互作用する結合ドメインを含む。 Each heavy chain contains a heavy chain constant (CH) region and a heavy chain variable (VH) region. Each light chain contains a light chain constant (CL) region and a light chain variable (VL) region. The light chain constant (CL) region is composed of a single domain. The heavy chain constant (CL) region is composed of three domains, namely CH1, CH2 and CH3. The light chain variable (VL) region and the heavy chain variable (VH) region each contain four highly conserved regions called framework regions (FR) (FR-1, FR-2, FR-3, FR-4) and three hypervariable regions called complementarity determining regions (CDR) (CDR-1, CDR-2, CDR-3). The heavy chain constant (CH) region has three CDRs (CDR-H1, CDR-H2, CDR-H3) and four FRs (FR-H1, FR-H2, FR-H3, FR-H4), which are arranged from amino terminus to carboxy terminus in the following order: FR-H1, CDR-H1, FR-H2, CDR-H2, FR-H3, CDR-H3, FR-H4. The light chain constant (CL) region has three CDRs (CDR-L1, CDR-L2, CDR-L3) and four FRs (FR-L1, FR-L2, FR-L3, FR-L4), which are arranged from amino terminus to carboxy terminus in the following order: FR-L1, CDR-L1, FR-L2, CDR-L2, FR-L3, CDR-L3, FR-L4. The variable regions of the heavy and light chains contain binding domains that interact with antigens.

本発明の抗体は、レジオネラ菌を検出可能な抗体であって、以下の二つの観点から特定することができる。まず、第一の観点として、本発明の抗体は、レジオネラ菌のリボソームタンパク質L7/L12に存在する特定のエピトープを認識して抗原抗体反応を生じるという特徴から規定することができる。また、第二の観点として、本発明の抗体は、その重鎖及び軽鎖の各可変領域が、特定のアミノ酸配列を有するという特徴からも規定することができる。第一の観点については後記[(2)抗体の性質]欄で、第二の観点については後記[(3)抗体の構造]欄で、それぞれ説明する。なお、本発明の抗体は第一の観点又は第二の観点の何れかの特徴を満たしていればよいが、第一の観点及び第二の観点の両方の特徴を満たす抗体も、本発明の抗体に含まれることは言うまでもない。 The antibody of the present invention is an antibody capable of detecting Legionella bacteria, and can be specified from the following two viewpoints. First, from the first viewpoint, the antibody of the present invention can be specified from the characteristic that it recognizes a specific epitope present in the ribosomal protein L7/L12 of Legionella bacteria and causes an antigen-antibody reaction. Second, the antibody of the present invention can be specified from the characteristic that each of the variable regions of its heavy chain and light chain has a specific amino acid sequence. The first viewpoint will be explained in the section (2) Antibody properties below, and the second viewpoint will be explained in the section (3) Antibody structure below. It is sufficient that the antibody of the present invention satisfies the characteristics of either the first viewpoint or the second viewpoint, but it goes without saying that antibodies that satisfy the characteristics of both the first and second viewpoints are also included in the antibody of the present invention.

なお、本発明の抗体は、ポリクローナル抗体でもモノクローナル抗体でもよいが、モノクローナル抗体であることが好ましい。ポリクローナル抗体は、通常は抗原で免疫した動物の血清から調製される抗体で、構造の異なる種々な抗体分子種の混合物である。一方、モノクローナル抗体とは、特定のアミノ酸配列を有する軽鎖可変(VL)領域及び重鎖可変(VH)領域の組み合わせを含む単一種類の分子からなる抗体をいう。モノクローナル抗体は、抗体産生細胞由来のクローンから産生することも可能であるが、抗体のタンパク質のアミノ酸をコードする遺伝子配列を有する核酸分子を取得し、斯かる核酸分子を用いて遺伝子工学的に作製することも可能である。また、重鎖及び軽鎖、或いはそれらの可変領域やCDR等の遺伝子情報を用いて抗体の結合性や特異性の向上のための改変等を行うことも、この分野での当業者にはよく知られた技術である。 The antibody of the present invention may be either a polyclonal antibody or a monoclonal antibody, but is preferably a monoclonal antibody. A polyclonal antibody is usually prepared from the serum of an animal immunized with an antigen, and is a mixture of various antibody molecular species with different structures. On the other hand, a monoclonal antibody refers to an antibody consisting of a single type of molecule containing a combination of a light chain variable (VL) region and a heavy chain variable (VH) region having a specific amino acid sequence. A monoclonal antibody can be produced from a clone derived from an antibody-producing cell, but it can also be produced by genetic engineering using a nucleic acid molecule obtained having a gene sequence that codes for the amino acids of the antibody protein. In addition, it is also a well-known technique to those skilled in the art to carry out modifications to improve the binding and specificity of an antibody using genetic information such as the heavy and light chains, or their variable regions and CDRs.

また、本発明の抗体は、抗体の断片及び/又は誘導体であってもよい。抗体の断片としては、F(ab’)、Fab、Fv等が挙げられる。抗体の誘導体としては、軽鎖及び/又は重鎖の定常領域部分に人工的にアミノ酸変異を導入した抗体、軽鎖及び/又は重鎖の定常領域のドメイン構成を改変した抗体、1分子あたり2つ以上のFc領域を有する抗体、糖鎖改変抗体、二重特異性抗体、抗体又は抗体の断片を抗体以外のタンパク質と結合させた抗体コンジュゲート、抗体酵素、タンデムscFv、二重特異性タンデムscFv、ダイアボディ(Diabody)等が挙げられる。更には、前記の抗体又はその断片若しくは誘導体が非ヒト動物由来の場合、そのCDR以外の配列の一部又は全部をヒト抗体の対応配列に置換したキメラ抗体又はヒト化抗体も、本発明の抗体に含まれる。なお、別途明記しない限り、本発明において単に「抗体」という場合、抗体の断片及び/又は誘導体も含むものとする。 The antibody of the present invention may be a fragment and/or derivative of the antibody. Examples of the antibody fragment include F(ab') 2 , Fab, Fv, etc. Examples of the antibody derivative include an antibody in which an amino acid mutation has been artificially introduced into the constant region portion of the light chain and/or heavy chain, an antibody in which the domain configuration of the constant region of the light chain and/or heavy chain has been modified, an antibody having two or more Fc regions per molecule, a sugar chain modified antibody, a bispecific antibody, an antibody conjugate in which an antibody or an antibody fragment is bound to a protein other than an antibody, an antibody enzyme, a tandem scFv, a bispecific tandem scFv, a diabody, etc. Furthermore, when the antibody or a fragment or derivative thereof is derived from a non-human animal, a chimeric antibody or a humanized antibody in which a part or all of the sequence other than the CDR is replaced with the corresponding sequence of a human antibody is also included in the antibody of the present invention. In addition, unless otherwise specified, when the term "antibody" is used simply in the present invention, it is intended to include a fragment and/or derivative of the antibody.

(3)抗体の性質:
本発明の抗体は、第一の観点として、レジオネラ菌のリボソームタンパク質L7/L12内の特定のアミノ酸残基から構成されるエピトープと、抗原抗体反応を生じることを特徴とする。
(3) Antibody properties:
In a first aspect, the antibody of the present invention is characterized in that it undergoes an antigen-antibody reaction with an epitope consisting of specific amino acid residues in the ribosomal protein L7/L12 of Legionella bacteria.

本発明において「抗原抗体反応」とは、抗体がその抗原の何れかの成分を認識し、これと結合することをいう。 In the present invention, "antigen-antibody reaction" refers to an antibody recognizing and binding to any component of the antigen.

本発明において「エピトープ」とは、抗体が認識する抗原の一部分をいう。 In the present invention, "epitope" refers to a part of an antigen that is recognized by an antibody.

レジオネラ菌のリボソームタンパク質L7/L12において、本発明の抗体が結合するエピトープは、配列番号1に示すレジオネラ菌のリボソームタンパク質L7/L12のアミノ酸配列のうち、58~125位のアミノ酸残基で形成されるCTDに存在する。実施例5~実施例7において後述する本発明者等の解析結果によると、本発明者等が実施例において実際に取得した高検出感度・高検出精度(高菌種特異性)のレジオネラ菌検出用抗体4B1、36A2、及び54A3は、何れもL7/L12の58~125位のアミノ酸残基で形成されるCTDに結合するものであることが確認されている。 In the ribosomal protein L7/L12 of Legionella bacteria, the epitope to which the antibody of the present invention binds is present in the CTD formed by amino acid residues at positions 58 to 125 of the amino acid sequence of the ribosomal protein L7/L12 of Legionella bacteria shown in SEQ ID NO: 1. According to the analysis results by the present inventors described later in Examples 5 to 7, it has been confirmed that the high detection sensitivity and high detection accuracy (high bacterial species specificity) antibodies 4B1, 36A2, and 54A3 for detecting Legionella bacteria actually obtained by the present inventors in the Examples all bind to the CTD formed by amino acid residues at positions 58 to 125 of L7/L12.

中でも、本発明の抗体が結合するリボソームタンパク質L7/L12のエピトープは、配列番号1の58~125位のアミノ酸残基から選択される1又は2以上、中でも3以上、又は4以上、又は5以上、又は6以上、又は7以上、又は8以上、又は9以上、又は10以上のアミノ酸残基を含むことが好ましい。特に、本発明の抗体が結合するリボソームタンパク質L7/L12のエピトープは、少なくとも配列番号1の102~114位から選択される1又は2以上、中でも3以上、又は4以上、又は5以上、又は6以上、又は7以上、又は8以上、又は9以上、又は10以上のアミノ酸残基を含むことがより好ましく、102、106、109、110、及び112~114位から選択される1又は2以上のアミノ酸残基を含むことが更に好ましい。実施例において後述する本発明者等の解析結果によると、レジオネラ菌のリボソームタンパク質L7/L12のCTDの立体構造において、これらアミノ酸残基は表面付近に存在することが確認されている。また、これらのアミノ酸残基は、レジオネラ菌のL7/L12を他の細菌種のL7/L12と比較した場合に、特にレジオネラ菌の種特異性が高い場所であることからも、これらのアミノ酸残基が本発明の抗体に対するエピトープを形成していることは確実であると考えられる。 In particular, the epitope of ribosomal protein L7/L12 to which the antibody of the present invention binds preferably contains one or more amino acid residues selected from amino acid residues at positions 58 to 125 of SEQ ID NO: 1, particularly preferably 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more. In particular, the epitope of ribosomal protein L7/L12 to which the antibody of the present invention binds preferably contains at least one or more amino acid residues selected from positions 102 to 114 of SEQ ID NO: 1, particularly preferably 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more. It is even more preferred that the epitope of ribosomal protein L7/L12 to which the antibody of the present invention binds contains at least one or more amino acid residues selected from positions 102, 106, 109, 110, and 112 to 114 of SEQ ID NO: 1, particularly preferably 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more. According to the analysis results of the present inventors described later in the Examples, it has been confirmed that these amino acid residues are present near the surface in the three-dimensional structure of the CTD of the ribosomal protein L7/L12 of Legionella. In addition, when comparing L7/L12 of Legionella with L7/L12 of other bacterial species, these amino acid residues are located in positions that are particularly highly species-specific for Legionella, and therefore it is believed that these amino acid residues certainly form epitopes for the antibodies of the present invention.

また、本発明の抗体は、レジオネラ菌以外の細菌やその他の成分と交差反応を生じないことが好ましい。 In addition, it is preferable that the antibodies of the present invention do not cross-react with bacteria other than Legionella bacteria or other components.

具体的には、本発明の抗体は、マイコプラズマ(Mycoplasma)属、エシェリキア(Escherichia)属、クラミジア(Chlamydia)属、サルモネラ(Salmonella)属、シュードモナス(Pseudomonas)属、スタフィロコッカス(Staphylococcus)属、ナイセリア(Neisseria)属、ヘモフィルス(Haemophilus)属、ボルデテラ(Bordetella)属、モラクセラ(Moraxella)属、及びストレプトコッカス(Streptococcus)属から選択される1以上の属の細菌と、交差反応を生じないことが好ましい。中でも、本発明の抗体は、2以上の属、更には3以上の属、又は4以上の属、又は5以上の属、又は6以上の属、特に全ての属の細菌と交差反応を生じないことが好ましい。 Specifically, the antibody of the present invention preferably does not cross-react with bacteria of one or more genera selected from the genera Mycoplasma, Escherichia, Chlamydia, Salmonella, Pseudomonas, Staphylococcus, Neisseria, Haemophilus, Bordetella, Moraxella, and Streptococcus. In particular, the antibody of the present invention preferably does not cross-react with bacteria of two or more genera, or even three or more genera, or four or more genera, or five or more genera, or six or more genera, and particularly all genera.

なお、抗体とエピトープ・抗原や他の成分との抗原抗体反応の測定は、当業者であれば固相又は液相の系での結合測定を適宜選択して行うことが可能である。そのような方法としては、酵素結合免疫吸着法(enzyme-linked immunosorbent assay:ELISA)、酵素免疫測定法(enzyme immunoassay:EIA)、表面プラズモン共鳴法(surface plasmon resonance:SPR)、蛍光共鳴エネルギー移動法(fluorescence resonance energy transfer:FRET)、発光共鳴エネルギー移動法(luminescence resonance energy transfer:LRET)等が挙げられるが、それらに限定されるものではない。また、そのような抗原抗体結合を測定する際に、抗体及び/又は抗原を酵素、蛍光物質、発光物質、放射性同位元素等で標識を行い、その標識した物質の物理的及び/又は化学的特性に適した測定方法を用いて抗原抗体反応を検出することも可能である。 In addition, a person skilled in the art can measure the antigen-antibody reaction between an antibody and an epitope/antigen or other component by appropriately selecting a binding measurement in a solid-phase or liquid-phase system. Such methods include, but are not limited to, enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and luminescence resonance energy transfer (LRET). In addition, when measuring such antigen-antibody binding, it is also possible to label the antibody and/or antigen with an enzyme, fluorescent substance, luminescent substance, radioisotope, etc., and detect the antigen-antibody reaction using a measurement method suitable for the physical and/or chemical properties of the labeled substance.

中でも、本発明では特に、抗原(エピトープ)と抗体との相互作用を、核磁気共鳴法(Nuclear Magnetic Resonance:NMR)により解析することが好ましい。斯かる手法の詳細については、例えばCavanagh et al., “Protein NMR Spectroscopy, Principles and Practice Protein NMR”, 2nd Edition, Academic Press, 2006や、Vitha et al., “Spectroscopy: Principles and Instrumentation”, Wiley-Blackwell, 2018の記載を参照することができる。具体的な解析条件としては、制限されるものではないが、例えば後述の実施例6で本発明者等が採用した解析条件を参照することができる。 In particular, in the present invention, it is preferable to analyze the interaction between the antigen (epitope) and the antibody by nuclear magnetic resonance (NMR). For details of such a method, reference can be made to, for example, Cavanagh et al., "Protein NMR Spectroscopy, Principles and Practice Protein NMR", 2nd Edition, Academic Press, 2006, and Vitha et al., "Spectroscopy: Principles and Instrumentation", Wiley-Blackwell, 2018. Specific analysis conditions are not limited, but reference can be made to, for example, the analysis conditions adopted by the present inventors in Example 6 described below.

(4)抗体の構造:
第二の観点として、本発明の抗体は、その重鎖及び軽鎖の各可変領域が、特定のアミノ酸配列を有することを特徴とする。
(4) Antibody structure:
In a second aspect, the antibody of the present invention is characterized in that each of the heavy and light chain variable regions has a specific amino acid sequence.

具体的に、本発明の抗体は、重鎖及び軽鎖の各可変領域配列として、以下のアミノ酸配列を有することが好ましい。 Specifically, the antibody of the present invention preferably has the following amino acid sequences as the variable region sequences of the heavy and light chains:

重鎖可変領域配列としては、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上、中でも85%以上、更には90%以上、とりわけ95%以上、又は96%以上、又は97%以上、又は99%以上、特に100%の相同性(好ましくは同一性)を有するアミノ酸配列を有することが好ましい。中でも、重鎖可変領域配列としては、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列であることがとりわけ好ましい。 The heavy chain variable region sequence preferably has an amino acid sequence that has 80% or more, particularly 85% or more, even 90% or more, particularly 95% or more, or 96% or more, or 97% or more, or 99% or more, and especially 100% homology (preferably identity) with any one of the amino acid sequences selected from SEQ ID NO:5, SEQ ID NO:9, and SEQ ID NO:13. Among these, the heavy chain variable region sequence is particularly preferably any one of the amino acid sequences selected from SEQ ID NO:5, SEQ ID NO:9, and SEQ ID NO:13.

軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上、中でも85%以上、更には90%以上、とりわけ95%以上、又は96%以上、又は97%以上、又は99%以上、特に100%の相同性(好ましくは同一性)を有するアミノ酸配列を有することが好ましい。中でも、軽鎖可変領域配列としては、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列であることがとりわけ好ましい。 The light chain variable region sequence preferably has an amino acid sequence that has 80% or more, particularly 85% or more, even 90% or more, particularly 95% or more, or 96% or more, or 97% or more, or 99% or more, and especially 100% homology (preferably identity) with any one of the amino acid sequences selected from SEQ ID NO:7, SEQ ID NO:11, and SEQ ID NO:15. Among these, the light chain variable region sequence is particularly preferably any one of the amino acid sequences selected from SEQ ID NO:7, SEQ ID NO:11, and SEQ ID NO:15.

なお、本発明において、2つのアミノ酸配列の「相同性」とは、両アミノ酸配列をアラインメントした際に各対応箇所に同一又は類似のアミノ酸残基が現れる比率であり、2つのアミノ酸配列の「同一性」とは、両アミノ酸配列をアラインメントした際に各対応箇所に同一のアミノ酸残基が現れる比率である。なお、2つのアミノ酸配列の「相同性」及び「同一性」は、例えばBLAST(Basic Local Alignment Search Tool)プログラム(Altschul et al., J. Mol. Biol., (1990), 215(3):403-10)等を用いて求めることが可能である。 In the present invention, the "homology" of two amino acid sequences refers to the ratio at which identical or similar amino acid residues appear at corresponding positions when the two amino acid sequences are aligned, and the "identity" of two amino acid sequences refers to the ratio at which identical amino acid residues appear at corresponding positions when the two amino acid sequences are aligned. The "homology" and "identity" of two amino acid sequences can be determined, for example, using the BLAST (Basic Local Alignment Search Tool) program (Altschul et al., J. Mol. Biol., (1990), 215(3):403-10).

また、ある抗体の重鎖及び軽鎖の各可変配列から、各CDRの配列を同定する方法としては、例えばKabat法(Kabat et al., The Journal of Immunology, 1991, Vol.147, No.5, pp.1709-1719)やChothia法(Al-Lazikani et al., Journal of Molecular Biology, 1997, Vol.273, No.4, pp.927-948)が挙げられる。これらの方法は本分野の技術常識であるが、例えばDr. Andrew C.R. Martin’s Groupのウェブサイト(http://www.bioinf.org.uk/abs/)等も参照できる。 Methods for identifying the sequences of each CDR from the variable sequences of the heavy and light chains of an antibody include, for example, the Kabat method (Kabat et al., The Journal of Immunology, 1991, Vol. 147, No. 5, pp. 1709-1719) and the Chothia method (Al-Lazikani et al., Journal of Molecular Biology, 1997, Vol. 273, No. 4, pp. 927-948). These methods are common technical knowledge in this field, but you can also refer to, for example, the website of Dr. Andrew C.R. Martin's Group (http://www.bioinf.org.uk/abs/).

なお、あるアミノ酸に類似するアミノ酸としては、例えばアミノ酸の極性、荷電性、及びサイズに基づく以下の分類において、同一の群内に属するアミノ酸が挙げられる(何れも各アミノ酸の種類を一文字コードで表示する。)。
・芳香族アミノ酸:F、H、W、Y;
・脂肪族アミノ酸:I、L、V;
・疎水性アミノ酸:A、C、F、H、I、K、L、M、T、V、W、Y;
・荷電アミノ酸:D、E、H、K、R等:
・正荷電アミノ酸:H、K、R;
・負荷電アミノ酸:D、E;
・極性アミノ酸:C、D、E、H、K、N、Q、R、S、T、W、Y;
・小型アミノ酸:A、C、D、G、N、P、S、T、V等:
・超小型アミノ酸:A、C、G、S。
Amino acids similar to a certain amino acid include, for example, amino acids belonging to the same group in the following classification based on the polarity, charge, and size of amino acids (each type of amino acid is represented by a one-letter code in each case).
Aromatic amino acids: F, H, W, Y;
Aliphatic amino acids: I, L, V;
Hydrophobic amino acids: A, C, F, H, I, K, L, M, T, V, W, Y;
Charged amino acids: D, E, H, K, R, etc.:
Positively charged amino acids: H, K, R;
Negatively charged amino acids: D, E;
- Polar amino acids: C, D, E, H, K, N, Q, R, S, T, W, Y;
Small amino acids: A, C, D, G, N, P, S, T, V, etc.
-Very small amino acids: A, C, G, S.

また、あるアミノ酸に類似するアミノ酸としては、例えばアミノ酸の側鎖の種類に基づく以下の分類において、同一の群内に属するアミノ酸も挙げられる(何れも各アミノ酸の種類を一文字コードで表示する。)。
・脂肪族側鎖を有するアミノ酸:G、A、V、L、I;
・芳香族側鎖を有するアミノ酸:F、Y、W;
・硫黄含有側鎖を有するアミノ酸:C、M;
・脂肪族ヒドロキシル側鎖を有するアミノ酸:S、T;
・塩基性側鎖を有するアミノ酸:K、R、H;
・酸性アミノ酸及びそれらのアミド誘導体:D、E、N、Q。
Furthermore, amino acids similar to a certain amino acid include amino acids that belong to the same group in the following classification based on the type of amino acid side chain (each type of amino acid is represented by a one-letter code in each case).
Amino acids with aliphatic side chains: G, A, V, L, I;
Amino acids with aromatic side chains: F, Y, W;
Amino acids with sulfur-containing side chains: C, M;
Amino acids with aliphatic hydroxyl side chains: S, T;
Amino acids with basic side chains: K, R, H;
- Acidic amino acids and their amide derivatives: D, E, N, Q.

(5)抗体の作製方法:
本発明の抗体を作製する方法は、特に制限されないが、例えば以下の手法を挙げることができる。
(5) Method for producing antibodies:
The method for producing the antibody of the present invention is not particularly limited, but examples thereof include the following techniques.

本発明の抗体がポリクローナル抗体の場合、検出対象となるレジオネラ菌のリボソームタンパク質L7/L12の全部又は一部、好ましくはCTDを構成する配列番号1の58~125位のアミノ酸残基(配列番号3のアミノ酸残基)からなるポリペプチド、或いはこれと80%以上、中でも85%以上、更には90%以上、とりわけ95%以上、又は96%以上、又は97%以上、又は99%以上、特に100%の相同性(好ましくは同一性)を有するアミノ酸配列を有するポリペプチド(これを以下「エピトープポリペプチド」という)を用いて作製することができる。具体的には、エピトープポリペプチドを用意し、必要に応じてアジュバントとともに動物へ接種せしめ、その血清を回収することで、前記エピトープポリペプチドと抗原抗体反応を生じる抗体(ポリクローナル抗体)を含む抗血清を得ることができる。接種する動物としてはヒツジ、ウマ、ヤギ、ウサギ、マウス、ラット等であり、特にポリクローナル抗体作製にはヒツジ、ウサギなどが好ましい。また、得られた抗血清より抗体を精製・分画し、レジオネラ菌のリボソームタンパク質L7/L12と抗原抗体反応を生じること、及び、他の特定の成分、例えば前記列記の属の細菌と交差反応を生じないことを指標として、公知の手法により適宜スクリーニングを行うことにより、より特異性に優れた所望の抗体を得ることが可能である。更に、所望の抗体分子を産生する抗体産生細胞を単離し、骨髄腫細胞と細胞融合させて自律増殖能を持ったハイブリドーマを作製することにより、モノクローナル抗体を得ることも可能である。また、動物への感作を必要としない方法として、抗体の重鎖可変(VH)領域若しくは軽鎖可変(VL)領域又はそれらの一部を発現するファージライブラリーを用いて、検出対象となるレジオネラ菌のリボソームタンパク質L7/L12と特異的に結合する抗体や特定のアミノ酸配列からなるファージクローンを取得し、その情報から抗体を作製する技術も利用可能である。 When the antibody of the present invention is a polyclonal antibody, it can be prepared using all or a part of the ribosomal protein L7/L12 of the Legionella bacteria to be detected, preferably a polypeptide consisting of amino acid residues at positions 58 to 125 of SEQ ID NO: 1 (amino acid residues of SEQ ID NO: 3) constituting the CTD, or a polypeptide having an amino acid sequence with 80% or more, particularly 85% or more, further 90% or more, particularly 95% or more, or 96% or more, or 97% or more, or 99% or more, and particularly 100% homology (preferably identity) thereto (hereinafter referred to as "epitope polypeptide"). Specifically, an epitope polypeptide is prepared, and an animal is inoculated with the epitope polypeptide together with an adjuvant if necessary, and the serum is collected to obtain an antiserum containing an antibody (polyclonal antibody) that generates an antigen-antibody reaction with the epitope polypeptide. Animals to be inoculated include sheep, horses, goats, rabbits, mice, rats, etc., and sheep and rabbits are particularly preferred for producing polyclonal antibodies. In addition, it is possible to obtain a desired antibody with superior specificity by purifying and fractionating the antibody from the obtained antiserum, and appropriately screening it by a known method using as indicators whether the antibody reacts with the ribosomal protein L7/L12 of Legionella bacteria and does not cross-react with other specific components, such as the bacteria of the genera listed above. Furthermore, it is also possible to obtain a monoclonal antibody by isolating an antibody-producing cell that produces a desired antibody molecule, fusing the cell with a myeloma cell to produce a hybridoma with autonomous proliferation ability. In addition, as a method that does not require sensitization of animals, a technology is also available in which an antibody that specifically binds to the ribosomal protein L7/L12 of the Legionella bacteria to be detected or a phage clone consisting of a specific amino acid sequence is obtained using a phage library that expresses the heavy chain variable (VH) region or light chain variable (VL) region of an antibody or a part of them, and an antibody is produced from the information.

また、上記手順により所望の抗体が得られれば、斯かる抗体の構造、具体的には重鎖定常(CH)領域、重鎖可変(VH)領域、軽鎖定常(CL)領域、及び/又は軽鎖可変(VL)領域のアミノ酸配列の一部又は全部を、公知のアミノ酸配列解析法を用いて解析することができる。こうして得られた所望の抗体のアミノ酸配列に対し、抗体の結合性や特異性の向上のための改変等を行う手法も、当業者には公知である。更には、所望の抗体のアミノ酸配列の全部又は一部(特に重鎖可変(VH)領域及び軽鎖可変(VL)領域の全部又は一部、中でも各CDRのアミノ酸配列)を利用し、必要に応じて公知の抗体のアミノ酸配列の一部(特に重鎖定常(CH)領域及び軽鎖定常(CL)領域、並びに場合により重鎖可変(VH)領域及び軽鎖可変(VL)領域の各FRのアミノ酸配列)と組み合わせることにより、同様の抗原特異性を有する蓋然性の高い別の抗体を設計することも可能である。 In addition, if a desired antibody is obtained by the above procedure, the structure of the antibody, specifically, a part or all of the amino acid sequences of the heavy chain constant (CH) region, the heavy chain variable (VH) region, the light chain constant (CL) region, and/or the light chain variable (VL) region can be analyzed using a known amino acid sequence analysis method. A method for modifying the amino acid sequence of the desired antibody thus obtained to improve the binding property and specificity of the antibody is also known to those skilled in the art. Furthermore, it is possible to use all or a part of the amino acid sequence of the desired antibody (particularly all or a part of the heavy chain variable (VH) region and the light chain variable (VL) region, especially the amino acid sequence of each CDR) and combine it with a part of the amino acid sequence of a known antibody (particularly the heavy chain constant (CH) region and the light chain constant (CL) region, and optionally the amino acid sequence of each FR of the heavy chain variable (VH) region and the light chain variable (VL) region) as necessary, thereby designing another antibody that is likely to have the same antigen specificity.

一方、抗体の一部(CDR又は可変領域)又は全部のアミノ酸配列が特定されている場合には、公知の手法により、斯かる所望の抗体のアミノ酸配列の全部又は一部をコードする塩基配列を有する核酸分子を作製し、斯かる核酸分子を用いて遺伝子工学的に抗体を作製することも可能である。更には、斯かる塩基配列から所望の抗体の各構成要素を発現するためのベクターやプラスミド等を作製し、宿主細胞(哺乳類細胞、昆虫細胞、植物細胞、酵母細胞、微生物細胞等)に導入して、当該抗体を産生させることも可能である。また、得られた抗体の性能の向上や副作用の回避を目的に、抗体の定常領域の構造に改変を入れることや、糖鎖の部分での改変を行うことも、当業者によく知られた技術によって適宜行うことができる。 On the other hand, when the amino acid sequence of a part (CDR or variable region) or the whole of an antibody is specified, it is possible to prepare a nucleic acid molecule having a base sequence encoding all or part of the amino acid sequence of the desired antibody by known techniques, and to produce an antibody by genetic engineering using such a nucleic acid molecule. Furthermore, it is also possible to prepare a vector or plasmid for expressing each component of the desired antibody from such a base sequence, and introduce it into a host cell (mammalian cell, insect cell, plant cell, yeast cell, microbial cell, etc.) to produce the antibody. In addition, for the purpose of improving the performance of the obtained antibody or avoiding side effects, the structure of the constant region of the antibody or the modification of the glycan portion can be appropriately performed using techniques well known to those skilled in the art.

なお、以上説明した、本発明の抗体を製造する方法、本発明の抗体をコードする核酸分子、斯かる核酸分子を含むベクター又はプラスミド、斯かる核酸分子やベクター又はプラスミドを含む細胞、更には本発明の抗体を産生するハイブリドーマ等も、本発明の対象となる。 The present invention also covers the above-described method for producing the antibody of the present invention, the nucleic acid molecule encoding the antibody of the present invention, the vector or plasmid containing such a nucleic acid molecule, the cell containing such a nucleic acid molecule, vector or plasmid, and further the hybridoma producing the antibody of the present invention.

なお、本明細書に記載の抗体の作製・改変等の技法は、何れも当業者には公知であるが、例えばAntibodies; A laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory Press (2014)等の記載を参照することができる。また、本明細書に記載の分子生物学的技法(例えばアミノ酸配列解析法、核酸分子の設計・作製法、ベクターやプラスミドの設計・作製法等)も、何れも当業者には公知であるが、例えばMolecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory Press, Shambrook, J. et al. (1989)等の記載を参照することができる。 The techniques for producing and modifying antibodies described herein are all known to those skilled in the art, and reference can be made, for example, to Antibodies; A laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory Press (2014). The molecular biology techniques described herein (e.g., amino acid sequence analysis, nucleic acid molecule design and production methods, vector and plasmid design and production methods, etc.) are also all known to those skilled in the art, and reference can be made, for example, to Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory Press, Shambrook, J. et al. (1989).

2.レジオネラ菌の検出方法・試薬・キット:
本発明の別の態様は、本発明の抗体を用いて、検体中のレジオネラ菌の有無を検出する方法(以下適宜「本発明の検出方法」と呼ぶ)に関する。
2. Legionella detection methods, reagents, and kits:
Another aspect of the present invention relates to a method for detecting the presence or absence of Legionella bacteria in a sample using the antibody of the present invention (hereinafter appropriately referred to as the "detection method of the present invention").

本発明の検出方法は、前記の本発明の抗体もしくはその断片、又はそれらの誘導体を、検体と接触させ、抗原抗体反応の有無を検出することを含む。ここで、本発明の抗体は、前述のようにレジオネラ菌の特定のエピトープと抗原抗体反応を生じることから、斯かる抗原抗体反応の有無を公知の各種の免疫測定法で検出することで、検体中にレジオネラ菌が存在するか否かを検出することができる。 The detection method of the present invention involves contacting the above-mentioned antibody of the present invention or a fragment thereof, or a derivative thereof, with a sample and detecting the presence or absence of an antigen-antibody reaction. Here, since the antibody of the present invention generates an antigen-antibody reaction with a specific epitope of Legionella bacteria as described above, the presence or absence of such an antigen-antibody reaction can be detected by various known immunoassay methods to detect the presence or absence of Legionella bacteria in a sample.

検体としては、主にヒト又は非ヒト動物由来の生体試料が挙げられる。生体試料の種類は特に制限されないが、例としては血液(全血、血漿、血清)、リンパ液、尿、唾液、涙液、羊水、腹水等の液体試料や、各種組織の生検試料等の固体試料のホモジネート懸濁液や抽出液、更にはこれらの培養上清などが挙げられる。 Specimens include mainly biological samples derived from humans or non-human animals. There are no particular limitations on the type of biological sample, but examples include liquid samples such as blood (whole blood, plasma, serum), lymph, urine, saliva, tears, amniotic fluid, and ascites, as well as homogenate suspensions and extracts of solid samples such as biopsy samples of various tissues, and culture supernatants of these.

なお、本発明の抗体は、前述のようにレジオネラ菌のリボソームタンパク質L7/L12に存在する特定のエピトープを認識して抗原抗体反応を生じることから、レジオネラ菌のリボソームタンパク質L7/L12を細菌の細胞膜外に露出させることで、検出感度を向上させることができる。従って、本発明の抗体を検体に接触させる前に、検体に対して細菌を溶菌させる処理を施してもよい。斯かる細菌の溶菌処理としては、限定されるものではないが、界面活性剤や溶菌酵素等を用いた溶菌処理が挙げられる。溶菌処理に使用可能な界面活性剤としては、例えばTriton X-100、Tween 20、Briji 35、Nonidet P-40、ドデシル-β-D-マルトシド、オクチル-β-D-グルコシド等の非イオン性界面活性剤;Zwittergent 3-12、CHAPS(3-(3-コラミドプロピル)ジメチルアンモニオ-1-プロパンスルホネート)等の両イオン性界面活性剤;SDS(ドデシル硫酸ナトリウム)等の陰イオン性界面活性剤等が挙げられる。溶菌処理に使用可能な溶菌酵素としては、例えばリゾチーム、リゾスタフィン、ペプシン、グルコシダーゼ、ガラクトシダーゼ、アクロモペプチダーゼ、β-N-アセチルグルコサミニダーゼ等が挙げられる。 As described above, the antibody of the present invention recognizes a specific epitope present in the ribosomal protein L7/L12 of Legionella bacteria and generates an antigen-antibody reaction. Therefore, by exposing the ribosomal protein L7/L12 of Legionella bacteria to the outside of the bacterial cell membrane, the detection sensitivity can be improved. Therefore, before contacting the antibody of the present invention with a sample, the sample may be subjected to a treatment for lysing the bacteria. Examples of such a bacterial lysis treatment include, but are not limited to, a lysis treatment using a surfactant, a lytic enzyme, or the like. Examples of surfactants that can be used in the lysis treatment include nonionic surfactants such as Triton X-100, Tween 20, Briji 35, Nonidet P-40, dodecyl-β-D-maltoside, and octyl-β-D-glucoside; zwitterionic surfactants such as Zwittergent 3-12 and CHAPS (3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate); and anionic surfactants such as SDS (sodium dodecyl sulfate). Examples of lytic enzymes that can be used in the lysis treatment include lysozyme, lysostaphin, pepsin, glucosidase, galactosidase, achromopeptidase, and β-N-acetylglucosaminidase.

本発明の抗体を検体と接触させる手法や、抗原抗体反応を検出するための免疫測定法は、限定されない。免疫測定法の例としては、限定されるものではないが、抗体を担持させたマイクロタイタープレートを用いるELISA(酵素結合免疫吸着)法;抗体を担持させたラテックス粒子(例えばポリスチレンラテックス粒子等)を用いるラテックス粒子凝集測定法;抗体を担持させたメンブレン等を用いるイムノクロマト法;着色粒子又は発色能を有する粒子、酵素若しくは蛍光体等で標識した検出用抗体と、磁気微粒子等の固相担体に固定化した捕捉用抗体とを用いるサンドイッチアッセイ法等、種々の公知の免疫測定法が挙げられる。なお、サンドイッチアッセイ法等の検出用抗体及び捕捉用抗体を併用する免疫測定法の場合、本発明の抗体は捕捉用抗体として用いてもよく、検出用抗体として用いてもよい。 The method of contacting the antibody of the present invention with a sample and the immunoassay method for detecting an antigen-antibody reaction are not limited. Examples of immunoassay methods include, but are not limited to, ELISA (enzyme-linked immunosorbent adsorbent) using a microtiter plate carrying an antibody; latex particle agglutination assay using latex particles (e.g., polystyrene latex particles, etc.) carrying an antibody; immunochromatography using a membrane carrying an antibody; and sandwich assay using a detection antibody labeled with colored particles or particles having color-developing ability, enzymes, or fluorescent bodies, etc., and a capture antibody immobilized on a solid phase carrier such as magnetic particles. In addition, in the case of an immunoassay method using a detection antibody and a capture antibody in combination, such as a sandwich assay, the antibody of the present invention may be used as a capture antibody or a detection antibody.

本発明の検出方法によれば、検体中のレジオネラ菌の有無を迅速且つ簡便に検出することが可能となる。 The detection method of the present invention makes it possible to quickly and easily detect the presence or absence of Legionella bacteria in a sample.

なお、本発明の検出方法に使用するべく、本発明の抗体を含む試薬や、本発明の抗体を用いて検体中のレジオネラ菌の有無を検出するための指示を含む指示書と共に含むキットも、本発明の対象となる。斯かる試薬の溶媒やその他の成分、また、斯かるキットの指示書における操作や用途の指示、更には斯かるキットに含まれるその他の構成要素は、レジオネラ菌の検出に使用される具体的な免疫測定法の種類に応じて適宜決定すればよい。中でも、検体中のレジオネラ菌の有無を簡易に検出可能なキットの具体例としては、ラテラルフロー方式のキットと、フロースルー方式のキットとを挙げることができる。ここで、ラテラルフロー方式とは、捕捉用抗体を表面に固定化させた検出領域を含むメンブレンに対し、検出対象試料及び検出用抗体を順に滴下して平行に展開させ、メンブレンの検出領域に捕捉された目的物質を検出する方法である。一方、フロースルー方式とは、捕捉用抗体を表面に固定化させたメンブレンに、検出対象試料及び検出用抗体を順に滴下して垂直に通過させ、メンブレンの表面に捕捉された目的物質を検出する方法である。本発明の検出方法は、ラテラルフロー方式のキットとフロースルー方式のキットの何れに対しても適用することが可能である。 The present invention also covers a reagent containing the antibody of the present invention for use in the detection method of the present invention, and a kit containing the antibody of the present invention together with an instruction manual containing instructions for detecting the presence or absence of Legionella bacteria in a sample. The solvent and other components of such a reagent, the operation and use instructions in the instruction manual of such a kit, and other components contained in such a kit may be appropriately determined according to the type of specific immunoassay used to detect Legionella bacteria. Among them, specific examples of kits that can easily detect the presence or absence of Legionella bacteria in a sample include a lateral flow kit and a flow-through kit. Here, the lateral flow method is a method in which a detection target sample and a detection antibody are dropped in order onto a membrane including a detection region in which a capture antibody is fixed on the surface, and are developed in parallel, to detect the target substance captured in the detection region of the membrane. On the other hand, the flow-through method is a method in which a detection target sample and a detection antibody are dropped in order onto a membrane in which a capture antibody is fixed on the surface, and are passed vertically, to detect the target substance captured on the surface of the membrane. The detection method of the present invention can be applied to both lateral flow and flow-through kits.

以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は以下の実施例にも束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。 The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to the following examples, and can be implemented in any form without departing from the spirit of the present invention.

[実施例1]レジオネラ菌のリボソームタンパク質L7/L12の立体構造解析
<1:レジオネラ菌のリボソームタンパク質L7/L12の取得>
レジオネラ菌のリボソームタンパク質L7/L12遺伝子(配列番号2)をクローニングしたpGEX-6P-1プラスミド(GE Healthcare社製)を大腸菌BL21(DE3)pLysS大腸菌株(Promega社製)に導入した。
[Example 1] Analysis of the three-dimensional structure of ribosomal protein L7/L12 of Legionella
<1: Obtaining ribosomal protein L7/L12 from Legionella pneumophila>
The pGEX-6P-1 plasmid (GE Healthcare) into which the ribosomal protein L7/L12 gene (SEQ ID NO: 2) of Legionella pneumophila was cloned was introduced into E. coli BL21(DE3)pLysS E. coli strain (Promega).

得られた大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N-NHCl、11.1mM 13C-グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル-β-チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。 The resulting E. coli strain was cultured at OD 3000 at 37° C. in M9 medium (47.7 mM Na 2 HPO 4 ·12H 2 O, 22 mM KH 2 PO 4 , 8.6 mM NaCl, 2 mM MgSO 4 , 50 μM ZnSO 4 , 100 μM CaCl 2 , 4.1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM sodium ampicillin, 18.7 mM 15 N-NH 4 Cl, 11.1 mM 13 C-glucose). IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the mixture was cultured at 16° C. for 36 hours. The mixture was then centrifuged at 7000 rpm for 15 minutes at 4° C. to recover the E. coli.

得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ(登録商標)エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン-セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン-セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。 5 mL of BugBuster (Merck Millipore) and 5 μL of Benzonase (registered trademark) endonuclease (Merck Millipore) were added per 1 g of the obtained E. coli, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtration with a 0.45 μm filter, ribosomal protein L7/L12 was purified on a glutathione-Sepharose column using a Profinia protein purification system (Bio-Rad). 1.5 mL of 10x PBS (phosphate buffered saline) and Prescission protease (GE Healthcare) were added to 15 mL of the obtained protein solution, and the mixture was shaken at room temperature for 2 hours. The reaction solution was passed through the glutathione-Sepharose column again, and the non-reacted fraction was obtained as ribosomal protein L7/L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris-HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris-HCl pH8.0を0~50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。
得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を取得した。取得したリボソームタンパク質L7/L12をプロテインアッセイキットI(BIO-RAD社製、型番5000001JA)を用いて1mMになるように遠心濃縮した後、NMR測定に供した。
The obtained ribosomal protein L7/L12 was dialyzed against 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and passed through an AKTA protein purification system (GE Healthcare) connected to an ion exchange column RESOURCE Q (GE Healthcare) at a flow rate of 2 mL/min. Subsequently, 20 mM Tris-HCl pH 8.0 containing 1 M NaCl was passed at a flow rate of 2 mL/min so as to increase linearly from 0 to 50%, and the ribosomal protein L7/L12 was eluted.
The obtained ribosomal protein L7/L12 was passed through an AKTA protein purification system (GE Healthcare) connected to a gel filtration column HiLoad 16/60 Superdex 75pg (GE Healthcare) at a flow rate of 1 mL/min using PBS (phosphate buffered saline) as the mobile phase to obtain ribosomal protein L7/L12. The obtained ribosomal protein L7/L12 was centrifuged and concentrated to 1 mM using Protein Assay Kit I (BIO-RAD, model number 5000001JA), and then subjected to NMR measurement.

<2:NMRによるレジオネラ菌のリボソームタンパク質L7/L12の立体構造解析>
Shigemi NMR試料管に、1mM リボソームタンパク質L7/L12を250μL、重水を20μL、5mg/mL DSS(4,4-ジメチル-4-シラペンタン-1-スルホン酸)を1μL入れ、アスピレーターで脱気後、NMR装置に設置した。
<2: Analysis of the three-dimensional structure of Legionella ribosomal protein L7/L12 by NMR>
A Shigemi NMR sample tube was charged with 250 μL of 1 mM ribosomal protein L7/L12, 20 μL of heavy water, and 1 μL of 5 mg/mL DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid), and then degassed with an aspirator and placed in the NMR apparatus.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、HNCO(積算回数4、データポイント数(F1×F2×F3)64×128×1024)、HN(CO)CA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HNCA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、CBCA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HNCACB(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HBHA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HN(CA)HA(積算回数32、データポイント数(F1×F2×F3)64×128×1024)、C(CO)NH(積算回数16、データポイント数(F1×F2×F3)128×128×1024)のパルスシーケンスを用いて各FIDを、Unity INOVA 800MHz NMR装置(Agilent社製)で[H-15N] HSQC(積算回数8、データポイント数(F1×F2)512×2048)、[H-13C] HSQC aliphatic(積算回数8、データポイント数(F1×F2)868×2048)、[H-13C] HSQC aromatic(積算回数32、データポイント数(F1×F2)204×2048)、HCCH-TOCSY aliphatic(積算回数4、データポイント数(F1×F2×F3)96×256×2048)、HCCH-TOCSY aromatic(積算回数8、データポイント数(F1×F2×F3)128×128×2048)、15N-edited NOESY(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)、13C-edited NOESY aliphatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)96×256×2048)、13C-edited NOESY aromatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)のパルスシーケンスを用いて各FIDを得た。得られた各FIDをNMR Pipeソフトを用いてフーリエ変換し、各スペクトルを取得した。 Using an AVANCE III HD 600MHz NMR spectrometer (Bruker), HNCO (accumulation number 4, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HN(CO)CA (accumulation number 8, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HNCA (accumulation number 8, number of data points (F1 x F2 x F3) 64 x 128 x 1024), CBCA(CO)NH (accumulation number 16, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HNCACB ( Each FID was measured using the following pulse sequences: HBHA(CO)NH (accumulation number 8, number of data points (F1×F2×F3) 64×128×1024), HBHA(CO)NH (accumulation number 16, number of data points (F1×F2×F3) 64×128×1024), HN(CA)HA (accumulation number 32, number of data points (F1×F2×F3) 64×128×1024), and C(CO)NH (accumulation number 16, number of data points (F1×F2×F3) 128×128×1024). An INOVA 800 MHz NMR system (Agilent) was used to perform [ 1 H- 15 N] HSQC (accumulation number 8, number of data points (F1×F2) 512×2048), [ 1 H- 13 C] HSQC aliphatic (accumulation number 8, number of data points (F1×F2) 868×2048), [ 1 H- 13 C] HSQC aromatic (accumulation number 32, number of data points (F1×F2) 204×2048), HCCH-TOCSY aliphatic (accumulation number 4, number of data points (F1×F2×F3) 96×256×2048), and HCCH-TOCSY aliphatic (accumulation number 10, number of data points (F1×F2×F3) 96×256×2048). Each FID was obtained using the pulse sequences of aromatic (8 accumulations, number of data points (F1×F2×F3) 128×128×2048), 15 N-edited NOESY (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 64×256×2048), 13 C-edited NOESY aliphatic (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 96×256×2048), and 13 C-edited NOESY aromatic (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 64×256×2048). Each of the obtained FIDs was Fourier transformed using NMR Pipe software to obtain each spectrum.

取得した各スペクトルをSparkyソフト上で帰属した。まず、リボソームタンパク質L7/L12の主鎖-NH-をHNCO、HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CO)NH、HN(CA)HAの各スペクトルを用いて、[H-15N] HSQCスペクトル上に帰属した。次に、側鎖-CH-、-CH-、-CH-をC(CO)NH、HCCH-TOCSY aliphatic、HCCH-TOCSY aromaticの各スペクトルを用いて、[H-13C] HSQC aliphaticスペクトルと[H-13C] HSQC aromaticスペクトル上に帰属した。最後に、15N-edited NOESY、13C-edited NOESY aliphatic、13C-edited NOESY aromaticの各スペクトルを用いて、5A以内の距離にあるHを検出、帰属した。帰属方法の詳細は、PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, W.J., Palmer, III, A.G., Rance, M., and Skelton, N.J., Elsevier Academic Press.に従った。 The acquired spectra were assigned on Sparky software. First, the main chain -NH- of ribosomal protein L7/L12 was assigned to the [ 1 H- 15 N] HSQC spectrum using the spectra of HNCO, HN(CO)CA, HNCA, CBCA(CO)NH, HNCACB, HBHA(CO)NH, and HN(CA)HA. Next, the side chains -CH-, -CH 2 -, and -CH 3 - were assigned to the [ 1 H- 13 C] HSQC aliphatic spectrum and the [ 1 H- 13 C] HSQC aromatic spectrum using the spectra of C(CO)NH, HCCH-TOCSY aliphatic, and HCCH-TOCSY aromatic. Finally, 1 H within a distance of 5 A was detected and assigned using 15 N-edited NOESY, 13 C-edited NOESY aliphatic, and 13 C-edited NOESY aromatic spectra. Details of the assignment method were as described in PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, WJ, Palmer, III, AG, Rance, M., and Skelton, NJ, Elsevier Academic Press.

帰属した原子座標とH間距離情報をCYANA立体構造自動計算ソフトに入力して、20回の立体構造計算を経て充分にエネルギー値を収束させ、リボソームタンパク質L7/L12立体構造の空間原子座標を得た。 The assigned atomic coordinates and 1 H distance information were input into the CYANA three-dimensional structure automatic calculation software, and the energy values were sufficiently converged through 20 three-dimensional structure calculations to obtain the spatial atomic coordinates of the three-dimensional structure of the ribosomal protein L7/L12.

取得した空間原子座標をPymolソフトに入力し、リボソームタンパク質L7/L12の立体構造を描画した(図1)。リボソームタンパク質L7/L12の主鎖の立体構造を表示すると、1~40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、およそ17アミノ酸残基の立体構造を形成していないリンカーを経て、更に58~125位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成していることが分かった(図1)。また、斯かる立体構造を有するリボソームタンパク質L7/L12分子が2つ、互いのNTD同士で会合し、二量体を形成していることが分かった(図1)。 The spatial atomic coordinates obtained were entered into the Pymol software, and the three-dimensional structure of ribosomal protein L7/L12 was drawn (Figure 1). When the three-dimensional structure of the main chain of ribosomal protein L7/L12 was displayed, it was found that one three-dimensional structure (NTD: N-Terminal Domain) was formed by amino acid residues 1 to 40, and that another three-dimensional structure (CTD: C-Terminal Domain) was formed by amino acid residues 58 to 125 via a linker of approximately 17 amino acid residues that does not form a three-dimensional structure (Figure 1). It was also found that two ribosomal protein L7/L12 molecules with such a three-dimensional structure associate with each other's NTDs to form a dimer (Figure 1).

[実施例2]モラクセラ・カタラーリス菌のリボソームタンパク質L7/L12の立体構造解析
<1:モラクセラ・カタラーリス菌のリボソームタンパク質L7/L12の取得>
モラクセラ・カタラーリス菌のリボソームタンパク質L7/L12遺伝子(配列番号36)をクローニングしたpGEX-6P-1プラスミド(GE Healthcare社製)を大腸菌BL21(DE3)pLysS大腸菌株(Promega社製)に導入した。
[Example 2] Analysis of the three-dimensional structure of ribosomal protein L7/L12 of Moraxella catarrhalis
<1: Obtaining ribosomal protein L7/L12 from Moraxella catarrhalis>
The pGEX-6P-1 plasmid (GE Healthcare) into which the ribosomal protein L7/L12 gene (SEQ ID NO: 36) of Moraxella catarrhalis was cloned was introduced into Escherichia coli BL21(DE3)pLysS Escherichia coli strain (Promega).

得られた大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N-NHCl、11.1mM 13C-グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル-β-チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。 The resulting E. coli strain was cultured at OD 3000 at 37° C. in M9 medium (47.7 mM Na 2 HPO 4 ·12H 2 O, 22 mM KH 2 PO 4 , 8.6 mM NaCl, 2 mM MgSO 4 , 50 μM ZnSO 4 , 100 μM CaCl 2 , 4.1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM sodium ampicillin, 18.7 mM 15 N-NH 4 Cl, 11.1 mM 13 C-glucose). IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the mixture was cultured at 16° C. for 36 hours. The mixture was then centrifuged at 7000 rpm for 15 minutes at 4° C. to recover the E. coli.

得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ(登録商標)エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン-セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン-セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。 5 mL of BugBuster (Merck Millipore) and 5 μL of Benzonase (registered trademark) endonuclease (Merck Millipore) were added per 1 g of the obtained E. coli, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtration with a 0.45 μm filter, ribosomal protein L7/L12 was purified on a glutathione-Sepharose column using a Profinia protein purification system (Bio-Rad). 1.5 mL of 10x PBS (phosphate buffered saline) and Prescission protease (GE Healthcare) were added to 15 mL of the obtained protein solution, and the mixture was shaken at room temperature for 2 hours. The reaction solution was passed through the glutathione-Sepharose column again, and the non-reacted fraction was obtained as ribosomal protein L7/L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris-HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris-HCl pH8.0を0~50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。 The obtained ribosomal protein L7/L12 was dialyzed against 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and passed through an AKTA protein purification system (GE Healthcare) connected to an ion exchange column RESOURCE Q (GE Healthcare) at a flow rate of 2 mL/min. Next, 20 mM Tris-HCl pH 8.0 containing 1 M NaCl was passed at a flow rate of 2 mL/min so as to increase linearly from 0 to 50%, and the ribosomal protein L7/L12 was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を取得した。取得したリボソームタンパク質L7/L12をプロテインアッセイキットI(BIO-RAD社製、型番5000001JA)を用いて1mMになるように遠心濃縮した後、NMR測定に供した。 The obtained ribosomal protein L7/L12 was passed through an AKTA protein purification system (GE Healthcare) connected to a gel filtration column HiLoad 16/60 Superdex 75pg (GE Healthcare) at a flow rate of 1 mL/min using PBS (phosphate buffered saline) as the mobile phase to obtain ribosomal protein L7/L12. The obtained ribosomal protein L7/L12 was centrifuged and concentrated to 1 mM using Protein Assay Kit I (BIO-RAD, model number 5000001JA), and then subjected to NMR measurement.

<2:NMRによるモラクセラ・カタラーリス菌のリボソームタンパク質L7/L12の立体構造解析>
Shigemi NMR試料管に、1mM リボソームタンパク質L7/L12を250μL、重水を20μL、5mg/mL DSS(4,4-ジメチル-4-シラペンタン-1-スルホン酸)を1μL入れ、アスピレーターで脱気後、NMR装置に設置した。
<2: NMR analysis of the three-dimensional structure of Moraxella catarrhalis ribosomal protein L7/L12>
A Shigemi NMR sample tube was charged with 250 μL of 1 mM ribosomal protein L7/L12, 20 μL of heavy water, and 1 μL of 5 mg/mL DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid), and then degassed with an aspirator and placed in the NMR apparatus.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、HNCO(積算回数4、データポイント数(F1×F2×F3)64×128×1024)、HN(CO)CA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HNCA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、CBCA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HNCACB(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HBHA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HN(CA)HA(積算回数32、データポイント数(F1×F2×F3)64×128×1024)、C(CO)NH(積算回数16、データポイント数(F1×F2×F3)128×128×1024)のパルスシーケンスを用いて各FIDを、Unity INOVA 800MHz NMR装置(Agilent社製)で[H-15N] HSQC(積算回数8、データポイント数(F1×F2)512×2048)、[H-13C] HSQC aliphatic(積算回数8、データポイント数(F1×F2)868×2048)、[H-13C] HSQC aromatic(積算回数32、データポイント数(F1×F2)204×2048)、HCCH-TOCSY aliphatic(積算回数4、データポイント数(F1×F2×F3)96×256×2048)、HCCH-TOCSY aromatic(積算回数8、データポイント数(F1×F2×F3)128×128×2048)、15N-edited NOESY(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)、13C-edited NOESY aliphatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)96×256×2048)、13C-edited NOESY aromatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)のパルスシーケンスを用いて各FIDを得た。得られた各FIDをNMR Pipeソフトを用いてフーリエ変換し、各スペクトルを取得した。 Using an AVANCE III HD 600MHz NMR spectrometer (Bruker), HNCO (accumulation number 4, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HN(CO)CA (accumulation number 8, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HNCA (accumulation number 8, number of data points (F1 x F2 x F3) 64 x 128 x 1024), CBCA(CO)NH (accumulation number 16, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HNCACB ( Each FID was measured using the following pulse sequences: HBHA(CO)NH (accumulation number 8, number of data points (F1×F2×F3) 64×128×1024), HBHA(CO)NH (accumulation number 16, number of data points (F1×F2×F3) 64×128×1024), HN(CA)HA (accumulation number 32, number of data points (F1×F2×F3) 64×128×1024), and C(CO)NH (accumulation number 16, number of data points (F1×F2×F3) 128×128×1024). An INOVA 800 MHz NMR system (Agilent) was used to perform [ 1 H- 15 N] HSQC (accumulation number 8, number of data points (F1×F2) 512×2048), [ 1 H- 13 C] HSQC aliphatic (accumulation number 8, number of data points (F1×F2) 868×2048), [ 1 H- 13 C] HSQC aromatic (accumulation number 32, number of data points (F1×F2) 204×2048), HCCH-TOCSY aliphatic (accumulation number 4, number of data points (F1×F2×F3) 96×256×2048), and HCCH-TOCSY aliphatic (accumulation number 10, number of data points (F1×F2×F3) 96×256×2048). Each FID was obtained using the pulse sequences of aromatic (8 accumulations, number of data points (F1×F2×F3) 128×128×2048), 15 N-edited NOESY (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 64×256×2048), 13 C-edited NOESY aliphatic (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 96×256×2048), and 13 C-edited NOESY aromatic (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 64×256×2048). Each of the obtained FIDs was Fourier transformed using NMR Pipe software to obtain each spectrum.

取得した各スペクトルをSparkyソフト上で帰属した。まず、リボソームタンパク質L7/L12の主鎖-NH-をHNCO、HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CO)NH、HN(CA)HAの各スペクトルを用いて、[H-15N] HSQCスペクトル上に帰属した。次に、側鎖-CH-、-CH-、-CH-をC(CO)NH、HCCH-TOCSY aliphatic、HCCH-TOCSY aromaticの各スペクトルを用いて、[H-13C] HSQC aliphaticスペクトルと[H-13C] HSQC aromaticスペクトル上に帰属した。最後に、15N-edited NOESY、13C-edited NOESY aliphatic、13C-edited NOESY aromaticの各スペクトルを用いて、5A以内の距離にあるHを検出、帰属した。帰属方法の詳細は、PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, W.J., Palmer, III, A.G., Rance, M., and Skelton, N.J., Elsevier Academic Press.に従った。 The acquired spectra were assigned on Sparky software. First, the main chain -NH- of ribosomal protein L7/L12 was assigned to the [ 1 H- 15 N] HSQC spectrum using the spectra of HNCO, HN(CO)CA, HNCA, CBCA(CO)NH, HNCACB, HBHA(CO)NH, and HN(CA)HA. Next, the side chains -CH-, -CH 2 -, and -CH 3 - were assigned to the [ 1 H- 13 C] HSQC aliphatic spectrum and the [ 1 H- 13 C] HSQC aromatic spectrum using the spectra of C(CO)NH, HCCH-TOCSY aliphatic, and HCCH-TOCSY aromatic. Finally, 1 H within a distance of 5 A was detected and assigned using 15 N-edited NOESY, 13 C-edited NOESY aliphatic, and 13 C-edited NOESY aromatic spectra. Details of the assignment method were as described in PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, WJ, Palmer, III, AG, Rance, M., and Skelton, NJ, Elsevier Academic Press.

帰属した原子座標とH間距離情報をCYANA立体構造自動計算ソフトに入力して、20回の立体構造計算を経て充分にエネルギー値を収束させ、リボソームタンパク質L7/L12立体構造の空間原子座標を得た。 The assigned atomic coordinates and 1 H distance information were input into the CYANA three-dimensional structure automatic calculation software, and the energy values were sufficiently converged through 20 three-dimensional structure calculations to obtain the spatial atomic coordinates of the three-dimensional structure of the ribosomal protein L7/L12.

取得した空間原子座標をPymolソフトに入力し、リボソームタンパク質L7/L12の立体構造を描画した(図2)。リボソームタンパク質L7/L12の主鎖の立体構造を表示すると、1~40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、およそ17個のアミノ酸残基からなる、立体構造を形成していないリンカーを経て、更に58~124位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成していることが分かった(図2)。また、斯かる立体構造を有するリボソームタンパク質L7/L12分子が2つ、互いのNTD同士で会合し、二量体を形成していることが分かった(図2)。 The spatial atomic coordinates obtained were entered into the Pymol software, and the three-dimensional structure of ribosomal protein L7/L12 was drawn (Figure 2). When the three-dimensional structure of the main chain of ribosomal protein L7/L12 was displayed, it was found that the amino acid residues at positions 1 to 40 form one three-dimensional structure (NTD: N-Terminal Domain), and that via a linker consisting of approximately 17 amino acid residues that does not form a three-dimensional structure, another three-dimensional structure (CTD: C-Terminal Domain) is formed by amino acid residues at positions 58 to 124 (Figure 2). It was also found that two ribosomal protein L7/L12 molecules with such a three-dimensional structure associate with each other's NTDs to form a dimer (Figure 2).

[実施例3]淋菌のリボソームタンパク質L7/L12の立体構造解析
<1:淋菌のリボソームタンパク質L7/L12の取得>
淋菌のリボソームタンパク質L7/L12遺伝子(配列番号24)をクローニングしたpGEX-6P-1プラスミド(GE Healthcare社製)を大腸菌BL21(DE3)pLysS大腸菌株(Promega社製)に導入した。
[Example 3] Analysis of the three-dimensional structure of ribosomal protein L7/L12 of Neisseria gonorrhoeae
<1: Obtaining ribosomal protein L7/L12 from Neisseria gonorrhoeae>
The pGEX-6P-1 plasmid (GE Healthcare) into which the gonococcal ribosomal protein L7/L12 gene (SEQ ID NO: 24) was cloned was introduced into the E. coli BL21(DE3)pLysS E. coli strain (Promega).

得られた大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N-NHCl、11.1mM 13C-グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル-β-チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。 The resulting E. coli strain was cultured at OD 3000 at 37° C. in M9 medium (47.7 mM Na 2 HPO 4 ·12H 2 O, 22 mM KH 2 PO 4 , 8.6 mM NaCl, 2 mM MgSO 4 , 50 μM ZnSO 4 , 100 μM CaCl 2 , 4.1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM sodium ampicillin, 18.7 mM 15 N-NH 4 Cl, 11.1 mM 13 C-glucose). IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the mixture was cultured at 16° C. for 36 hours. The mixture was then centrifuged at 7000 rpm for 15 minutes at 4° C. to recover the E. coli.

得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ(登録商標)エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン-セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン-セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。 5 mL of BugBuster (Merck Millipore) and 5 μL of Benzonase (registered trademark) endonuclease (Merck Millipore) were added per 1 g of the obtained E. coli, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtration with a 0.45 μm filter, ribosomal protein L7/L12 was purified on a glutathione-Sepharose column using a Profinia protein purification system (Bio-Rad). 1.5 mL of 10x PBS (phosphate buffered saline) and Prescission protease (GE Healthcare) were added to 15 mL of the obtained protein solution, and the mixture was shaken at room temperature for 2 hours. The reaction solution was passed through the glutathione-Sepharose column again, and the non-reacted fraction was obtained as ribosomal protein L7/L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris-HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris-HCl pH8.0を0~50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。 The obtained ribosomal protein L7/L12 was dialyzed against 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and passed through an AKTA protein purification system (GE Healthcare) connected to an ion exchange column RESOURCE Q (GE Healthcare) at a flow rate of 2 mL/min. Next, 20 mM Tris-HCl pH 8.0 containing 1 M NaCl was passed at a flow rate of 2 mL/min so as to increase linearly from 0 to 50%, and the ribosomal protein L7/L12 was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を取得した。取得したリボソームタンパク質L7/L12をプロテインアッセイキットI(BIO-RAD社製、型番5000001JA)を用いて1mMになるように遠心濃縮した後、NMR測定に供した。 The obtained ribosomal protein L7/L12 was passed through an AKTA protein purification system (GE Healthcare) connected to a gel filtration column HiLoad 16/60 Superdex 75pg (GE Healthcare) at a flow rate of 1 mL/min using PBS (phosphate buffered saline) as the mobile phase to obtain ribosomal protein L7/L12. The obtained ribosomal protein L7/L12 was centrifuged and concentrated to 1 mM using Protein Assay Kit I (BIO-RAD, model number 5000001JA), and then subjected to NMR measurement.

<2:NMRによる淋菌のリボソームタンパク質L7/L12の立体構造解析>
Shigemi NMR試料管に、1mM リボソームタンパク質L7/L12を250μL、重水を20μL、5mg/mL DSS(4,4-ジメチル-4-シラペンタン-1-スルホン酸)を1μL入れ、アスピレーターで脱気後、NMR装置に設置した。
<2: NMR analysis of the three-dimensional structure of ribosomal protein L7/L12 of Neisseria gonorrhoeae>
A Shigemi NMR sample tube was charged with 250 μL of 1 mM ribosomal protein L7/L12, 20 μL of heavy water, and 1 μL of 5 mg/mL DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid), and then degassed with an aspirator and placed in the NMR apparatus.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、HNCO(積算回数4、データポイント数(F1×F2×F3)64×128×1024)、HN(CO)CA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HNCA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、CBCA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HNCACB(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HBHA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HN(CA)HA(積算回数32、データポイント数(F1×F2×F3)64×128×1024)、C(CO)NH(積算回数16、データポイント数(F1×F2×F3)128×128×1024)のパルスシーケンスを用いて各FIDを、Unity INOVA 800MHz NMR装置(Agilent社製)で[H-15N] HSQC(積算回数8、データポイント数(F1×F2)512×2048)、[H-13C] HSQC aliphatic(積算回数8、データポイント数(F1×F2)868×2048)、[H-13C] HSQC aromatic(積算回数32、データポイント数(F1×F2)204×2048)、HCCH-TOCSY aliphatic(積算回数4、データポイント数(F1×F2×F3)96×256×2048)、HCCH-TOCSY aromatic(積算回数8、データポイント数(F1×F2×F3)128×128×2048)、15N-edited NOESY(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)、13C-edited NOESY aliphatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)96×256×2048)、13C-edited NOESY aromatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)のパルスシーケンスを用いて各FIDを得た。得られた各FIDをNMR Pipeソフトを用いてフーリエ変換し、各スペクトルを取得した。 Using an AVANCE III HD 600MHz NMR spectrometer (Bruker), HNCO (accumulation number 4, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HN(CO)CA (accumulation number 8, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HNCA (accumulation number 8, number of data points (F1 x F2 x F3) 64 x 128 x 1024), CBCA(CO)NH (accumulation number 16, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HNCACB ( Each FID was measured using the following pulse sequences: HBHA(CO)NH (accumulation number 8, number of data points (F1×F2×F3) 64×128×1024), HBHA(CO)NH (accumulation number 16, number of data points (F1×F2×F3) 64×128×1024), HN(CA)HA (accumulation number 32, number of data points (F1×F2×F3) 64×128×1024), and C(CO)NH (accumulation number 16, number of data points (F1×F2×F3) 128×128×1024). An INOVA 800 MHz NMR system (Agilent) was used to perform [ 1 H- 15 N] HSQC (accumulation number 8, number of data points (F1×F2) 512×2048), [ 1 H- 13 C] HSQC aliphatic (accumulation number 8, number of data points (F1×F2) 868×2048), [ 1 H- 13 C] HSQC aromatic (accumulation number 32, number of data points (F1×F2) 204×2048), HCCH-TOCSY aliphatic (accumulation number 4, number of data points (F1×F2×F3) 96×256×2048), and HCCH-TOCSY aliphatic (accumulation number 10, number of data points (F1×F2×F3) 96×256×2048). Each FID was obtained using the pulse sequences of aromatic (8 accumulations, number of data points (F1×F2×F3) 128×128×2048), 15 N-edited NOESY (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 64×256×2048), 13 C-edited NOESY aliphatic (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 96×256×2048), and 13 C-edited NOESY aromatic (mixing time 75 ms, 8 accumulations, number of data points (F1×F2×F3) 64×256×2048). Each of the obtained FIDs was Fourier transformed using NMR Pipe software to obtain each spectrum.

取得した各スペクトルをSparkyソフト上で帰属した。まず、リボソームタンパク質L7/L12の主鎖-NH-をHNCO、HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CO)NH、HN(CA)HAの各スペクトルを用いて、[H-15N] HSQCスペクトル上に帰属した。次に、側鎖-CH-、-CH-、-CH-をC(CO)NH、HCCH-TOCSY aliphatic、HCCH-TOCSY aromaticの各スペクトルを用いて、[H-13C] HSQC aliphaticスペクトルと[H-13C] HSQC aromaticスペクトル上に帰属した。最後に、15N-edited NOESY、13C-edited NOESY aliphatic、13C-edited NOESY aromaticの各スペクトルを用いて、5A以内の距離にあるHを検出、帰属した。帰属方法の詳細は、PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, W.J., Palmer, III, A.G., Rance, M., and Skelton, N.J., Elsevier Academic Press.に従った。 The acquired spectra were assigned on Sparky software. First, the main chain -NH- of ribosomal protein L7/L12 was assigned to the [ 1 H- 15 N] HSQC spectrum using the spectra of HNCO, HN(CO)CA, HNCA, CBCA(CO)NH, HNCACB, HBHA(CO)NH, and HN(CA)HA. Next, the side chains -CH-, -CH 2 -, and -CH 3 - were assigned to the [ 1 H- 13 C] HSQC aliphatic spectrum and the [ 1 H- 13 C] HSQC aromatic spectrum using the spectra of C(CO)NH, HCCH-TOCSY aliphatic, and HCCH-TOCSY aromatic. Finally, 1 H within a distance of 5 A was detected and assigned using 15 N-edited NOESY, 13 C-edited NOESY aliphatic, and 13 C-edited NOESY aromatic spectra. Details of the assignment method were as described in PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, WJ, Palmer, III, AG, Rance, M., and Skelton, NJ, Elsevier Academic Press.

帰属した原子座標とH間距離情報をCYANA立体構造自動計算ソフトに入力して、20回の立体構造計算を経て充分にエネルギー値を収束させ、リボソームタンパク質L7/L12立体構造の空間原子座標を得た。 The assigned atomic coordinates and 1 H distance information were input into the CYANA three-dimensional structure automatic calculation software, and the energy values were sufficiently converged through 20 three-dimensional structure calculations to obtain the spatial atomic coordinates of the three-dimensional structure of the ribosomal protein L7/L12.

取得した空間原子座標をPymolソフトに入力し、リボソームタンパク質L7/L12の立体構造を描画した(図3)。リボソームタンパク質L7/L12の主鎖の立体構造を表示すると、1~40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、17個のアミノ酸残基からなる、立体構造を形成していないリンカーを経て、更に58~123位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成していることが分かった(図3)。また、斯かる立体構造を有するリボソームタンパク質L7/L12分子が2つ、互いのNTD同士で会合し、二量体を形成していることが分かった(図3)。 The spatial atomic coordinates obtained were input into the Pymol software, and the three-dimensional structure of ribosomal protein L7/L12 was drawn (Figure 3). When the three-dimensional structure of the main chain of ribosomal protein L7/L12 was displayed, it was found that the amino acid residues at positions 1 to 40 form one three-dimensional structure (NTD: N-Terminal Domain), and that via a linker consisting of 17 amino acid residues that does not form a three-dimensional structure, another three-dimensional structure (CTD: C-Terminal Domain) is formed by the amino acid residues at positions 58 to 123 (Figure 3). It was also found that two ribosomal protein L7/L12 molecules with such a three-dimensional structure associate with each other's NTDs to form a dimer (Figure 3).

[実施例4]レジオネラ菌、モラクセラ・カタラーリス菌、及び淋菌のリボソームタンパク質L7/L12のCTD部分の比較検討
図4は、レジオネラ菌、モラクセラ・カタラーリス菌、及び淋菌のリボソームタンパク質L7/L12のC末端ドメイン(CTD)部分の立体構造をそれぞれ模式的に示す図である。本図から明らかなように、レジオネラ菌、モラクセラ・カタラーリス菌、及び淋菌のリボソームタンパク質L7/L12のCTDの立体構造を比較すると、表面形状と電荷分布に大きな差がある領域が認められた(図4の点線部)。当該領域は、レジオネラ菌のL7/L12の102~114位のアミノ酸残基であり、モラクセラ・カタラーリス菌の101~113位、淋菌の100~112位のアミノ酸残基に相当する。当該領域は、モラクセラ・カタラーリス菌(MC)の場合は疎水性(白色)~非電荷親水性領域(薄青、薄赤色)の占める割合が高く、レジオネラ菌(LP)および淋菌(NG)の場合は負電荷領域(赤色)が支配的である。また、レジオネラ菌と淋菌を比較した場合、レジオネラ菌の当該領域の大部分を負電荷(赤色)が占めているが、淋菌の場合は上部に負電荷領域(赤色)が、下部に疎水性(白色)~非電荷親水性領域(薄青、薄赤色)が位置している(図4の点線部)。
[Example 4] Comparative study of the CTD portion of ribosomal protein L7/L12 of Legionella, Moraxella catarrhalis, and Neisseria gonorrhoeae Figure 4 is a schematic diagram showing the three-dimensional structures of the C-terminal domain (CTD) portion of ribosomal protein L7/L12 of Legionella, Moraxella catarrhalis, and Neisseria gonorrhoeae . As is clear from this figure, when the three-dimensional structures of the CTDs of ribosomal protein L7/L12 of Legionella, Moraxella catarrhalis, and Neisseria gonorrhoeae are compared, a region was found in which the surface shape and charge distribution were significantly different (dotted line portion in Figure 4). This region corresponds to amino acid residues 102 to 114 of L7/L12 of Legionella, 101 to 113 of Moraxella catarrhalis, and 100 to 112 of Neisseria gonorrhoeae. In the case of Moraxella catarrhalis (MC), the region is dominated by hydrophobic (white) to non-charged hydrophilic regions (light blue, light red), while in the case of Legionella (LP) and Neisseria gonorrhoeae (NG), the negatively charged region (red) is dominant. In addition, when comparing Legionella and Neisseria gonorrhoeae, most of the region in Legionella is negatively charged (red), but in the case of Neisseria gonorrhoeae, the negatively charged region (red) is located at the top and the hydrophobic (white) to non-charged hydrophilic region (light blue, light red) is located at the bottom (dotted area in Figure 4).

さらに、レジオネラ菌、モラクセラ・カタラーリス菌、淋菌のリボソームタンパク質L7/L12のアミノ酸配列を比較すると、レジオネラ菌の102~114位のアミノ酸残基と当該領域に相当するモラクセラ・カタラーリス菌の101~113位のアミノ酸残基、淋菌の100~112位のアミノ酸残基において菌種間の差異が大きいことも判った(図5)。例えば、レジオネラ菌のL7/L12の109~110位のアミノ酸残基は、モラクセラ・カタラーリス菌の108~109位のアミノ酸残基、淋菌の107~108位のアミノ酸残基に相当し、レジオネラ菌の場合はA(アラニン:疎水性)、S(セリン:親水性、非電荷)であるのに対し、モラクセラ・カタラーリス菌の場合はE(グルタミン酸:親水性、負電荷)、E(グルタミン酸:親水性、負電荷)、淋菌の場合はE(グルタミン酸:親水性、負電荷)、D(アスパラギン酸:親水性、負電荷)であり、アミノ酸の種類および極性の順序が菌種ごとに異なっている(図5)。 Furthermore, when comparing the amino acid sequences of ribosomal protein L7/L12 from Legionella, Moraxella catarrhalis, and Neisseria gonorrhoeae, it was found that there were significant differences between the bacterial species in the amino acid residues at positions 102 to 114 of Legionella and the corresponding regions at positions 101 to 113 of Moraxella catarrhalis and 100 to 112 of Neisseria gonorrhoeae (Figure 5). For example, the amino acid residues at positions 109-110 of L7/L12 of Legionella pneumophila correspond to the amino acid residues at positions 108-109 of Moraxella catarrhalis and 107-108 of Neisseria gonorrhoeae. In the case of Legionella pneumophila, the residues are A (alanine: hydrophobic) and S (serine: hydrophilic, uncharged), whereas in the case of Moraxella catarrhalis, the residues are E (glutamic acid: hydrophilic, negative charge), E (glutamic acid: hydrophilic, negative charge), and in the case of Neisseria gonorrhoeae, the residues are E (glutamic acid: hydrophilic, negative charge), D (aspartic acid: hydrophilic, negative charge), and the order of the types of amino acids and polarity differs for each bacterial species (Figure 5).

同様に、レジオネラ菌の112~114位のアミノ酸残基と、当該領域に相当するモラクセラ・カタラーリス菌の111~113位のアミノ酸残基、淋菌の110~112位のアミノ酸残基においても菌種間の差異が大きいことも判った。レジオネラ菌の112~114位のアミノ酸残基はK(リジン:親水性、正電荷)、K(リジン:親水性、正電荷)、E(グルタミン酸:親水性、負電荷)であるのに対し、モラクセラ・カタラーリス菌の111~113位のアミノ酸残基はK(リジン:親水性、正電荷)、K(リジン:親水性、正電荷)、K(リジン:親水性、正電荷)、淋菌の110~112位のアミノ酸残基はQ(グルタミン:親水性、非電荷)、K(リジン:親水性、正電荷)、Q(グルタミン:親水性、非電荷)であり、アミノ酸の種類および極性の順序が菌種ごとに異なっている(図5)。 Similarly, it was found that there are large differences between the bacterial species in the amino acid residues at positions 112 to 114 of Legionella and the corresponding regions at positions 111 to 113 of Moraxella catarrhalis and 110 to 112 of Neisseria gonorrhoeae. The amino acid residues at positions 112-114 of Legionella are K (lysine: hydrophilic, positive charge), K (lysine: hydrophilic, positive charge), and E (glutamic acid: hydrophilic, negative charge), whereas the amino acid residues at positions 111-113 of Moraxella catarrhalis are K (lysine: hydrophilic, positive charge), K (lysine: hydrophilic, positive charge), K (lysine: hydrophilic, positive charge), and the amino acid residues at positions 110-112 of Neisseria gonorrhoeae are Q (glutamine: hydrophilic, uncharged), K (lysine: hydrophilic, positive charge), and Q (glutamine: hydrophilic, uncharged), and the type of amino acids and the order of polarity differ for each bacterial species (Figure 5).

以上のように、レジオネラ菌のL7/L12の102~114位の領域の立体構造及びアミノ酸残基の極性は、他2菌種と比較して大きく異なることから、抗体との相互作用の中心部位に近いと予測される(図4、5)。さらに、3菌種間のアミノ酸極性の違いから、レジオネラ菌のL7/L12のCTDを構成するアミノ酸残基の中でも、好ましくは102位、又は、106位、又は、109~110位、又は、112~114位のアミノ酸残基が、抗体との相互作用の中心であると予測される(図5)。 As described above, the three-dimensional structure and polarity of amino acid residues in the region of positions 102 to 114 of Legionella L7/L12 are significantly different from those of the other two bacterial species, and therefore it is predicted to be close to the central site of interaction with antibodies (Figures 4 and 5). Furthermore, based on the difference in amino acid polarity between the three bacterial species, it is predicted that, among the amino acid residues constituting the CTD of Legionella L7/L12, preferably amino acid residues at positions 102, 106, 109 to 110, or 112 to 114 are central to interaction with antibodies (Figure 5).

[実施例5]レジオネラ菌のリボソームタンパク質L7/L12に結合する抗体の取得
以下の手順で、レジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基により形成されるCTDを単独で発現させ、これを抗原抗体反応により認識するモノクローナル抗体として4B1、36A2及び54A3を取得した。
[Example 5] Obtaining antibodies that bind to ribosomal protein L7/L12 of Legionella bacteria According to the following procedure, the CTD formed by amino acid residues at positions 58 to 125 of ribosomal protein L7/L12 of Legionella bacteria was expressed alone, and 4B1, 36A2, and 54A3 were obtained as monoclonal antibodies that recognize this by antigen-antibody reaction.

<1:レジオネラ菌のリボソームタンパク質L7/L12のCTDを単独で発現する大腸菌の調製>
BamHI及びXhoI制限酵素切断部位を追加したレジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基からなるアミノ酸配列(配列番号3)をコードする塩基配列(配列番号4)を含む人工合成遺伝子(GenScript社製)を、前述2種類の制限酵素で切断後、1.5%アガロースゲル中にて電気泳動とエチジウムブロマイドによる染色を行った。ゲルから約400bpのバンドを切り取った。このバンドをQIAquick Gel Extraction Kit(QIAGEN社製)で精製し、一般的なベクターであるpGEX-6P-1(GE Healthcare社製)に挿入した。
<1: Preparation of Escherichia coli expressing only the CTD of Legionella ribosomal protein L7/L12>
An artificially synthesized gene (manufactured by GenScript) containing a base sequence (SEQ ID NO: 4) encoding an amino acid sequence (SEQ ID NO: 3) consisting of amino acid residues at positions 58 to 125 of the ribosomal protein L7/L12 of Legionella pneumophila to which BamHI and XhoI restriction enzyme cleavage sites have been added was cleaved with the two types of restriction enzymes described above, and then electrophoresed in a 1.5% agarose gel and stained with ethidium bromide. A band of approximately 400 bp was excised from the gel. This band was purified using a QIAquick Gel Extraction Kit (manufactured by QIAGEN) and inserted into a common vector, pGEX-6P-1 (manufactured by GE Healthcare).

具体的には、ベクターpGEX-6P-1と、先のDNA(制限酵素で切断し、ゲルで精製した人工合成遺伝子)とを、そのモル比が1:3となるように混ぜ合わせて、T4 DNAリガーゼ(Invitrogen社製)にてベクターに当該DNAを組み込んだ。前記DNAを組み込んだベクターpGEX6P-1を、BL21(DE3)pLysS大腸菌株(Promega社)に遺伝子学的手法により導入し、ついで50μg/mLのアンピシリン(シグマ社)を含む半固体状の培養プレートであるLB L-ブロス寒天(宝酒造株式会社製)に接種した。プレートを37℃で12時間インキュベートし、成長したコロニーを無差別に選択し、同じ濃度のアンピシリンを含むL-ブロス培養液に接種した。37℃で8時間振盪培養後、遠心分離にて集菌し、QIAprep Spin Miniprep Kit(QIAGEN社)を用い、添付の説明書に従ってプラスミドを分離した。得られたプラスミドを制限酵素BamHI/XhoIにて切断処理し、約370bpのDNAを切断することによって、PCR生成物の挿入を確認した。挿入されたDNAの塩基配列を上記クローンを用いて決定した。 Specifically, the vector pGEX-6P-1 and the above DNA (artificially synthesized gene digested with restriction enzymes and gel-purified) were mixed at a molar ratio of 1:3, and the DNA was incorporated into the vector using T4 DNA ligase (Invitrogen). The vector pGEX6P-1 incorporating the DNA was genetically introduced into the BL21(DE3)pLysS Escherichia coli strain (Promega), and then inoculated onto LB L-broth agar (Takara Shuzo Co.), a semi-solid culture plate containing 50 μg/mL ampicillin (Sigma). The plate was incubated at 37°C for 12 hours, and grown colonies were randomly selected and inoculated into L-broth culture medium containing the same concentration of ampicillin. After 8 hours of shaking culture at 37°C, the cells were harvested by centrifugation, and the plasmid was isolated using a QIAprep Spin Miniprep Kit (QIAGEN) according to the attached instructions. The resulting plasmid was cleaved with restriction enzymes BamHI/XhoI to cleave approximately 370 bp of DNA, confirming the insertion of the PCR product. The base sequence of the inserted DNA was determined using the above clone.

具体的に、挿入DNA断片の塩基配列の決定は、蛍光シークエンサー(Applied Biosystems社製)を用いて実施した。シークエンスサンプルの調製は、PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit(Applied Biosystems社製)を用いて行った。まず、9.5μLの制限酵素反応液、4.0μLのT7プロモータープライマー(Gibco BRL社製)(濃度0.8pmol/μL)、及び0.16μg/μLのテンプレートDNA(濃度6.5μL)を、0.5mLのマイクロチューブに加えて混合した。混合物を2層の100μL鉱油で覆ったのち、25サイクルのPCR増幅処理を行った。ここで、1サイクルは、96℃での30秒間の処理、55℃での15秒間の処理、及び60℃での4分間の処理からなる。生成物を4℃で5分間保持した。反応終了後、80μLの無菌精製水を加え、攪拌した。生成物を遠心分離し、水層をフェノールークロロホルム混合液で3回抽出した。10μLの3M酢酸ナトリウムpH5.2と300μLのエタノールを100μLの水層に加え、攪拌した。その後14,000rpm、室温で15分間遠心し、沈殿を回収した。沈殿を75%エタノールで洗浄後、真空下に2分間静置して乾燥させ、シークエンス用サンプルとした。シークエンスサンプルは、4μLの10mMのEDTAを含むホルムアミドに溶解して90℃で2分間変性した。このものは氷中で冷却してシークエンスに供した。 Specifically, the base sequence of the inserted DNA fragment was determined using a fluorescent sequencer (Applied Biosystems). The sequence sample was prepared using PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems). First, 9.5 μL of restriction enzyme reaction solution, 4.0 μL of T7 promoter primer (Gibco BRL) (concentration 0.8 pmol/μL), and 0.16 μg/μL of template DNA (concentration 6.5 μL) were added to a 0.5 mL microtube and mixed. The mixture was covered with two layers of 100 μL mineral oil, and then 25 cycles of PCR amplification treatment were performed. Here, one cycle consists of a treatment at 96°C for 30 seconds, a treatment at 55°C for 15 seconds, and a treatment at 60°C for 4 minutes. The product was kept at 4°C for 5 minutes. After the reaction was completed, 80 μL of sterile purified water was added and stirred. The product was centrifuged, and the aqueous layer was extracted three times with a phenol-chloroform mixture. 10 μL of 3M sodium acetate pH 5.2 and 300 μL of ethanol were added to the 100 μL aqueous layer and stirred. The mixture was then centrifuged at 14,000 rpm at room temperature for 15 minutes to collect the precipitate. The precipitate was washed with 75% ethanol, then left to dry under vacuum for 2 minutes to prepare a sequencing sample. The sequencing sample was dissolved in 4 μL of formamide containing 10 mM EDTA and denatured at 90°C for 2 minutes. This was cooled on ice and used for sequencing.

無差別に選択した5個のクローンのうち2個は、PCRに用いたプローブと配列上の相同性を有していた。また、レジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基の遺伝子配列と一致したDNA配列が明白であった。この遺伝子断片は、明らかにレジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基からなるCTDを遺伝子をコードするものである。 Two of the five randomly selected clones had sequence homology with the probe used in PCR. In addition, the DNA sequence clearly matched the gene sequence of amino acid residues 58-125 of the Legionella ribosomal protein L7/L12. This gene fragment clearly encodes the CTD consisting of amino acid residues 58-125 of the Legionella ribosomal protein L7/L12.

<2:レジオネラ菌のリボソームタンパク質L7/L12のCTDを単独で発現する大腸菌の培養による同CTDの調製>
前述で得られたレジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基により形成されるCTDを単独で発現する大腸菌を用いて、レジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基により形成されるCTDに対応するタンパク質(CTDタンパク質)の調製を行った。
<2: Preparation of Legionella ribosomal protein L7/L12 CTD by culturing E. coli expressing the CTD alone>
Using Escherichia coli that expresses solely the CTD formed by the amino acid residues at positions 58 to 125 of the Legionella ribosomal protein L7/L12 obtained above, a protein (CTD protein) corresponding to the CTD formed by the amino acid residues at positions 58 to 125 of the Legionella ribosomal protein L7/L12 was prepared.

具体的には、同大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM NHCl、11.1mM グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル-β-チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン-セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン-セファロースカラムに再度通し、素通り画分をCTDタンパク質含有画分として取得した。 Specifically, the E. coli strain was cultured in M9 medium (47.7 mM Na2HPO4.12H2O , 22 mM KH2PO4 , 8.6 mM NaCl, 2 mM MgSO4, 50 μM ZnSO4 , 100 μM CaCl2 , 4.1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM sodium ampicillin, 18.7 mM NH4Cl , 11.1 mM glucose) at 37° C. until the OD600 reached 0.6, and then rapidly cooled with ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the mixture was cultured at 16°C for 36 hours, followed by centrifugation at 7000 rpm for 15 minutes at 4°C to recover E. coli. 5 mL of BugBuster (Merck Millipore) and 5 μL of benzonase endonuclease (Merck Millipore) were added per 1 g of the resulting E. coli, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtration through a 0.45 μm filter, ribosomal protein L7/L12 was purified on a glutathione-Sepharose column using a Profinia protein purification system (Bio-Rad). 1.5 mL of 10x PBS (phosphate buffered saline) and Prescission protease (GE Healthcare) were added to 15 mL of the resulting protein solution, and the mixture was shaken at room temperature for 2 hours. The reaction mixture was passed through the glutathione-Sepharose column again, and the flow-through fraction was collected as a fraction containing the CTD protein.

取得したCTDタンパク質含有画分を、50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris-HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris-HCl pH8.0を0%から50%まで直線的に増加するように2mL/分の流速で流し、CTDタンパク質を溶出した。 The obtained CTD protein-containing fraction was dialyzed against 50 mM sodium phosphate pH 6.8 as the external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and passed through an AKTA protein purification system (GE Healthcare) connected to an ion exchange column RESOURCE Q (GE Healthcare) at a flow rate of 2 mL/min. Next, 20 mM Tris-HCl pH 8.0 containing 1 M NaCl was passed at a flow rate of 2 mL/min so as to increase linearly from 0% to 50%, and the CTD protein was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を精製し、プロテインアッセイキットI(BIO-RAD社製、型番5000001JA)を用いて濃度定量し、モノクローナル抗体取得用のレジオネラ菌のリボソームタンパク質L7/L12のCTDタンパク質として供した。 The obtained ribosomal protein L7/L12 was passed through an AKTA protein purification system (GE Healthcare) connected to a gel filtration column HiLoad 16/60 Superdex 75pg (GE Healthcare) at a flow rate of 1 mL/min using PBS (phosphate buffered saline) as the mobile phase, and the ribosomal protein L7/L12 was purified and its concentration was quantified using Protein Assay Kit I (BIO-RAD, model number 5000001JA), and it was used as the CTD protein of ribosomal protein L7/L12 of Legionella bacteria for obtaining monoclonal antibodies.

<3:レジオネラ菌のリボソームタンパク質L7/L12のCTDタンパク質を用いたマウスモノクローナル抗体株の取得>
取得したモノクローナル抗体取得用のレジオネラ菌のリボソームタンパク質L7/L12のCTDタンパク質を用いて、国際公開第2001/057199号の実施例3に記載の方法に従って、同CTDタンパク質に対するモノクローナル抗体株4B1、36A2及び54A3の3株を取得した。
<3: Obtaining a mouse monoclonal antibody strain using the CTD protein of Legionella ribosomal protein L7/L12>
Using the CTD protein of ribosomal protein L7/L12 of Legionella bacteria for obtaining the monoclonal antibodies obtained, three monoclonal antibody strains against the CTD protein, 4B1, 36A2 and 54A3, were obtained according to the method described in Example 3 of WO 2001/057199.

具体的には、前記手順にて得られたレジオネラ菌のリボソームタンパク質L7/L12のCTDタンパク質100μgを抗原として、200μLのPBSに溶解した後、フロイントのコンプリートアジュバント(Freund's Complete Adjuvant)を200μL加え、混合してエマルジョン化した。得られた抗原エマルジョン200μLを、マウスの腹腔内に注射した。また、初回抗原投与から2週間後、4週間後、及び6週間後に、同じ抗原エマルジョンをマウスの腹腔内に注射した。更に、初回抗原投与から10週間後及び14週間後に、2倍濃度の抗原エマルジョンをマウスの腹腔内に注射した。最終抗原投与から3日後に、マウスから脾臓を摘出し、無菌的に脾細胞を採取して、以下の手順にて骨髄腫細胞との細胞融合を行った。 Specifically, 100 μg of the CTD protein of the ribosomal protein L7/L12 of Legionella bacteria obtained by the above procedure was used as an antigen and dissolved in 200 μL of PBS, and then 200 μL of Freund's Complete Adjuvant was added and mixed to form an emulsion. 200 μL of the obtained antigen emulsion was injected into the abdominal cavity of a mouse. In addition, the same antigen emulsion was injected into the abdominal cavity of a mouse 2 weeks, 4 weeks, and 6 weeks after the first antigen administration. Furthermore, 10 weeks and 14 weeks after the first antigen administration, a double concentration of the antigen emulsion was injected into the abdominal cavity of a mouse. Three days after the final antigen administration, the spleen was removed from the mouse, splenocytes were collected aseptically, and cell fusion with myeloma cells was performed according to the following procedure.

骨髄腫細胞としては、NS-1系の細胞株を用いた。当該細胞株を、10%の牛胎児血清を含むRPMI1640培地で培養し、細胞融合の2週間前からは、0.13mMのアザグアニン、0.5μg/mLのMC-210、10%の牛胎児血清を含むRPMI1640培地で1週間培養した後、更に10%の牛胎児血清を含むRPMI1640培地で1週間培養してから用いた。 The myeloma cells used were the NS-1 cell line. The cell line was cultured in RPMI 1640 medium containing 10% fetal bovine serum, and from two weeks prior to cell fusion, it was cultured for one week in RPMI 1640 medium containing 0.13 mM azaguanine, 0.5 μg/mL MC-210, and 10% fetal bovine serum, and then further cultured for one week in RPMI 1640 medium containing 10% fetal bovine serum before use.

前記手順により無菌的に採取したマウスの脾細胞10個と、前記培養後の骨髄腫細胞2×10個とを、ガラスチューブ内でよく混合した後、1,500rpmで5分間遠心し、上澄みを廃棄してから、細胞を更によく混合した。この混合細胞試料に、37℃に保持したRPMI1640培養液50mLを加え、1,500rpmで遠心分離した後、上澄み液を除去し、37℃に保持した50%ポリエチレングリコール1mLを加え、1分間攪拌した。この細胞混合液に、37℃に保持したRPMI1640培養液10mLを加え、殺菌したピペットで約5分間吸引・排出することにより激しく攪拌した後、1,000rpmで5分間遠心分離し、上澄み液を除去した後、細胞濃度が5×10/mLとなるように30mLのHAT培養液を加え、均一になるまで攪拌した。この細胞混合液を0.1mLずつ96ウェル培養プレートの各ウェルに注ぎ、7%の炭酸ガス雰囲気下、37℃で培養した。培養開始から第1日、第1週、及び第2週に、HAT培地をそれぞれ0.1mLずつ加え、ELISA法により所望の抗体を産生する融合細胞のスクリーニングを行った。 10 8 mouse splenocytes collected aseptically according to the above procedure and 2×10 7 myeloma cells after the above culture were mixed well in a glass tube, then centrifuged at 1,500 rpm for 5 minutes, the supernatant was discarded, and the cells were further mixed well. 50 mL of RPMI1640 culture medium maintained at 37° C. was added to this mixed cell sample, centrifuged at 1,500 rpm, the supernatant was removed, 1 mL of 50% polyethylene glycol maintained at 37° C. was added, and the mixture was stirred for 1 minute. 10 mL of RPMI1640 culture medium maintained at 37° C. was added to this cell mixture, and vigorously stirred by aspirating and discharging with a sterilized pipette for about 5 minutes, then centrifuged at 1,000 rpm for 5 minutes, the supernatant was removed, and 30 mL of HAT culture medium was added so that the cell concentration was 5×10 6 /mL, and the mixture was stirred until homogenous. 0.1 mL of this cell mixture was poured into each well of a 96-well culture plate and cultured in a 7% carbon dioxide atmosphere at 37° C. 0.1 mL of HAT medium was added on the first day, first week, and second week after the start of culture, and fused cells producing the desired antibody were screened by ELISA.

ELISA法により所望の抗体を産生する細胞をスクリーニングした。レジオネラ菌のリボソームタンパク質L7/L12のCTDタンパク質に、グルタチオンS-トランスフェラーゼ(GST)タンパク質を融合し、GSTフュージョンL7/L12CTDタンパク質を作製した。得られたGSTフュージョンL7/L12CTDタンパク質及びGSTタンパク質を、0.05%のアジ化ソーダ含むPBSに、それぞれ10μg/mL濃度で溶解した希釈した液を作製した。これらの液を100μLずつ、96穴プレートの各ウェルに別々に分注し、4℃で1晩吸着させた。上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μLを添加し、室温で1時間反応させてブロッキングした。上澄み液を除去し、生成物を洗浄液(0.02%Tween20含有PBS)で洗浄した後、融合細胞の培養液100mLを加え、室温にて2時間反応させた。上澄み液を除去し、沈殿を洗浄液で洗浄した後、ペルオキシダーゼでラベルしたヤギ抗マウスIgG抗体溶液(濃度50ng/mL)100μLを加え、室温にて1時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した後、TMB溶液(KPL社製)を100μLずつ加え、室温にて20分間反応させた。着色したところで、各セルに1N硫酸100μLを加えて反応を停止し、450nmの吸光度を測定した。 Cells producing the desired antibodies were screened by ELISA. The CTD protein of the ribosomal protein L7/L12 of Legionella bacteria was fused with glutathione S-transferase (GST) protein to prepare the GST fusion L7/L12CTD protein. The obtained GST fusion L7/L12CTD protein and GST protein were dissolved in PBS containing 0.05% sodium azide at a concentration of 10 μg/mL to prepare a diluted solution. 100 μL of each of these solutions was dispensed separately into each well of a 96-well plate and allowed to adsorb overnight at 4°C. After removing the supernatant, 200 μL of a 1% bovine serum albumin solution (in PBS) was added and reacted at room temperature for 1 hour to block. The supernatant was removed and the product was washed with a washing solution (PBS containing 0.02% Tween 20), after which 100 mL of the culture solution of the fused cells was added and allowed to react at room temperature for 2 hours. The supernatant was removed, the precipitate was washed with a washing solution, and then 100 μL of a peroxidase-labeled goat anti-mouse IgG antibody solution (concentration: 50 ng/mL) was added and reacted at room temperature for 1 hour. The supernatant was removed, the product was washed again with a washing solution, and then 100 μL of TMB solution (KPL) was added and reacted at room temperature for 20 minutes. When coloration occurred, 100 μL of 1N sulfuric acid was added to each cell to stop the reaction, and the absorbance at 450 nm was measured.

この結果、GSTフュージョンL7/L12CTDタンパク質のみに反応し、GSTタンパク質には反応しない陽性ウェルが見出され、これらのウェルにはL7/L12CTDタンパク質に対する抗体が含まれていることが判明した。そこで、各陽性ウェル中の細胞を回収し、24穴プラスティックプレートに入れ、HAT培地を加えて培養した後、細胞数が約20個/mLになるようにHT培地で希釈し、その50μLを96穴培養プレートの各ウェルに入れた。HT培地に懸濁した6週齢のマウス胸腺細胞10個を加えて混合した後、7%CO条件下、37℃で2週間培養した。培養上澄み中の抗体活性を前述のELISA法にて同様に検定し、L7/L12CTDタンパク質との反応が陽性の細胞を回収した。更に同様の希釈検定及びクローニング操作を繰り返すことにより、L7/L12CTDタンパク質に対するモノクローナル抗体株4B1、36A2及び54A3を産生する各ハイブリドーマを取得した。 As a result, positive wells were found that reacted only to the GST fusion L7/L12CTD protein and not to the GST protein, and it was found that these wells contained antibodies against the L7/L12CTD protein. Therefore, the cells in each positive well were collected, placed in a 24-well plastic plate, and cultured with HAT medium, and then diluted with HT medium so that the cell count was about 20 cells/mL, and 50 μL of the diluted solution was placed in each well of a 96-well culture plate. After adding and mixing 10 6 thymocytes of 6-week-old mice suspended in HT medium, the cells were cultured at 37° C. under 7% CO 2 conditions for 2 weeks. The antibody activity in the culture supernatant was similarly assayed by the above-mentioned ELISA method, and cells that reacted positively with the L7/L12CTD protein were collected. Furthermore, by repeating the same dilution assay and cloning operation, each hybridoma producing monoclonal antibody strains 4B1, 36A2 and 54A3 against the L7/L12CTD protein was obtained.

前述のようにして取得した陽性クローンモノクローナル抗体株4B1、36A2及び54A3の3株を用いて、定法にしたがってモノクローナル抗体を生産、回収した。 The three positive clone monoclonal antibody strains 4B1, 36A2, and 54A3 obtained as described above were used to produce and collect monoclonal antibodies according to standard methods.

<4:得られたマウスモノクローナル抗体株の軽鎖及び重鎖各可変領域のアミノ酸配列の決定>
取得したモノクローナル抗体株4B1、36A2及び54A3の3株について、定法にしたがって軽鎖及び重鎖各可変領域のアミノ酸配列及び対応する塩基配列を決定した。
<4: Determination of the amino acid sequences of the light and heavy chain variable regions of the obtained mouse monoclonal antibody strain>
For the three obtained monoclonal antibody strains, 4B1, 36A2, and 54A3, the amino acid sequences and corresponding nucleotide sequences of the light and heavy chain variable regions were determined according to standard methods.

モノクローナル抗体株4B1、36A2及び54A3の重鎖及び軽鎖各可変領域のアミノ酸配列及び塩基配列を、それぞれ以下の表1に示す配列番号で示す。 The amino acid sequences and nucleotide sequences of the heavy and light chain variable regions of monoclonal antibody strains 4B1, 36A2, and 54A3 are shown in the sequence numbers in Table 1 below.

Figure 0007557274000001
Figure 0007557274000001

[実施例6]レジオネラ菌のリボソームタンパク質L7/L12と抗体の相互作用解析
実施例5で得られた、レジオネラ菌のリボソームタンパク質L7/L12のCTDを認識するモノクローナル抗体4B1、36A2、及び54A3について、以下の手順により、レジオネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析を行った。
[Example 6] Analysis of interaction between antibodies and ribosomal protein L7/L12 of Legionella bacteria The monoclonal antibodies 4B1, 36A2, and 54A3 obtained in Example 5, which recognize the CTD of ribosomal protein L7/L12 of Legionella bacteria, were subjected to NMR analysis of their interaction with ribosomal protein L7/L12 of Legionella bacteria by the following procedure.

<1:レジオネラ菌のリボソームタンパク質L7/L12の取得>
実施例1で作成した大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N-NHCl、11.1mM 12C-グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル-β-チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン-セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン-セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。
<1: Obtaining ribosomal protein L7/L12 from Legionella pneumophila>
The E. coli strain prepared in Example 1 was cultured in M9 medium (47.7 mM Na2HPO4.12H2O , 22 mM KH2PO4 , 8.6 mM NaCl, 2 mM MgSO4 , 50 μM ZnSO4 , 100 μM CaCl2 , 4.1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM sodium ampicillin, 18.7 mM 15N - NH4Cl , 11.1 mM 12C -glucose) at OD The mixture was cultured until the pH 600 reached 0.6, and then rapidly cooled with ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the mixture was cultured at 16°C for 36 hours, followed by centrifugation at 7000 rpm for 15 minutes at 4°C to recover E. coli. 5 mL of BugBuster (Merck Millipore) and 5 μL of benzonase endonuclease (Merck Millipore) were added per 1 g of the resulting E. coli, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtration through a 0.45 μm filter, ribosomal protein L7/L12 was purified on a glutathione-Sepharose column using a Profinia protein purification system (Bio-Rad). To 15 mL of the resulting protein solution, 1.5 mL of 10x PBS (phosphate buffered saline) and Prescission protease (GE Healthcare) were added and shaken at room temperature for 2 hours. The reaction solution was passed through the glutathione-Sepharose column again, and the non-reacted fraction was collected as ribosomal protein L7/L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris-HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris-HCl pH8.0を0%から50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。
得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を精製し、プロテインアッセイキットI(BIO-RAD社製、型番5000001JA)を用いて濃度定量した後、NMR測定に供した。
The obtained ribosomal protein L7/L12 was dialyzed against 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and passed through an AKTA protein purification system (GE Healthcare) connected to an ion exchange column RESOURCE Q (GE Healthcare) at a flow rate of 2 mL/min. Subsequently, 20 mM Tris-HCl pH 8.0 containing 1 M NaCl was passed at a flow rate of 2 mL/min so as to increase linearly from 0% to 50%, and the ribosomal protein L7/L12 was eluted.
The obtained ribosomal protein L7/L12 was passed through an AKTA protein purification system (GE Healthcare) connected to a gel filtration column HiLoad 16/60 Superdex 75pg (GE Healthcare) at a flow rate of 1 mL/min using PBS (phosphate buffered saline) as the mobile phase to purify the ribosomal protein L7/L12. The concentration was quantified using Protein Assay Kit I (BIO-RAD, model number 5000001JA) and then subjected to NMR measurement.

<2:レジオネラ菌のリボソームタンパク質L7/L12の抗体の前処理>
実施例5で得られた、レジオネラ菌のリボソームタンパク質L7/L12のCTDを認識するモノクローナル抗体4B1、36A2、及び54A3を、PBS(リン酸緩衝生理食塩水)を外液として透析し、紫外光(波長280nm)の吸光度により濃度定量した後、NMR測定に供した。
<2: Pretreatment of antibodies against Legionella ribosomal protein L7/L12>
The monoclonal antibodies 4B1, 36A2, and 54A3 obtained in Example 5, which recognize the CTD of the ribosomal protein L7/L12 of Legionella bacteria, were dialyzed against PBS (phosphate buffered saline) as an external solution, and their concentrations were quantified by the absorbance of ultraviolet light (wavelength 280 nm), and then subjected to NMR measurement.

<3:NMRによるレジオネラ菌のリボソームタンパク質L7/L12と抗体の相互作用解析>
レジオネラ菌のリボソームタンパク質L7/L12を、抗体4B1、36A2、及び54A3とそれぞれ混合した。L7/L12と抗体4B1又は36A2との混合比率は何れも1:1(モル比)とし、L7/L12と抗体54A3との混合比率は1:1.5(モル比)とした。各混合物をPBS(リン酸緩衝生理食塩水)で250μLまでメスアップした後、重水を20μL、5mg/mL DSS(4,4-ジメチル-4-シラペンタン-1-スルホン酸)を1μL、EDTA(エチレンジアミン四酢酸)およびAEBSF(フッ化4-(2-アミノエチル)ベンゼンスルホニル)を各々終濃度1.8mMになるように添加し、Shigemi NMR試料管に移し、アスピレーターで脱気後、NMR装置に設置した。
<3: Analysis of the interaction between Legionella ribosomal protein L7/L12 and antibodies by NMR>
Legionella ribosomal protein L7/L12 was mixed with antibodies 4B1, 36A2, and 54A3. The mixing ratio of L7/L12 to antibody 4B1 or 36A2 was 1:1 (molar ratio), and the mixing ratio of L7/L12 to antibody 54A3 was 1:1.5 (molar ratio). Each mixture was made up to 250 μL with PBS (phosphate buffered saline), and then 20 μL of heavy water, 1 μL of 5 mg/mL DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid), EDTA (ethylenediaminetetraacetic acid), and AEBSF (4-(2-aminoethyl)benzenesulfonyl fluoride) were added to a final concentration of 1.8 mM, transferred to a Shigemi NMR sample tube, degassed with an aspirator, and placed in the NMR device.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、[H-15N] HSQC(積算回数128、データポイント数(F1×F2)512×2048)のパルスシーケンスを用いてFIDを得た。得られたFIDをNMR Pipeソフトを用いてフーリエ変換し、スペクトルを取得した。取得したスペクトルに対し、Sparkyソフト上で、実施例1の帰属情報を追記した。 FID was obtained using a pulse sequence of [ 1 H- 15 N] HSQC (accumulation number 128, number of data points (F1×F2) 512×2048) on an AVANCE III HD 600 MHz NMR device (manufactured by Bruker). The obtained FID was Fourier transformed using NMR Pipe software to obtain a spectrum. The attribution information of Example 1 was added to the obtained spectrum on Sparky software.

NMRでは、リボソームタンパク質L7/L12のように低分子量(13、000)であれば、明瞭(sharp)な信号として観測可能であるが、抗体のような高分子量(150、000)の場合は、非常に幅広く不明瞭(broad)な信号となるため、強度不足により観測不可能である。また、一般的に抗原抗体反応の結合/解離定数は1μM以下であり、結合側に偏った平衡状態にあると考えられている。従って、リボソームタンパク質L7/L12が抗体と相互作用(結合)すると、抗体の影響を受けてリボソームタンパク質L7/L12の信号がbroad化し、その強度が減衰すると考えられる。そこで、リボソームタンパク質L7/L12の[H-15N] HSQCスペクトル(アミノ酸1個につき1信号が観測される)上で、抗体の添加により信号強度が減衰する残基を追跡することで相互作用部位を同定しようと試みた。相互作用解析の詳細は、Williamson, M. P., Using chemical shift perturbation to characterise ligand binding, Prog. Nucl. Magn. Reson. Spectrosc. 73(2013):1-16に従った。 In NMR, if the molecular weight is low (13,000) like ribosomal protein L7/L12, it can be observed as a sharp signal, but if the molecular weight is high (150,000) like an antibody, the signal becomes very broad and unclear, so it cannot be observed due to insufficient intensity. In addition, the binding/dissociation constant of an antigen-antibody reaction is generally 1 μM or less, and it is considered to be in an equilibrium state biased toward the binding side. Therefore, when ribosomal protein L7/L12 interacts (binds) with an antibody, it is considered that the signal of ribosomal protein L7/L12 becomes broad under the influence of the antibody and its intensity is attenuated. Therefore, we attempted to identify the interaction site by tracking the residues whose signal intensity is attenuated by the addition of the antibody on the [ 1 H- 15 N] HSQC spectrum of ribosomal protein L7/L12 (one signal is observed per amino acid). Details of the interaction analysis were as follows: Williamson, MP, Using chemical shift perturbation to characterise ligand binding, Prog. Nucl. Magn. Reson. Spectrosc. 73(2013):1-16.

リボソームタンパク質L7/L12と、抗体4B1、36A2、又は、54A3とをそれぞれ上記比率で混合した場合のリボソームタンパク質L7/L12の各アミノ酸残基の[H-15N] HSQC信号強度を、抗体と混合する前のリボソームタンパク質L7/L12の各アミノ酸残基の[H-15N] HSQC信号強度で除算し、その除算値を縦軸に、リボソームタンパク質L7/L12のアミノ酸配列を横軸に示したグラフを作成した(図6A、B、C)。CTD(58~125位の残基)の除算値が概ね0.4以下(抗体と相互作用してリボソームタンパク質L7/L12の信号強度が60%以上減衰したことを意味する)であったため、リボソームタンパク質L7/L12はCTD(58~125位の残基)で抗体4B1、36A2、又は、54A3と相互作用していることが判った(図6A、B、C)。 The [ 1H - 15N ] HSQC signal intensity of each amino acid residue of ribosomal protein L7/L12 when ribosomal protein L7/L12 and antibody 4B1, 36A2, or 54A3 were mixed in the above-mentioned ratios, respectively, was divided by the [ 1H - 15N ] HSQC signal intensity of each amino acid residue of ribosomal protein L7/L12 before mixing with the antibody, and a graph was created showing the divided value on the vertical axis and the amino acid sequence of ribosomal protein L7/L12 on the horizontal axis (Figures 6A, B, and C). Since the division values of the CTD (residues 58 to 125) were generally 0.4 or less (meaning that the signal intensity of ribosomal protein L7/L12 was attenuated by 60% or more upon interaction with the antibody), it was found that ribosomal protein L7/L12 interacted with antibody 4B1, 36A2, or 54A3 at the CTD (residues 58 to 125) (Figures 6A, B, and C).

[実施例7]レジオネラ菌のリボソームタンパク質L7/L12に結合する抗体の交差反応性の検討
実施例5で得られた、レジオネラ菌のリボソームタンパク質L7/L12のCTDを認識するモノクローナル抗体4B1、36A2及び54A3について、以下の手順により、レジオネラ菌以外の細菌のリボソームタンパク質L7/L12との交差反応性のELISAによる解析を行った。
[Example 7] Examination of cross-reactivity of antibodies that bind to ribosomal protein L7/L12 of Legionella bacteria The monoclonal antibodies 4B1, 36A2, and 54A3 obtained in Example 5, which recognize the CTD of ribosomal protein L7/L12 of Legionella bacteria, were analyzed by ELISA for cross-reactivity with ribosomal protein L7/L12 of bacteria other than Legionella bacteria by the following procedure.

<1:交差反応性解析用の各細菌種の組換全長リボソームタンパク質L7/L12の調製>
以下の方法により交差反応性試験用の組換え全長リボソームタンパク質L7/L12を調製した。まず、交差反応性解析に用いる対象細菌種として、下記表2に示す各菌種のリボソームタンパク質L7/L12のアミノ酸配列をコードする塩基配列の人工合成遺伝子(GenScript社製)を含むプラスミドベクターpGEX-6P-1を作製した。
<1: Preparation of recombinant full-length ribosomal proteins L7/L12 of various bacterial species for cross-reactivity analysis>
Recombinant full-length ribosomal protein L7/L12 for cross-reactivity tests was prepared by the following method: First, a plasmid vector pGEX-6P-1 was prepared containing an artificially synthesized gene (GenScript) with a base sequence encoding the amino acid sequence of ribosomal protein L7/L12 of each of the bacterial species shown in Table 2 below, which was used as the target bacterial species for cross-reactivity analysis.

Figure 0007557274000002
Figure 0007557274000002

得られた各菌種のL7/L12遺伝子を担持するプラスミドベクターpGEX-6P-1を、大腸菌One Shot Competent Cells(Invitrogen社製)に導入し、50μg/mLのアンピシリン(Sigma社製)を含むLB培地(宝酒造社製)の半固型培地のプレートに播種し、37℃で12時間程度放置し、生じたコロニーを無作為に選択し、同濃度のアンピシリンを含むLB液体培地2mLに植え付け、8時間程度37℃で振盪培養し、菌体を回収した。得られた菌体からQIAprep Spin Miniprep Kit(QIAGEN社)を用い、添付の説明書に従ってプラスミドを分離した。得られたプラスミドを制限酵素BamHI/XhoIにて切断処理した。約 370bpのDNAを切断することによって、各細菌種のリボソームタンパク質L7/L12人工合成遺伝子の挿入を確認した。当該プラスミドベクターを導入した大腸菌を、50mLのLB培地中で37℃で1晩培養した後、500mLのTB培地に入れ、1時間培養した。その後、100mMのイソプロピルβ-D(-)-チオガラクトピラノシド(IPTG)を550μL加えて、更に4時間培養した。回収後、1/100量のBugBuster(Merck社製)を加えて、室温で20分間振盪した。その後、10,000rpmで30分間遠心分離し、大腸菌を回収した。 The plasmid vector pGEX-6P-1 carrying the L7/L12 genes of each bacterial species obtained was introduced into E. coli One Shot Competent Cells (Invitrogen), and inoculated onto a plate of semi-solid medium of LB medium (Takara Shuzo) containing 50 μg/mL ampicillin (Sigma), and left at 37°C for about 12 hours. The resulting colonies were randomly selected and inoculated into 2 mL of LB liquid medium containing the same concentration of ampicillin, and cultured with shaking at 37°C for about 8 hours to recover the bacterial cells. The plasmid was isolated from the obtained bacterial cells using a QIAprep Spin Miniprep Kit (QIAGEN) according to the attached instructions. The obtained plasmid was digested with restriction enzymes BamHI/XhoI. The insertion of the artificially synthesized ribosomal protein L7/L12 genes of each bacterial species was confirmed by cutting the DNA at about 370 bp. The E. coli into which the plasmid vector was introduced was cultured overnight at 37°C in 50 mL of LB medium, then transferred to 500 mL of TB medium and cultured for 1 hour. Then, 550 μL of 100 mM isopropyl β-D(-)-thiogalactopyranoside (IPTG) was added and cultured for an additional 4 hours. After recovery, 1/100th the amount of BugBuster (Merck) was added and shaken at room temperature for 20 minutes. Then, the mixture was centrifuged at 10,000 rpm for 30 minutes to recover the E. coli.

前記実施例1と同様の方法により、組換全長リボソームタンパク質L7/L12の採取・精製を行い、各菌種の組換全長リボソームタンパク質L7/L12を得た。 Recombinant full-length ribosomal protein L7/L12 was collected and purified using the same method as in Example 1, and recombinant full-length ribosomal protein L7/L12 of each bacterial species was obtained.

<2:交差反応性解析用ELISAの実施>
前記各菌種の組換えリボゾームタンパク質L7/L12を、それぞれELISAプレートに固相化し、前記モノクローナル抗体4B1、36A2及び54A3の各々を反応させ、洗浄した後、固相化された各菌種のL7/L12に結合したモノクローナル抗体をパーオキシダーゼ標識抗マウスIgG抗体と反応させ、各モノクローナル抗体と各菌種のL7/L12との交差反応性を評価した。
<2: Implementation of ELISA for cross-reactivity analysis>
The recombinant ribosomal protein L7/L12 of each of the bacterial species was immobilized on an ELISA plate, reacted with each of the monoclonal antibodies 4B1, 36A2, and 54A3, and then washed. The monoclonal antibodies bound to the immobilized L7/L12 of each of the bacterial species were then reacted with peroxidase-labeled anti-mouse IgG antibodies to evaluate the cross-reactivity of each monoclonal antibody with the L7/L12 of each of the bacterial species.

具体的には、レジオネラ菌及び前記各菌種の組換え全長リボゾームタンパク質L7/L12をそれぞれ0.01μg/mL、0.1μg/mL又は1μg/mLの濃度で含むPBS溶液各100μLを、96穴ELISAプレート(Nunc社製Maxsorp ELISA plate)に分注し、4℃で一晩吸着させた。上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μLを添加し、室温で1時間反応させてプロッキングした。上澄み除去後、洗浄液(0.02%Tween20含有PBS)で数回洗浄し、抗体4B1、36A2、又は54A3を1μg/mLになるように0.5%TritonX-100/PBSで希釈した抗体溶液、又は、約1×PBSそのもの(陰性コントロール)をそれぞれ100μL添加し、室温にて1時間反応させた。上澄みを除去した後、パーオキシダーゼ標識抗マウスIgG抗体試薬を2次抗体として、0.02%Tween20/PBSにて最終濃度1μg/mLになるように希釈した液を100μLずつ添加し、室温にて1時間反応させた。上澄み除去後、さらに洗浄液で数回洗浄し、TMB(3,3’,5,5’-テトラメチルベンジジン)溶液(KPL社製)を100μLずつ加え、室温で10分間反応させた後、1mol/Lの塩酸を100μL添加して反応を停止させた。得られた溶液の450nmの吸光度を測定し、陰性コントロールの450nmの吸光度との差を求めることにより、各モノクローナル抗体と各菌種のL7/L12との交差反応性を評価した。 Specifically, 100 μL of each PBS solution containing Legionella pneumophila and the recombinant full-length ribosomal protein L7/L12 of each of the above-mentioned bacterial species at a concentration of 0.01 μg/mL, 0.1 μg/mL, or 1 μg/mL was dispensed into a 96-well ELISA plate (Maxsorp ELISA plate manufactured by Nunc) and allowed to adsorb overnight at 4°C. After removing the supernatant, 200 μL of 1% bovine serum albumin solution (in PBS) was added and reacted at room temperature for 1 hour for blocking. After removing the supernatant, the plate was washed several times with a washing solution (PBS containing 0.02% Tween 20), and 100 μL of antibody solution in which antibody 4B1, 36A2, or 54A3 was diluted with 0.5% TritonX-100/PBS to 1 μg/mL, or about 1×PBS itself (negative control) was added, and allowed to react at room temperature for 1 hour. After removing the supernatant, 100 μL of a solution of a peroxidase-labeled anti-mouse IgG antibody reagent as a secondary antibody diluted with 0.02% Tween 20/PBS to a final concentration of 1 μg/mL was added and reacted at room temperature for 1 hour. After removing the supernatant, the plate was washed several times with a washing solution, and 100 μL of TMB (3,3',5,5'-tetramethylbenzidine) solution (KPL) was added and reacted at room temperature for 10 minutes, after which 100 μL of 1 mol/L hydrochloric acid was added to stop the reaction. The absorbance at 450 nm of the obtained solution was measured, and the difference from the absorbance at 450 nm of the negative control was calculated to evaluate the cross-reactivity of each monoclonal antibody with L7/L12 of each bacterial species.

結果として得られた、抗体4B1、36A2、又は54A3と、レジオネラ菌又は他の各菌種の組換え全長リボゾームタンパク質L7/L12との反応性の評価結果を、下記の表3に示す。下記表中、陽性(+)は、陰性コントロールに対する吸光度の差が0.5以上のもの、陰性(-)は、陰性コントロールに対する吸光度の差が0.1以下の値のものをそれぞれ示す。 The resulting evaluation results of the reactivity of antibodies 4B1, 36A2, or 54A3 with recombinant full-length ribosomal protein L7/L12 of Legionella or other bacterial species are shown in Table 3 below. In the table below, positive (+) indicates that the difference in absorbance from the negative control is 0.5 or more, and negative (-) indicates that the difference in absorbance from the negative control is 0.1 or less.

Figure 0007557274000003
Figure 0007557274000003

本発明は、検体中のレジオネラ菌の検出が求められる分野、主に医療の分野に幅広く利用でき、その産業上の有用性は極めて高い。 The present invention can be widely used in fields requiring the detection of Legionella bacteria in samples, primarily in the medical field, and is extremely useful industrially.

Claims (11)

レジオネラ菌(Legionella pneumophila)を検出するための抗体又はその抗原結合断片であって、
配列番号1に示すレジオネラ菌のリボソームタンパク質L7/L12の58~125位のアミノ酸残基からなるC末端ドメイン(CTD)内に存在するエピトープと抗原抗体反応を生じると共に、
重鎖可変領域配列として、配列番号5のアミノ酸配列、及び、軽鎖可変領域配列として、配列番号7のアミノ酸配列を含み、又は、
重鎖可変領域配列として、配列番号9のアミノ酸配列、及び、軽鎖可変領域配列として、配列番号11のアミノ酸配列を含み、又は、
重鎖可変領域配列として、配列番号13のアミノ酸配列、及び、軽鎖可変領域配列として、配列番号15のアミノ酸配列を含む、
抗体又はその抗原結合断片。
An antibody or an antigen-binding fragment thereof for detecting Legionella pneumophila,
It causes an antigen-antibody reaction with an epitope present in the C-terminal domain (CTD) consisting of amino acid residues 58 to 125 of the ribosomal protein L7/L12 of Legionella pneumophila shown in SEQ ID NO: 1, and
The heavy chain variable region sequence comprises the amino acid sequence of SEQ ID NO:5, and the light chain variable region sequence comprises the amino acid sequence of SEQ ID NO:7, or
The heavy chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 9, and the light chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 11, or
The heavy chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 13, and the light chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 15.
An antibody or an antigen-binding fragment thereof.
前記エピトープが、配列番号1の102~114位のアミノ酸残基から選択される1又は2以上のアミノ酸残基を含む、請求項1に記載の抗体又はその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 1, wherein the epitope comprises one or more amino acid residues selected from amino acid residues at positions 102 to 114 of SEQ ID NO:1. マイコプラズマ(Mycoplasma)属、エシェリキア(Escherichia)属、クラミジア(Chlamydia)属、サルモネラ(Salmonella)属、シュードモナス(Pseudomonas)属、スタフィロコッカス(Staphylococcus)属、ナイセリア(Neisseria)属、ヘモフィルス(Haemophilus)属、ボルデテラ(Bordetella)属、モラクセラ(Moraxella)属、及びストレプトコッカス(Streptococcus)属から選択される1以上の属の細菌と交差反応しない、請求項1又は2に記載の抗体又はその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 1 or 2, which does not cross-react with bacteria of one or more genera selected from the genera Mycoplasma, Escherichia, Chlamydia, Salmonella, Pseudomonas, Staphylococcus, Neisseria, Haemophilus, Bordetella, Moraxella, and Streptococcus. レジオネラ菌(Legionella pneumophila)を検出するための抗体又はその抗原結合断片であって、
重鎖可変領域配列として、配列番号5のアミノ酸配列、及び、軽鎖可変領域配列として、配列番号7のアミノ酸配列を含み、又は、
重鎖可変領域配列として、配列番号9のアミノ酸配列、及び、軽鎖可変領域配列として、配列番号11のアミノ酸配列を含み、又は、
重鎖可変領域配列として、配列番号13のアミノ酸配列、及び、軽鎖可変領域配列として、配列番号15のアミノ酸配列を含む、
抗体又はその抗体結合断片。
An antibody or an antigen-binding fragment thereof for detecting Legionella pneumophila,
The heavy chain variable region sequence comprises the amino acid sequence of SEQ ID NO:5, and the light chain variable region sequence comprises the amino acid sequence of SEQ ID NO:7, or
The heavy chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 9, and the light chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 11, or
The heavy chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 13, and the light chain variable region sequence comprises the amino acid sequence of SEQ ID NO: 15.
An antibody or an antibody-binding fragment thereof.
請求項1~4のいずれか一項に記載の抗体又はその抗体結合断片をコードする核酸分子。 A nucleic acid molecule encoding the antibody or antibody-binding fragment thereof according to any one of claims 1 to 4. 請求項5に記載の核酸分子を含むベクター又はプラスミド。 A vector or plasmid comprising the nucleic acid molecule of claim 5. 請求項5に記載の核酸分子又は請求項6に記載のベクター若しくはプラスミドで形質転換された宿主細胞。 A host cell transformed with the nucleic acid molecule of claim 5 or the vector or plasmid of claim 6. 宿主細胞が哺乳動物細胞、昆虫細胞、酵母細胞、及び植物細胞から選ばれる真核細胞、又は細菌細胞である、請求項7に記載の宿主細胞。 The host cell according to claim 7, wherein the host cell is a eukaryotic cell selected from a mammalian cell, an insect cell, a yeast cell, and a plant cell, or a bacterial cell. 検体中のレジオネラ菌の有無を検出するための方法であって、請求項1~4のいずれか一項に記載の抗体又はその抗原結合断片を検体と接触させ、抗原抗体反応の有無を検出することを含む方法。 A method for detecting the presence or absence of Legionella bacteria in a sample, the method comprising contacting the sample with the antibody or antigen-binding fragment thereof according to any one of claims 1 to 4 and detecting the presence or absence of an antigen-antibody reaction. 検体中のレジオネラ菌の有無を検出するための試薬であって、請求項1~4のいずれか一項に記載の抗体又はその抗原結合断片を含む、試薬。 A reagent for detecting the presence or absence of Legionella bacteria in a sample, the reagent comprising an antibody or an antigen-binding fragment thereof according to any one of claims 1 to 4. 検体中のレジオネラ菌の有無を検出するためのキットであって、請求項1~4のいずれか一項に記載の抗体又はその抗原結合断片と、前記抗体を用いて検体中のレジオネラ菌の有無を検出するための指示を含む指示書とを含む、キット。 A kit for detecting the presence or absence of Legionella bacteria in a sample, comprising the antibody or antigen-binding fragment thereof according to any one of claims 1 to 4, and an instruction manual including instructions for detecting the presence or absence of Legionella bacteria in a sample using the antibody.
JP2020068613A 2020-04-06 2020-04-06 Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody Active JP7557274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020068613A JP7557274B2 (en) 2020-04-06 2020-04-06 Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020068613A JP7557274B2 (en) 2020-04-06 2020-04-06 Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody

Publications (2)

Publication Number Publication Date
JP2021164414A JP2021164414A (en) 2021-10-14
JP7557274B2 true JP7557274B2 (en) 2024-09-27

Family

ID=78021214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020068613A Active JP7557274B2 (en) 2020-04-06 2020-04-06 Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody

Country Status (1)

Country Link
JP (1) JP7557274B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201605A (en) 2002-12-26 2004-07-22 Asahi Kasei Corp Dna encoding ribosome l7/l12 protein of bacterium of genus legionella
JP2010248129A (en) 2009-04-16 2010-11-04 Asahi Kasei Corp Antibody for detecting legionella bacteria
JP2016510002A (en) 2013-02-22 2016-04-04 ステムセントリックス, インコーポレイテッド Novel antibody conjugates and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201605A (en) 2002-12-26 2004-07-22 Asahi Kasei Corp Dna encoding ribosome l7/l12 protein of bacterium of genus legionella
JP2010248129A (en) 2009-04-16 2010-11-04 Asahi Kasei Corp Antibody for detecting legionella bacteria
JP2016510002A (en) 2013-02-22 2016-04-04 ステムセントリックス, インコーポレイテッド Novel antibody conjugates and uses thereof

Also Published As

Publication number Publication date
JP2021164414A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP2010268800A (en) Antibody for detecting microorganism
KR102714297B1 (en) A new method for selecting epitopes
KR101192130B1 (en) Antibody against OMPU of Vibrio and method of detecting Vibro using the same
JP7200375B2 (en) Specific antibody against human anti-Müllerian hormone and use thereof
WO2009124068A1 (en) Iterative screening and subtractive process for marker discovery
JP7402659B2 (en) Antibodies for detecting Mycoplasma pneumoniae in a specimen, and methods, reagents, and kits for detecting Mycoplasma pneumoniae using such antibodies
JP7557274B2 (en) Antibody for detecting Legionella in a sample, and method, reagent, and kit for detecting Legionella using the antibody
JP7521922B2 (en) Antibody for detecting Neisseria gonorrhoeae in a specimen, and method, reagent, and kit for detecting Neisseria gonorrhoeae using such antibody
JP7506251B2 (en) Gonorrhea detection kit and gonorrhea detection method
JP7491679B2 (en) Antibody for detecting Salmonella in a sample, and method, reagent, and kit for detecting Salmonella using the antibody
JP6964161B2 (en) Antibodies for detecting Moraxella catarrhalis in specimens, and methods, reagents, and kits for detecting Moraxella catarrhalis using such antibodies.
JP6964704B2 (en) Antibodies for detecting E. coli in specimens, and methods, reagents, and kits for detecting E. coli using such antibodies.
JP6964117B2 (en) Antibodies for detecting Haemophilus influenzae in specimens, and methods, reagents, and kits for detecting Haemophilus influenzae using such antibodies.
JP6964645B2 (en) Antibodies for detecting Pseudomonas aeruginosa in specimens, and methods, reagents, and kits for detecting Pseudomonas aeruginosa using such antibodies.
JP6964118B2 (en) Antibodies for detecting Staphylococcus aureus in specimens, and methods, reagents, and kits for detecting Staphylococcus aureus using such antibodies.
JP6964644B2 (en) Antibodies for detecting Streptococcus pneumoniae in specimens, and methods, reagents, and kits for detecting Streptococcus pneumoniae using such antibodies.
KR20210118808A (en) Anti-pandemic-specific antimalarial lactate dehydrogenase antibody
JP2010248129A (en) Antibody for detecting legionella bacteria
JP2022109630A (en) Test method and test kit for determining whether or not infectious disease of subject is of bacterial origin
CN117487018B (en) Rabbit monoclonal antibody for resisting human epididymis secretion protein 4 and application thereof
CN117645665B (en) Antibody for alpha-synuclein, and preparation method and application thereof
KR102212636B1 (en) An antibody specific for f1 capsule protein of yersinia pestis, hybridoma cell line 1h4 producing the same, and a kit for detecting yersinia pestis using the same
CN118255883A (en) Monoclonal antibody, antibody pair and kit aiming at human opsin-like protein 1 and application thereof
JP2023536918A (en) Compounds and methods targeting human and mouse INSL5
CN116964453A (en) Method and kit for detecting presence and/or amount of bacteria in food or drink samples, environmental samples or biological samples

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240913

R150 Certificate of patent or registration of utility model

Ref document number: 7557274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150