Nothing Special   »   [go: up one dir, main page]

JP7542381B2 - Arc welding control method - Google Patents

Arc welding control method Download PDF

Info

Publication number
JP7542381B2
JP7542381B2 JP2020164377A JP2020164377A JP7542381B2 JP 7542381 B2 JP7542381 B2 JP 7542381B2 JP 2020164377 A JP2020164377 A JP 2020164377A JP 2020164377 A JP2020164377 A JP 2020164377A JP 7542381 B2 JP7542381 B2 JP 7542381B2
Authority
JP
Japan
Prior art keywords
feed
period
signal
reverse
setting signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020164377A
Other languages
Japanese (ja)
Other versions
JP2022056565A (en
Inventor
賢人 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2020164377A priority Critical patent/JP7542381B2/en
Publication of JP2022056565A publication Critical patent/JP2022056565A/en
Application granted granted Critical
Publication of JP7542381B2 publication Critical patent/JP7542381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

本発明は、正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給して溶接するアーク溶接制御方法に関するものである。 The present invention relates to an arc welding control method in which welding wire is fed and welded by push-pull feed control using a push-side feed motor that rotates in the forward direction and a pull-side feed motor that repeats forward and reverse rotations.

一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。 In typical consumable electrode arc welding, the welding wire, which is a consumable electrode, is fed at a constant speed and an arc is generated between the welding wire and the base metal to perform welding. In consumable electrode arc welding, the welding wire and the base metal often enter a welding state in which short-circuit periods and arc periods alternate.

溶接品質をさらに向上させるために、溶接ワイヤの送給を正送と逆送とに交互に切り換えて溶接する正逆送給アーク溶接方法が提案されている。この正逆送給アーク溶接方法では、一定の送給速度の従来技術に比べて、短絡とアークとの繰り返しの周期を安定化することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。 To further improve welding quality, a forward/reverse feed arc welding method has been proposed in which the welding wire is fed alternately in forward and reverse directions. Compared to conventional techniques with a constant feed speed, this forward/reverse feed arc welding method can stabilize the cycle of repeated short circuits and arcs, thereby improving welding quality by reducing the amount of spatter and improving the bead appearance.

正逆送給アーク溶接方法では、溶接ワイヤの正送及び逆送を100Hz程度で高速・高精度に切り換える必要がある。このために、送給方式としてプッシュプル送給方式を採用することが多い。さらに、プッシュ側送給モータとプル側送給モータとの送給経路の間に溶接ワイヤを一時的に収容する中間ワイヤ収容部を設けることも多い。 In forward and reverse feed arc welding methods, it is necessary to switch between forward and reverse feed of the welding wire at high speed and high precision at about 100 Hz. For this reason, a push-pull feeding method is often adopted as the feeding method. Furthermore, an intermediate wire storage section that temporarily stores the welding wire is often provided between the feeding paths of the push side feeding motor and the pull side feeding motor.

正逆送給アーク溶接方法においては、短絡期間及びアーク期間の発生タイミングに同期して、正送期間と逆送期間とが切り換えられる。このために、溶接電圧の設定値、突き出し長さ等の溶接条件が変化して短絡期間とアーク期間との時間比率が変化すると、正送期間と逆送期間との時間比率も変化するので溶接ワイヤの平均送給速度が変化する。平均送給速度が変化すると、溶着量が変化するので、溶接品質が悪くなる。この問題に対処するために、特許文献1及び2の発明では、プッシュ側モータによって一定速度で正送送給し、中間ワイヤ収容部の収容量を検出し、この収容量に基づいてプル側モータのプル送給速度を補正制御している。この補正制御によって、平均送給速度が変化することを抑制している。 In the forward/reverse feed arc welding method, the forward feed period and the reverse feed period are switched in synchronization with the occurrence timing of the short circuit period and the arc period. Therefore, when the welding conditions such as the set value of the welding voltage and the projection length change and the time ratio between the short circuit period and the arc period changes, the time ratio between the forward feed period and the reverse feed period also changes, and the average feed speed of the welding wire changes. When the average feed speed changes, the deposition amount changes, and the welding quality deteriorates. To address this problem, the inventions of Patent Documents 1 and 2 forward feed at a constant speed using the push side motor, detect the capacity of the intermediate wire storage section, and correct and control the pull feed speed of the pull side motor based on this capacity. This correction control suppresses changes in the average feed speed.

特開2017-94380号公報JP 2017-94380 A 特開2020-99945号公報JP 2020-99945 A

従来技術の補正制御では、中間ワイヤ収容部の収容量に基づいてプル送給速度の正送ピーク値及び/又は逆送ピーク値を変化させている。しかし、溶接作業者が手動て溶接トーチを操作して溶接する半自動溶接において、この補正制御を行うと、溶接作業者の手振れによるワイヤ突き出し長さ、前進角、溶接速度等の変動に起因してアーク長が大きく変動し、溶接状態が不安定になりやすいという問題が発生する。 In the correction control of the conventional technology, the forward feed peak value and/or reverse feed peak value of the pull feed speed are changed based on the capacity of the intermediate wire storage section. However, in semi-automatic welding in which a welding operator manually operates a welding torch, when this correction control is performed, the arc length fluctuates greatly due to fluctuations in the wire extension length, advance angle, welding speed, etc. caused by the welding operator's hand shaking, which can cause problems such as unstable welding conditions.

そこで、本発明では、中間ワイヤ収容部の収容量に基づいてプル送給速度を補正制御する正逆送給アーク溶接方法において、溶接作業者の手振れに起因して溶接状態が不安定になることを抑制することができるアーク溶接制御方法を提供することを目的とする。 The present invention aims to provide an arc welding control method that can prevent the welding state from becoming unstable due to the welding operator's hand shaking in a forward/reverse feed arc welding method that corrects and controls the pull feed speed based on the capacity of the intermediate wire storage section.

上述した課題を解決するために、請求項1の発明は、
正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給し、
前記プッシュ側送給モータと前記プル側送給モータとの送給経路の間に前記溶接ワイヤを一時的に収容する中間ワイヤ収容部を設け、前記中間ワイヤ収容部の収容量に基づいて前記プル側送給モータのプル送給速度を補正し、
短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
前記プル送給速度の逆送加速期間及び正送加速期間を所定値に維持し、
前記収容量に基づいて、前記プル送給速度の正送減速期間及び/又は逆送減速期間を補正制御する、
ことを特徴とするアーク溶接制御方法である。
In order to solve the above-mentioned problems, the invention of claim 1 comprises:
The welding wire is fed by push-pull feed control using a push-side feed motor that rotates in a forward direction and a pull-side feed motor that repeats forward and reverse rotations;
an intermediate wire accommodating section for temporarily accommodating the welding wire is provided between a feed path of the push-side feed motor and the pull-side feed motor, and a pull feed speed of the pull-side feed motor is corrected based on an amount of the welding wire accommodated in the intermediate wire accommodating section;
1. A method for controlling arc welding in which a short circuit period and an arc period are repeated, comprising:
maintaining the reverse acceleration period and the forward acceleration period of the pull feed speed at predetermined values;
correcting and controlling a forward feed deceleration period and/or a reverse feed deceleration period of the pull feed speed based on the storage amount;
The present invention relates to an arc welding control method.

請求項2の発明は、
前記正送減速期間の開始時点における前記収容量に基づいて前記正送減速期間の前記補正制御を行い、前記逆送減速期間の開始時点における前記収容量に基づいて前記逆送減速期間の前記補正制御を行う、
ことを特徴とする請求項1に記載のアーク溶接制御方法である。
The invention of claim 2 is as follows:
performing the correction control of the forward transport deceleration period based on the capacity at a start point of the forward transport deceleration period, and performing the correction control of the reverse transport deceleration period based on the capacity at a start point of the reverse transport deceleration period;
2. The method for controlling arc welding according to claim 1 .

上述した課題を解決するために、請求項3の発明は、正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給し、
前記プッシュ側送給モータと前記プル側送給モータとの送給経路の間に前記溶接ワイヤを一時的に収容する中間ワイヤ収容部を設け、前記中間ワイヤ収容部の収容量に基づいて前記プル側送給モータのプル送給速度を補正し、
短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
前記収容量に基づいて前記プル送給速度の正送減速期間を前記補正制御したときは、前記正送減速期間と逆送加速期間との合算値が一定になるように前記逆送加速期間を前記補正制御し、
前記収容量に基づいて前記プル送給速度の前記逆送減速期間を前記補正制御したときは、前記逆送減速期間と正送加速期間との合算値が一定になるように前記正送加速期間を前記補正制御する、
ことを特徴とするアーク溶接制御方法である
In order to solve the above-mentioned problems, the present invention provides a welding wire feeder that feeds a welding wire by push-pull feed control using a push-side feed motor that rotates in a forward direction and a pull-side feed motor that repeats forward and reverse rotations,
an intermediate wire accommodating section for temporarily accommodating the welding wire is provided between a feed path between the push-side feed motor and the pull-side feed motor, and a pull feed speed of the pull-side feed motor is corrected based on an amount of the welding wire accommodated in the intermediate wire accommodating section;
1. A method for controlling arc welding in which a short circuit period and an arc period are repeated, comprising:
when the forward deceleration period of the pull feed speed is corrected and controlled based on the storage amount, the reverse acceleration period is corrected and controlled so that a sum of the forward deceleration period and the reverse acceleration period is constant,
When the reverse feed deceleration period of the pull feed speed is corrected and controlled based on the storage amount, the forward feed acceleration period is corrected and controlled so that a sum of the reverse feed deceleration period and the forward feed acceleration period becomes constant.
The present invention relates to an arc welding control method .

本発明によれば、中間ワイヤ収容部の収容量に基づいてプル送給速度を補正制御する正逆送給アーク溶接方法において、溶接作業者の手振れに起因して溶接状態が不安定になることを抑制することができる。 According to the present invention, in a forward/reverse feed arc welding method in which the pull feed speed is corrected and controlled based on the capacity of the intermediate wire storage section, it is possible to prevent the welding state from becoming unstable due to the welding operator's hand shaking.

本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。1 is a block diagram of a welding power source for implementing an arc welding control method according to a first embodiment of the present invention. 本発明の実施の形態1に係るアーク溶接制御方法を示す図1の溶接電源における各信号のタイミングチャートである。2 is a timing chart of each signal in the welding power source of FIG. 1 , illustrating an arc welding control method according to the first embodiment of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。 The following describes an embodiment of the present invention with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
[First embodiment]
1 is a block diagram of a welding power source for carrying out an arc welding control method according to a first embodiment of the present invention. Each block will be described below with reference to the diagram.

電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する上記の誤差増幅信号Eaによって駆動されるインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器を備えている。 The power supply main circuit PM receives a three-phase 200V or other commercial power supply (not shown), performs output control by inverter control or the like according to an error amplified signal Ea (described later), and outputs an output voltage E. Although not shown, this power supply main circuit PM includes a primary rectifier that rectifies the commercial power supply, a smoothing capacitor that smooths the rectified DC, an inverter circuit driven by the error amplified signal Ea described above that converts the smoothed DC into high-frequency AC, a high-frequency transformer that steps down the high-frequency AC to a voltage value suitable for welding, and a secondary rectifier that rectifies the stepped-down high-frequency AC into DC.

リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば100μHである。 The reactor WL smoothes the output voltage E. The inductance value of this reactor WL is, for example, 100 μH.

プッシュ側送給モータWMPは、後述するプッシュ送給制御信号Fcpを入力として、正送回転して一定速度のプッシュ送給速度Fwpで溶接ワイヤ1を送給する。プル側送給モータWMは、後述するプル送給制御信号Fcを入力として、正送回転と逆送回転とを交互に繰り返して溶接ワイヤ1を送給速度Fwで送給する。プッシュ側送給モータWMPが送給経路の上流側に設けられており、プル側送給モータWMは下流側に設けられている。両送給モータともに速度制御されている。両送給モータでプッシュプル送給制御系を構成している。 The push side feed motor WMP receives a push feed control signal Fcp (described later) as an input and rotates in the forward direction to feed the welding wire 1 at a constant push feed speed Fwp. The pull side feed motor WM receives a pull feed control signal Fc (described later) as an input and alternates between forward and reverse rotation to feed the welding wire 1 at a feed speed Fw. The push side feed motor WMP is provided on the upstream side of the feed path, and the pull side feed motor WM is provided on the downstream side. Both feed motors are speed controlled. Both feed motors make up a push-pull feed control system.

中間ワイヤ収容部WBは、プッシュ側送給モータWMPとプル側送給モータWMとの間の送給経路に設けられ、溶接ワイヤ1を一時的に収容し、収容量に応じた収容量信号Wbを出力する。中間ワイヤ収容部WBは、特許文献1等の従来技術で慣用されているので、詳細な構造については省略する。溶接ワイヤ1の収容量の検出は、機械的原理、電気的原理、光学的原理、磁気的原理、又はこれらの原理の組合せによって行う。 The intermediate wire storage unit WB is provided in the feed path between the push side feed motor WMP and the pull side feed motor WM, temporarily stores the welding wire 1, and outputs a storage amount signal Wb according to the storage amount. The intermediate wire storage unit WB is commonly used in conventional technology such as Patent Document 1, so a detailed structure will be omitted. The storage amount of the welding wire 1 is detected by mechanical principles, electrical principles, optical principles, magnetic principles, or a combination of these principles.

溶接ワイヤ1は、上記のプル側送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。溶接トーチ4の先端からはシールドガス(図示は省略)が噴出して、アーク3を大気から遮蔽する。 The welding wire 1 is fed through the welding torch 4 by the rotation of the feed roll 5 connected to the pull-side feed motor WM, and an arc 3 is generated between the base material 2 and the welding wire 1. A welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw flows through it. A shielding gas (not shown) is ejected from the tip of the welding torch 4 to shield the arc 3 from the atmosphere.

出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。 The output voltage setting circuit ER outputs a predetermined output voltage setting signal Er. The output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.

電圧誤差増幅回路EVは、上記の出力電圧設定信号Er及び上記の出力電圧検出信号Edを入力として、出力電圧設定信号Er(+)と出力電圧検出信号Ed(-)との誤差を増幅して、電圧誤差増幅信号Evを出力する。 The voltage error amplifier circuit EV receives the output voltage setting signal Er and the output voltage detection signal Ed as inputs, amplifies the error between the output voltage setting signal Er(+) and the output voltage detection signal Ed(-), and outputs the voltage error amplification signal Ev.

電流検出回路IDは、上記の溶接電流Iwを検出して、電流検出信号Idを出力する。電圧検出回路VDは、上記の溶接電圧Vwを検出して、電圧検出信号Vdを出力する。短絡判別回路SDは、上記の電圧検出信号Vdを入力として、この値が予め定めた短絡判別値(10V程度)未満のときは短絡期間にあると判別してHighレベルになり、以上のときはアーク期間にあると判別してLowレベルになる短絡判別信号Sdを出力する。 The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The short circuit determination circuit SD receives the voltage detection signal Vd and outputs a short circuit determination signal Sd that goes to High level when this value is less than a predetermined short circuit determination value (approximately 10 V) and determines that the short circuit is in a short circuit period, and goes to Low level when this value is equal to or greater than this value and determines that the arc period is in an arc period.

正送加速期間初期値設定回路TSUSは、予め定めた正送加速期間初期値設定信号Tsusを出力する。 The forward acceleration period initial value setting circuit TSUS outputs a predetermined forward acceleration period initial value setting signal Tsus.

正送減速期間初期値設定回路TSDSは、予め定めた正送減速期間初期値設定信号Tsdsを出力する。 The forward deceleration period initial value setting circuit TSDS outputs a predetermined forward deceleration period initial value setting signal Tsds.

逆送加速期間初期値設定回路TRUSは、予め定めた逆送加速期間初期値設定信号Trusを出力する。 The reverse acceleration period initial value setting circuit TRUS outputs a predetermined reverse acceleration period initial value setting signal Trus.

逆送減速期間初期値設定回路TRDSは、予め定めた逆送減速期間初期値設定信号Trdsを出力する。 The reverse deceleration period initial value setting circuit TRDS outputs a predetermined reverse deceleration period initial value setting signal Trds.

正送ピーク値設定回路WSRは、予め定めた正送ピーク値設定信号Wsrを出力する。 The forward transmission peak value setting circuit WSR outputs a predetermined forward transmission peak value setting signal Wsr.

逆送ピーク値設定回路WRRは、予め定めた逆送ピーク値設定信号Wrrを出力する。 The reverse transmission peak value setting circuit WRR outputs a predetermined reverse transmission peak value setting signal Wrr.

収容量設定回路WBRは、目標値となる予め定めた収容量設定信号Wbrを出力する。収容量誤差増幅回路EWは、上記の収容量設定信号Wbr及び上記の収容量信号Wbを入力として、収容量設定信号Wbr(-)と収容量信号Wb(+)との誤差を増幅して、収容量誤差増幅信号Ewを出力する。Ew=G・(Wb-Wbr)であり、Gは正の値の増幅率である。したがって、収容量信号Wbが目標値の収容量設定信号Wbrよりも大のときは収容量誤差増幅信号Ewは正の値となり、収容量信号Wbが目標値の収容量設定信号Wbrよりも小のときは収容量誤差増幅信号Ewは負の値となる。 The capacity setting circuit WBR outputs a predetermined capacity setting signal Wbr that is a target value. The capacity error amplifier circuit EW receives the capacity setting signal Wbr and the capacity signal Wb, amplifies the error between the capacity setting signal Wbr (-) and the capacity signal Wb (+), and outputs a capacity error amplification signal Ew. Ew = G (Wb - Wbr), where G is a positive amplification factor. Therefore, when the capacity signal Wb is greater than the target capacity setting signal Wbr, the capacity error amplification signal Ew is a positive value, and when the capacity signal Wb is less than the target capacity setting signal Wbr, the capacity error amplification signal Ew is a negative value.

プル送給速度補正回路FHは、上記の短絡判別信号Sd、上記の正送加速期間初期値設定信号Tsus、上記の正送減速期間初期値設定信号Tsds、上記の逆送加速期間初期値設定信号Trus、上記の逆送減速期間初期値設定信号Trds、及び上記の収容量誤差増幅信号Ewを入力として、以下に示す処理1)~6)の中から一つを選択して補正制御を行い、正送加速期間設定信号Tsur、正送減速期間設定信号Tsdr、逆送加速期間設定信号Trur及び逆送減速期間設定信号Trdrを出力する。以下に示す補正制御(変調制御)は、正送期間と逆送期間との1周期ごとに行われる。1周期は、10ms程度である。以下に示す補正制御はP制御の場合であるが、PI制御、PID制御であっても良い。 The pull feed speed correction circuit FH receives the short circuit discrimination signal Sd, the forward acceleration period initial value setting signal Tsus, the forward deceleration period initial value setting signal Tsds, the reverse acceleration period initial value setting signal Trus, the reverse deceleration period initial value setting signal Trds, and the capacity error amplification signal Ew as inputs, selects one of the following processes 1) to 6), performs correction control, and outputs the forward acceleration period setting signal Tsur, the forward deceleration period setting signal Tsdr, the reverse acceleration period setting signal Trur, and the reverse deceleration period setting signal Trdr. The correction control (modulation control) shown below is performed for each period of the forward feed period and the reverse feed period. One period is about 10 ms. The correction control shown below is for P control, but PI control or PID control may also be used.

処理1)正送減速期間設定信号Tsdrのみを補正制御する場合
短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。そして、その他の信号は入力信号のまま、Tsur=Tsus、Trur=Trus及びTrdr=Trdsとして出力する。
Process 1) When only the forward deceleration period setting signal Tsdr is corrected and controlled When the short circuit discrimination signal Sd changes to a high level (short circuit period) and the forward deceleration period starts, the forward deceleration period initial value setting signal Tsds is corrected and controlled (modulated) by the capacity error amplification signal Ew at that time, and the forward deceleration period setting signal Tsdr = Tsds + Ew is output. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward deceleration period setting signal Tsdr becomes shorter than the initial value, and the capacity signal Wb increases and approaches the set value. Then, the other signals are output as input signals, with Tsur = Tsus, Trur = Trus, and Trdr = Trds.

処理2)逆送減速期間設定信号Trdrのみを補正制御する場合
短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。そして、その他の信号は入力信号のまま、Tsur=Tsus、Tsdr=Tsds及びTrur=Trusとして出力する。
Process 2) When only the reverse deceleration period setting signal Trdr is corrected and controlled When the short circuit determination signal Sd changes to a low level (arc period) and the reverse deceleration period starts, the reverse deceleration period initial value setting signal Trds is corrected and controlled (modulated) by the capacity error amplification signal Ew at that time, and the reverse deceleration period setting signal Trdr = Trds - Ew is output. When the capacity signal Wb is larger than the capacity setting signal Wbr, the reverse deceleration period setting signal Trdr becomes shorter than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the reverse deceleration period setting signal Trdr becomes longer than the initial value, and the capacity signal Wb increases and approaches the set value. Then, the other signals are output as input signals, with Tsur = Tsus, Tsdr = Tsds, and Trur = Trus.

処理3)正送減速期間設定信号Tsdr及び逆送減速期間設定信号Trdrの2つを補正制御する場合
上記の処理1)及び処理2)の両方を行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。そして、その他の信号は入力信号のまま、Tsur=Tsus及びTrur=Trusとして出力する。
Process 3) In the case where both the forward feed deceleration period setting signal Tsdr and the reverse feed deceleration period setting signal Trdr are corrected and controlled, both of the above processes 1) and 2) are performed. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes longer than the initial value, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, and the capacity signal Wb increases and approaches the set value. The other signals are output as input signals with Tsur=Tsus and Trur=Trus.

処理4)正送減速期間設定信号Tsdr及び逆送加速期間設定信号Trurの2つを補正制御する場合
短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって逆送加速期間初期値設定信号Trusを補正制御(変調制御)して逆送加速期間設定信号Trur=Trus-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理4)では、Tsdr+Trurは一定値となるので、補正制御を行っても短絡期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。そして、その他の信号は入力信号のまま、Tsur=Tsus及びTrdr=Trdsとして出力する。
Process 4) When both the forward deceleration period setting signal Tsdr and the reverse acceleration period setting signal Trur are corrected and controlled When the short circuit discrimination signal Sd changes to a high level (short circuit period) and the forward deceleration period starts, the forward deceleration period initial value setting signal Tsds is corrected (modulated) by the capacity error amplification signal Ew at that time, and the forward deceleration period setting signal Tsdr = Tsds + Ew is output. At the same time, the reverse acceleration period initial value setting signal Trus is corrected (modulated) by the capacity error amplification signal Ew, and the reverse acceleration period setting signal Trur = Trus - Ew is output. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, the reverse acceleration period setting signal Trur becomes shorter than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, the reverse feed acceleration period setting signal Trur becomes longer than the initial value, and the capacity signal Wb increases and approaches the set value. Here, in process 4), Tsdr+Trur is a constant value, so even if correction control is performed, the short circuit period can be maintained at a substantially constant value, and the welding state can be stabilized. The other signals are output as input signals, with Tsur=Tsus and Trdr=Trds.

処理5)逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの2つを補正制御する場合
短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって正送加速期間初期値設定信号Tsusを補正制御(変調制御)して正送加速期間設定信号Tsur=Tsus+Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理5)では、Trdr+Tsurは一定値となるので、補正制御を行ってもアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。そして、その他の信号は入力信号のまま、Tsdr=Tsds及びTrur=Trusとして出力する。
Process 5) In case of corrective control of both reverse feed deceleration period setting signal Trdr and forward feed acceleration period setting signal Tsur When the short circuit discrimination signal Sd changes to a low level (arc period) and the reverse feed deceleration period starts, the reverse feed deceleration period initial value setting signal Trds is correctively controlled (modulated) by the capacity error amplified signal Ew at that time, and the reverse feed deceleration period setting signal Trdr = Trds - Ew is output. At the same time, the forward feed acceleration period initial value setting signal Tsus is correctively controlled (modulated) by the capacity error amplified signal Ew, and the forward feed acceleration period setting signal Tsur = Tsus + Ew is output. When the capacity signal Wb is larger than the capacity setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, the forward feed acceleration period setting signal Tsur becomes longer than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, the forward feed acceleration period setting signal Tsur becomes shorter than the initial value, and the capacity signal Wb increases and approaches the set value. Here, in process 5), Trdr+Tsur becomes a constant value, so that even if correction control is performed, the arc period can be maintained at a substantially constant value, and the welding state can be stabilized. The other signals are output as input signals with Tsdr=Tsds and Trur=Trus.

処理6)正送減速期間設定信号Tsdr、逆送加速期間設定信号Trur、逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの4つを補正制御する場合
上記の処理4)及び処理5)を両方行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理6)では、Tsdr+Trur及びTrdr+Tsurはそれぞれ一定値となるので、補正制御を行っても短絡期間及びアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 6) In the case where the four signals, forward feed deceleration period setting signal Tsdr, reverse feed acceleration period setting signal Trur, reverse feed deceleration period setting signal Trdr and forward feed acceleration period setting signal Tsur, are corrected and controlled: Processes 4) and 5) above are both performed. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes longer than its initial value, the reverse feed acceleration period setting signal Trur becomes shorter than its initial value, the reverse feed deceleration period setting signal Trdr becomes shorter than its initial value, the forward feed acceleration period setting signal Tsur becomes longer than its initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, the reverse feed acceleration period setting signal Trur becomes longer than the initial value, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, the forward feed acceleration period setting signal Tsur becomes shorter than the initial value, and the capacity signal Wb increases and approaches the set value. Here, in process 6), Tsdr+Trur and Trdr+Tsur are each constant, so that the short circuit period and the arc period can be maintained at approximately constant values even if correction control is performed, and the welding state can be stabilized.

プル送給速度設定回路FRは、上記の正送加速期間設定信号Tsur、上記の正送減速期間設定信号Tsdr、上記の逆送加速期間設定信号Trur、上記の逆送減速期間設定信号Trdr、上記の正送ピーク値設定信号Wsr、上記の逆送ピーク値設定信号Wrr及び上記の短絡判別信号Sdを入力として、以下の処理によって生成されたプル送給速度パターンをプル送給速度設定信号Frとして出力する。このプル送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。
1)正送加速期間設定信号Tsurによって定まる正送加速期間Tsu中は0から正送ピーク値設定信号Wsrによって定まる正の値の正送ピーク値Wspまで直線状に加速するプル送給速度設定信号Frを出力する。
2)続いて、正送ピーク期間Tsp中は、上記の正送ピーク値Wspを維持するプル送給速度設定信号Frを出力する。
3)短絡判別信号SdがLowレベル(アーク期間)からHighレベル(短絡期間)に変化すると、正送減速期間設定信号Tsdrによって定まる正送減速期間Tsdに移行し、上記の正送ピーク値Wspから0まで直線状に減速するプル送給速度設定信号Frを出力する。
4)続いて、逆送加速期間設定信号Trurによって定まる逆送加速期間Tru中は0から逆送ピーク値設定信号Wrrによって定まる負の値の逆送ピーク値Wrpまで直線状に加速するプル送給速度設定信号Frを出力する。
5)続いて、逆送ピーク期間Trp中は、上記の逆送ピーク値Wrpを維持するプル送給速度設定信号Frを出力する。
6)短絡判別信号SdがHighレベル(短絡期間)からLowレベル(アーク期間)に変化すると、逆送減速期間設定信号Trdrによって定まる逆送減速期間Trdに移行し、上記の逆送ピーク値Wrpから0まで直線状に減速するプル送給速度設定信号Frを出力する。
7)上記の1)~6)を繰り返すことによって正負の台形波状に変化する送給パターンのプル送給速度設定信号Frが生成される。
The pull feed speed setting circuit FR receives the forward feed acceleration period setting signal Tsur, the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal Trur, the reverse feed deceleration period setting signal Trdr, the forward feed peak value setting signal Wsr, the reverse feed peak value setting signal Wrr and the short circuit determination signal Sd as inputs, and outputs a pull feed speed pattern generated by the following process as a pull feed speed setting signal Fr. When this pull feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
1) During the forward feed acceleration period Tsu determined by the forward feed acceleration period setting signal Tsur, the pull feed speed setting signal Fr is output which linearly accelerates from 0 to the forward feed peak value Wsp, which is a positive value determined by the forward feed peak value setting signal Wsr.
2) Subsequently, during the forward feed peak period Tsp, the pull feed speed setting signal Fr for maintaining the forward feed peak value Wsp is output.
3) When the short circuit determination signal Sd changes from a low level (arc period) to a high level (short circuit period), the process transitions to a forward feed deceleration period Tsd determined by the forward feed deceleration period setting signal Tsdr, and the pull feed speed setting signal Fr that linearly decelerates from the forward feed peak value Wsp to 0 is output.
4) Subsequently, during the reverse acceleration period Tru determined by the reverse acceleration period setting signal Trur, the pull feed speed setting signal Fr is output which linearly accelerates from 0 to the reverse peak value Wrp, which is a negative value determined by the reverse peak value setting signal Wrr.
5) Subsequently, during the reverse feed peak period Trp, the pull feed speed setting signal Fr for maintaining the reverse feed peak value Wrp is output.
6) When the short circuit determination signal Sd changes from a high level (short circuit period) to a low level (arc period), the reverse feed deceleration period Trd determined by the reverse feed deceleration period setting signal Trdr begins, and the pull feed speed setting signal Fr that linearly decelerates the speed from the reverse feed peak value Wrp to 0 is output.
7) By repeating the above steps 1) to 6), a pull feed speed setting signal Fr is generated having a feed pattern that changes like a positive and negative trapezoidal wave.

プル送給制御回路FCは、上記のプル送給速度設定信号Frを入力として、プル送給速度設定信号Frの値に相当するプル送給速度Fwで溶接ワイヤ1を送給するためのプル送給制御信号Fcを上記のプル側送給モータWMに出力する。 The pull feed control circuit FC receives the pull feed speed setting signal Fr as input and outputs a pull feed control signal Fc to the pull side feed motor WM to feed the welding wire 1 at a pull feed speed Fw that corresponds to the value of the pull feed speed setting signal Fr.

プッシュ送給速度設定回路FRPは、正の値の予め定めたプッシュ送給速度設定信号Frpを出力する。プッシュ送給制御回路FCPは、上記のプッシュ送給速度設定信号Frpを入力として、プッシュ送給速度設定信号Frpの値に相当するプッシュ送給速度Fwpで溶接ワイヤ1を送給するためのプッシュ送給制御信号Fcpを上記のプッシュ側送給モータWMPに出力する。 The push feed speed setting circuit FRP outputs a predetermined push feed speed setting signal Frp of a positive value. The push feed control circuit FCP receives the push feed speed setting signal Frp and outputs a push feed control signal Fcp to the push side feed motor WMP to feed the welding wire 1 at a push feed speed Fwp that corresponds to the value of the push feed speed setting signal Frp.

減流抵抗器Rは、上記のリアクトルWLと溶接トーチ4との間に挿入される。この減流抵抗器Rの値は、短絡負荷(0.01~0.03Ω程度)の50倍以上大きな値(0.5~3Ω程度)に設定される。この減流抵抗器Rが通電路に挿入されると、リアクトルWL及び外部ケーブルのリアクトルに蓄積されたエネルギーが急放電される。 The current-reducing resistor R is inserted between the reactor WL and the welding torch 4. The value of this current-reducing resistor R is set to a value (approximately 0.5 to 3 Ω) that is 50 times larger than the short-circuit load (approximately 0.01 to 0.03 Ω). When this current-reducing resistor R is inserted into the current path, the energy stored in the reactor WL and the reactor of the external cable is suddenly discharged.

トランジスタTRは、上記の減流抵抗器Rと並列に接続されて、後述する駆動信号Drに従ってオン又はオフ制御される。 The transistor TR is connected in parallel with the current reducing resistor R and is controlled to be turned on or off according to the drive signal Dr described below.

くびれ検出回路NDは、上記の短絡判別信号Sd、上記の電圧検出信号Vd及び上記の電流検出信号Idを入力として、短絡判別信号SdがHighレベル(短絡期間)であるときの電圧検出信号Vdの電圧上昇値が基準値に達した時点でくびれの形成状態が基準状態になったと判別してHighレベルとなり、短絡判別信号SdがLowレベル(アーク期間)に変化した時点でLowレベルになるくびれ検出信号Ndを出力する。また、短絡期間中の電圧検出信号Vdの微分値がそれに対応した基準値に達した時点でくびれ検出信号NdをHighレベルに変化させるようにしても良い。さらに、電圧検出信号Vdの値を電流検出信号Idの値で除算して溶滴の抵抗値を算出し、この抵抗値の微分値がそれに対応する基準値に達した時点でくびれ検出信号NdをHighレベルに変化させるようにしても良い。 The constriction detection circuit ND receives the above short circuit determination signal Sd, the above voltage detection signal Vd, and the above current detection signal Id as inputs, and outputs a constriction detection signal Nd that determines that the constriction formation state has reached the reference state when the voltage rise value of the voltage detection signal Vd reaches a reference value when the short circuit determination signal Sd is at a high level (short circuit period) and goes to a high level, and goes to a low level when the short circuit determination signal Sd changes to a low level (arc period). In addition, the constriction detection signal Nd may be changed to a high level when the differential value of the voltage detection signal Vd during the short circuit period reaches a corresponding reference value. Furthermore, the value of the voltage detection signal Vd may be divided by the value of the current detection signal Id to calculate the resistance value of the droplet, and the constriction detection signal Nd may be changed to a high level when the differential value of this resistance value reaches a corresponding reference value.

低レベル電流設定回路ILRは、予め定めた低レベル電流設定信号Ilrを出力する。電流比較回路CMは、この低レベル電流設定信号Ilr及び上記の電流検出信号Idを入力として、Id<IlrのときはHighレベルになり、Id≧IlrのときはLowレベルになる電流比較信号Cmを出力する。 The low-level current setting circuit ILR outputs a predetermined low-level current setting signal Ilr. The current comparison circuit CM receives this low-level current setting signal Ilr and the current detection signal Id as inputs, and outputs a current comparison signal Cm that goes to a high level when Id<Ilr and a low level when Id≧Ilr.

駆動回路DRは、上記の電流比較信号Cm及び上記のくびれ検出信号Ndを入力として、くびれ検出信号NdがHighレベルに変化するとLowレベルに変化し、その後に電流比較信号CmがHighレベルに変化するとHighレベルに変化する駆動信号Drを上記のトランジスタTRのベース端子に出力する。したがって、この駆動信号Drはくびれが検出されるとLowレベルになり、トランジスタTRがオフ状態になり通電路に減流抵抗器Rが挿入されるので、短絡負荷を通電する溶接電流Iwは急減する。そして、急減した溶接電流Iwの値が低レベル電流設定信号Ilrの値まで減少すると、駆動信号DrはHighレベルになり、トランジスタTRがオン状態になるので、減流抵抗器Rは短絡されて通常の状態に戻る。 The drive circuit DR receives the current comparison signal Cm and the constriction detection signal Nd as inputs, and outputs a drive signal Dr to the base terminal of the transistor TR. The drive signal Dr changes to a low level when the constriction detection signal Nd changes to a high level, and then changes to a high level when the current comparison signal Cm changes to a high level. Therefore, when a constriction is detected, the drive signal Dr goes to a low level, the transistor TR is turned off, and the current-reducing resistor R is inserted in the current path, so that the welding current Iw passing through the short-circuit load is suddenly reduced. Then, when the value of the suddenly reduced welding current Iw decreases to the value of the low-level current setting signal Ilr, the drive signal Dr goes to a high level, the transistor TR is turned on, and the current-reducing resistor R is short-circuited and returns to the normal state.

電流制御設定回路ICRは、上記の短絡判別信号Sd、上記の低レベル電流設定信号Ilr及び上記のくびれ検出信号Ndを入力として、以下の処理を行い、電流制御設定信号Icrを出力する。
1)短絡判別信号SdがLowレベル(アーク期間)のときは、低レベル電流設定信号Ilrとなる電流制御設定信号Icrを出力する。
2)短絡判別信号SdがHighレベル(短絡期間)に変化すると、予め定めた初期期間中は予め定めた初期電流設定値となり、その後は予め定めた短絡時傾斜で予め定めた短絡時ピーク設定値まで上昇してその値を維持する電流制御設定信号Icrを出力する。
3)その後に、くびれ検出信号NdがHighレベルに変化すると、低レベル電流設定信号Ilrの値となる電流制御設定信号Icrを出力する。
The current control setting circuit ICR receives the short circuit determination signal Sd, the low level current setting signal Ilr, and the constriction detection signal Nd, performs the following processing, and outputs a current control setting signal Icr.
1) When the short circuit determination signal Sd is at a low level (arc period), a current control setting signal Icr which becomes a low-level current setting signal Ilr is output.
2) When the short circuit determination signal Sd changes to a high level (short circuit period), a predetermined initial current setting value is output during a predetermined initial period, and thereafter, a current control setting signal Icr is output which rises to a predetermined short circuit peak setting value at a predetermined short circuit slope and maintains that value.
3) Thereafter, when the squeezing detection signal Nd changes to a high level, the current control setting signal Icr having the value of the low-level current setting signal Ilr is output.

電流誤差増幅回路EIは、上記の電流制御設定信号Icr及び上記の電流検出信号Idを入力として、電流制御設定信号Icr(+)と電流検出信号Id(-)との誤差を増幅して、電流誤差増幅信号Eiを出力する。 The current error amplifier circuit EI receives the current control setting signal Icr and the current detection signal Id as inputs, amplifies the error between the current control setting signal Icr(+) and the current detection signal Id(-), and outputs a current error amplification signal Ei.

電流降下時間設定回路TDRは、予め定めた電流降下時間設定信号Tdrを出力する。 The current drop time setting circuit TDR outputs a predetermined current drop time setting signal Tdr.

小電流期間回路STDは、上記の短絡判別信号Sd及び上記の電流降下時間設定信号Tdrを入力として、短絡判別信号SdがLowレベル(アーク期間)に変化した時点から電流降下時間設定信号Tdrによって定まる時間が経過した時点でHighレベルになり、その後に短絡判別信号SdがHighレベル(短絡期間)になるとLowレベルになる小電流期間信号Stdを出力する。 The small current period circuit STD receives the above short circuit detection signal Sd and the above current drop time setting signal Tdr as inputs, and outputs a small current period signal Std that goes to a high level when the time determined by the current drop time setting signal Tdr has elapsed since the short circuit detection signal Sd changed to a low level (arc period), and then goes to a low level when the short circuit detection signal Sd goes to a high level (short circuit period).

電源特性切換回路SWは、上記の電流誤差増幅信号Ei、上記の電圧誤差増幅信号Ev、上記の短絡判別信号Sd及び上記の小電流期間信号Stdを入力として、以下の処理を行い、誤差増幅信号Eaを出力する。
1)短絡判別信号SdがHighレベル(短絡期間)に変化した時点から、短絡判別信号SdがLowレベル(アーク期間)に変化して予め定めた遅延期間が経過した時点までの期間中は、電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。
2)その後の大電流アーク期間中は、電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。
3)その後のアーク期間中に小電流期間信号StdがHighレベルとなる小電流アーク期間中は、電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。
この回路によって、溶接電源の特性は、短絡期間、遅延期間及び小電流アーク期間中は定電流特性となり、それ以外の大電流アーク期間中は定電圧特性となる。
The power supply characteristics switching circuit SW receives the current error amplified signal Ei, the voltage error amplified signal Ev, the short circuit determination signal Sd, and the small current period signal Std as inputs, performs the following processing, and outputs an error amplified signal Ea.
1) During the period from the point at which the short circuit determination signal Sd changes to a high level (short circuit period) to the point at which a predetermined delay period has elapsed since the short circuit determination signal Sd changes to a low level (arc period), the current error amplified signal Ei is output as the error amplified signal Ea.
2) During the subsequent large current arc period, the voltage error amplified signal Ev is output as the error amplified signal Ea.
3) During the subsequent small current arc period in which the small current period signal Std is at a high level, the current error amplified signal Ei is output as the error amplified signal Ea.
This circuit causes the welding power supply to have constant current characteristics during the short circuit period, delay period and small current arc period, and constant voltage characteristics during other large current arc periods.

図2は、本発明の実施の形態1に係るアーク溶接制御方法を示す図1の溶接電源における各信号のタイミングチャートである。同図(A)はプル送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は短絡判別信号Sdの時間変化を示し、同図(E)は小電流期間信号Stdの時間変化を示し、同図(F)はプッシュ送給速度Fwpの時間変化を示す。以下、同図を参照して各信号の動作について説明する。 Figure 2 is a timing chart of each signal in the welding power source of Figure 1, which shows the arc welding control method according to the first embodiment of the present invention. Figure (A) shows the change over time of the pull feed speed Fw, Figure (B) shows the change over time of the welding current Iw, Figure (C) shows the change over time of the welding voltage Vw, Figure (D) shows the change over time of the short circuit determination signal Sd, Figure (E) shows the change over time of the small current period signal Std, and Figure (F) shows the change over time of the push feed speed Fwp. The operation of each signal will be explained below with reference to the figure.

同図(A)に示すプル送給速度Fwは、図1のプル送給速度設定回路FRから出力されるプル送給速度設定信号Frの値に制御される。プル送給速度Fwは、図1の正送加速期間設定信号Tsurによって定まる正送加速期間Tsu、短絡が発生するまで継続する正送ピーク期間Tsp、図1の正送減速期間設定信号Tsdrによって定まる正送減速期間Tsd、図1の逆送加速期間設定信号Trurによって定まる逆送加速期間Tru、アークが発生するまで継続する逆送ピーク期間Trp及び図1の逆送減速期間設定信号Trdrによって定まる逆送減速期間Trdから形成される。さらに、正送ピーク値Wspは図1の正送ピーク値設定信号Wsrによって定まり、逆送ピーク値Wrpは図1の逆送ピーク値設定信号Wrrによって定まる。この結果、プル送給速度設定信号Frは、正負の略台形波波状に変化する送給パターンとなる。また、同図(F)に示すプッシュ送給速度Fwpは、図1のプッシュ送給速度設定信号Frpによって定まる一定の速度となる。 The pull feed speed Fw shown in FIG. 1A is controlled by the value of the pull feed speed setting signal Fr output from the pull feed speed setting circuit FR in FIG. 1. The pull feed speed Fw is formed by the forward feed acceleration period Tsu determined by the forward feed acceleration period setting signal Tsur in FIG. 1, the forward feed peak period Tsp that continues until a short circuit occurs, the forward feed deceleration period Tsd determined by the forward feed deceleration period setting signal Tsdr in FIG. 1, the reverse feed acceleration period Tru determined by the reverse feed acceleration period setting signal Trur in FIG. 1, the reverse feed peak period Trp that continues until an arc occurs, and the reverse feed deceleration period Trd determined by the reverse feed deceleration period setting signal Trdr in FIG. 1. Furthermore, the forward feed peak value Wsp is determined by the forward feed peak value setting signal Wsr in FIG. 1, and the reverse feed peak value Wrp is determined by the reverse feed peak value setting signal Wrr in FIG. 1. As a result, the pull feed speed setting signal Fr becomes a feed pattern that changes in a substantially trapezoidal wave shape between positive and negative. Additionally, the push feed speed Fwp shown in FIG. 1 (F) is a constant speed determined by the push feed speed setting signal Frp in FIG. 1.

[時刻t1~t4の短絡期間の動作]
正送ピーク期間Tsp中の時刻t1において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減するので、同図(D)に示すように、短絡判別信号SdがHighレベル(短絡期間)に変化する。これに応動して、時刻t1~t2の予め定めた正送減速期間Tsdに移行し、同図(A)に示すように、プル送給速度Fwは上記の正送ピーク値Wspから0まで減速する。
[Operation during the short circuit period from time t1 to t4]
When a short circuit occurs at time t1 during the forward feed peak period Tsp, as shown in Fig. 1C, the welding voltage Vw suddenly decreases to a short circuit voltage value of several volts, and the short circuit determination signal Sd changes to a high level (short circuit period) as shown in Fig. 1D. In response to this, the system transitions to a predetermined forward feed deceleration period Tsd from time t1 to t2, and the pull feed speed Fw decelerates from the forward feed peak value Wsp to 0 as shown in Fig. 1A.

同図(A)に示すように、プル送給速度Fwは時刻t2~t3の予め定めた逆送加速期間Truに入り、0から上記の逆送ピーク値Wrpまで加速する。この期間中は短絡期間が継続している。 As shown in FIG. 1A, the pull feed speed Fw enters a predetermined reverse acceleration period Tru between times t2 and t3, and accelerates from 0 to the reverse peak value Wrp described above. During this period, the short circuit period continues.

時刻t3において逆送加速期間Truが終了すると、同図(A)に示すように、プル送給速度Fwは逆送ピーク期間Trpに入り、上記の逆送ピーク値Wrpになる。逆送ピーク期間Trpは、時刻t4にアークが発生するまで継続する。したがって、時刻t1~t4の期間が短絡期間となる。 When the reverse acceleration period Tru ends at time t3, as shown in FIG. 1A, the pull feed speed Fw enters the reverse peak period Trp and becomes the reverse peak value Wrp described above. The reverse peak period Trp continues until an arc occurs at time t4. Therefore, the period from time t1 to t4 is the short circuit period.

同図(B)に示すように、時刻t1~t4の短絡期間中の溶接電流Iwは、予め定めた初期期間中は予め定めた初期電流値となる。その後、溶接電流Iwは、予め定めた短絡時傾斜で上昇し、予め定めた短絡時ピーク値に達するとその値を維持する。 As shown in FIG. 1B, the welding current Iw during the short circuit period from time t1 to t4 is a predetermined initial current value during a predetermined initial period. Thereafter, the welding current Iw rises at a predetermined short circuit slope, and when it reaches a predetermined short circuit peak value, it maintains that value.

同図(C)に示すように、溶接電圧Vwは、溶接電流Iwが短絡時ピーク値となるあたりから上昇する。これは、溶接ワイヤ1の逆送及び溶接電流Iwによるピンチ力の作用により、溶接ワイヤ1の先端の溶滴にくびれが次第に形成されるためである。 As shown in FIG. 1C, the welding voltage Vw rises from the point where the welding current Iw reaches its peak value during a short circuit. This is because a constriction gradually forms in the droplet at the tip of the welding wire 1 due to the reverse feed of the welding wire 1 and the pinching force caused by the welding current Iw.

その後に溶接電圧Vwの電圧上昇値が基準値に達すると、くびれの形成状態が基準状態になったと判別して、図1のくびれ検出信号NdはHighレベルに変化する。 After that, when the voltage rise value of the welding voltage Vw reaches the reference value, it is determined that the state of the necking has reached the reference state, and the necking detection signal Nd in Figure 1 changes to a high level.

くびれ検出信号NdがHighレベルになったことに応動して、図1の駆動信号DrはLowレベルになるので、図1のトランジスタTRはオフ状態となり図1の減流抵抗器Rが通電路に挿入される。同時に、図1の電流制御設定信号Icrが低レベル電流設定信号Ilrの値に小さくなる。このために、同図(B)に示すように、溶接電流Iwは短絡時ピーク値から低レベル電流値へと急減する。そして、溶接電流Iwが低レベル電流値まで減少すると、駆動信号DrはHighレベルに戻るので、トランジスタTRはオン状態となり減流抵抗器Rは短絡される。同図(B)に示すように、溶接電流Iwは、電流制御設定信号Icrが低レベル電流設定信号Ilrのままであるので、アーク再発生から予め定めた遅延期間が経過するまでは低レベル電流値を維持する。したがって、トランジスタTRは、くびれ検出信号NdがHighレベルに変化した時点から溶接電流Iwが低レベル電流値に減少するまでの期間のみオフ状態となる。同図(C)に示すように、溶接電圧Vwは、溶接電流Iwが小さくなるので一旦減少した後に急上昇する。上述した各パラメータは、例えば以下の値に設定される。初期電流=40A、初期期間=0.5ms、短絡時傾斜=175A/ms、短絡時ピーク値=400A、低レベル電流値=50A、遅延期間=0.5ms。 In response to the constriction detection signal Nd becoming high level, the drive signal Dr in FIG. 1 becomes low level, so that the transistor TR in FIG. 1 becomes off and the current reducing resistor R in FIG. 1 is inserted into the current path. At the same time, the current control setting signal Icr in FIG. 1 becomes small to the value of the low level current setting signal Ilr. For this reason, as shown in FIG. 1 (B), the welding current Iw suddenly decreases from the peak value at the time of short circuit to the low level current value. Then, when the welding current Iw decreases to the low level current value, the drive signal Dr returns to high level, so that the transistor TR becomes on and the current reducing resistor R is short-circuited. As shown in FIG. 1 (B), the welding current Iw maintains the low level current value until a predetermined delay period has elapsed since the arc re-ignition, because the current control setting signal Icr remains the low level current setting signal Ilr. Therefore, the transistor TR is in the off state only during the period from when the squeezing detection signal Nd changes to a high level until the welding current Iw decreases to a low-level current value. As shown in FIG. 1C, the welding voltage Vw decreases once as the welding current Iw decreases, and then rises sharply. The above-mentioned parameters are set to the following values, for example: initial current = 40 A, initial period = 0.5 ms, short circuit slope = 175 A/ms, short circuit peak value = 400 A, low-level current value = 50 A, delay period = 0.5 ms.

[時刻t4~t7のアーク期間の動作]
時刻t4において、溶接ワイヤの逆送及び溶接電流Iwの通電によるピンチ力によってくびれが進行してアークが発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増するので、同図(D)に示すように、短絡判別信号SdがLowレベル(アーク期間)に変化する。これに応動して、時刻t4~t5の予め定めた逆送減速期間Trdに移行し、同図(A)に示すように、プル送給速度Fwは上記の逆送ピーク値Wrpから0まで減速する。
[Operation during arc period from time t4 to t7]
At time t4, when the pinching force caused by the reverse feed of the welding wire and the flow of the welding current Iw causes the constriction to progress and an arc to be generated, as shown in Fig. 1C, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts, and the short circuit determination signal Sd changes to a low level (arc period) as shown in Fig. 1D. In response to this, the system transitions to a predetermined reverse feed deceleration period Trd from time t4 to t5, and the pull feed speed Fw decelerates from the reverse feed peak value Wrp to 0 as shown in Fig. 1A.

時刻t5において逆送減速期間Trdが終了すると、時刻t5~t6の予め定めた正送加速期間Tsuに移行する。この正送加速期間Tsu中は、同図(A)に示すように、プル送給速度Fwは0から上記の正送ピーク値Wspまで加速する。この期間中はアーク期間が継続している。 When the reverse feed deceleration period Trd ends at time t5, a predetermined forward feed acceleration period Tsu begins from time t5 to t6. During this forward feed acceleration period Tsu, as shown in FIG. 1A, the pull feed speed Fw accelerates from 0 to the forward feed peak value Wsp. The arc period continues during this period.

時刻t6において正送加速期間Tsuが終了すると、同図(A)に示すように、プル送給速度Fwは正送ピーク期間Tspに入り、上記の正送ピーク値Wspになる。この期間中もアーク期間が継続している。正送ピーク期間Tspは、時刻t7に短絡が発生するまで継続する。したがって、時刻t4~t7の期間がアーク期間となる。そして、短絡が発生すると、時刻t1の動作に戻る。 When the forward acceleration period Tsu ends at time t6, as shown in FIG. 1A, the pull feed speed Fw enters the forward peak period Tsp and becomes the forward peak value Wsp described above. The arc period continues during this period as well. The forward peak period Tsp continues until a short circuit occurs at time t7. Therefore, the period from time t4 to t7 is the arc period. Then, when a short circuit occurs, the operation returns to that at time t1.

時刻t4においてアークが発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。他方、同図(B)に示すように、溶接電流Iwは、時刻t4~t41の遅延期間の間は低レベル電流値を継続する。その後、時刻t41から溶接電流Iwは急速に増加してピーク値となり、その後は徐々に減少する大電流値となる。この時刻t41~t61の大電流アーク期間中は、図1の電圧誤差増幅信号Evによって溶接電源のフィードバック制御が行われるので、定電圧特性となる。したがって、大電流アーク期間中の溶接電流Iwの値はアーク負荷によって変化する。 When an arc is generated at time t4, as shown in FIG. 1C, the welding voltage Vw increases rapidly to an arc voltage value of several tens of volts. On the other hand, as shown in FIG. 1B, the welding current Iw maintains a low-level current value during the delay period from time t4 to t41. After that, from time t41, the welding current Iw increases rapidly to a peak value, and then decreases gradually to a large current value. During this high-current arc period from time t41 to t61, feedback control of the welding power source is performed by the voltage error amplification signal Ev in FIG. 1, resulting in a constant voltage characteristic. Therefore, the value of the welding current Iw during the high-current arc period changes depending on the arc load.

時刻t4にアークが発生してから図1の電流降下時間設定信号Tdrによって定まる電流降下時間が経過する時刻t61において、同図(E)に示すように、小電流期間信号StdがHighレベルに変化する。これに応動して、溶接電源は定電圧特性から定電流特性に切り換えられる。このために、同図(B)に示すように、溶接電流Iwは低レベル電流値に低下し、短絡が発生する時刻t7までその値を維持する。同様に、同図(C)に示すように、溶接電圧Vwも低下する。小電流期間信号Stdは、時刻t7に短絡が発生するとLowレベルに戻る。 At time t61, when the current drop time determined by the current drop time setting signal Tdr in FIG. 1 has elapsed since the arc was generated at time t4, the small current period signal Std changes to a high level, as shown in FIG. 1(E). In response to this, the welding power source is switched from a constant voltage characteristic to a constant current characteristic. As a result, as shown in FIG. 1(B), the welding current Iw drops to a low level current value and maintains that value until time t7 when a short circuit occurs. Similarly, as shown in FIG. 1(C), the welding voltage Vw also drops. When a short circuit occurs at time t7, the small current period signal Std returns to a low level.

同図において、正送減速期間Tsd(図1の正送減速期間設定信号Tsdr)、逆送減速期間Trd(図1の逆送減速期間設定信号Trdr)、逆送加速期間Tsu(図1の逆送加速期間設定信号Tsur)、及び、正送加速期間Tsu(図1の正送加速期間設定信号Tsur)は、図1のプル送給速度補正回路FHによって、処理1)~6)の中から一つが選択されて補正制御される。この補正制御によって、図1の中間ワイヤ収容部の収容量が目標値と等しくなるように制御されるので、短絡期間及びアーク期間が変動しても、プル送給速度Fwの平均値を一定に保つことができる。 In the figure, the forward feed deceleration period Tsd (forward feed deceleration period setting signal Tsdr in FIG. 1), reverse feed deceleration period Trd (reverse feed deceleration period setting signal Trdr in FIG. 1), reverse feed acceleration period Tsu (reverse feed acceleration period setting signal Tsur in FIG. 1), and forward feed acceleration period Tsu (forward feed acceleration period setting signal Tsur in FIG. 1) are corrected and controlled by the pull feed speed correction circuit FH in FIG. 1, which selects one from processes 1) to 6). This correction control controls the capacity of the intermediate wire storage section in FIG. 1 to be equal to the target value, so that the average pull feed speed Fw can be kept constant even if the short circuit period and arc period vary.

処理1)正送減速期間設定信号Tsdrのみを補正制御する場合
時刻t1において、同図(D)に示す短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間Tsdが開始すると、その時点における図1の収容量誤差増幅信号Ewによって図1の正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。図1の収容量信号Wbが図1の収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。
Process 1) When only the forward deceleration period setting signal Tsdr is corrected and controlled When the short circuit discrimination signal Sd shown in FIG. 1(D) changes to a high level (short circuit period) at time t1 and the forward deceleration period Tsd starts, the forward deceleration period initial value setting signal Tsds in FIG. 1 is corrected and controlled (modulated) by the capacity error amplification signal Ew in FIG. 1 at that time, and the forward deceleration period setting signal Tsdr = Tsds + Ew is output. When the capacity signal Wb in FIG. 1 is larger than the capacity setting signal Wbr in FIG. 1, the forward deceleration period setting signal Tsdr becomes longer than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward deceleration period setting signal Tsdr becomes shorter than the initial value, and the capacity signal Wb increases and approaches the set value.

処理2)逆送減速期間設定信号Trdrのみを補正制御する場合
時刻t4において、同図(D)に示す短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間Trdが開始すると、その時点における収容量誤差増幅信号Ewによって図1の逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。
Process 2) When only the reverse deceleration period setting signal Trdr is corrected and controlled When the short circuit determination signal Sd shown in FIG. 1(D) changes to a low level (arc period) at time t4 and the reverse deceleration period Trd starts, the reverse deceleration period initial value setting signal Trds in FIG. 1 is corrected and controlled (modulated) by the capacity error amplification signal Ew at that time, and the reverse deceleration period setting signal Trdr=Trds-Ew is output. When the capacity signal Wb is larger than the capacity setting signal Wbr, the reverse deceleration period setting signal Trdr becomes shorter than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the reverse deceleration period setting signal Trdr becomes longer than the initial value, and the capacity signal Wb increases and approaches the set value.

処理3)正送減速期間設定信号Tsdr及び逆送減速期間設定信号Trdrの2つを補正制御する場合
上記の処理1)及び処理2)の両方を行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。
Process 3) In the case where both the forward feed deceleration period setting signal Tsdr and the reverse feed deceleration period setting signal Trdr are corrected and controlled, both of the above processes 1) and 2) are performed. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes longer than the initial value, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, and the capacity signal Wb increases and approaches the set value.

処理4)正送減速期間設定信号Tsdr及び逆送加速期間設定信号Trurの2つを補正制御する場合
時刻t1において、同図(D)に示す短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間Tsdが開始すると、その時点における収容量誤差増幅信号Ewによって正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって図1の逆送加速期間初期値設定信号Trusを補正制御(変調制御)して逆送加速期間設定信号Trur=Trus-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理4)では、Tsdr+Trurは一定値となるので、補正制御を行っても短絡期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 4) When the forward deceleration period setting signal Tsdr and the reverse acceleration period setting signal Trur are corrected and controlled When the short circuit discrimination signal Sd shown in FIG. 1(D) changes to a high level (short circuit period) at time t1 and the forward deceleration period Tsd starts, the forward deceleration period initial value setting signal Tsds is corrected (modulated) by the capacity error amplification signal Ew at that time to output the forward deceleration period setting signal Tsdr = Tsds + Ew. At the same time, the reverse acceleration period initial value setting signal Trus in FIG. 1 is corrected (modulated) by the capacity error amplification signal Ew to output the reverse acceleration period setting signal Trur = Trus - Ew. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, the reverse acceleration period setting signal Trur becomes shorter than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, the reverse feed acceleration period setting signal Trur becomes longer than the initial value, and the capacity signal Wb increases and approaches the set value. Here, in process 4), Tsdr+Trur is a constant value, so that even if correction control is performed, the short circuit period can be maintained at a substantially constant value, and the welding state can be stabilized.

処理5)逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの2つを補正制御する場合
時刻t4において、同図(D)に示す短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間Trdが開始すると、その時点における収容量誤差増幅信号Ewによって逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって図1の正送加速期間初期値設定信号Tsusを補正制御(変調制御)して正送加速期間設定信号Tsur=Tsus+Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理5)では、Trdr+Tsurは一定値となるので、補正制御を行ってもアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 5) In the case where both the reverse feed deceleration period setting signal Trdr and the forward feed acceleration period setting signal Tsur are corrected and controlled When the short circuit determination signal Sd shown in FIG. 1(D) changes to a low level (arc period) at time t4 and the reverse feed deceleration period Trd starts, the reverse feed deceleration period initial value setting signal Trds is corrected (modulated) by the capacity error amplified signal Ew at that time, and the reverse feed deceleration period setting signal Trdr = Trds - Ew is output. At the same time, the forward feed acceleration period initial value setting signal Tsus in FIG. 1 is corrected (modulated) by the capacity error amplified signal Ew, and the forward feed acceleration period setting signal Tsur = Tsus + Ew is output. When the capacity signal Wb is larger than the capacity setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, the forward feed acceleration period setting signal Tsur becomes longer than the initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, the forward feed acceleration period setting signal Tsur becomes shorter than the initial value, and the capacity signal Wb increases and approaches the set value. Here, in process 5), Trdr+Tsur becomes a constant value, so that even if correction control is performed, the arc period can be maintained at a substantially constant value, and the welding state can be stabilized.

処理6)正送減速期間設定信号Tsdr、逆送加速期間設定信号Trur、逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの4つを補正制御する場合
上記の処理4)及び処理5)を両方行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理6)では、Tsdr+Trur及びTrdr+Tsurはそれぞれ一定値となるので、補正制御を行っても短絡期間及びアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 6) In the case where the four signals, forward feed deceleration period setting signal Tsdr, reverse feed acceleration period setting signal Trur, reverse feed deceleration period setting signal Trdr and forward feed acceleration period setting signal Tsur, are corrected and controlled: Processes 4) and 5) above are both performed. When the capacity signal Wb is larger than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes longer than its initial value, the reverse feed acceleration period setting signal Trur becomes shorter than its initial value, the reverse feed deceleration period setting signal Trdr becomes shorter than its initial value, the forward feed acceleration period setting signal Tsur becomes longer than its initial value, and the capacity signal Wb decreases and approaches the set value. Conversely, when the capacity signal Wb is smaller than the capacity setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, the reverse feed acceleration period setting signal Trur becomes longer than the initial value, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, the forward feed acceleration period setting signal Tsur becomes shorter than the initial value, and the capacity signal Wb increases and approaches the set value. Here, in process 6), Tsdr+Trur and Trdr+Tsur are each constant, so that the short circuit period and the arc period can be maintained at approximately constant values even if correction control is performed, and the welding state can be stabilized.

プル送給速度Fwの波形パラメータの数値例を以下に示す。
正送ピーク値Wsp=50m/min、逆送ピーク値Wrp=-30m/min
正送ピーク期間Tsp≒3ms(所定値ではない)、逆送ピーク期間Trp≒1ms(所定値ではない)、正送加速期間初期値=2ms、正送減速期間初期値=1ms、逆送加速期間初期値=2ms、逆送減速期間初期値=1ms
Numerical examples of waveform parameters of the pull feed rate Fw are shown below.
Forward peak value Wsp = 50 m/min, reverse peak value Wrp = -30 m/min
Forward transport peak period Tsp ≈ 3 ms (not a specified value), reverse transport peak period Trp ≈ 1 ms (not a specified value), forward transport acceleration period initial value = 2 ms, forward transport deceleration period initial value = 1 ms, reverse transport acceleration period initial value = 2 ms, reverse transport deceleration period initial value = 1 ms

上述した実施の形態1によれば、中間ワイヤ収容部の収容量に基づいて、プル送給速度の正送減速期間及び/又は逆送減速期間を補正する。正逆送給アーク溶接方法においては、短絡期間及びアーク期間の発生タイミングに同期して、正送期間と逆送期間とが切り換えられる。このために、溶接中にワイヤ突き出し長さ、前進角、溶接速度等が変化して短絡期間とアーク期間との時間比率が変化すると、正送期間と逆送期間との時間比率も変化するので、溶接ワイヤの平均送給速度(プル送給速度の平均値)が変化する。平均送給速度が変化すると、溶着量が変化するので、溶接品質が悪くなる。本実施の形態においては、正送期間と逆送期間との時間比率が変化してプル送給速度の平均値が変化すると、一定速度のプッシュ送給速度との間に差分が生じる。この結果、中間ワイヤ収容部の収容量と目標値との間に誤差が発生する。この誤差が0になるように正送減速期間及び/又は逆送減速期間を補正することによって、プル送給速度とプッシュ送給速度の平均値とを等しくすることができる。このために、プル送給速度の平均値を所定値に戻すことができる。さらに、溶接作業者が手動て溶接トーチを操作して溶接する半自動溶接においては、溶接作業者の手振れによるワイヤ突き出し長さ、前進角、溶接速度等の変動が大きくなる。このような半自動溶接においても、本実施の形態を採用すれば、変動に起因するアーク長の変動を抑制することができ、溶接状態を安定化することができる。 According to the above-mentioned embodiment 1, the forward feed deceleration period and/or reverse feed deceleration period of the pull feed speed are corrected based on the capacity of the intermediate wire storage section. In the forward and reverse feed arc welding method, the forward feed period and the reverse feed period are switched in synchronization with the occurrence timing of the short circuit period and the arc period. For this reason, when the wire protrusion length, forward angle, welding speed, etc. change during welding and the time ratio between the short circuit period and the arc period changes, the time ratio between the forward feed period and the reverse feed period also changes, so that the average feed speed of the welding wire (average value of the pull feed speed) changes. When the average feed speed changes, the amount of deposition changes, and the welding quality deteriorates. In this embodiment, when the time ratio between the forward feed period and the reverse feed period changes and the average value of the pull feed speed changes, a difference occurs with a constant push feed speed. As a result, an error occurs between the capacity of the intermediate wire storage section and the target value. By correcting the forward feed deceleration period and/or the reverse feed deceleration period so that this error becomes zero, the average values of the pull feed speed and the push feed speed can be made equal. This allows the average pull feed speed to be returned to a predetermined value. Furthermore, in semi-automatic welding, where the welding operator manually operates the welding torch, fluctuations in the wire extension length, advance angle, welding speed, etc., occur due to the welding operator's hand shaking. Even in such semi-automatic welding, by adopting this embodiment, it is possible to suppress the fluctuations in arc length caused by such fluctuations, and the welding state can be stabilized.

さらに、本実施の形態によれば、正送減速期間の開始時点における収容量に基づいて正送減速期間の補正制御を行い、逆送減速期間の開始時点における収容量に基づいて逆送減速期間の補正制御を行う、ことが望ましい。このようにすると、補正制御の過渡応答性を良好にすることができるので、プル送給速度の平均値をより一定に保つことができる。 Furthermore, according to this embodiment, it is desirable to perform correction control of the forward feed deceleration period based on the capacity at the start of the forward feed deceleration period, and to perform correction control of the reverse feed deceleration period based on the capacity at the start of the reverse feed deceleration period. In this way, the transient response of the correction control can be improved, so that the average value of the pull feed speed can be kept more constant.

さらに、本実施の形態によれば、正送減速期間の補正制御を行ったときは正送減速期間と逆送加速期間との合算値が一定になるように逆送加速期間を補正制御し、逆送減速期間の補正制御を行ったときは逆送減速期間と正送加速期間との合算値が一定になるように正送加速期間を補正制御する、ことが望ましい。このようにすれば、短絡期間及びアーク期間をより一定値に近づけることができるので、溶接状態をさらに安定化することができる。 Furthermore, according to this embodiment, it is desirable to correct and control the reverse feed acceleration period so that the sum of the forward feed deceleration period and the reverse feed acceleration period becomes constant when the forward feed deceleration period is corrected and controlled, and to correct and control the forward feed acceleration period so that the sum of the reverse feed deceleration period and the forward feed acceleration period becomes constant when the reverse feed deceleration period is corrected and controlled. In this way, the short circuit period and the arc period can be brought closer to constant values, and the welding state can be further stabilized.

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
CM 電流比較回路
Cm 電流比較信号
DR 駆動回路
Dr 駆動信号
E 出力電圧
Ea 誤差増幅信号
ED 出力電圧検出回路
Ed 出力電圧検出信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
ER 出力電圧設定回路
Er 出力電圧設定信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
EW 収容量誤差増幅回路
Ew 収容量誤差増幅信号
FC プル送給制御回路
Fc プル送給制御信号
FCP プッシュ送給制御回路
Fcp プッシュ送給制御信号
FH プル送給速度補正回路
FR プル送給速度設定回路
Fr プル送給速度設定信号
FRP プッシュ送給速度設定回路
Frp プッシュ送給速度設定信号
Fw プル送給速度
Fwp プッシュ送給速度
ICR 電流制御設定回路
Icr 電流制御設定信号
ID 電流検出回路
Id 電流検出信号
ILR 低レベル電流設定回路
Ilr 低レベル電流設定信号
Iw 溶接電流
ND くびれ検出回路
Nd くびれ検出信号
PM 電源主回路
R 減流抵抗器
SD 短絡判別回路
Sd 短絡判別信号
STD 小電流期間回路
Std 小電流期間信号
SW 電源特性切換回路
TDR 電流降下時間設定回路
Tdr 電流降下時間設定信号
TR トランジスタ
Trd 逆送減速期間
Trdr 逆送減速期間設定信号
TRDS 逆送減速期間初期値設定回路
Trds 逆送減速期間初期値設定信号
Trp 逆送ピーク期間
Tru 逆送加速期間
Trur 逆送加速期間設定信号
TRUS 逆送加速期間初期値設定回路
Trus 逆送加速期間初期値設定信号
Tsd 正送減速期間
Tsdr 正送減速期間設定信号
TsdS 正送減速期間初期値設定信号
Tsds 正送減速期間初期値設定信号
Tsp 正送ピーク期間
Tsu 正送加速期間
Tsur 正送加速期間設定信号
TsuS 正送加速期間初期値設定信号
Tsus 正送加速期間初期値設定信号
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
WB 中間ワイヤ収容部
Wb 収容量信号
WBR 収容量設定回路
Wbr 収容量設定信号
WL リアクトル
WM プル側送給モータ
WMP プッシュ側送給モータ
Wrp 逆送ピーク値
WRR 逆送ピーク値設定回路
Wrr 逆送ピーク値設定信号
Wsp 正送ピーク値
WSR 正送ピーク値設定回路
Wsr 正送ピーク値設定信号
1 Welding wire
2. Base material
3. Arc
4. Welding torch
5 Feed roll CM Current comparison circuit Cm Current comparison signal DR Drive circuit Dr Drive signal E Output voltage Ea Error amplification signal ED Output voltage detection circuit Ed Output voltage detection signal EI Current error amplification circuit Ei Current error amplification signal ER Output voltage setting circuit Er Output voltage setting signal EV Voltage error amplification circuit Ev Voltage error amplification signal EW Capacity error amplification circuit Ew Capacity error amplification signal FC Pull feed control circuit Fc Pull feed control signal FCP Push feed control circuit Fcp Push feed control signal FH Pull feed speed correction circuit FR Pull feed speed setting circuit Fr Pull feed speed setting signal FRP Push feed speed setting circuit Frp Push feed speed setting signal Fw Pull feed speed Fwp Push feed speed ICR Current control setting circuit Icr Current control setting signal ID Current detection circuit Id Current detection signal ILR Low level current setting circuit Ilr Low level current setting signal Iw Welding current ND Neck detection circuit Nd Neck detection signal PM Power supply main circuit R Current reducing resistor SD Short circuit determination circuit Sd Short circuit determination signal STD Small current period circuit Std Small current period signal SW Power supply characteristics changeover circuit TDR Current fall time setting circuit Tdr Current fall time setting signal TR Transistor Trd Reverse feed deceleration period Trdr Reverse feed deceleration period setting signal TRDS Reverse feed deceleration period initial value setting circuit Trds Reverse feed deceleration period initial value setting signal Trp Reverse feed peak period Tru Reverse feed acceleration period Trur Reverse feed acceleration period setting signal TRUS Reverse feed acceleration period initial value setting circuit Trus Reverse feed acceleration period initial value setting signal Tsd Forward feed deceleration period Tsdr Forward feed deceleration period setting signal TsdS Forward feed deceleration period initial value setting signal Tsds Forward feed deceleration period initial value setting signal Tsp Forward feed peak period Tsu Forward feed acceleration period Tsur Forward feed acceleration period setting signal TsuS Forward feed acceleration period initial value setting signal Tsus Forward feed acceleration period initial value setting signal VD Voltage detection circuit Vd Voltage detection signal Vw Welding voltage WB Intermediate wire accommodation section Wb Accommodation amount signal WBR Accommodation amount setting circuit Wbr Accommodation amount setting signal WL Reactor WM Pull side feed motor WMP Push side feed motor Wrp Reverse feed peak value WRR Reverse feed peak value setting circuit Wrr Reverse feed peak value setting signal Wsp Forward feed peak value WSR Forward feed peak value setting circuit Wsr Forward feed peak value setting signal

Claims (3)

正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給し、
前記プッシュ側送給モータと前記プル側送給モータとの送給経路の間に前記溶接ワイヤを一時的に収容する中間ワイヤ収容部を設け、前記中間ワイヤ収容部の収容量に基づいて前記プル側送給モータのプル送給速度を補正し、
短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
前記プル送給速度の逆送加速期間及び正送加速期間を所定値に維持し、
前記収容量に基づいて、前記プル送給速度の正送減速期間及び/又は逆送減速期間を補正制御する、
ことを特徴とするアーク溶接制御方法。
The welding wire is fed by push-pull feed control using a push-side feed motor that rotates in a forward direction and a pull-side feed motor that repeats forward and reverse rotations;
an intermediate wire accommodating section for temporarily accommodating the welding wire is provided between a feed path of the push-side feed motor and the pull-side feed motor, and a pull feed speed of the pull-side feed motor is corrected based on an amount of the welding wire accommodated in the intermediate wire accommodating section;
1. A method for controlling arc welding in which a short circuit period and an arc period are repeated, comprising:
maintaining the reverse acceleration period and the forward acceleration period of the pull feed speed at predetermined values;
correcting and controlling a forward feed deceleration period and/or a reverse feed deceleration period of the pull feed speed based on the storage amount;
2. An arc welding control method comprising:
前記正送減速期間の開始時点における前記収容量に基づいて前記正送減速期間の前記補正制御を行い、前記逆送減速期間の開始時点における前記収容量に基づいて前記逆送減速期間の前記補正制御を行う、
ことを特徴とする請求項1に記載のアーク溶接制御方法。
performing the correction control of the forward transport deceleration period based on the capacity at a start point of the forward transport deceleration period, and performing the correction control of the reverse transport deceleration period based on the capacity at a start point of the reverse transport deceleration period;
2. The method of claim 1, wherein the arc welding is controlled by the control circuit.
正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給し、
前記プッシュ側送給モータと前記プル側送給モータとの送給経路の間に前記溶接ワイヤを一時的に収容する中間ワイヤ収容部を設け、前記中間ワイヤ収容部の収容量に基づいて前記プル側送給モータのプル送給速度を補正し、
短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
前記収容量に基づいて前記プル送給速度の正送減速期間を前記補正制御したときは、前記正送減速期間と逆送加速期間との合算値が一定になるように前記逆送加速期間を前記補正制御し、
前記収容量に基づいて前記プル送給速度の前記逆送減速期間を前記補正制御したときは、前記逆送減速期間と正送加速期間との合算値が一定になるように前記正送加速期間を前記補正制御する、
ことを特徴とするアーク溶接制御方法
The welding wire is fed by push-pull feed control using a push-side feed motor that rotates in a forward direction and a pull-side feed motor that repeats forward and reverse rotations;
an intermediate wire accommodating section for temporarily accommodating the welding wire is provided between a feed path of the push-side feed motor and the pull-side feed motor, and a pull feed speed of the pull-side feed motor is corrected based on an amount of the welding wire accommodated in the intermediate wire accommodating section;
1. A method for controlling arc welding in which a short circuit period and an arc period are repeated, comprising:
when the forward deceleration period of the pull feed speed is corrected and controlled based on the storage amount, the reverse acceleration period is corrected and controlled so that a sum of the forward deceleration period and the reverse acceleration period is constant,
When the reverse feed deceleration period of the pull feed speed is corrected and controlled based on the storage amount, the forward feed acceleration period is corrected and controlled so that a sum of the reverse feed deceleration period and the forward feed acceleration period becomes constant.
2. An arc welding control method comprising :
JP2020164377A 2020-09-30 2020-09-30 Arc welding control method Active JP7542381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020164377A JP7542381B2 (en) 2020-09-30 2020-09-30 Arc welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020164377A JP7542381B2 (en) 2020-09-30 2020-09-30 Arc welding control method

Publications (2)

Publication Number Publication Date
JP2022056565A JP2022056565A (en) 2022-04-11
JP7542381B2 true JP7542381B2 (en) 2024-08-30

Family

ID=81111196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020164377A Active JP7542381B2 (en) 2020-09-30 2020-09-30 Arc welding control method

Country Status (1)

Country Link
JP (1) JP7542381B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172066A (en) 2013-03-08 2014-09-22 Panasonic Corp Arc welding control method and arc welding device
JP2020099945A (en) 2018-12-21 2020-07-02 株式会社ダイヘン Arc-welding control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172066A (en) 2013-03-08 2014-09-22 Panasonic Corp Arc welding control method and arc welding device
JP2020099945A (en) 2018-12-21 2020-07-02 株式会社ダイヘン Arc-welding control method

Also Published As

Publication number Publication date
JP2022056565A (en) 2022-04-11

Similar Documents

Publication Publication Date Title
JP6809758B2 (en) Arc welding control method
US20200055135A1 (en) Ac pulse arc welding control method
JP6895210B2 (en) Arc welding control method
JP7542381B2 (en) Arc welding control method
JP7158327B2 (en) Arc welding control method
JP7396779B2 (en) Arc welding control method
JP7039413B2 (en) Arc welding control method
JP2020131199A (en) Arc-welding method
EP3685949B1 (en) Arc welding control method
JP7290904B2 (en) arc welding method
JP7053121B2 (en) Arc welding control method
EP3533553B1 (en) Arc welding control method
JP2022185997A (en) Pulse arc welding power source
JP7576504B2 (en) Arc welding equipment
JP7569722B2 (en) Arc welding equipment
JP2023066022A (en) Arc-welding control method
JP2020131200A (en) Arc-welding method
JP7272740B2 (en) Arc welding control method
JP7335677B2 (en) Arc welding control method
JP7329299B2 (en) Arc welding control method
JP7430969B2 (en) arc welding equipment
JP7431661B2 (en) arc welding equipment
JP7198557B2 (en) arc welding method
JP2023040450A (en) arc welding method
JP2023031419A (en) Arc welding control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240820

R150 Certificate of patent or registration of utility model

Ref document number: 7542381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150