JP7554827B2 - High-strength steel plate with excellent workability and manufacturing method thereof - Google Patents
High-strength steel plate with excellent workability and manufacturing method thereof Download PDFInfo
- Publication number
- JP7554827B2 JP7554827B2 JP2022536956A JP2022536956A JP7554827B2 JP 7554827 B2 JP7554827 B2 JP 7554827B2 JP 2022536956 A JP2022536956 A JP 2022536956A JP 2022536956 A JP2022536956 A JP 2022536956A JP 7554827 B2 JP7554827 B2 JP 7554827B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- relationship
- tensile strength
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 142
- 239000010959 steel Substances 0.000 title claims description 142
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 229910001566 austenite Inorganic materials 0.000 claims description 60
- 238000010438 heat treatment Methods 0.000 claims description 52
- 229910000734 martensite Inorganic materials 0.000 claims description 51
- 229910052782 aluminium Inorganic materials 0.000 claims description 48
- 230000000717 retained effect Effects 0.000 claims description 48
- 229910052710 silicon Inorganic materials 0.000 claims description 48
- 238000005452 bending Methods 0.000 claims description 42
- 229910000859 α-Fe Inorganic materials 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 34
- 238000012360 testing method Methods 0.000 claims description 29
- 238000005098 hot rolling Methods 0.000 claims description 26
- 229910001563 bainite Inorganic materials 0.000 claims description 24
- 238000000137 annealing Methods 0.000 claims description 23
- 238000012423 maintenance Methods 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052735 hafnium Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 239000010960 cold rolled steel Substances 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 33
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 33
- 239000010703 silicon Substances 0.000 description 33
- 239000011572 manganese Substances 0.000 description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 230000000694 effects Effects 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- 229910052761 rare earth metal Inorganic materials 0.000 description 15
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 13
- 239000011575 calcium Substances 0.000 description 13
- 239000011651 chromium Substances 0.000 description 13
- 239000011777 magnesium Substances 0.000 description 13
- 239000010955 niobium Substances 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 229910052727 yttrium Inorganic materials 0.000 description 11
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000005554 pickling Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 102000001301 EGF receptor Human genes 0.000 description 5
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 5
- 230000016507 interphase Effects 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/68—Furnace coilers; Hot coilers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車部品などに用いることができる鋼板に関するものであって、高強度特性を備えながらも加工性に優れた鋼板とこれを製造する方法に関するものである。 The present invention relates to a steel sheet that can be used for automobile parts, etc., and is related to a steel sheet that has high strength properties and excellent workability, and a method for manufacturing the same.
近年、自動車産業は、地球環境を保護するために素材軽量化を図り、同時に搭乗者の安定性を確保することができる方案に注目している。このような安定性及び軽量化の要求に応えるために、高強度鋼板の適用が急激に増加している。一般的に鋼板の高強度化が行われるほど鋼板の加工性は低下するものと知られている。したがって、自動車部品用鋼板において、高強度特性を備えながらも、延性、曲げ加工性及び穴拡げ性などに代表される加工性に優れた鋼板が求められている実情である。 In recent years, the automotive industry has been focusing on ways to reduce the weight of materials in order to protect the global environment while at the same time ensuring stability for passengers. To meet this demand for stability and weight reduction, the use of high-strength steel sheets has rapidly increased. It is generally known that the higher the strength of a steel sheet, the lower its workability becomes. Therefore, there is a demand for steel sheets for automotive parts that have high strength properties while also having excellent workability, such as ductility, bending workability, and hole expansion property.
鋼板の加工性を改善する技術として、テンパードマルテンサイトを活用する方法が特許文献1及び2に開示されている。硬質のマルテンサイトをテンパリング(tempering)させて作ったテンパードマルテンサイトは軟質化されたマルテンサイトであるため、テンパードマルテンサイトは既存のテンパリングされていないマルテンサイト(フレッシュマルテンサイト)と強度の差が存在する。したがって、フレッシュマルテンサイトを抑制させてテンパードマルテンサイトを形成すると加工性が増加することができる。 Patent Documents 1 and 2 disclose a method of utilizing tempered martensite as a technology for improving the workability of steel sheets. Tempered martensite, which is made by tempering hard martensite, is softened martensite, so there is a difference in strength between tempered martensite and existing untempered martensite (fresh martensite). Therefore, by suppressing fresh martensite to form tempered martensite, workability can be improved.
しかしながら、特許文献1及び2に開示された技術では、引張強度と延伸率のバランス(TS×El)が22,000MPa%以上を満たせず、これは強度及び延性ともに優れた鋼板を確保しにくいことを意味する。 However, the technologies disclosed in Patent Documents 1 and 2 do not achieve a balance between tensile strength and elongation (TS x El) of 22,000 MPa% or more, which means that it is difficult to obtain steel sheets with excellent strength and ductility.
一方、自動車部材用鋼板は、高強度でありながら加工性に優れた特性を全て得るために、残留オーステナイトの変態有機焼成を用いたTRIP(Transformation Induced Plasticity)鋼が開発された。特許文献3では、強度及び加工性に優れたTRIP鋼が開示されている。 On the other hand, in order to obtain both high strength and excellent workability in steel sheets for automotive components, TRIP (Transformation Induced Plasticity) steel was developed using organic sintering to transform retained austenite. Patent Document 3 discloses TRIP steel with excellent strength and workability.
特許文献3では、多角形のフェライトと残留オーステナイト及びマルテンサイトを含んで、延性及び加工性を向上させようとしたが、ベイナイトを主相としているため、高い強度を確保できず、引張強度と延伸率のバランス(TS×El)も22,000MPa%以上を満たせないことが分かる。 In Patent Document 3, polygonal ferrite, retained austenite, and martensite are included to improve ductility and workability, but because bainite is the main phase, high strength cannot be ensured, and the balance between tensile strength and elongation (TS x El) does not meet the requirement of 22,000 MPa% or more.
すなわち、高い強度を有しながらも、延性、曲げ加工性及び穴拡げ性などに代表される加工性に優れた鋼板に対する要求を満たしていない実情である。 In other words, the current situation is that the demands for steel sheets that have high strength but also excellent workability, such as ductility, bending workability, and hole expansion ability, are not met.
本発明の一側面によると、鋼板の組成及び微細組織を最適化して優れた延性、曲げ加工性及び穴拡げ性を有する高強度鋼板とこれを製造する方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a high-strength steel sheet having excellent ductility, bending workability, and hole expansion property by optimizing the composition and microstructure of the steel sheet, and a method for manufacturing the same.
本発明の課題は、上述した事項に限定されない。本発明のさらなる課題は、明細書の全体内容に記載されており、本発明が属する技術分野で通常の知識を有する者であれば、本発明の明細書に記載された内容から本発明のさらなる課題を理解するのに何ら困難がない。 The object of the present invention is not limited to the above. Further object of the present invention is described in the entire contents of the specification, and a person having ordinary knowledge in the technical field to which the present invention pertains will have no difficulty in understanding the further object of the present invention from the contents described in the specification of the present invention.
本発明の一側面による加工性に優れた高強度鋼板は、重量%で、C:0.25~0.75%、Si:4.0%以下、Mn:0.9~5.0%、Al:5.0%以下、P:0.15%以下、S:0.03%以下、N:0.03%以下、残りのFe及び不可避不純物を含み、微細組織として30~70体積%のテンパードマルテンサイト、10~45体積%のベイナイト、10~40体積%の残留オーステナイト、3~20体積%のフェライト及び不可避な組織を含み、下記の[関係式1]を満たすことができる。
[関係式1]
1.1≦[Si+Al]F/[Si+Al]γ≦3.0
上記関係式1において、[Si+Al]Fは、フェライトに含まれるSi及びAlの平均合計含有量(重量%)であり、[Si+Al]γは、残留オーステナイトに含まれるSi及びAlの平均合計含有量(重量%)である。
A high-strength steel plate with excellent workability according to one aspect of the present invention contains, by weight, 0.25 to 0.75% C, 4.0% or less Si, 0.9 to 5.0% Mn, 5.0% or less Al, 0.15% or less P, 0.03% or less S, 0.03% or less N, with the remainder being Fe and unavoidable impurities, and contains, as a microstructure, 30 to 70% by volume of tempered martensite, 10 to 45% by volume of bainite, 10 to 40% by volume of retained austenite, 3 to 20% by volume of ferrite, and unavoidable structures, and can satisfy the following [Relational Formula 1].
[Relationship 1]
1.1≦[Si+Al] F /[Si+Al] γ ≦3.0
In the above Relational Formula 1, [Si+Al] F is the average total content (wt%) of Si and Al contained in ferrite, and [Si+Al] γ is the average total content (wt%) of Si and Al contained in retained austenite.
上記鋼板は、下記の(1)~(9)のいずれか1つ以上をさらに含むことができる。
(1)Ti:0~0.5%、Nb:0~0.5%及びV:0~0.5%のうち1種以上
(2)Cr:0~3.0%及びMo:0~3.0%のうち1種以上
(3)Cu:0~4.5%及びNi:0~4.5%のうち1種以上
(4)B:0~0.005%
(5)Ca:0~0.05%、Yを除くREM:0~0.05%及びMg:0~0.05%のうち1種以上
(6)W:0~0.5%及びZr:0~0.5%のうち1種以上
(7)Sb:0~0.5%及びSn:0~0.5%のうち1種以上
(8)Y:0~0.2%及びHf:0~0.2%のうち1種以上
(9)Co:0~1.5%
The steel plate may further include any one or more of the following (1) to (9).
(1) One or more of Ti: 0-0.5%, Nb: 0-0.5%, and V: 0-0.5%; (2) One or more of Cr: 0-3.0% and Mo: 0-3.0%; (3) One or more of Cu: 0-4.5% and Ni: 0-4.5%; (4) B: 0-0.005%.
(5) One or more of Ca: 0-0.05%, REM excluding Y: 0-0.05%, and Mg: 0-0.05%. (6) One or more of W: 0-0.5%, and Zr: 0-0.5%. (7) One or more of Sb: 0-0.5%, and Sn: 0-0.5%. (8) One or more of Y: 0-0.2%, and Hf: 0-0.2%. (9) Co: 0-1.5%.
上記Si及びAlの合計含有量(Si+Al)は、1.0~6.0重量%であってもよい。 The total content of Si and Al (Si+Al) may be 1.0 to 6.0% by weight.
上記鋼板は、下記の[関係式2]で表される引張強度と延伸率のバランス(BT・E)が22,000(MPa%)以上であり、下記の[関係式3]で表される引張強度と穴拡げ率のバランス(BT・H)が7×106(MPa2%1/2)以上であり、下記の[関係式4]で表される曲げ加工率(BR)が0.5~3.0の範囲を満たしてもよい。
[関係式2]
BT・E=[引張強度(TS、MPa)]×[延伸率(El、%)]
[関係式3]
BT・H=[引張強度(TS、MPa)]2×[穴拡げ率(HER、%)]1/2
[関係式4]
BR=R/t
上記関係式4において、Rは90°曲げ試験後にクラックが発生しない最小曲げ半径(mm)を意味し、tは鋼板の厚さ(mm)を意味する。
The steel sheet may have a balance between tensile strength and elongation (B T·E ) represented by the following [Relationship 2] of 22,000 (MPa%) or more, a balance between tensile strength and hole expansion ratio (B T·H ) represented by the following [Relationship 3] of 7×10 6 (MPa 2 % 1/2 ) or more, and a bending ratio (B R ) represented by the following [Relationship 4] that satisfies the range of 0.5 to 3.0.
[Relationship 2]
BTE = [tensile strength (TS, MPa)] × [elongation rate (El, %)]
[Relationship 3]
BTH = [tensile strength (TS, MPa)] 2 × [hole expansion ratio (HER,%)] 1/2
[Relationship 4]
BR = R/t
In the above Relational Formula 4, R means the minimum bending radius (mm) at which no cracks occur after a 90° bending test, and t means the thickness (mm) of the steel plate.
本発明の他の一側面による加工性に優れた高強度鋼板の製造方法は、重量%で、C:0.25~0.75%、Si:4.0%以下、Mn:0.9~5.0%、Al:5.0%以下、P:0.15%以下、S:0.03%以下、N:0.03%以下、残りはFe及び不可避不純物を含む鋼スラブを加熱し、熱間圧延する段階;上記熱間圧延された鋼板を巻き取る段階;上記巻き取られた鋼板を650~850℃の温度範囲で600~1700秒間熱延焼鈍によって熱処理する段階;上記熱延焼鈍によって熱処理された鋼板を冷間圧延する段階;上記冷間圧延された鋼板をAc1以上Ac3未満の温度範囲で加熱(1次加熱)して、50秒以上維持(1次維持)する段階;平均冷却速度1℃/s以上で、100~300℃の温度範囲まで冷却(1次冷却)する段階;上記1次冷却された鋼板を300~500℃の温度範囲まで加熱(2次加熱)して、50秒以上維持(2次維持)する段階;及び常温まで冷却(2次冷却)する段階;を含むことができる。 According to another aspect of the present invention, a method for producing a high-strength steel sheet having excellent workability includes the steps of heating and hot-rolling a steel slab containing, by weight, C: 0.25 to 0.75%, Si: 4.0% or less, Mn: 0.9 to 5.0%, Al: 5.0% or less, P: 0.15% or less, S: 0.03% or less, N: 0.03% or less, and the remainder being Fe and inevitable impurities; coiling the hot-rolled steel sheet; and heat-treating the coiled steel sheet by hot-rolling annealing at a temperature range of 650 to 850°C for 600 to 1700 seconds. ; the step of cold rolling the steel sheet heat-treated by the hot rolling annealing; the step of heating the cold rolled steel sheet to a temperature range of Ac1 or more and less than Ac3 (primary heating) and maintaining it for 50 seconds or more (primary maintenance); the step of cooling to a temperature range of 100 to 300°C at an average cooling rate of 1°C/s or more (primary cooling); the step of heating the primarily cooled steel sheet to a temperature range of 300 to 500°C (secondary heating) and maintaining it for 50 seconds or more (secondary maintenance); and the step of cooling to room temperature (secondary cooling).
上記鋼スラブは、下記の(1)~(9)のいずれか1つ以上をさらに含むことができる。
(1)Ti:0~0.5%、Nb:0~0.5%及びV:0~0.5%のうち1種以上
(2)Cr:0~3.0%及びMo:0~3.0%のうち1種以上
(3)Cu:0~4.5%及びNi:0~4.5%のうち1種以上
(4)B:0~0.005%
(5)Ca:0~0.05%、Yを除くREM:0~0.05%及びMg:0~0.05%のうち1種以上
(6)W:0~0.5%及びZr:0~0.5%のうち1種以上
(7)Sb:0~0.5%及びSn:0~0.5%のうち1種以上
(8)Y:0~0.2%及びHf:0~0.2%のうち1種以上
(9)Co:0~1.5%
The steel slab may further include any one or more of the following (1) to (9):
(1) One or more of Ti: 0-0.5%, Nb: 0-0.5%, and V: 0-0.5%; (2) One or more of Cr: 0-3.0% and Mo: 0-3.0%; (3) One or more of Cu: 0-4.5% and Ni: 0-4.5%; (4) B: 0-0.005%.
(5) One or more of Ca: 0-0.05%, REM excluding Y: 0-0.05%, and Mg: 0-0.05%. (6) One or more of W: 0-0.5%, and Zr: 0-0.5%. (7) One or more of Sb: 0-0.5%, and Sn: 0-0.5%. (8) One or more of Y: 0-0.2%, and Hf: 0-0.2%. (9) Co: 0-1.5%.
上記鋼スラブに含まれる上記Si及びAlの合計含有量(Si+Al)は、1.0~6.0重量%であってもよい。 The total content of Si and Al (Si+Al) contained in the steel slab may be 1.0 to 6.0% by weight.
上記鋼スラブは1000~1350℃の温度範囲で加熱し、800~1000℃の温度範囲で仕上げ熱間圧延されてもよい。 The steel slab may be heated to a temperature range of 1000-1350°C and finish hot rolled to a temperature range of 800-1000°C.
上記熱間圧延された鋼板は、300~600℃の温度範囲で巻き取られてもよい。 The hot-rolled steel sheet may be coiled at a temperature range of 300 to 600°C.
上記冷間圧延の圧下率は、30~90%であってもよい。 The reduction ratio of the cold rolling may be 30 to 90%.
上記2次冷却の冷却速度は、1℃/s以上であってもよい。 The cooling rate of the secondary cooling may be 1°C/s or more.
本発明の好ましい一側面によると、強度に優れるだけでなく、延性、曲げ加工性及び穴拡げ性などの加工性に優れ、自動車部品用に特に適した鋼板を提供することができる。 According to a preferred aspect of the present invention, it is possible to provide a steel sheet that is not only excellent in strength but also in workability such as ductility, bending workability, and hole expansion property, and is particularly suitable for use in automotive parts.
本発明は、加工性に優れた高強度鋼板及びその製造方法に関するものであり、以下では、本発明の好ましい実施例を説明する。本発明の実施例は、様々な形に変形することができ、本発明の範囲が以下で説明される実施例に限定されるものと解釈されてはいけない。本実施例は、当該発明が属する技術分野における通常の知識を有する者に本発明をさらに詳細に説明するために提供されるものである。 The present invention relates to a high-strength steel plate with excellent workability and a manufacturing method thereof. Preferred embodiments of the present invention are described below. The embodiments of the present invention may be modified in various ways, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments are provided to explain the present invention in more detail to those having ordinary skill in the art to which the invention pertains.
本発明の発明者らは、ベイナイト、テンパードマルテンサイト、残留オーステナイト及びフェライトを含む変態有機焼成(Transformation Induced Plasticity、TRIP)鋼において、残留オーステナイトの安定化を図るとともに、残留オーステナイト及びフェライトに含まれる特定成分の割合を一定範囲に制御する場合、残留オーステナイトとフェライトの相間硬度差を減少させることで、鋼板の加工性及び強度の同時確保が可能であることを認知するようになった。これを究明し、高強度鋼の延性及び加工性を向上させることができる方法を考案し、本発明に至った。 The inventors of the present invention have come to realize that in transformation induced plasticity (TRIP) steel containing bainite, tempered martensite, retained austenite, and ferrite, when the retained austenite is stabilized and the ratio of specific components contained in the retained austenite and ferrite is controlled within a certain range, the interphase hardness difference between the retained austenite and ferrite is reduced, thereby simultaneously ensuring the workability and strength of the steel sheet. Having investigated this, the inventors have devised a method for improving the ductility and workability of high-strength steel, leading to the present invention.
以下、本発明の一側面による加工性に優れた高強度鋼板についてより詳細に説明する。 The high-strength steel sheet with excellent workability according to one aspect of the present invention will be described in more detail below.
本発明の一側面による加工性に優れた高強度鋼板は、重量%で、C:0.25~0.75%、Si:4.0%以下、Mn:0.9~5.0%、Al:5.0%以下、P:0.15%以下、S:0.03%以下、N:0.03%以下、残りのFe及び不可避不純物を含み、微細組織として30~70体積%のテンパードマルテンサイト、10~45体積%のベイナイト、10~40体積%の残留オーステナイト、3~20体積%のフェライト及び不可避な組織を含み、下記の[関係式1]を満たすことができる。
[関係式1]
1.1≦[Si+Al]F/[Si+Al]γ≦3.0
上記関係式1において、[Si+Al]Fは、フェライトに含まれるSi及びAlの平均合計含有量(重量%)であり、[Si+Al]γは、残留オーステナイトに含まれるSi及びAlの平均合計含有量(重量%)である。
A high-strength steel plate with excellent workability according to one aspect of the present invention contains, by weight, 0.25 to 0.75% C, 4.0% or less Si, 0.9 to 5.0% Mn, 5.0% or less Al, 0.15% or less P, 0.03% or less S, 0.03% or less N, with the remainder being Fe and unavoidable impurities, and contains, as a microstructure, 30 to 70% by volume of tempered martensite, 10 to 45% by volume of bainite, 10 to 40% by volume of retained austenite, 3 to 20% by volume of ferrite, and unavoidable structures, and can satisfy the following [Relational Formula 1].
[Relationship 1]
1.1≦[Si+Al] F /[Si+Al] γ ≦3.0
In the above Relational Formula 1, [Si+Al] F is the average total content (wt%) of Si and Al contained in ferrite, and [Si+Al] γ is the average total content (wt%) of Si and Al contained in retained austenite.
以下、本発明の鋼組成についてより詳細に説明する。以下、特に断りのない限り、各元素の含有量を表す%は、重量を基準とする。 The steel composition of the present invention will be described in more detail below. Unless otherwise specified, the percentages representing the content of each element are based on weight.
本発明の一側面による加工性に優れた高強度鋼板は、重量%で、C:0.25~0.75%、Si:4.0%以下、Mn:0.9~5.0%、Al:5.0%以下、P:0.15%以下、S:0.03%以下、N:0.03%以下、残りのFe及び不可避不純物を含む。また、追加的にTi:0.5%以下(0%含む)、Nb:0.5%以下(0%含む)、V:0.5%以下(0%含む)、Cr:3.0%以下(0%含む)、Mo:3.0%以下(0%含む)、Cu:4.5%以下(0%含む)、Ni:4.5%以下(0%含む)、B:0.005%以下(0%含む)、Ca:0.05%以下(0%含む)、Yを除くREM:0.05%以下(0%含む)、Mg:0.05%以下(0%含む)、W:0.5%以下(0%含む)、Zr:0.5%以下(0%含む)、Sb:0.5%以下(0%含む)、Sn:0.5%以下(0%含む)、Y:0.2%以下(0%含む)、Hf:0.2%以下(0%含む)、Co:1.5%以下(0%含む)のうち1種以上をさらに含むことができる。なお、上記Si及びAlの合計含有量(Si+Al)は、1.0~6.0%であってもよい。 A high-strength steel sheet with excellent workability according to one aspect of the present invention contains, by weight, C: 0.25-0.75%, Si: 4.0% or less, Mn: 0.9-5.0%, Al: 5.0% or less, P: 0.15% or less, S: 0.03% or less, N: 0.03% or less, the remainder being Fe and inevitable impurities. In addition, Ti: 0.5% or less (including 0%), Nb: 0.5% or less (including 0%), V: 0.5% or less (including 0%), Cr: 3.0% or less (including 0%), Mo: 3.0% or less (including 0%), Cu: 4.5% or less (including 0%), Ni: 4.5% or less (including 0%), B: 0.005% or less (including 0%), Ca: 0.05% or less (including 0%), REM excluding Y: It may further contain one or more of the following: 0.05% or less (including 0%), Mg: 0.05% or less (including 0%), W: 0.5% or less (including 0%), Zr: 0.5% or less (including 0%), Sb: 0.5% or less (including 0%), Sn: 0.5% or less (including 0%), Y: 0.2% or less (including 0%), Hf: 0.2% or less (including 0%), Co: 1.5% or less (including 0%). The total content of Si and Al (Si+Al) may be 1.0 to 6.0%.
炭素(C):0.25~0.75%
炭素(C)は、鋼板の強度確保に必須元素であるとともに、鋼板の延性向上に寄与する残留オーステナイトを安定化させる元素でもある。したがって、本発明は、この効果を達成するために、0.25%以上の炭素(C)を含むことができる。好ましい炭素(C)含有量は0.25%超過であってもよく、0.27%以上であってもよく、0.30%以上であってもよい。より好ましい炭素(C)含有量は、0.31%以上であってもよい。一方、炭素(C)含有量が一定レベルを超過する場合、過度の強度上昇に伴って冷却圧延が困難になることがある。したがって、本発明は、炭素(C)含有量の上限を0.75%に制限することができる。炭素(C)含有量は0.70%以下であってもよく、より好ましい炭素含有量(C)は0.67%以下であってもよい。
Carbon (C): 0.25-0.75%
Carbon (C) is an essential element for ensuring the strength of the steel plate, and also an element for stabilizing the retained austenite that contributes to improving the ductility of the steel plate. Therefore, the present invention can contain 0.25% or more of carbon (C) to achieve this effect. A preferred carbon (C) content may be more than 0.25%, 0.27% or more, or 0.30% or more. A more preferred carbon (C) content may be 0.31% or more. On the other hand, if the carbon (C) content exceeds a certain level, cold rolling may become difficult due to an excessive increase in strength. Therefore, the present invention can limit the upper limit of the carbon (C) content to 0.75%. The carbon (C) content may be 0.70% or less, and a more preferred carbon content (C) may be 0.67% or less.
シリコン(Si):4.0%以下(0%は除く)
シリコン(Si)は、固溶強化による強度向上に寄与する元素であり、フェライトを強化させ、組織を均一化させることで加工性を改善する元素でもある。また、シリコン(Si)は、セメンタイトの析出を抑制させて残留オーステナイトの生成に寄与する元素である。したがって、本発明は、このような効果を達成するためにシリコン(Si)を必須に添加することができる。好ましいシリコン(Si)含有量は0.02%以上であってもよく、より好ましいシリコン(Si)含有量は0.05%以上であってもよい。但し、シリコン(Si)含有量が一定レベルを超過する場合、めっき工程で未めっきのようにめっき欠陥問題を誘発するだけでなく、鋼板の溶接性を低下させるおそれがあるため、本発明はシリコン(Si)含有量の上限を4.0%に制限することができる。好ましいシリコン(Si)含有量の上限は3.8%であってもよく、より好ましいシリコン(Si)含有量の上限は3.5%であってもよい。
Silicon (Si): 4.0% or less (excluding 0%)
Silicon (Si) is an element that contributes to improving strength through solid solution strengthening, and is also an element that strengthens ferrite and homogenizes the structure to improve workability. Silicon (Si) is also an element that inhibits the precipitation of cementite and contributes to the generation of retained austenite. Therefore, in the present invention, silicon (Si) can be added as an essential component to achieve such effects. A preferred silicon (Si) content may be 0.02% or more, and a more preferred silicon (Si) content may be 0.05% or more. However, if the silicon (Si) content exceeds a certain level, it may not only cause a plating defect problem like unplated in the plating process, but also may reduce the weldability of the steel sheet, so the present invention may limit the upper limit of the silicon (Si) content to 4.0%. A preferred upper limit of the silicon (Si) content may be 3.8%, and a more preferred upper limit of the silicon (Si) content may be 3.5%.
アルミニウム(Al):5.0%以下(0%は除く)
アルミニウム(Al)は、鋼中の酸素と結合して脱酸作用をする元素である。また、アルミニウム(Al)は、シリコン(Si)と同様にセメンタイト析出を抑制させて、残留オーステナイトを安定化させる元素でもある。したがって、本発明は、このような効果を達成するために、アルミニウム(Al)を必須に添加することができる。好ましいアルミニウム(Al)含有量は0.05%以上でああってもよく、より好ましいアルミニウム(Al)含有量は0.1%以上であってもよい。一方、アルミニウム(Al)が過多に添加される場合、鋼板の介在物が増加されるだけでなく、鋼板の加工性を低下させるおそれがあるため、本発明はアルミニウム(Al)含有量の上限を5.0%に制限することができる。好ましいアルミニウム(Al)含有量の上限は4.75%であってもよく、より好ましいアルミニウム(Al)含有量の上限は4.5%であってもよい。
Aluminum (Al): 5.0% or less (excluding 0%)
Aluminum (Al) is an element that combines with oxygen in steel to perform deoxidation. Aluminum (Al) is also an element that inhibits cementite precipitation and stabilizes retained austenite, similar to silicon (Si). Therefore, in the present invention, aluminum (Al) can be added as an essential component to achieve such effects. A preferred aluminum (Al) content may be 0.05% or more, and a more preferred aluminum (Al) content may be 0.1% or more. On the other hand, if aluminum (Al) is added excessively, not only the inclusions in the steel sheet may be increased, but also the workability of the steel sheet may be reduced, so the present invention can limit the upper limit of the aluminum (Al) content to 5.0%. A preferred upper limit of the aluminum (Al) content may be 4.75%, and a more preferred upper limit of the aluminum (Al) content may be 4.5%.
一方、シリコン(Si)とアルミニウム(Al)の合計含有量(Si+Al)は、1.0~6.0%であることが好ましい。シリコン(Si)及びアルミニウム(Al)は、本発明において微細組織形成に影響を与え、延性、曲げ加工性及び穴拡げ性に影響を及ぼす成分であるため、シリコン(Si)及びアルミニウム(Al)の合計含有量は1.0~6.0%であることが好ましい。より好ましいシリコン(Si)とアルミニウム(Al)の合計含有量(Si+Al)は、1.5%以上であってもよく、4.0%以下であってもよい。 On the other hand, the total content (Si+Al) of silicon (Si) and aluminum (Al) is preferably 1.0 to 6.0%. In the present invention, silicon (Si) and aluminum (Al) are components that affect the formation of the microstructure and influence the ductility, bending workability, and hole expandability, so the total content of silicon (Si) and aluminum (Al) is preferably 1.0 to 6.0%. More preferably, the total content (Si+Al) of silicon (Si) and aluminum (Al) may be 1.5% or more, or 4.0% or less.
マンガン(Mn):0.9~5.0%
マンガン(Mn)は、強度及び延性を一緒に高めるために有用な元素である。したがって、本発明は、このような効果を達成するためにマンガン(Mn)含有量の下限を0.9%に制限することができる。好ましいマンガン(Mn)含有量の下限は1.0%であってもよく、より好ましいマンガン(Mn)含有量の下限は1.1%であってもよい。一方、マンガン(Mn)が過多に添加される場合、ベイナイト変態時間が増加してオーステナイト中の炭素(C)濃化度が十分でなくなるため、目的とするオーステナイトの分率が確保できないという問題点が存在する。したがって、本発明は、マンガン(Mn)含有量の上限を5.0%に制限することができる。好ましいマンガン(Mn)含有量の上限は4.7%であってもよく、より好ましいマンガン(Mn)含有量の上限は4.5%であってもよい。
Manganese (Mn): 0.9-5.0%
Manganese (Mn) is an element useful for increasing both strength and ductility. Therefore, in order to achieve this effect, the present invention may limit the lower limit of the manganese (Mn) content to 0.9%. A preferred lower limit of the manganese (Mn) content may be 1.0%, and a more preferred lower limit of the manganese (Mn) content may be 1.1%. On the other hand, when manganese (Mn) is added in excess, the bainite transformation time increases and the carbon (C) concentration in the austenite becomes insufficient, so that the desired austenite fraction cannot be secured. Therefore, the present invention may limit the upper limit of the manganese (Mn) content to 5.0%. A preferred upper limit of the manganese (Mn) content may be 4.7%, and a more preferred upper limit of the manganese (Mn) content may be 4.5%.
リン(P):0.15%以下(0%含む)
リン(P)は、不純物として含有し、衝撃靭性を低下させる元素である。したがって、リン(P)の含有量は0.15%以下に管理することが好ましい。
Phosphorus (P): 0.15% or less (including 0%)
Phosphorus (P) is an element that is contained as an impurity and reduces impact toughness, and therefore the phosphorus (P) content is preferably controlled to 0.15% or less.
硫黄(S):0.03%以下(0%含む)
硫黄(S)は、不純物として含有し、鋼板中にMnSを形成し、延性を低下させる元素である。したがって、硫黄(S)の含有量は0.03%以下であることが好ましい。
Sulfur (S): 0.03% or less (including 0%)
Sulfur (S) is an element that is contained as an impurity and forms MnS in the steel sheet, thereby reducing ductility. Therefore, the sulfur (S) content is preferably 0.03% or less.
窒素(N):0.03%以下(0%含む)
窒素(N)は、不純物として含有し、連続鋳造中に窒化物を作り、スラブの亀裂を引き起こす元素である。したがって、窒素(N)の含有量は0.03%以下であることが好ましい。
Nitrogen (N): 0.03% or less (including 0%)
Nitrogen (N) is an element that is contained as an impurity and forms nitrides during continuous casting, causing cracks in the slab, and therefore the nitrogen (N) content is preferably 0.03% or less.
一方、本発明の鋼板は、上述した合金成分以外に追加的に含まれ得る合金組成が存在し、これについては以下で詳細に説明する。 On the other hand, the steel sheet of the present invention may contain additional alloy compositions in addition to the alloy components described above, which will be described in detail below.
チタン(Ti):0~0.5%、ニオブ(Nb):0~0.5%、及びバナジウム(V):0~0.5%のうち1種以上
チタン(Ti)、ニオブ(Nb)及びバナジウム(V)は、析出物を作って結晶粒を微細化させる元素であり、鋼板の強度及び衝撃靭性の向上にも寄与する元素であるため、本発明はこのような効果のためにチタン(Ti)、ニオブ(Nb)及びバナジウム(V)中の1種以上を添加することができる。但し、チタン(Ti)、ニオブ(Nb)及びバナジウム(V)の各含有量が一定レベルを超過する場合、過度の析出物が形成されて衝撃靭性が低下するのみならず、製造原価の上昇の原因となるため、本発明はチタン(Ti)、ニオブ(Nb)及びバナジウム(V)の含有量をそれぞれ0.5%以下に制限することができる。
At least one of titanium (Ti): 0-0.5%, niobium (Nb): 0-0.5%, and vanadium (V): 0-0.5% Titanium (Ti), niobium (Nb), and vanadium (V) are elements that form precipitates to refine crystal grains and also contribute to improving the strength and impact toughness of steel sheets, so the present invention may add at least one of titanium (Ti), niobium (Nb), and vanadium (V) for this effect. However, if the content of each of titanium (Ti), niobium (Nb), and vanadium (V) exceeds a certain level, excessive precipitates are formed, which not only reduces impact toughness but also causes an increase in manufacturing costs, so the present invention may limit the content of titanium (Ti), niobium (Nb), and vanadium (V) to 0.5% or less.
クロム(Cr):0~3.0%及びモリブデン(Mo):0~3.0%のうち1種以上
クロム(Cr)及びモリブデン(Mo)は、合金化処理時のオーステナイト分解を抑制するだけでなく、マンガン(Mn)と同様にオーステナイトを安定化させる元素であるため、本発明はこのような効果のためにクロム(Cr)及びモリブデン(Mo)中の1種以上を添加することができる。但し、クロム(Cr)及びモリブデン(Mo)の含有量が一定レベルを超過する場合、ベイナイト変態時間が増加してオーステナイト中の炭素(C)濃化量が十分でなくなるため、目的とする残留オーステナイトの分率を確保することができない。したがって、本発明は、クロム(Cr)及びモリブデン(Mo)の含有量をそれぞれ3.0%以下に制限することができる。
At least one of chromium (Cr): 0-3.0% and molybdenum (Mo): 0-3.0% Chromium (Cr) and molybdenum (Mo) are elements that not only suppress austenite decomposition during alloying treatment but also stabilize austenite like manganese (Mn), so the present invention can add at least one of chromium (Cr) and molybdenum (Mo) for this effect. However, if the content of chromium (Cr) and molybdenum (Mo) exceeds a certain level, the bainite transformation time increases and the amount of carbon (C) enriched in austenite becomes insufficient, so that the desired fraction of retained austenite cannot be secured. Therefore, the content of chromium (Cr) and molybdenum (Mo) can be limited to 3.0% or less, respectively, in the present invention.
銅(Cu):0~4.5%及びニッケル(Ni):0~4.5%のうち1種以上
銅(Cu)及びニッケル(Ni)は、オーステナイトを安定化させ、腐食を抑制する元素である。また、銅(Cu)及びニッケル(Ni)は鋼板表面に濃化し、鋼板内に移動する水素侵入を防ぎ、水素遅延破壊を抑制する元素でもある。したがって、本発明は、このような効果のために、銅(Cu)及びニッケル(Ni)中の1種以上を添加することができる。但し、銅(Cu)及びニッケル(Ni)の含有量が一定レベルを超過する場合、過度な特性効果だけでなく、製造原価の上昇の原因となるため、本発明は銅(Cu)及びニッケル(Ni)の含有量をそれぞれ4.5%以下に制限することができる。
At least one of copper (Cu): 0-4.5% and nickel (Ni): 0-4.5% Copper (Cu) and nickel (Ni) are elements that stabilize austenite and inhibit corrosion. Copper (Cu) and nickel (Ni) are also elements that concentrate on the surface of the steel sheet, prevent hydrogen penetration that moves into the steel sheet, and inhibit delayed hydrogen fracture. Therefore, in the present invention, at least one of copper (Cu) and nickel (Ni) can be added for such effects. However, if the content of copper (Cu) and nickel (Ni) exceeds a certain level, it not only causes excessive characteristic effects but also causes an increase in manufacturing costs, so the content of copper (Cu) and nickel (Ni) can be limited to 4.5% or less, respectively, in the present invention.
ホウ素(B):0~0.005%
ホウ素(B)は、焼入れ性を向上させて強度を高める元素であり、結晶粒界の核生成を抑制する元素でもある。したがって、本発明は、このような効果のために、ホウ素(B)を添加することができる。但し、ホウ素(B)の含有量が一定レベルを超過する場合、過度な特性効果だけでなく、製造原価の上昇の原因となるため、本発明はホウ素(B)の含有量を0.005%以下に制限することができる。
Boron (B): 0 to 0.005%
Boron (B) is an element that improves hardenability and strength, and also suppresses nucleation of grain boundaries. Therefore, in the present invention, boron (B) can be added for these effects. However, if the content of boron (B) exceeds a certain level, it not only causes excessive property effects but also increases manufacturing costs, so the content of boron (B) can be limited to 0.005% or less in the present invention.
カルシウム(Ca):0~0.05%、マグネシウム(Mg):0~0.05%、及びイットリウム(Y)を除く希土類元素(REM):0~0.05%のうち1種以上
ここで、希土類元素(REM)とは、スカンジウム(Sc)、イットリウム(Y)とランタナム族元素を意味する。カルシウム(Ca)、マグネシウム(Mg)、イットリウム(Y)を除いた希土類元素(REM)は、硫化物を球形化させることで鋼板の延性向上に寄与する元素であるため、本発明はこのような効果のためにカルシウム(Ca)、マグネシウム(Mg)、イットリウム(Y)を除いた希土類元素(REM)中の1種以上を添加することができる。但し、カルシウム(Ca)、マグネシウム(Mg)、イットリウム(Y)を除いた希土類元素(REM)の含有量が一定レベルを超過する場合、過度な特性効果だけでなく製造原価の上昇の原因となるため、本発明はカルシウム(Ca)、マグネシウム(Mg)、イットリウム(Y)を除いた希土類元素(REM)の含有量をそれぞれ0.05%以下に制限することができる。
At least one of calcium (Ca): 0-0.05%, magnesium (Mg): 0-0.05%, and rare earth elements (REM) excluding yttrium (Y): 0-0.05%. Here, rare earth elements (REM) refer to scandium (Sc), yttrium (Y), and lanthanum group elements. Since rare earth elements (REM) excluding calcium (Ca), magnesium (Mg), and yttrium (Y) are elements that contribute to improving the ductility of steel sheets by making sulfides spherical, the present invention can add at least one of rare earth elements (REM) excluding calcium (Ca), magnesium (Mg), and yttrium (Y) for such an effect. However, if the content of rare earth elements (REM) other than calcium (Ca), magnesium (Mg), and yttrium (Y) exceeds a certain level, it may cause excessive property effects as well as an increase in manufacturing costs, so the present invention may limit the content of rare earth elements (REM) other than calcium (Ca), magnesium (Mg), and yttrium (Y) to 0.05% or less.
タングステン(W):0~0.5%及びジルコニウム(Zr):0~0.5%のうち1種以上
タングステン(W)及びジルコニウム(Zr)は、焼入れ性を向上させて鋼板の強度を増加させる元素であるため、本発明はこのような効果のためにタングステン(W)及びジルコニウム(Zr)中の1種以上を添加することができる。但し、タングステン(W)及びジルコニウム(Zr)の含有量が一定レベルを超過する場合、過度な特性効果だけでなく製造原価の上昇の原因となるため、本発明はタングステン(W)及びジルコニウム(Zr)の含有量をそれぞれ0.5%以下に制限することができる。
At least one of tungsten (W): 0-0.5% and zirconium (Zr): 0-0.5% Tungsten (W) and zirconium (Zr) are elements that improve hardenability and increase the strength of steel sheet, so the present invention may add at least one of tungsten (W) and zirconium (Zr) for this effect. However, if the content of tungsten (W) and zirconium (Zr) exceeds a certain level, it may cause excessive property effects as well as an increase in manufacturing costs, so the present invention may limit the content of tungsten (W) and zirconium (Zr) to 0.5% or less, respectively.
アンチモン(Sb):0~0.5%及びスズ(Sn):0~0.5%のうち1種以上
アンチモン(Sb)及びスズ(Sn)は、鋼板のめっき濡れ性及びめっき密着性を向上させる元素であるため、本発明はこのような効果のためにアンチモン(Sb)及びスズ(Sn)中の1種以上を添加することができる。但し、アンチモン(Sb)及びスズ(Sn)の含有量が一定レベルを超過する場合、鋼板の脆性が増加して熱間加工または冷間加工時に亀裂が発生することがあるため、本発明はアンチモン(Sb)及びスズ(Sn)の含有量をそれぞれ0.5%以下に制限することができる。
At least one of antimony (Sb): 0-0.5% and tin (Sn): 0-0.5% Antimony (Sb) and tin (Sn) are elements that improve the plating wettability and plating adhesion of steel sheets, so the present invention may add at least one of antimony (Sb) and tin (Sn) for this effect. However, if the content of antimony (Sb) and tin (Sn) exceeds a certain level, the brittleness of the steel sheet increases and cracks may occur during hot working or cold working, so the present invention may limit the content of antimony (Sb) and tin (Sn) to 0.5% or less, respectively.
イットリウム(Y):0~0.2%及びハフニウム(Hf):0~0.2%のうち1種以上
イットリウム(Y)及びハフニウム(Hf)は、鋼板の耐食性を向上させる元素であるため、本発明はこのような効果のために、イットリウム(Y)及びハフニウム(Hf)中の1種以上を添加することができる。但し、イットリウム(Y)及びハフニウム(Hf)の含有量が一定レベルを超過する場合、鋼板の延性が劣化することがあるため、本発明はイットリウム(Y)及びハフニウム(Hf)の含有量をそれぞれ0.2%以下に制限することができる。
At least one of yttrium (Y): 0-0.2% and hafnium (Hf): 0-0.2% Yttrium (Y) and hafnium (Hf) are elements that improve the corrosion resistance of steel sheets, so in the present invention, at least one of yttrium (Y) and hafnium (Hf) may be added for this effect. However, if the content of yttrium (Y) and hafnium (Hf) exceeds a certain level, the ductility of the steel sheet may deteriorate, so in the present invention, the content of yttrium (Y) and hafnium (Hf) may be limited to 0.2% or less, respectively.
コバルト(Co):0~1.5%
コバルト(Co)は、ベイナイト変態を促進させてTRIP効果を増加させる元素であるため、本発明はこのような効果のために、コバルト(Co)を添加することができる。但し、コバルト(Co)含有量が一定レベルを超過する場合、鋼板の溶接性と延性が低下することがあるため、本発明はコバルト(Co)含有量を1.5%以下に制限することができる。
Cobalt (Co): 0-1.5%
Cobalt (Co) is an element that promotes bainite transformation and increases the TRIP effect, so in the present invention, cobalt (Co) can be added for this effect. However, if the cobalt (Co) content exceeds a certain level, the weldability and ductility of the steel sheet may decrease, so in the present invention, the cobalt (Co) content can be limited to 1.5% or less.
本発明の一側面による加工性に優れた高強度鋼板は、上述した成分以外に残りのFe及びその他の不可避不純物を含むことができる。但し、通常の製造過程では原料または周囲環境から意図しない不純物が不可避に混入され得るため、これを全面的に排除することはできない。これらの不純物は、本技術分野で通常の知識を有する者であれば、誰でも分かるものであるため、そのすべての内容を本明細書で特に言及しない。さらに、上述の成分以外に有効な成分の追加的な添加が全面的に排除されるものではない。 The high-strength steel plate with excellent workability according to one aspect of the present invention may contain the remaining Fe and other inevitable impurities in addition to the above-mentioned components. However, since unintended impurities may be inevitably mixed in from raw materials or the surrounding environment during normal manufacturing processes, these cannot be completely excluded. Since these impurities are known to anyone with ordinary knowledge in this technical field, the contents of all of them will not be specifically mentioned in this specification. Furthermore, the addition of additional effective components in addition to the above-mentioned components is not completely excluded.
本発明の一側面による加工性に優れた高強度鋼板は、微細組織として、テンパードマルテンサイト、ベイナイト、残留オーステナイト及びフェライトを含むことができる。好ましい一例として、本発明の一側面による加工性に優れた高強度鋼板は、体積分率で、30~70%のテンパードマルテンサイト、10~45%のベイナイト、10~40%の残留オーステナイト、3~20%のフェライト、及び不可避な組織を含むことがある。本発明の不可避な組織として、フレッシュマルテンサイト(Fresh Martensite)、パーライト、島状マルテンサイト(Martensite Austenite Constituent、M-A)などが含まれることがある。フレッシュマルテンサイトやパーライトが過度に形成されると、鋼板の加工性が低下したり、残留オーステナイトの分率を低減させることがある。 The high-strength steel sheet with excellent workability according to one aspect of the present invention may include tempered martensite, bainite, retained austenite, and ferrite as microstructures. As a preferred example, the high-strength steel sheet with excellent workability according to one aspect of the present invention may include, by volume fraction, 30 to 70% tempered martensite, 10 to 45% bainite, 10 to 40% retained austenite, 3 to 20% ferrite, and unavoidable structures. The unavoidable structures of the present invention may include fresh martensite, pearlite, island martensite (martensite austenite constituent, M-A), and the like. If fresh martensite or pearlite is formed excessively, the workability of the steel sheet may decrease or the fraction of retained austenite may be reduced.
本発明の一側面による加工性に優れた高強度鋼板は、下記の[関係式1]のように、残留オーステナイトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]γ、重量%)に対するフェライトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]F、重量%)の比が1.1~3.0の範囲を満たすことができる。
[関係式1]
1.1≦[Si+Al]F/[Si+Al]γ≦3.0
A high-strength steel plate with excellent workability according to one aspect of the present invention can satisfy the ratio of the average total content of silicon (Si) and aluminum (Al) contained in ferrite ([Si+Al] F , wt %) to the average total content of silicon (Si) and aluminum (Al) contained in retained austenite ([Si+Al] γ , wt %) in the range of 1.1 to 3.0, as shown in the following [Relational Formula 1].
[Relationship 1]
1.1≦[Si+Al] F /[Si+Al] γ ≦3.0
また、本発明の一側面による加工性に優れた高強度鋼板は、下記の[関係式2]で表される引張強度と延伸率のバランス(BT・E)が22,000(MPa%)以上であり、下記の[関係式3]で表される引張強度と穴拡げ率のバランス(BT・H)が7×106(MPa2%1/2)以上であり、下記の[関係式4]で表される曲げ加工率(BR)が0.5~3.0の範囲を満足するため、優れた強度と延性のバランス及び強度と穴拡げ性のバランスを有するだけでなく、優れた曲げ加工性を有することができる。
[関係式2]
BT・E=[引張強度(TS、MPa)]×[延伸率(El、%)]
[関係式3]
BT・H=[引張強度(TS、MPa)]2×[穴拡げ率(HER、%)]1/2
[関係式4]
BR=R/t
上記関係式4において、Rは90°曲げ試験後にクラックが発生しない最小曲げ半径(mm)を意味し、tは鋼板の厚さ(mm)を意味する。
In addition, the high-strength steel sheet having excellent workability according to one aspect of the present invention has a balance between tensile strength and elongation rate (B T·E ) represented by the following [Relationship 2] of 22,000 (MPa%) or more, a balance between tensile strength and hole expansion rate (B T·H ) represented by the following [Relationship 3] of 7 × 10 6 (MPa 2 % 1/2 ) or more, and a bending work ratio (B R ) represented by the following [Relationship 4] satisfies the range of 0.5 to 3.0. Therefore, not only does it have an excellent balance between strength and ductility and a balance between strength and hole expandability, but it also has excellent bending workability.
[Relationship 2]
BTE = [tensile strength (TS, MPa)] × [elongation rate (El, %)]
[Relationship 3]
BTH = [tensile strength (TS, MPa)] 2 × [hole expansion ratio (HER,%)] 1/2
[Relationship 4]
BR = R/t
In the above Relational Formula 4, R means the minimum bending radius (mm) at which no cracks occur after a 90° bending test, and t means the thickness (mm) of the steel plate.
本発明は、高強度特性だけでなく、優れた延性及び曲げ加工性を同時に確保するために、鋼板の残留オーステナイトを安定化させることが重要である。残留オーステナイトを安定化させるためには、鋼板のフェライト、ベイナイト及びテンパードマルテンサイトでの炭素(C)及びマンガン(Mn)をオーステナイトに濃化させることが必要である。しかしながら、フェライトを活用してオーステナイト中に炭素(C)を濃化させると、フェライトの低い強度特性のため、鋼板の強度が不足する可能性があり、過度な相間硬度差が発生して穴拡げ率(HER)が低下することがある。したがって、本発明は、ベイナイト及びテンパードマルテンサイトを活用してオーステナイト中に炭素(C)及びマンガン(Mn)を濃化させる。 In the present invention, it is important to stabilize the retained austenite in the steel sheet in order to simultaneously secure not only high strength properties but also excellent ductility and bending workability. In order to stabilize the retained austenite, it is necessary to concentrate carbon (C) and manganese (Mn) in the ferrite, bainite, and tempered martensite of the steel sheet in the austenite. However, if carbon (C) is concentrated in the austenite using ferrite, the strength of the steel sheet may be insufficient due to the low strength properties of ferrite, and excessive interphase hardness differences may occur, resulting in a decrease in the hole expansion ratio (HER). Therefore, the present invention concentrates carbon (C) and manganese (Mn) in the austenite using bainite and tempered martensite.
残留オーステナイト中のシリコン(Si)及びアルミニウム(Al)の含有量を一定範囲に制限する場合、ベイナイト及びテンパードマルテンサイトから残留オーステナイト中に炭素(C)及びマンガン(Mn)を多量に濃化させることができるため、残留オーステナイトを効果的に安定化させることができる。また、オーステナイト中のシリコン(Si)及びアルミニウム(Al)の含有量を一定範囲に制限することで、フェライト中のシリコン(Si)及びアルミニウム(Al)の含有量を増加させることができる。フェライト中のシリコン(Si)及びアルミニウム(Al)の含有量が増加するにつれて、フェライトの硬度は増加し、軟質組織であるフェライトと硬質組織であるテンパードマルテンサイト、ベイナイト及び残留オーステナイトの相間硬度差を効果的に減少させることができる。 When the content of silicon (Si) and aluminum (Al) in the retained austenite is limited to a certain range, carbon (C) and manganese (Mn) can be concentrated in large amounts in the retained austenite from bainite and tempered martensite, and the retained austenite can be effectively stabilized. In addition, by limiting the content of silicon (Si) and aluminum (Al) in austenite to a certain range, the content of silicon (Si) and aluminum (Al) in ferrite can be increased. As the content of silicon (Si) and aluminum (Al) in ferrite increases, the hardness of ferrite increases, and the interphase hardness difference between ferrite, which is a soft structure, and tempered martensite, bainite, and retained austenite, which are hard structures, can be effectively reduced.
したがって、本発明は、残留オーステナイトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]γ、重量%)に対するフェライトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]F、重量%)の比を1.1以上に制限するため、軟質組織と硬質組織との相間硬度差を効果的に減少させることができる。一方、フェライト中のシリコン(Si)及びアルミニウム(Al)の含有量が過多である場合、却ってフェライトが過度に硬質化して加工性が低下するため、目的とする引張強度と延伸率のバランス(TS×El)、引張強度と穴拡げ率のバランス(TS2×HER1/2)及び曲げ加工率(R/t)をすべて確保できなくなる。したがって、本発明は、残留オーステナイトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]γ、重量%)に対するフェライトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]F、重量%)の比を3.0以下に制限することができる。 Therefore, in the present invention, the ratio of the average total content ([Si+Al] F , wt%) of silicon (Si) and aluminum (Al) contained in ferrite to the average total content ([Si+Al] γ , wt%) of silicon (Si) and aluminum (Al) contained in the retained austenite is limited to 1.1 or more, so that the interphase hardness difference between the soft structure and the hard structure can be effectively reduced. On the other hand, if the content of silicon (Si) and aluminum (Al) in ferrite is excessive, the ferrite becomes excessively hard and the workability decreases, so that the desired balance between tensile strength and elongation rate (TS×El), the balance between tensile strength and hole expansion rate (TS 2 ×HER 1/2 ), and the bending rate (R/t) cannot all be secured. Therefore, the present invention can limit the ratio of the average total content of silicon (Si) and aluminum (Al) contained in ferrite ([Si+Al] F , wt %) to the average total content of silicon (Si) and aluminum (Al) contained in retained austenite ([Si+Al] γ , wt %) to 3.0 or less.
残留オーステナイトを含む鋼板は、加工中のオーステナイトからマルテンサイトへの変態時に発生する変態有機焼成によって優れた延性及び曲げ加工性を有する。残留オーステナイトの分率が一定レベル未満の場合には、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であるか、曲げ加工率(R/t)が3.0を超過することがある。一方、残留オーステナイトの分率が一定レベルを超過すると、局部延伸率(Local Elongation)が低下することがある。したがって、本発明は、引張強度と延伸率のバランス(TS×El)だけでなく、曲げ加工率(R/t)に優れた鋼板を得るために、残留オーステナイトの分率を10~40体積%の範囲に制限することができる。 Steel sheets containing retained austenite have excellent ductility and bending workability due to transformation organic sintering that occurs when austenite transforms into martensite during processing. If the fraction of retained austenite is less than a certain level, the balance between tensile strength and elongation (TS x El) may be less than 22,000 MPa% or the bending workability (R/t) may exceed 3.0. On the other hand, if the fraction of retained austenite exceeds a certain level, the local elongation may decrease. Therefore, in the present invention, the fraction of retained austenite can be limited to a range of 10 to 40 volume % in order to obtain a steel sheet with an excellent bending workability (R/t) as well as a good balance between tensile strength and elongation (TS x El).
一方、焼戻しされていないマルテンサイト(フレッシュマルテンサイト)及びテンパードマルテンサイトは、いずれも鋼板の強度を向上させる微細組織である。しかしながら、テンパードマルテンサイトと比較すると、フレッシュマルテンサイトは鋼板の延性及び穴拡げ性を大きく低下させる特性がある。これは、焼戻し熱処理によってテンパードマルテンサイトの微細組織が軟質化するためである。したがって、本発明は、強度と延性のバランス、強度と穴拡げ性のバランス及び曲げ加工性に優れた鋼板を提供するために、テンパードマルテンサイトを活用することが好ましい。テンパードマルテンサイトの分率が一定レベル未満では、22,000MPa%以上の引張強度と延伸率のバランス(TS×El)または7×106(MPa2%1/2)以上の引張強度と穴拡げ率のバランス(TS2×HER1/2)を確保しにくく、テンパードマルテンサイトの分率が一定レベル超過では、延性及び加工性が低下して、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であるか、曲げ加工率(R/t)が3.0を超過するため、好ましくない。したがって、本発明は、引張強度と延伸率のバランス(TS×El)、引張強度と穴拡げ率のバランス(TS2×HER1/2)及び曲げ加工率(R/t)に優れた鋼板を得るためにテンパードマルテンサイトの分率を30~70体積%の範囲に制限することができる。 On the other hand, both untempered martensite (fresh martensite) and tempered martensite are microstructures that improve the strength of steel sheets. However, compared with tempered martensite, fresh martensite has the property of greatly reducing the ductility and hole expandability of steel sheets. This is because the microstructure of tempered martensite is softened by tempering heat treatment. Therefore, in the present invention, it is preferable to utilize tempered martensite in order to provide a steel sheet that has a balance between strength and ductility, a balance between strength and hole expandability, and excellent bending workability. If the fraction of tempered martensite is less than a certain level, it is difficult to ensure a balance between tensile strength and elongation (TS×El) of 22,000 MPa% or more, or a balance between tensile strength and hole expansion (TS 2 ×HER 1/2 ) of 7×10 6 (MPa 2 % 1/2 ) or more, and if the fraction of tempered martensite exceeds a certain level, ductility and workability decrease, and the balance between tensile strength and elongation (TS×El) is less than 22,000 MPa% or the bending work rate (R/t) exceeds 3.0, which is not preferable. Therefore, in order to obtain a steel sheet excellent in the balance between tensile strength and elongation (TS×El), the balance between tensile strength and hole expansion (TS 2 ×HER 1/2 ), and the bending work rate (R/t), the fraction of tempered martensite can be limited to the range of 30 to 70 volume%.
引張強度と延伸率のバランス(TS×El)、引張強度と穴拡げ率のバランス(TS2×HER1/2)及び曲げ加工率(R/t)を向上させるためには、微細組織としてベイナイトが適切に含まれることが好ましい。ベイナイトの分率が一定レベル以上の場合に限って、22,000MPa%以上の引張強度と延伸率のバランス(TS×El)、7×106(MPa2%1/2)以上の引張強度と穴拡げ率のバランス(TS2×HER1/2)及び0.5~3.0の曲げ加工率(R/t)を確保することができる。一方、ベイナイトの分率が過度の場合、テンパードマルテンサイトの分率の減少が必然に伴うため、結果的に本発明が目的とする引張強度と延伸率のバランス(TS×El)、引張強度と穴拡げ率のバランス(TS2×HER1/2)、及び曲げ加工率(R/t)が確保できなくなる。したがって、本発明は、ベイナイトの分率を10~45体積%の範囲に制限することができる。 In order to improve the balance between tensile strength and elongation (TS×El), the balance between tensile strength and hole expansion ratio (TS 2 ×HER 1/2 ), and the bending ratio (R/t), it is preferable that bainite is appropriately contained as a microstructure. Only when the fraction of bainite is at a certain level or higher, the balance between tensile strength and elongation ratio (TS×El) of 22,000 MPa% or more, the balance between tensile strength and hole expansion ratio (TS 2 ×HER 1/2 ) of 7×10 6 (MPa 2 % 1/2 ) or more, and the bending ratio (R/t) of 0.5 to 3.0 can be ensured. On the other hand, when the fraction of bainite is excessive, a decrease in the fraction of tempered martensite is inevitably accompanied, and as a result, the balance between tensile strength and elongation ratio (TS×El), the balance between tensile strength and hole expansion ratio (TS 2 ×HER 1/2 ), and the bending ratio (R/t) targeted by the present invention cannot be ensured. Therefore, the present invention can limit the bainite fraction to the range of 10 to 45 volume percent.
フェライトは延性向上に寄与する元素であるため、フェライトの分率が一定レベル以上の場合に限って、本発明が目的とする引張強度と延伸率のバランス(TS×El)を確保することができる。但し、フェライトの分率が過度の場合には、相間硬度差が増加して穴拡げ率(HER)が低下することがあるため、本発明が目的とする引張強度と穴拡げ率のバランス(TS2×HER1/2)が確保できなくなる。したがって、本発明はフェライトの分率を3~20体積%の範囲に制限することができる。 Since ferrite is an element that contributes to improving ductility, the balance between tensile strength and elongation (TS×El) targeted by the present invention can be ensured only when the fraction of ferrite is at a certain level or higher. However, if the fraction of ferrite is excessive, the interphase hardness difference increases and the hole expansion ratio (HER) may decrease, making it impossible to ensure the balance between tensile strength and hole expansion ratio (TS 2 ×HER 1/2 ) targeted by the present invention. Therefore, the present invention can limit the fraction of ferrite to a range of 3 to 20 volume percent.
以下、本発明の鋼板を製造する方法の一例について詳細に説明する。 Below, an example of a method for manufacturing the steel plate of the present invention will be described in detail.
本発明の一側面による高強度鋼板の製造方法は、所定の成分を有する鋼スラブを用意し、鋼スラブを加熱し、熱間圧延する段階;上記熱間圧延された鋼板を巻き取る段階;上記巻き取られた鋼板を650~850℃の温度範囲で600~1700秒間熱延焼鈍によって熱処理する段階;上記熱延焼鈍によって熱処理された鋼板を冷間圧延する段階;上記冷間圧延された鋼板を5℃/s以上の平均昇温速度でAc1以上Ac3未満の温度範囲まで加熱(1次加熱)して、50秒以上維持(1次維持)する段階;平均冷却速度1℃/s以上で、100~300℃の温度範囲まで冷却(1次冷却)する段階;上記1次冷却された鋼板を300~500℃の温度範囲まで加熱(2次加熱)して、50秒以上維持(2次維持)する段階;及び常温まで冷却(2次冷却)する段階;を含むことができる。 A method for manufacturing a high-strength steel sheet according to one aspect of the present invention includes the steps of preparing a steel slab having a predetermined composition, heating the steel slab, and hot rolling the steel slab; winding the hot-rolled steel sheet; heat-treating the wound steel sheet by hot-rolling annealing at a temperature range of 650 to 850°C for 600 to 1700 seconds; cold-rolling the steel sheet heat-treated by hot-rolling annealing; heating the cold-rolled steel sheet to a temperature range of Ac1 to Ac3 at an average heating rate of 5°C/s or more (primary heating) and maintaining the temperature for 50 seconds or more (primary maintenance); cooling to a temperature range of 100 to 300°C at an average cooling rate of 1°C/s or more (primary cooling); heating the primarily cooled steel sheet to a temperature range of 300 to 500°C (secondary heating) and maintaining the temperature for 50 seconds or more (secondary maintenance); and cooling to room temperature (secondary cooling).
鋼スラブの用意及び加熱
所定の成分を有する鋼スラブを用意する。本発明の鋼スラブは、上述の鋼板の合金組成と対応する合金組成を有するため、鋼スラブの合金組成に対する説明は、上述の鋼板の合金組成に対する説明に代わる。
[0033] A steel slab having a predetermined composition is prepared. Since the steel slab of the present invention has an alloy composition corresponding to the alloy composition of the steel plate described above, the description of the alloy composition of the steel slab replaces the description of the alloy composition of the steel plate described above.
用意された鋼スラブを一定温度範囲に加熱することができ、このときの鋼スラブの加熱温度は1000~1350℃の範囲であってもよい。鋼スラブの加熱温度が1000℃未満である場合、目的とする仕上げ熱間圧延の温度範囲以下の温度区間で熱間圧延されるおそれがあり、鋼スラブの加熱温度が1350℃を超える場合、鋼の融点に到達して溶けるおそれがある。 The prepared steel slab can be heated to a certain temperature range, and the heating temperature of the steel slab at this time may be in the range of 1000 to 1350°C. If the heating temperature of the steel slab is less than 1000°C, there is a risk that it will be hot rolled in a temperature range below the temperature range of the intended finish hot rolling, and if the heating temperature of the steel slab exceeds 1350°C, there is a risk that it will reach the melting point of the steel and melt.
熱間圧延及び巻取り
加熱された鋼スラブは、熱間圧延されて熱延鋼板として提供されてもよい。熱間圧延時の仕上げ熱間圧延の温度は、800~1000℃の範囲が好ましい。仕上げ熱間圧延の温度が800℃未満である場合、過度の圧延負荷が問題になることがあり、仕上げ熱間圧延の温度が1000℃を超える場合、熱延鋼板の結晶粒が粗大に形成され、最終鋼板の物性低下を引き起こすことがある。
Hot Rolling and Coiling The heated steel slab may be hot rolled to provide a hot rolled steel sheet. The finish hot rolling temperature during hot rolling is preferably in the range of 800 to 1000°C. If the finish hot rolling temperature is less than 800°C, excessive rolling load may become a problem, and if the finish hot rolling temperature exceeds 1000°C, the crystal grains of the hot rolled steel sheet may be formed coarsely, which may cause a decrease in the physical properties of the final steel sheet.
熱間圧延が完了された熱延鋼板は、10℃/s以上の平均冷却速度で冷却されてもよく、300~600℃の温度で巻き取ることができる。巻取り温度が300℃未満である場合、巻取りが容易でなく、巻取り温度が600℃を超過する場合、表面スケール(scale)が熱延鋼板の内部まで形成されて、酸洗を難しくするおそれがある。 After hot rolling, the hot-rolled steel sheet may be cooled at an average cooling rate of 10°C/s or more and coiled at a temperature of 300 to 600°C. If the coiling temperature is less than 300°C, coiling is not easy, and if the coiling temperature exceeds 600°C, surface scale may form inside the hot-rolled steel sheet, making pickling difficult.
熱延焼鈍による熱処理
巻取り後の後続工程である酸洗及び冷間圧延を容易に行うために、熱延焼鈍による熱処理工程を行うことが好ましい。熱延焼鈍による熱処理は、650~850℃の温度区間で600~1700秒間行うことができる。熱延焼鈍による熱処理温度が650℃未満であるか、熱延焼鈍による熱処理時間が600秒未満である場合、熱延焼鈍によって熱処理された鋼板の強度が高く、後続する冷間圧延が容易でないことがある。一方、熱延焼鈍による熱処理温度が850℃を超えるか、熱延焼鈍による熱処理時間が1700秒を超過する場合、鋼板内部に深く形成されたスケール(scale)に起因して酸洗が容易でないことがある。
Heat Treatment by Hot Rolling Annealing In order to easily perform the subsequent processes of pickling and cold rolling after coiling, it is preferable to perform a heat treatment process by hot rolling annealing. The heat treatment by hot rolling annealing can be performed for 600 to 1700 seconds at a temperature range of 650 to 850°C. If the heat treatment temperature by hot rolling annealing is less than 650°C or the heat treatment time by hot rolling annealing is less than 600 seconds, the strength of the steel sheet heat treated by hot rolling annealing is high, and the subsequent cold rolling may not be easy. On the other hand, if the heat treatment temperature by hot rolling annealing exceeds 850°C or the heat treatment time by hot rolling annealing exceeds 1700 seconds, pickling may not be easy due to scale formed deep inside the steel sheet.
酸洗及び冷間圧延
熱延焼鈍による熱処理後に鋼板表面に生成されたスケールを除去するために酸洗を行い、冷間圧延を行うことができる。本発明において、酸洗及び冷間圧延の条件を特に制限するものではないが、冷間圧延は累積圧下率30~90%で行うことが好ましい。冷間圧延の累積圧下率が90%を超過する場合、鋼板の高い強度により冷間圧延を短時間で行うことが難しいおそれがある。
Pickling and cold rolling In order to remove scale formed on the steel sheet surface after the heat treatment by hot rolling annealing, pickling and cold rolling can be performed. In the present invention, the conditions of pickling and cold rolling are not particularly limited, but it is preferable that cold rolling is performed at a cumulative reduction of 30 to 90%. If the cumulative reduction of cold rolling exceeds 90%, it may be difficult to perform cold rolling in a short time due to the high strength of the steel sheet.
冷間圧延された鋼板は、焼鈍熱処理工程を経て未めっきの冷延鋼板で製作されるか、耐食性を付与するためにめっき工程を経てめっき鋼板で製作されることができる。めっきは、溶融亜鉛めっき、電気亜鉛めっき、溶融アルミニウムめっきなどのめっき方法を適用することができ、その方法及び種類を特に制限しない。 The cold-rolled steel sheet can be produced as an uncoated cold-rolled steel sheet after an annealing heat treatment process, or as a coated steel sheet after a coating process to impart corrosion resistance. Coating methods such as hot-dip galvanizing, electrolytic galvanizing, and hot-dip aluminum plating can be applied, and the method and type are not particularly limited.
焼鈍熱処理
本発明は、鋼板の強度及び加工性の同時確保のために焼鈍熱処理工程を行う。
Annealing Heat Treatment In the present invention, an annealing heat treatment step is carried out in order to simultaneously ensure the strength and workability of the steel sheet.
冷間圧延された鋼板をAc1以上Ac3未満(二相域)の温度範囲で加熱(1次加熱)し、当該温度範囲で50秒以上維持(1次維持)する。1次加熱または1次維持温度がAc3以上(単相域)の場合、目的とするフェライト組織を実現することができないため、目的とするレベルの[Si+Al]F/[Si+Al]γ及び引張強度と穴拡げ率のバランス(TS2×HER1/2)が実現できなくなる。また、1次加熱または1次維持温度がAc1未満の温度範囲である場合、十分な加熱が行われず、後続する熱処理によっても、本発明が目的とする微細組織が実現できないおそれがある。1次加熱の平均昇温速度は、5℃/s以上であってもよい。 The cold-rolled steel sheet is heated (primary heating) in a temperature range of Ac1 or more and less than Ac3 (two-phase region) and maintained at that temperature range for 50 seconds or more (primary maintenance). If the primary heating or primary maintenance temperature is Ac3 or more (single-phase region), the desired ferrite structure cannot be realized, and the desired level of [Si+Al] F /[Si+Al] γ and the balance between tensile strength and hole expansion ratio ( TS2 ×HER1 /2 ) cannot be realized. In addition, if the primary heating or primary maintenance temperature is in a temperature range less than Ac1, sufficient heating is not performed, and the microstructure desired by the present invention may not be realized even by the subsequent heat treatment. The average heating rate of the primary heating may be 5°C/s or more.
1次維持時間が50秒未満である場合には、組織を十分に均一化できず、鋼板の物性が低下することがある。1次維持時間の上限は特に限定しないが、結晶粒粗大化による靭性の減少を防止するために、1次加熱時間は1200秒以下に制限することが好ましい。 If the primary maintenance time is less than 50 seconds, the structure may not be sufficiently homogenized, and the physical properties of the steel sheet may deteriorate. There is no particular upper limit to the primary maintenance time, but it is preferable to limit the primary heating time to 1200 seconds or less to prevent a decrease in toughness due to grain coarsening.
1次維持後、平均冷却速度1℃/s以上の1次冷却速度で100~300℃の1次冷却停止温度まで冷却(1次冷却)することができる。1次冷却速度の上限は特に規定する必要はないが、100℃以下とすることが好ましい。1次冷却停止温度が100℃未満の場合には、テンパードマルテンサイトが過度に形成され、残留オーステナイトの形成量が不足して、上記鋼板の[Si+Al]F/[Si+Al]γ、引張強度と延伸率のバランス(TS×El)及び曲げ加工率(R/t)を低下させることができる。一方、1次冷却停止温度が300℃を超えると、ベイナイトが過度に形成され、テンパードマルテンサイトの形成量が不足して上記鋼板の引張強度と延伸率のバランス(TS×El)及び引張強度と穴拡げ率のバランス(TS2×HER1/2)を低下させることがある。 After the first maintenance, the steel sheet can be cooled (primary cooling) to a primary cooling stop temperature of 100 to 300°C at a primary cooling rate of an average cooling rate of 1°C/s or more. The upper limit of the primary cooling rate does not need to be specified, but it is preferable to set it to 100°C or less. When the primary cooling stop temperature is less than 100°C, tempered martensite is excessively formed, and the amount of retained austenite formed is insufficient, which can reduce the [Si+Al] F /[Si+Al] γ , the balance between tensile strength and elongation rate (TS×El), and the bending work rate (R/t) of the steel sheet. On the other hand, when the primary cooling stop temperature exceeds 300°C, bainite is excessively formed, and the amount of tempered martensite formed is insufficient, which can reduce the balance between tensile strength and elongation rate (TS×El) and the balance between tensile strength and hole expansion rate ( TS2 ×HER1 /2 ) of the steel sheet.
上記1次冷却後、平均昇温速度5℃/s以上の2次加熱速度で300~500℃の2次加熱温度まで加熱(2次加熱)し、当該温度範囲で50秒以上維持(2次維持)することができる。2次昇温速度の上限は特に規定する必要はないが、100℃以下とすることが好ましい。2次加熱または2次維持温度が300℃未満であるか、維持時間が50秒未満であると、テンパードマルテンサイトが過度に形成され、鋼中のシリコン(Si)及びアルミニウム(Al)の含有量の制御が不十分であり、目的とする残留オーステナイトの分率を確保し難い。その結果、鋼板の[Si+Al]F/[Si+Al]γ、引張強度と延伸率のバランス(TS×El)及び曲げ加工率(R/t)が低下することがある。一方、2次加熱または維持温度が500℃を超えるか、2次維持時間が144,000秒以上の場合には、鋼中のシリコン(Si)及びアルミニウム(Al)の含有量の制御が不十分であって、残留オーステナイトの分率を確保し難い。その結果、上記鋼板の[Si+Al]F/[Si+Al]γ及び引張強度と延伸率のバランス(TS×El)が低下することがある。 After the primary cooling, the steel sheet is heated to a secondary heating temperature of 300 to 500°C at an average heating rate of 5°C/s or more (secondary heating) and maintained at that temperature range for 50 seconds or more (secondary maintenance). The upper limit of the secondary heating rate does not need to be specified, but it is preferably 100°C or less. If the secondary heating or secondary maintenance temperature is less than 300°C or the maintenance time is less than 50 seconds, tempered martensite is excessively formed, the content of silicon (Si) and aluminum (Al) in the steel is insufficiently controlled, and it is difficult to ensure the desired fraction of retained austenite. As a result, the [Si+Al] F /[Si+Al] γ , the balance between tensile strength and elongation rate (TS×El), and the bending rate (R/t) of the steel sheet may decrease. On the other hand, when the secondary heating or holding temperature exceeds 500° C. or the secondary holding time is 144,000 seconds or longer, the content of silicon (Si) and aluminum (Al) in the steel is insufficiently controlled, making it difficult to ensure the fraction of retained austenite, and as a result, the [Si+Al] F /[Si+Al] γ and the balance between tensile strength and elongation (TS×El) of the steel sheet may decrease.
2次維持後、1℃/s以上の平均冷却速度で常温まで冷却(2次冷却)することができる。 After the secondary maintenance, it can be cooled to room temperature (secondary cooling) at an average cooling rate of 1°C/s or more.
上述した製造方法によって製造された加工性に優れた高強度鋼板は、微細組織としてテンパードマルテンサイト、ベイナイト、残留オーステナイト及びフェライトを含むことができ、好ましい一例として、体積分率で、30~70%のテンパードマルテンサイト、10~45%のベイナイト、10~40%の残留オーステナイト、3~20%のフェライト及び不可避な組織を含むことができる。 The high-strength steel plate with excellent workability manufactured by the above-mentioned manufacturing method can contain tempered martensite, bainite, retained austenite and ferrite as microstructures, and as a preferred example, can contain, by volume fraction, 30-70% tempered martensite, 10-45% bainite, 10-40% retained austenite, 3-20% ferrite and unavoidable structures.
また、上述の製造方法によって製造された加工性に優れた高強度鋼板は、下記の[関係式1]のように、残留オーステナイトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]γ、重量%)に対するフェライトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]F、重量%)の比が1.1~3.0の範囲を満たすことができ、下記の[関係式2]で表される引張強度と延伸率のバランス(BT・E)が22,000(MPa%)以上であり、下記の[関係式3]で表される引張強度と穴拡げ率のバランス(BT・H)が7×106(MPa2%1/2)以上であり、下記の[関係式4]で表される曲げ加工率(BR)が0.5~3.0の範囲を満たすことができる。
[関係式1]
1.1≦[Si+Al]F/[Si+Al]γ≦3.0
[関係式2]
BT・E=[引張強度(TS、MPa)]×[延伸率(EL、%)]
[関係式3]
BT・H=[引張強度(TS、MPa)]2×[穴拡げ率(HER、%)]1/2
[関係式4]
BR=R/t
上記関係式4において、Rは90°曲げ試験後にクラックが発生しない最小曲げ半径(mm)を意味し、tは鋼板の厚さ(mm)を意味する。
In addition, the high-strength steel plate having excellent workability manufactured by the above-mentioned manufacturing method can satisfy the ratio of the average total content of silicon (Si) and aluminum (Al) contained in ferrite ([Si+Al] F , weight%) to the average total content of silicon (Si) and aluminum (Al) contained in retained austenite ([Si+Al] γ , weight%) in the range of 1.1 to 3.0 as shown in the following [Relational Formula 1], the balance between tensile strength and elongation rate (B T·E ) represented by the following [Relational Formula 2] is 22,000 (MPa%) or more, the balance between tensile strength and hole expansion rate (B T·H ) represented by the following [Relational Formula 3] is 7×10 6 (MPa 2 % 1/2 ) or more, and the bending work rate (B R ) represented by the following [Relational Formula 4] can satisfy the range of 0.5 to 3.0.
[Relationship 1]
1.1≦[Si+Al] F /[Si+Al] γ ≦3.0
[Relationship 2]
BTE = [tensile strength (TS, MPa)] × [elongation rate (EL, %)]
[Relationship 3]
BTH = [tensile strength (TS, MPa)] 2 × [hole expansion ratio (HER,%)] 1/2
[Relationship 4]
BR = R/t
In the above Relational Formula 4, R means the minimum bending radius (mm) at which no cracks occur after a 90° bending test, and t means the thickness (mm) of the steel plate.
以下、具体的な実施例を挙げて本発明の一側面による加工性に優れた高強度鋼板及びその製造方法についてより詳細に説明する。下記実施例は、本発明の理解を助けるためのものであり、本発明の権利範囲を限定するためのものではない点に留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項と、それから合理的に類推される事項によって決定されるためである。 The high-strength steel sheet with excellent workability and the manufacturing method thereof according to one aspect of the present invention will be described in more detail below with reference to specific examples. It should be noted that the following examples are intended to aid in understanding the present invention and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and matters that can be reasonably inferred therefrom.
(実施例)
下記表1に記載された合金組成(残りはFe及び不可避不純物である)を有する厚さ100mmの鋼スラブを製造し、1200℃で加熱した後、900℃で仕上げ熱間圧延を行った。その後、30℃/sの平均冷却速度で冷却し、表2及び表3の巻取り温度で巻取って厚さ3mmの熱延鋼板を製造した。上記熱延鋼板を表2及び3の条件で熱延焼鈍によって熱処理した。この後、酸洗して表面スケールを除去した後、1.5mm厚さまで冷間圧延を行った。
(Example)
A steel slab having a thickness of 100 mm and having the alloy composition shown in Table 1 below (the remainder being Fe and unavoidable impurities) was manufactured, heated at 1200°C, and then subjected to finish hot rolling at 900°C. Thereafter, the steel slab was cooled at an average cooling rate of 30°C/s and coiled at the coiling temperatures shown in Tables 2 and 3 to manufacture a hot-rolled steel sheet having a thickness of 3 mm. The hot-rolled steel sheet was heat treated by hot rolling annealing under the conditions shown in Tables 2 and 3. Thereafter, the steel slab was pickled to remove surface scale, and then cold rolled to a thickness of 1.5 mm.
この後、表2~5の焼鈍熱処理条件で熱処理を行い、鋼板を製造した。 Then, heat treatment was performed under the annealing heat treatment conditions in Tables 2 to 5 to produce steel sheets.
このように製造された鋼板の微細組織を観察し、その結果を表6及び表7に示した。微細組織のうち、フェライト(F)、ベイナイト(B)、テンパードマルテンサイト(TM)及びパーライト(P)は、研磨された試験片の断面をナイタルエッチングした後、SEMを介して観察した。このうち、区別が難しいベイナイト及びテンパードマルテンサイトは、ディラテーション評価後に膨張曲線を用いて分率を計算した。一方、フレッシュマルテンサイト(FM)と残留オーステナイト(残留γ)も区別が容易でないため、上記SEMで観察されたマルテンサイトと残留オーステナイトの分率からX線回折法で計算された残留オーステナイトの分率を差し引いた値をフレッシュマルテンサイト分率で決定した。 The microstructure of the steel sheets manufactured in this manner was observed, and the results are shown in Tables 6 and 7. Among the microstructures, ferrite (F), bainite (B), tempered martensite (TM), and pearlite (P) were observed through a SEM after nital etching of the polished cross section of the test specimen. Of these, the fractions of bainite and tempered martensite, which are difficult to distinguish, were calculated using dilatation curves after dilation evaluation. Meanwhile, since it is also difficult to distinguish between fresh martensite (FM) and retained austenite (residual γ), the fraction of retained austenite calculated by X-ray diffraction method was subtracted from the fractions of martensite and retained austenite observed with the SEM to determine the fraction of fresh martensite.
一方、鋼板の[Si+Al]F/[Si+Al]γ、引張強度と延伸率のバランス(TS×El)、引張強度と穴拡げ率のバランス(TS2×HER1/2)、曲げ加工率(R/t)を観察し、その結果を表8及び表9に示した。 On the other hand, the [Si+Al] / [Si+Al] γ , the balance between tensile strength and elongation rate (TS×El), the balance between tensile strength and hole expansion rate ( TS2 ×HER1 /2 ), and the bending rate (R/t) of the steel sheet were observed. The results are shown in Tables 8 and 9.
残留オーステナイトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]γ、重量%)及びフェライトに含まれるシリコン(Si)及びアルミニウム(Al)の平均合計含有量([Si+Al]F、重量%)は、EPMA(Electron Probe MicroAnalyser)を用いて測定した。 The average total content of silicon (Si) and aluminum (Al) contained in the retained austenite ([Si+Al] γ , % by weight) and the average total content of silicon (Si) and aluminum (Al) contained in the ferrite ([Si+Al] F , % by weight) were measured using an EPMA (Electron Probe MicroAnalyser).
引張強度(TS)及び延伸率(El)は、引張試験によって評価され、圧延板材の圧延方向に対して90°方向を基準にJIS5号規格に基づいて、採取された試験片で評価して、引張強度(TS)及び延伸率(El)を測定した。曲げ加工率(R/t)はV-曲げ試験で評価され、圧延板材の圧延方向に対して90°方向を基準に試験片を採取して、90°曲げ試験後にクラックが発生しない最小曲げ半径Rを板材の厚さtで割った値で決定して算出された。穴拡げ率(HER)は穴拡げ試験によって評価され、10mmφのパンチング孔(ダイ内径10.3mm、クリアランス12.5%)を形成した後、頂角60°の円錐形パンチをパンチング孔のバリ(burr)が外側となる方向にパンチング孔に挿入し、20mm/minの移動速度でパンチング孔の周辺部を圧迫拡張した後、下記の[関係式5]を用いて算出した。
[関係式5]
穴拡げ率(HER、%)={(D-D0)/D0}×100
上記関係式5において、Dは亀裂が厚さ方向に沿って鋼板を貫通したときの孔径(mm)を意味し、D0は初期孔径(mm)を意味する。
The tensile strength (TS) and elongation (El) were evaluated by a tensile test, and the tensile strength (TS) and elongation (El) were measured using test pieces taken based on the 90° direction relative to the rolling direction of the rolled plate material according to JIS No. 5. The bending rate (R/t) was evaluated by a V-bending test, and the test pieces were taken based on the 90° direction relative to the rolling direction of the rolled plate material, and the minimum bending radius R at which no cracks were generated after the 90° bending test was divided by the thickness t of the plate material. The hole expansion ratio (HER) was evaluated by a hole expansion test. After forming a punched hole of 10 mmφ (die inner diameter 10.3 mm, clearance 12.5%), a conical punch with an apex angle of 60° was inserted into the punched hole in a direction such that the burr of the punched hole was on the outside, and the periphery of the punched hole was compressed and expanded at a moving speed of 20 mm/min. Then, the HER ratio was calculated using the following [Relationship 5].
[Relationship 5]
Hole expansion ratio (HER,%)={(D−D 0 )/D 0 }×100
In the above Relational Formula 5, D means the hole diameter (mm) when the crack penetrates the steel plate along the thickness direction, and D0 means the initial hole diameter (mm).
上記表1~9に示したように、本発明で提示する条件を満たす試験片の場合、[Si+Al]F/[Si+Al]γの値が1.1~3.0の範囲を満たし、引張強度と延伸率のバランス(TS×El)が22,000MPa%以上であり、引張強度と穴拡げ率のバランス(TS2×HER1/2)が7×106(MPa2%1/2)以上であり、曲げ加工率(R/t)が0.5~3.0の範囲を満たすことで、優れた強度及び加工性を同時に備えることが分かる。 As shown in Tables 1 to 9 above, in the case of test pieces satisfying the conditions presented in the present invention, the value of [Si+Al] F /[Si+Al] γ is in the range of 1.1 to 3.0, the balance between tensile strength and elongation rate (TS×El) is 22,000 MPa% or more, the balance between tensile strength and hole expansion rate (TS 2 ×HER 1/2 ) is 7×10 6 (MPa 2 % 1/2 ) or more, and the bending rate (R/t) is in the range of 0.5 to 3.0, which shows that the test pieces have excellent strength and workability at the same time.
試験片2~5は、本発明の合金組成範囲は重複するが、熱延焼鈍温度及び時間が本発明の範囲を外れるため、酸洗不良が発生したり、冷間圧延時に破断が発生したことを確認することができる。 Test pieces 2 to 5 overlap with the alloy composition range of the present invention, but the hot rolling annealing temperature and time are outside the range of the present invention, so it can be confirmed that poor pickling occurred and fracture occurred during cold rolling.
試験片6は、冷間圧延後の焼鈍熱処理過程で1次加熱または維持温度が本発明が制限する範囲を超過するため、フェライトの形成量が不足した。その結果、試験片6は、[Si+Al]F/[Si+Al]γの値が1.1未満であり、引張強度と穴拡げ率のバランス(TS2×HER1/2)が7×106(MPa2%1/2)未満であることが確認できる。 In the case of test piece 6, the amount of ferrite formed was insufficient because the primary heating or maintenance temperature in the annealing heat treatment process after cold rolling exceeded the range limited by the present invention. As a result, it can be confirmed that the value of [Si+Al] F /[Si+Al] γ in test piece 6 is less than 1.1, and the balance between tensile strength and hole expansion ratio ( TS2 ×HER1 /2 ) is less than 7× 106 ( MPa2 % 1/2 ).
試験片7は、冷間圧延後の焼鈍熱処理過程で1次冷却速度が本発明が制限する範囲に及ばないため、フェライトが過度に形成され、残留オーステナイトが少なく形成された。その結果、試験片7は、[Si+Al]F/[Si+Al]γの値が3.0を超過し、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であることが確認できる。 In the case of test piece 7, the primary cooling rate during the annealing heat treatment after cold rolling was not within the range limited by the present invention, so that ferrite was formed excessively and retained austenite was formed in small amounts. As a result, it can be confirmed that the value of [Si+Al] F /[Si+Al] γ of test piece 7 exceeds 3.0, and the balance between tensile strength and elongation (TS×El) is less than 22,000 MPa%.
試験片12は、1次冷却停止温度が低くてテンパードマルテンサイトが過度に形成され、残留オーステナイトが少なく形成された。その結果、試験片12は、[Si+Al]F/[Si+Al]γの値が3.0を超過し、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であり、曲げ加工率(R/t)が3.0を超えることが確認できる。 In the test piece 12, the primary cooling stop temperature was low, so that tempered martensite was excessively formed and the amount of retained austenite was small. As a result, it can be confirmed that the value of [Si+Al] F /[Si+Al] γ of the test piece 12 exceeds 3.0, the balance between the tensile strength and the elongation rate (TS×El) is less than 22,000 MPa%, and the bending work ratio (R/t) exceeds 3.0.
試験片13は、1次冷却停止温度が高くてベイナイトが過度に形成され、テンパードマルテンサイトが少なく形成された。その結果、試験片13は、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であり、引張強度と穴拡げ率のバランス(TS2×HER1/2)が7×106(MPa2%1/2)未満であることが確認できる。 In test piece 13, the primary cooling stop temperature was high, so that bainite was excessively formed and tempered martensite was not formed much. As a result, it can be confirmed that the balance between tensile strength and elongation rate (TS×El) of test piece 13 is less than 22,000 MPa%, and the balance between tensile strength and hole expansion rate ( TS2 ×HER1 /2 ) is less than 7× 106 ( MPa2 % 1/2 ).
試験片14は、2次加熱または維持温度が低くてテンパードマルテンサイトが過度に形成され、残留オーステナイトが少なく形成された。その結果、試験片14は、[Si+Al]F/[Si+Al]γの値が3.0を超過し、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であり、曲げ加工率(R/t)が3.0を超えることが確認できる。 In the test piece 14, the secondary heating or holding temperature was low, so that tempered martensite was excessively formed and retained austenite was little formed. As a result, it was confirmed that the value of [Si+Al] F /[Si+Al] γ of the test piece 14 exceeded 3.0, the balance between tensile strength and elongation (TS×El) was less than 22,000 MPa%, and the bending ratio (R/t) exceeded 3.0.
試験片15は、2次加熱または維持温度が高くて残留オーステナイトの形成量が不足しており、[Si+Al]F/[Si+Al]γの値が3.0を超過し、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であることが確認できる。 In the case of the test piece 15, the secondary heating or maintenance temperature was high, so that the amount of the retained austenite formed was insufficient, and the value of [Si+Al] F /[Si+Al] γ exceeded 3.0, and the balance between the tensile strength and the elongation rate (TS×El) was less than 22,000 MPa%.
試験片16は、2次維持時間が不足してテンパードマルテンサイトが過度に形成され、残留オーステナイトが少なく形成された。その結果、試験片16は、[Si+Al]F/[Si+Al]γの値が3.0を超過し、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であり、曲げ加工率(R/t)が3.0を超えることが確認できる。 In the case of the test piece 16, the second holding time was insufficient, so that the tempered martensite was excessively formed and the retained austenite was little formed. As a result, it can be confirmed that the value of [Si+Al] F /[Si+Al] γ of the test piece 16 exceeds 3.0, the balance between the tensile strength and the elongation rate (TS×El) is less than 22,000 MPa%, and the bending work ratio (R/t) exceeds 3.0.
試験片17は、2次維持時間が過度であって残留オーステナイトの形成量が不足しており、[Si+Al]F/[Si+Al]γの値が3.0を超過し、引張強度と延伸率のバランス(TS×El)が22,000MPa%未満であることが確認できる。 It can be seen that in test piece 17, the secondary maintenance time was excessive, resulting in an insufficient amount of retained austenite formation, the value of [Si+Al] F /[Si+Al] γ exceeded 3.0, and the balance between tensile strength and elongation (TS×El) was less than 22,000 MPa%.
試験片40~48は、本発明で提示する製造条件は満たす場合であるが、合金組成の範囲を外れた場合である。これらの場合には、本発明の[Si+Al]F/[Si+Al]γ、引張強度と延伸率のバランス(TS×El)、引張強度と穴拡げ率のバランス(TS2×HER1/2)が7×106(MPa2%1/2)及び曲げ加工率(R/t)の条件を同時に満たせないことが確認できる。一方、試験片42は、アルミニウム(Al)及びシリコン(Si)の合計含有量が1.0%未満の場合として、[Si+Al]F/[Si+Al]γ、引張強度と延伸率のバランス(TS×El)及び曲げ加工率(R/t)の条件を満たさないことが確認できる。 The test pieces 40 to 48 satisfy the manufacturing conditions presented in the present invention, but are outside the range of the alloy composition. In these cases, it can be confirmed that the [Si+Al] F /[Si+Al] γ of the present invention, the balance between tensile strength and elongation rate (TS×El), the balance between tensile strength and hole expansion rate (TS 2 ×HER 1/2 ) of 7×10 6 (MPa 2 % 1/2 ), and the bending rate (R/t) conditions cannot be simultaneously satisfied. On the other hand, the test piece 42, in which the total content of aluminum (Al) and silicon (Si) is less than 1.0%, does not satisfy the conditions of [Si+Al] F /[Si+Al] γ , the balance between tensile strength and elongation rate (TS×El), and the bending rate (R/t).
以上、実施例を挙げて本発明を詳細に説明したが、これと異なる形態の実施例も可能である。したがって、以下に記載される特許請求の範囲の技術的思想及び範囲は実施例に限定しない。 The present invention has been described in detail above using examples, but other embodiments are also possible. Therefore, the technical ideas and scope of the claims described below are not limited to the examples.
Claims (9)
前記Si及びAlの合計含量(Si+Al)は1.0~6.0重量%であり、
微細組織として30~70体積%のテンパードマルテンサイト、10~45体積%のベイナイト、10~40体積%の残留オーステナイト、3~20体積%のフェライト及び不可避な組織を含み、
下記の[関係式1]を満たす、鋼板。
[関係式1]
1.1≦[Si+Al]F/[Si+Al]γ≦3.0
前記関係式1において、[Si+Al]Fは、フェライトに含まれるSi及びAlの平均合計含有量(重量%)であり、[Si+Al]γは、残留オーステナイトに含まれるSi及びAlの平均合計含有量(重量%)である。 In weight percent, C: 0.25 to 0.75%, Si: 4.0% or less, Mn: 0.9 to 5.0%, Al: 5.0% or less, P: 0.15% or less, S: 0.03% or less, N: 0.03% or less, the remainder being Fe and unavoidable impurities;
The total content of Si and Al (Si+Al) is 1.0 to 6.0 wt.%;
The microstructure includes 30 to 70 volume % tempered martensite, 10 to 45 volume % bainite, 10 to 40 volume % retained austenite, 3 to 20 volume % ferrite, and unavoidable structures;
A steel plate satisfying the following [Relationship 1].
[Relationship 1]
1.1≦[Si+Al] F /[Si+Al] γ ≦3.0
In the above-mentioned Relational Formula 1, [Si+Al] F is the average total content (wt%) of Si and Al contained in ferrite, and [Si+Al] γ is the average total content (wt%) of Si and Al contained in retained austenite.
(1)Ti:0~0.5%、Nb:0~0.5%及びV:0~0.5%のうち1種以上
(2)Cr:0~3.0%及びMo:0~3.0%のうち1種以上
(3)Cu:0~4.5%及びNi:0~4.5%のうち1種以上
(4)B:0~0.005%
(5)Ca:0~0.05%、Yを除くREM:0~0.05%及びMg:0~0.05%のうち1種以上
(6)W:0~0.5%及びZr:0~0.5%のうち1種以上
(7)Sb:0~0.5%及びSn:0~0.5%のうち1種以上
(8)Y:0~0.2%及びHf:0~0.2%のうち1種以上
(9)Co:0~1.5% The steel plate according to claim 1, further comprising any one or more of the following (1) to (9):
(1) One or more of Ti: 0-0.5%, Nb: 0-0.5%, and V: 0-0.5%; (2) One or more of Cr: 0-3.0% and Mo: 0-3.0%; (3) One or more of Cu: 0-4.5% and Ni: 0-4.5%; (4) B: 0-0.005%.
(5) One or more of Ca: 0-0.05%, REM excluding Y: 0-0.05%, and Mg: 0-0.05%. (6) One or more of W: 0-0.5%, and Zr: 0-0.5%. (7) One or more of Sb: 0-0.5%, and Sn: 0-0.5%. (8) One or more of Y: 0-0.2%, and Hf: 0-0.2%. (9) Co: 0-1.5%.
[関係式2]
BT・E=[引張強度(TS、MPa)]×[延伸率(El、%)]
[関係式3]
BT・H=[引張強度(TS、MPa)]2×[穴拡げ率(HER、%)]1/2
[関係式4]
BR=R/t
前記関係式4において、Rは90°曲げ試験後にクラックが発生しない最小曲げ半径(mm)を意味し、tは鋼板の厚さ(mm)を意味する。 The steel sheet according to claim 1, wherein the balance (B T·E ) between tensile strength and elongation rate represented by the following [Relationship 2] is 22,000 (MPa%) or more, the balance (B T·H ) between tensile strength and hole expansion rate represented by the following [Relationship 3] is 7×10 6 (MPa 2 % 1/2 ) or more, and the bending ratio (B R ) represented by the following [Relationship 4] is 0.5 to 3.0.
[Relationship 2]
BTE = [tensile strength (TS, MPa)] × [elongation rate (El, %)]
[Relationship 3]
BTH = [tensile strength (TS, MPa)] 2 × [hole expansion ratio (HER,%)] 1/2
[Relationship 4]
BR = R/t
In the above Relational Formula 4, R means the minimum bending radius (mm) at which no cracks occur after a 90° bending test, and t means the thickness (mm) of the steel plate.
前記熱間圧延された鋼板を巻き取る段階;
前記巻き取られた鋼板を650~850℃の温度範囲で600~1700秒間熱延焼鈍によって熱処理する段階;
前記熱延焼鈍によって熱処理された鋼板を冷間圧延する段階;
前記冷間圧延された鋼板をAc1以上Ac3未満の温度範囲まで加熱(1次加熱)して、50秒以上維持(1次維持)する段階;
平均冷却速度1.0℃/s以上で、100~300℃の温度範囲まで冷却(1次冷却)する段階;
前記1次冷却された鋼板を300~500℃の温度範囲まで加熱(2次加熱)して、50秒以上144,000秒以下維持(2次維持)する段階;及び
常温まで冷却(2次冷却)する段階;を含む、請求項1~3のいずれか一項に記載の鋼板の製造方法。 heating and hot rolling a steel slab having, by weight percent, C: 0.25-0.75%, Si: 4.0% or less, Mn: 0.9-5.0%, Al: 5.0% or less, P: 0.15% or less, S: 0.03% or less, N: 0.03% or less, and the remainder being Fe and unavoidable impurities , and the total content of Si and Al (Si+Al) being 1.0-6.0% by weight;
coiling the hot rolled steel sheet;
heat treating the coiled steel sheet by hot rolling annealing at a temperature range of 650 to 850° C. for 600 to 1700 seconds;
cold rolling the steel sheet heat-treated by the hot rolling annealing;
heating the cold-rolled steel sheet to a temperature range of Ac1 or more and less than Ac3 (primary heating) and maintaining the temperature for 50 seconds or more (primary maintenance);
a step of cooling (primary cooling) to a temperature range of 100 to 300° C. at an average cooling rate of 1.0° C./s or more;
The method for manufacturing a steel sheet according to any one of claims 1 to 3, comprising: heating the primarily cooled steel sheet to a temperature range of 300 to 500°C (secondary heating) and maintaining the temperature for 50 seconds or more and 144,000 seconds or less (secondary maintenance); and cooling the steel sheet to room temperature (secondary cooling).
(1)Ti:0~0.5%、Nb:0~0.5%及びV:0~0.5%のうち1種以上
(2)Cr:0~3.0%及びMo:0~3.0%のうち1種以上
(3)Cu:0~4.5%及びNi:0~4.5%のうち1種以上
(4)B:0~0.005%
(5)Ca:0~0.05%、Yを除くREM:0~0.05%及びMg:0~0.05%のうち1種以上
(6)W:0~0.5%及びZr:0~0.5%のうち1種以上
(7)Sb:0~0.5%及びSn:0~0.5%のうち1種以上
(8)Y:0~0.2%及びHf:0~0.2%のうち1種以上
(9)Co:0~1.5% The method for producing a steel plate according to claim 4, wherein the steel slab further comprises any one or more of the following (1) to (9):
(1) One or more of Ti: 0-0.5%, Nb: 0-0.5%, and V: 0-0.5%; (2) One or more of Cr: 0-3.0% and Mo: 0-3.0%; (3) One or more of Cu: 0-4.5% and Ni: 0-4.5%; (4) B: 0-0.005%.
(5) One or more of Ca: 0-0.05%, REM excluding Y: 0-0.05%, and Mg: 0-0.05%. (6) One or more of W: 0-0.5%, and Zr: 0-0.5%. (7) One or more of Sb: 0-0.5%, and Sn: 0-0.5%. (8) One or more of Y: 0-0.2%, and Hf: 0-0.2%. (9) Co: 0-1.5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024084081A JP2024109824A (en) | 2019-12-18 | 2024-05-23 | High-strength steel plate with excellent workability and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190169606A KR102353611B1 (en) | 2019-12-18 | 2019-12-18 | High strength steel sheet having excellent workability and method for manufacturing the same |
KR10-2019-0169606 | 2019-12-18 | ||
PCT/KR2020/016653 WO2021125596A1 (en) | 2019-12-18 | 2020-11-24 | High-strength steel sheet having superior workability, and manufacturing method therefor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024084081A Division JP2024109824A (en) | 2019-12-18 | 2024-05-23 | High-strength steel plate with excellent workability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023507953A JP2023507953A (en) | 2023-02-28 |
JP7554827B2 true JP7554827B2 (en) | 2024-09-20 |
Family
ID=76478433
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022536956A Active JP7554827B2 (en) | 2019-12-18 | 2020-11-24 | High-strength steel plate with excellent workability and manufacturing method thereof |
JP2024084081A Pending JP2024109824A (en) | 2019-12-18 | 2024-05-23 | High-strength steel plate with excellent workability and manufacturing method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024084081A Pending JP2024109824A (en) | 2019-12-18 | 2024-05-23 | High-strength steel plate with excellent workability and manufacturing method thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230052872A1 (en) |
EP (1) | EP4079901A4 (en) |
JP (2) | JP7554827B2 (en) |
KR (1) | KR102353611B1 (en) |
CN (1) | CN114787408A (en) |
WO (1) | WO2021125596A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010275627A (en) | 2009-04-27 | 2010-12-09 | Jfe Steel Corp | High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them |
JP2012041573A (en) | 2010-08-13 | 2012-03-01 | Nippon Steel Corp | High strength thin steel sheet having excellent elongation and press forming stability |
WO2013051238A1 (en) | 2011-10-04 | 2013-04-11 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
JP2013234340A (en) | 2012-05-07 | 2013-11-21 | Nippon Steel & Sumitomo Metal Corp | High-strength hot-dip galvanized steel plate with excellent moldability in ordinary and intermediate temperature range, and method for manufacturing the same |
JP2015200006A (en) | 2013-09-27 | 2015-11-12 | 株式会社神戸製鋼所 | High strength steel sheet excellent in ductility and low temperature toughness and manufacturing method therefor |
WO2016158160A1 (en) | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME |
JP2017053001A (en) | 2015-09-09 | 2017-03-16 | 新日鐵住金株式会社 | Galvanized steel sheet, galvannealed steel sheet, and their production methods |
KR101950596B1 (en) | 2017-08-24 | 2019-02-20 | 현대제철 주식회사 | Ultra high strength steel and methods of fabricating the same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4510488B2 (en) | 2004-03-11 | 2010-07-21 | 新日本製鐵株式会社 | Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same |
JP4901617B2 (en) | 2007-07-13 | 2012-03-21 | 新日本製鐵株式会社 | Alloyed hot-dip galvanized high-strength steel sheet having a tensile strength of 700 MPa or more and excellent in corrosion resistance, hole expansibility and ductility, and method for producing the same |
JP5418168B2 (en) * | 2008-11-28 | 2014-02-19 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof |
UA112771C2 (en) | 2011-05-10 | 2016-10-25 | Арселормітталь Інвестігасьон І Десароло Сл | STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS |
JP5862051B2 (en) * | 2011-05-12 | 2016-02-16 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof |
JP5924332B2 (en) * | 2013-12-12 | 2016-05-25 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP6306481B2 (en) * | 2014-03-17 | 2018-04-04 | 株式会社神戸製鋼所 | High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them |
KR101594670B1 (en) * | 2014-05-13 | 2016-02-17 | 주식회사 포스코 | Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof |
JP6554397B2 (en) * | 2015-03-31 | 2019-07-31 | 株式会社神戸製鋼所 | High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same |
EP3434801B1 (en) * | 2016-03-25 | 2021-09-08 | Nippon Steel Corporation | High strength steel sheet and high strength galvanized steel sheet |
JP6762868B2 (en) * | 2016-03-31 | 2020-09-30 | 株式会社神戸製鋼所 | High-strength steel sheet and its manufacturing method |
KR101917448B1 (en) * | 2016-12-20 | 2018-11-09 | 주식회사 포스코 | High strength hot-rolled steel sheet having excellent weldability and ductility, and mathod for manufacturing same |
WO2018147400A1 (en) | 2017-02-13 | 2018-08-16 | Jfeスチール株式会社 | High-strength steel plate and manufacturing method therefor |
JP6849536B2 (en) * | 2017-05-31 | 2021-03-24 | 株式会社神戸製鋼所 | High-strength steel sheet and its manufacturing method |
-
2019
- 2019-12-18 KR KR1020190169606A patent/KR102353611B1/en active IP Right Grant
-
2020
- 2020-11-24 EP EP20902283.9A patent/EP4079901A4/en active Pending
- 2020-11-24 CN CN202080085847.8A patent/CN114787408A/en active Pending
- 2020-11-24 JP JP2022536956A patent/JP7554827B2/en active Active
- 2020-11-24 US US17/785,870 patent/US20230052872A1/en active Pending
- 2020-11-24 WO PCT/KR2020/016653 patent/WO2021125596A1/en unknown
-
2024
- 2024-05-23 JP JP2024084081A patent/JP2024109824A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010275627A (en) | 2009-04-27 | 2010-12-09 | Jfe Steel Corp | High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them |
JP2012041573A (en) | 2010-08-13 | 2012-03-01 | Nippon Steel Corp | High strength thin steel sheet having excellent elongation and press forming stability |
WO2013051238A1 (en) | 2011-10-04 | 2013-04-11 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
JP2013234340A (en) | 2012-05-07 | 2013-11-21 | Nippon Steel & Sumitomo Metal Corp | High-strength hot-dip galvanized steel plate with excellent moldability in ordinary and intermediate temperature range, and method for manufacturing the same |
JP2015200006A (en) | 2013-09-27 | 2015-11-12 | 株式会社神戸製鋼所 | High strength steel sheet excellent in ductility and low temperature toughness and manufacturing method therefor |
WO2016158160A1 (en) | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME |
JP2017053001A (en) | 2015-09-09 | 2017-03-16 | 新日鐵住金株式会社 | Galvanized steel sheet, galvannealed steel sheet, and their production methods |
KR101950596B1 (en) | 2017-08-24 | 2019-02-20 | 현대제철 주식회사 | Ultra high strength steel and methods of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
JP2024109824A (en) | 2024-08-14 |
WO2021125596A1 (en) | 2021-06-24 |
US20230052872A1 (en) | 2023-02-16 |
JP2023507953A (en) | 2023-02-28 |
EP4079901A4 (en) | 2023-05-17 |
EP4079901A1 (en) | 2022-10-26 |
CN114787408A (en) | 2022-07-22 |
KR102353611B1 (en) | 2022-01-20 |
KR20210078006A (en) | 2021-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024109821A (en) | High-strength steel plate with excellent workability and manufacturing method thereof | |
JP7442645B2 (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP2023554449A (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP2024500723A (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP2023071938A (en) | High strength steel sheet having excellent ductility and workability, and method for manufacturing the same | |
JP2023554438A (en) | High-strength steel plate with excellent workability and its manufacturing method | |
US20230029040A1 (en) | High strength steel sheet having superior workability and method for manufacturing same | |
JP7554827B2 (en) | High-strength steel plate with excellent workability and manufacturing method thereof | |
JP7554828B2 (en) | High-strength steel plate with excellent workability and manufacturing method thereof | |
JP7417739B2 (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP7403658B2 (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP2023507951A (en) | High-strength steel sheet with excellent workability and its manufacturing method | |
JP2024063129A (en) | High strength steel sheet having excellent workability and method for manufacturing the same | |
US20240011118A1 (en) | High strength steel sheet having excellent workability and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240523 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7554827 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |