JP7541763B2 - Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA - Google Patents
Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA Download PDFInfo
- Publication number
- JP7541763B2 JP7541763B2 JP2022512788A JP2022512788A JP7541763B2 JP 7541763 B2 JP7541763 B2 JP 7541763B2 JP 2022512788 A JP2022512788 A JP 2022512788A JP 2022512788 A JP2022512788 A JP 2022512788A JP 7541763 B2 JP7541763 B2 JP 7541763B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hcl
- tower
- adsorption
- rectification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005530 etching Methods 0.000 title claims description 51
- 238000004064 recycling Methods 0.000 title claims description 32
- 238000000926 separation method Methods 0.000 title description 12
- 238000011084 recovery Methods 0.000 title description 8
- 239000007789 gas Substances 0.000 claims description 398
- 238000001179 sorption measurement Methods 0.000 claims description 238
- 238000000034 method Methods 0.000 claims description 180
- 238000010521 absorption reaction Methods 0.000 claims description 134
- 239000005046 Chlorosilane Substances 0.000 claims description 86
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 claims description 86
- 238000009833 condensation Methods 0.000 claims description 76
- 230000005494 condensation Effects 0.000 claims description 75
- 239000007788 liquid Substances 0.000 claims description 73
- 239000007921 spray Substances 0.000 claims description 72
- 238000000746 purification Methods 0.000 claims description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 51
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 47
- 239000001257 hydrogen Substances 0.000 claims description 43
- 229910052739 hydrogen Inorganic materials 0.000 claims description 43
- 229910001868 water Inorganic materials 0.000 claims description 40
- 238000003795 desorption Methods 0.000 claims description 35
- 238000001704 evaporation Methods 0.000 claims description 33
- 230000008020 evaporation Effects 0.000 claims description 33
- 238000001312 dry etching Methods 0.000 claims description 32
- 238000007906 compression Methods 0.000 claims description 31
- 230000006835 compression Effects 0.000 claims description 31
- 239000002250 absorbent Substances 0.000 claims description 23
- 230000002745 absorbent Effects 0.000 claims description 23
- 239000002737 fuel gas Substances 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 18
- 238000005406 washing Methods 0.000 claims description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 15
- 230000002378 acidificating effect Effects 0.000 claims description 14
- 238000004821 distillation Methods 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000012855 volatile organic compound Substances 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 239000000460 chlorine Substances 0.000 claims description 11
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 239000011737 fluorine Substances 0.000 claims description 9
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- BSYQEPMUPCBSBK-UHFFFAOYSA-N [F].[SiH4] Chemical compound [F].[SiH4] BSYQEPMUPCBSBK-UHFFFAOYSA-N 0.000 claims description 8
- HICCMIMHFYBSJX-UHFFFAOYSA-N [SiH4].[Cl] Chemical compound [SiH4].[Cl] HICCMIMHFYBSJX-UHFFFAOYSA-N 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000428 dust Substances 0.000 claims description 7
- 229910000077 silane Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 229910021645 metal ion Inorganic materials 0.000 claims description 5
- 238000005292 vacuum distillation Methods 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- 239000004071 soot Substances 0.000 claims description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- 238000013022 venting Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 claims 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 238000001471 micro-filtration Methods 0.000 claims 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 128
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 127
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 123
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 122
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 122
- 239000000047 product Substances 0.000 description 19
- 239000003463 adsorbent Substances 0.000 description 15
- 239000002912 waste gas Substances 0.000 description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- -1 fluorine ions Chemical class 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- 229910003910 SiCl4 Inorganic materials 0.000 description 3
- 229910004014 SiF4 Inorganic materials 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000003637 basic solution Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 101000617550 Dictyostelium discoideum Presenilin-A Proteins 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910003676 SiBr4 Inorganic materials 0.000 description 1
- 239000005935 Sulfuryl fluoride Substances 0.000 description 1
- UCUJUFDOQOJLBE-UHFFFAOYSA-N [Cl].[Ca] Chemical compound [Cl].[Ca] UCUJUFDOQOJLBE-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
- C01B7/0712—Purification ; Separation of hydrogen chloride by distillation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
- C01B7/0718—Purification ; Separation of hydrogen chloride by adsorption
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
- C01B7/196—Separation; Purification by distillation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
- C01B7/197—Separation; Purification by adsorption
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Drying Of Semiconductors (AREA)
Description
本発明は、半導体プロセスにおけるエッチング排ガスの有効成分の回収と循環再利用の環境保護分野に関し、より具体的には、FTrPSA(全温度範囲圧力スイング吸着)によるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法に関する。 The present invention relates to the field of environmental protection, namely, the recovery and recycling of effective components from etching exhaust gas in semiconductor processes, and more specifically, to a method for separating, recovering, and recycling HF/HCl-containing etching exhaust gas using FTrPSA (full temperature range pressure swing adsorption).
ケイ素(Si)又は炭化ケイ素(SiC)ベースのウエハ又はエピタキシャル薄膜にエッチングを行うことは、半導体集積回路(IC)などのチップの製造プロセスにおける最も重要なステップであり、その中でもフッ素(F)、塩素(Cl)を含有する化合物でプラズマ又は通常のガスによる乾式エッチングを行うことは、半導体工業において広く適用されている。例えば、通常、集積回路(IC)の製造は、トランジスタ、抵抗素子及び容量素子のような回路要素を形成・接続するように、堆積、マスキング、エッチング及び剥離などのステップを含む。IC製造プロセスにおいて、1つのウエハ又はエピタキシャル薄膜シートで同時に何百~千個以上のチップを作製する必要があり、その際に1要素の寸法を0.5μmよりも小さくする必要があり、且つその寸法は益々小さくなる傾向がある。超大規模集積回路(ULSI)チップの発展のニーズに応えて、エッチング技術は、面積がより大きくエッチング線幅がより小さい方向へ発展する傾向があり、その中でもガス乾式エッチング、特にプラズマガス乾式エッチングは既に最も広く適用されて発展してきたエッチング技術となっている。順に現れた反応性イオンエッチング(RIE)、電子サイクロトロン共鳴(ECR)、ヘリコン波源(HWS)及び誘導結合プラズマ源(ICP)などの加工方法及び装置は、エッチング面積が300mmよりも大きくエッチング線幅が0.1μmよりも小さいなどのような高解像度集積回路の要求に適応するために誕生したものである。 Etching silicon (Si) or silicon carbide (SiC) based wafers or epitaxial thin films is the most important step in the manufacturing process of chips such as semiconductor integrated circuits (ICs), among which plasma or normal gas dry etching with compounds containing fluorine (F) or chlorine (Cl) is widely applied in the semiconductor industry. For example, the manufacture of integrated circuits (ICs) usually involves steps such as deposition, masking, etching and stripping to form and connect circuit elements such as transistors, resistors and capacitors. In the IC manufacturing process, hundreds to thousands of chips need to be made simultaneously on one wafer or epitaxial thin film sheet, and the dimensions of one element need to be smaller than 0.5 μm, and the dimensions tend to become smaller and smaller. In response to the needs of the development of ultra-large scale integrated circuit (ULSI) chips, etching technology tends to develop in the direction of larger areas and smaller etching line widths, among which gas dry etching, especially plasma gas dry etching, has already become the most widely applied and developed etching technology. The successively emerging processing methods and devices, such as reactive ion etching (RIE), electron cyclotron resonance (ECR), helicon wave source (HWS) and inductively coupled plasma source (ICP), were developed to meet the requirements of high-resolution integrated circuits, such as etching areas larger than 300 mm and etching line widths smaller than 0.1 μm.
エッチング(又は食刻,Etch Film)は、ケイ素又は炭化ケイ素ベースのウエハ又はエピタキシャル薄膜(「ウエハ」と略称する)の表面から必要としない材料を選択的に除去する過程であり、接着剤が塗布されたウエハにマスクパターンを正確に転写する。エッチングは湿式と乾式に分けられ、そのうち乾式エッチングにおけるプラズマエッチングは、既に主流のエッチング工法となっている。乾式エッチングによく使用されるガスは、主にフッ化水素(HF)、塩化水素(HCl)、四フッ化炭素(CF4)、六フッ化硫黄(SF6)、三フッ化窒素(NF3)、四塩化炭素(CCl4)などのフッ素ベースガス及びCl、Br基が導入された混合ガスであり、また、キャリアガスとして、水素ガス(H2)、アルゴンガス(Ar)、酸素ガス(O2)、窒素ガス(N2)などを使用する。低圧放電のプラズマ環境ではウエハ表面のSi又はSiCと反応し、気相でHF、HCl、四フッ化ケイ素(SiF4)、四塩化ケイ素(SiCl4)、及び少量の四臭化ケイ素(SiBr4)、シラン(SiH4)、一酸化炭素(CO)、二酸化炭素(CO2)、水(H2O)、揮発性有機物(VOC)、懸濁する微細二酸化ケイ素(SiO2)、ケイ素(Si)又は炭化ケイ素(SiC)又はエーロゾルなどの粒子及びH2、N2、Arなどを含有するエッチング排ガスを生成する。前記エッチング排ガスは、引火性と、爆発性と、有毒性と、腐食性などの特徴を有する危険な化学ガスであり、処理方法としては、大気排出基準を満たす方法である必要があるが、それだけでなく技術的且つ経済的に実施可能であり、且つ生産コストを削減する方法である必要もある。 Etching (or etching, Etch Film) is a process of selectively removing unwanted material from the surface of a silicon or silicon carbide-based wafer or epitaxial thin film (abbreviated as "wafer"), and accurately transferring a mask pattern to an adhesive-coated wafer. Etching can be divided into wet and dry types, of which plasma etching in dry etching has become the mainstream etching method. Gases commonly used in dry etching are mainly fluorine-based gases such as hydrogen fluoride (HF), hydrogen chloride (HCl), carbon tetrafluoride (CF 4 ), sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), carbon tetrachloride (CCl 4 ), and mixed gases containing Cl and Br groups, and hydrogen gas (H 2 ), argon gas (Ar), oxygen gas (O 2 ), nitrogen gas (N 2 ), etc. are used as carrier gases. In the plasma environment of low-pressure discharge, it reacts with Si or SiC on the wafer surface to generate etching exhaust gases in the gas phase, including HF, HCl, silicon tetrafluoride ( SiF4 ), silicon tetrachloride ( SiCl4 ), and small amounts of silicon tetrabromide ( SiBr4 ), silane ( SiH4 ), carbon monoxide (CO), carbon dioxide ( CO2 ), water ( H2O ), volatile organic compounds (VOCs), suspended fine silicon dioxide ( SiO2 ), silicon (Si) or silicon carbide (SiC) or aerosol particles, and H2 , N2 , Ar, etc. The etching exhaust gases are dangerous chemical gases that are flammable, explosive, toxic, corrosive, etc., and the treatment method must meet the air emission standards, but must also be technically and economically feasible and reduce production costs.
従来のエッチング排ガスを処理する主な工業的方法には、水洗と、酸塩基中和と、酸化燃焼と、吸着及びプラズマ燃焼の5種類がある。 There are five main industrial methods for treating conventional etching exhaust gases: water washing, acid-base neutralization, oxidation combustion, and adsorption and plasma combustion.
水洗法は、エッチング排ガスが主に酸性が非常に高い有毒異物を含有する状況に対して、水吸収と水性ガス転化により、酸性成分を吸収して液体を形成し、且つ有毒異物成分を無毒物質又は沈殿(水スラリー)に転化して排出を実現する方法である。この方法は、簡単で操作しやすく、工業的に一般的に採用されているが、吸収相平衡及び転化効率が制限され、形成された吸収液が非常に高い腐食性を有するため、吸収後の排ガスに依然として多くの酸性異物成分が残留され、完全に排出基準に達することが非常に困難であり、更に空気を導入して希釈するか又は燃焼するか又は吸着するなどの他の方法で処理してはじめて排出基準に達することができる。水洗法では、加熱された水蒸気を採用することも可能であり、高温によって有害な異物を無害な酸化物に転化させることで、水洗法による浄化効率がより高くなる。水洗法の主な問題は、大量の水を消費する必要がある点であり、また回収しにくく腐食性が非常に高いフッ化水素酸、塩酸又はフルオロケイ酸などの二次汚染物が生成されるため、結果として処理機器に多くの投資をすることになる。同時に、水洗法により形成された高フッ素又は高塩素ケイ酸がケイ素又は二酸化ケイ素の粒子や粉塵とスラリー状物を形成してバルブ又はパイプなどの機器を塞ぎやすく、更に熱を受けると分解して機器を腐食して漏れを招くなどの危険がある。また、水洗法は、排ガスが多くの水溶性有害異物成分を含有する場合や排ガスが水蒸気と転化反応しやすい場合に対して一定の効果がある。 The water washing method is a method for the situation where etching exhaust gas mainly contains highly acidic toxic foreign matter, by absorbing acidic components and forming a liquid through water absorption and water-gas conversion, and converting the toxic foreign matter components into non-toxic substances or precipitates (water slurry) to achieve discharge. This method is simple and easy to operate, and is commonly used industrially. However, due to the limited absorption phase equilibrium and conversion efficiency, and the formed absorption liquid has a high corrosiveness, many acidic foreign matter components still remain in the exhaust gas after absorption, making it very difficult to completely meet the emission standard, and the emission standard can only be met by treating it in other ways, such as introducing air to dilute it, or by burning or adsorption. In the water washing method, heated water vapor can also be used, and the harmful foreign matter can be converted into harmless oxides by high temperature, making the purification efficiency of the water washing method higher. The main problem with the water washing method is that it requires a large amount of water consumption, and secondary pollutants such as hydrofluoric acid, hydrochloric acid, or fluorosilicic acid, which are difficult to recover and highly corrosive, are generated, resulting in a large investment in treatment equipment. At the same time, the high fluorine or high chlorine silicate formed by the water washing method can combine with silicon or silicon dioxide particles or dust to form a slurry that can easily clog valves, pipes, and other equipment, and when exposed to heat, it can decompose, corroding the equipment and causing leaks. The water washing method is also effective to a certain extent in cases where the exhaust gas contains a large amount of water-soluble harmful foreign matter or where the exhaust gas is prone to conversion reactions with water vapor.
酸塩基中和法は、酸性を有するエッチング排ガスの特性に対して、水酸化カルシウムなどの塩基性溶液を加えて、その中のフッ素イオン又はHFなどをフッ化カルシウム(CaF2,即ち人工蛍石)として形成し、或いは、高フッ素/高塩素ケイ酸カルシウムを沈殿させるか又はスラリーとして脱離させ、吸収されていないガスに更に他の塩基性溶液を加え、更にその中の酸性異物を脱離させ、排ガスにおける酸性異物成分の残留量が排出基準に達するようにする方法である。半導体業界において、著名な英国エドワーズ社(EDWARDS)が化学中和方法及びその装置であるガスリアクタカラム(GRC,gas reactor column)を発明したが、その原理は、化学中和方法を利用して排ガスを処理することである。前記装置のカラムには適切な無機微小粒子の混合物が詰められており、カラムに通電して一定の温度に加熱した後、排ガスがカラムを経由して中和反応を生じる。このガスリアクタカラムにおいて発生したのは乾式化学反応であり、真空システムに直接接続することが可能である。排ガスはカラムにおける塩基性又は金属塩基性物質と十分に化学反応し、排ガスのうちの一部が不活性物質に転化し、一部が化学反応によって吸着されることで、排出される有害排ガスが大幅に減少される。しかしながら、ガス柱の交換頻度が高いため、排ガスの吸着が完全でなく、又反応カラムが失活して有害成分が通過してしまい、これにより二次汚染を招く場合がある。酸塩基中和法又は化学中和法は、依然として吸収又は化学吸着の平衡により制限され、排ガスが徹底的に排出基準に達するように多段又はマルチカラムの中和反応が必要とされるため、コストが高いという問題を抱えている。 The acid-base neutralization method is a method in which, for the characteristics of etching exhaust gas having acidity, a basic solution such as calcium hydroxide is added to form fluorine ions or HF in the solution as calcium fluoride (CaF 2 , i.e., artificial fluorite), or high fluorine/high chlorine calcium silicate is precipitated or desorbed as a slurry, and another basic solution is added to the unabsorbed gas to further desorb the acidic foreign matter in the solution, so that the residual amount of the acidic foreign matter component in the exhaust gas reaches the emission standard. In the semiconductor industry, the well-known British company Edwards has invented a chemical neutralization method and its device, a gas reactor column (GRC), the principle of which is to treat the exhaust gas using a chemical neutralization method. The column of the device is filled with a suitable mixture of inorganic microparticles, and after the column is heated to a certain temperature by passing electricity through it, the exhaust gas passes through the column to cause a neutralization reaction. A dry chemical reaction occurs in the gas reactor column, which can be directly connected to a vacuum system. The exhaust gas reacts fully with the basic or metal basic substances in the column, and part of the exhaust gas is converted into inert substances, and part is adsorbed by chemical reaction, so that the amount of harmful exhaust gas discharged is greatly reduced. However, due to the frequent replacement of the gas column, the adsorption of the exhaust gas is not complete, and the reaction column is deactivated, so that harmful components pass through, which may cause secondary pollution. The acid-base neutralization method or chemical neutralization method is still limited by the equilibrium of absorption or chemical adsorption, and requires multi-stage or multi-column neutralization reaction to thoroughly reach the exhaust gas emission standard, which causes the problem of high cost.
酸化燃焼法は、エッチング排ガスに含有されているH2と、シランと、四フッ化ケイ素と、有機物(VOC)などの引火性成分を利用し、十分な温度及び時間で空気又は酸素含有化合物ガスを導入して引火性成分と接触させて焼却し、酸化物を生成可能にし、続いて熱交換により酸化生成物が凝縮するまでそれを冷却して排出し、残存ガスを更に塩基性溶液でリンスし、廃ガスの酸性を除去する方法である。エッチング排ガスには多くの難燃性のHF、HClなどの酸性ガスが含有されるため、この方法はエッチング排ガスの処理に適合しない。特に排ガスにポリメタクリル酸メチル(PMMA)などの特定のフォトレジストを含有する場合は、一般的に洗浄工程できれいに洗浄することが非常に困難であり、エッチング排ガスに残留された少量のフォトレジストに対して燃焼処理を採用してはいけない(ダイオキシン又はオキサゾール類有害物質を形成するため)。そのため、他の物理的方法を採用するしかできない。現在、酸化燃焼法は、一部の化学気相成長(CVD)で生じた排ガスの処理のみに適用されている。 The oxidative combustion method uses flammable components such as H2 , silane, silicon tetrafluoride, and organic compounds (VOCs) contained in the etching exhaust gas, introduces air or oxygen-containing compound gas at a sufficient temperature and time to contact the flammable components and incinerate them to generate oxides, and then cools and discharges the oxidized products until they are condensed by heat exchange, and rinses the remaining gas with a basic solution to remove the acidity of the waste gas. Since the etching exhaust gas contains many flame-retardant acidic gases such as HF and HCl, this method is not suitable for treating the etching exhaust gas. In particular, when the exhaust gas contains a specific photoresist such as polymethyl methacrylate (PMMA), it is generally very difficult to clean it in the cleaning process, and combustion treatment should not be used for the small amount of photoresist remaining in the etching exhaust gas (because it forms dioxins or oxazole-like harmful substances). Therefore, other physical methods can only be used. Currently, the oxidative combustion method is only applied to the treatment of exhaust gas generated by some chemical vapor deposition (CVD).
吸着法は、エッチング排ガスの成分と、選択された特定の吸着剤間の物理又は化学吸着力の大きさにより選択的な分離と浄化を実現する方法である。通常使用される酸化アルミニウム、活性炭又はモレキュラーシーブは、極性の強いHF、HCl、H2O、SiF4、SiH4、CO2及びVOCなどに対して顕著な吸着作用を有するが、吸着力が強いため、吸着剤の再生が相当に困難であり、使用寿命が短く、コストが上がるなどの問題がある。また、注意すべきこととして、HFを吸着するための吸着剤が特殊であることが挙げられる。このような吸着剤の多くは塩基性金属のフッ化物を用いており、金属フッ化物とHFが低い温度で化学反応することにより化学吸着を選択的に行い、金属フッ化物-HFの錯体を形成し、高い温度で更に錯体の分解反応を行うことで、HFの吸着剤からの脱離を実現し、他の異物が吸着剤において選択性を有していないことによって、HFの分離と浄化が実現される。このような化学吸着法を採用する場合の多くは、フッ化反応によるクロロフルオロアルカン(CFC)、水素含有クロロフルオロアルカン(HCFC)、水素含有フルオロアルカン(HFC)、フッ化スルフリル(SO2F2)などで製品が製されている場合である。反応により生成された反応混合ガスは、HFに対する選択的な吸着、分離及び回収効果が好適であるが、吸着剤の損失率が大きい。水又はSiF4又はHCl異物成分を含有するエッチング排ガスに対して、吸着剤と水などの異物成分との間でも化学反応又は共吸着現象が発生するため、吸着剤の粉状化又は過飽和及び吸着を招き、更に処理と浄化を効果的に行うことができない。そのほか、金属ゲッタ又は膜分離システムを採用して選択的な吸着を行うことは、一部の異物の脱離に有効であるが、エッチング排ガスに対する効果は顕著ではなく、更にコストが高い。また、吸着法の最も深刻な問題の1つは、この方法がエッチング排ガスにおける吸着質(異物)成分の濃度が低い状況には適するが、濃度が高い異物成分に対して、多くの場合吸着容量の制限によって吸着剤の用量が増えてしまい、操作コストもそれに伴って増え、脱離効果が悪いことである。 The adsorption method is a method for selectively separating and purifying the components of the etching exhaust gas by the strength of the physical or chemical adsorption between the components and the selected specific adsorbent. The commonly used aluminum oxide, activated carbon, or molecular sieve has a remarkable adsorption effect on HF, HCl, H 2 O, SiF 4 , SiH 4 , CO 2 , VOCs, etc., which are highly polar, but due to the strong adsorption, there are problems such as the difficulty of regenerating the adsorbent, the short service life, and the high cost. It should also be noted that the adsorbent for absorbing HF is special. Most of such adsorbents use fluorides of basic metals, and the metal fluoride and HF react chemically at low temperatures to selectively perform chemical adsorption, forming a metal fluoride-HF complex, and the complex is further decomposed at high temperatures to realize the desorption of HF from the adsorbent, and other foreign matter does not have selectivity in the adsorbent, thereby realizing the separation and purification of HF. In many cases, chemical adsorption is used to produce products such as chlorofluoroalkanes (CFCs), hydrogen-containing chlorofluoroalkanes (HCFCs), hydrogen-containing fluoroalkanes (HFCs), and sulfuryl fluoride (SO 2 F 2 ) through fluorination reactions. The reaction mixture gas produced by the reaction has good selective adsorption, separation and recovery effects for HF, but the loss rate of the adsorbent is large. For etching exhaust gas containing water, SiF 4 or HCl foreign matter components, chemical reactions or co-adsorption phenomena also occur between the adsorbent and foreign matter components such as water, which leads to powdering or supersaturation and adsorption of the adsorbent, and further treatment and purification cannot be effectively performed. In addition, selective adsorption using a metal getter or membrane separation system is effective in desorbing some foreign matter, but the effect on etching exhaust gas is not significant and the cost is high. Moreover, one of the most serious problems with the adsorption method is that, although this method is suitable for a situation in which the concentration of adsorbate (foreign matter) components in the etching exhaust gas is low, in the case of foreign matter components with a high concentration, the amount of adsorbent is often increased due to limitations in the adsorption capacity, which in turn increases the operation cost and results in poor desorption effect.
プラズマ浄化法は、現在流行している処理方法であり、特にエッチング排ガス、フッ化水素を調製する場合の排ガスをはじめとした、HF含有排ガスを含むフッ化廃ガスに対するものである。プラズマ浄化は、プラズマにより排ガスを分解(破壊)を補強し、有害成分を直接転換させることである。このような転換は、高密度プラズマ領域で完成し、この領域はグロー放電又は他の放電形態により得られる。プラズマはに大量の活性粒子が存在し、これらの粒子は、エッチング排ガスにおける有毒及び分解しにくい物質を破壊するおそれがある。この方法は、プラズマエッチングと組み合わせられ、非常に見込みのある排ガス処理方法であるとされている。例えば、パルスコロナプラズマ化学処理(PPCP,pulsed corona Induced plasma)は、酸窒化物(NOX)、二酸化硫黄(SO2)、水銀(Hg)蒸气及び揮発性有機物(VOC)に対して優れた処理効果を有する。NOX及びSO2の脱離は、パルスコロナにより生じた強いラジカルがそれらと酸化反応し、添加物(例えばアンモニア(NH3)及びH2O)の存在下で、それらを硫酸塩及び硝酸塩に転化させることであり、VOCの脱離は、パルスコロナにより生じた高エネルギー電子がそれを励起し、分解させて電離させ、最終的に構造が簡単であるCO2及びCOを生成することである。フッ化排ガスに対しては、H2,NH3又はメタン(CH4)などの水素又は水素含有化合物を添加し、水と溶解しにくい又は分解しにくいフッ化物などの成分をプラズマ条件下で分解させ、それにより生じた水素イオン(H+)はフッ素イオン(F-)又は塩素イオン(Cl+)と共にHF、HClを形成し、更に水洗によりフッ化排ガスを浄化する。しかしながらプラズマは、HF,HClなどの含有量の高いエッチング排ガスに対して処理効果が顕著ではなく、且つ高価であるため、小規模の排ガス処理のみに適する。 Plasma purification is a currently popular treatment method, especially for fluoride waste gases, including HF-containing waste gases, such as etching waste gases and waste gases from preparing hydrogen fluoride. Plasma purification is to enhance the decomposition (destruction) of waste gases by plasma, and directly convert harmful components. Such conversion is completed in a high-density plasma region, which can be obtained by glow discharge or other discharge forms. There are a large number of active particles in plasma, which may destroy toxic and difficult-to-decompose substances in etching waste gases. This method, combined with plasma etching, is considered to be a very promising waste gas treatment method. For example, pulsed corona induced plasma (PPCP) has excellent treatment effect on oxynitrides ( NOx ), sulfur dioxide ( SO2 ), mercury (Hg) vapor and volatile organic compounds (VOCs). The desorption of NOX and SO2 is caused by the strong radicals generated by the pulse corona reacting with them through oxidation, and converting them into sulfates and nitrates in the presence of additives (e.g., ammonia ( NH3 ) and H2O ). The desorption of VOCs is caused by the high-energy electrons generated by the pulse corona exciting them, decomposing and ionizing them, and finally producing CO2 and CO, which have simple structures. For fluorinated exhaust gas, hydrogen or hydrogen-containing compounds such as H2 , NH3 or methane ( CH4 ) are added to decompose components such as fluorides that are difficult to dissolve or decompose in water under plasma conditions, and the hydrogen ions (H+) generated thereby form HF and HCl together with fluorine ions (F-) or chlorine ions (Cl+), and the fluorinated exhaust gas is further purified by washing with water. However, plasma does not have a significant effect on etching exhaust gases with a high content of HF, HCl, etc., and is expensive, so it is only suitable for small-scale exhaust gas treatment.
以上に記載した従来のエッチング排ガス処理方法は、いずれも有毒有害成分を無害化するとともに排ガスが排出基準に達するようにすることを主な目的とし、排ガスにおける大量の非常に価値のあるHF、Cl又はH2などは全て回収利用することができない。 The above-mentioned conventional etching exhaust gas treatment methods all aim to make toxic and harmful components harmless and to make the exhaust gas meet the emission standards, but cannot fully recover and reuse the large amounts of valuable HF, Cl, or H2 in the exhaust gas.
本発明の目的は、HF/HCl/H2含有乾式エッチング排ガスから高純度のHF、HCl又はH2を得、それをエッチングプロセスに戻すことで循環使用するFTrPSA(全温度範囲圧力スイング吸着)によるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法を提供することである。 The object of the present invention is to provide a method for separating, recovering, circulating and reusing HF/HCl-containing etching exhaust gas by FTrPSA (Full Temperature Pressure Swing Adsorption), which obtains high purity HF, HCl or H2 from HF/HCl/H2-containing dry etching exhaust gas and recycles it by returning it to the etching process.
全温度範囲圧力スイング吸着(英語全称はFull Temperature Range-Pressure Swing Adsorptionであり、以降FTrPSAと略称する)は、圧力スイング吸着(PSA)を基に各種の分離技術と結合できる方法であり、エッチング排ガスにおける各成分(HF/HClが有効成分であり、残りが異物成分である)自身の、異なる圧力と温度下での吸収・吸着・精留及び物理化学性質の差異を利用する。二段の中温圧力スイング吸着工程を主として採用し、この工程とスプレー吸収、HF精留/HCl精製(精留)及び凝縮を結合することで、中温圧力スイング吸着過程における吸着と脱着がマッチング・平衡しやすくなり、吸着と脱着の循環操作により分離と浄化を行うことでHF/HClを回収しエッチングプロセスに戻して循環使用することを実現する。 Full Temperature Range Pressure Swing Adsorption (FTrPSA) is a method based on pressure swing adsorption (PSA) that can be combined with various separation technologies, utilizing the differences in the absorption, adsorption, rectification and physical and chemical properties of each component (HF/HCl are active components, the rest are foreign components) in etching exhaust gas under different pressures and temperatures. A two-stage medium temperature pressure swing adsorption process is mainly adopted, and by combining this process with spray absorption, HF rectification/HCl purification (rectification) and condensation, it is easier to match and balance the adsorption and desorption in the medium temperature pressure swing adsorption process, and separation and purification are performed by circulating the adsorption and desorption, allowing the HF/HCl to be recovered and returned to the etching process for recycling.
本発明において採用されている技術的解決手段は、FTrPSAによるHF/HCl含有エッチング排ガスの分離及び回収循環再利用方法であり、原料ガスは、ケイ素又は炭化ケイ素ベースのウエハチップの乾式エッチング過程で生じた排ガスに由来し、主に不活性キャリアガス(水素ガス(H2)),有効成分であるフッ化水素(HF)と塩化水素(HCl),及び少量の水(H2O),四フッ化ケイ素(SiF4),四塩化ケイ素(SiCl4),シラン(SiH4),メタン(CH4),一酸化炭素(CO),二酸化炭素(CO2)及び微量又は痕跡量の揮発性有機物(VOC),金属イオン(Me+),微細固体とエーロゾル粒子(SS),一部の高フッ素シラン酸/高塩素シランの異物成分等を含有し、温度が常温であり、圧力が常圧又はマイクロ正圧である。 The technical solution adopted in the present invention is the separation and recovery recycling method of HF/HCl-containing etching exhaust gas by FTrPSA, the raw material gas is derived from the exhaust gas generated in the dry etching process of silicon or silicon carbide-based wafer chips, mainly contains inert carrier gas (hydrogen gas ( H2 )), effective components hydrogen fluoride (HF) and hydrogen chloride (HCl), and a small amount of water ( H2O ), silicon tetrafluoride ( SiF4 ), silicon tetrachloride ( SiCl4 ), silane ( SiH4 ), methane ( CH4 ), carbon monoxide (CO), carbon dioxide ( CO2 ) and small or trace amounts of volatile organic compounds (VOCs), metal ions (Me+), fine solids and aerosol particles (SS), some foreign components of high fluorine silane acid/high chlorine silane, etc., the temperature is normal temperature, and the pressure is normal pressure or micro positive pressure.
前記FTrPSAによるHF/HCl含有エッチング排ガスの分離及び回収循環再利用方法は、
(1)原料ガスの温度が常温であり、圧力が0.2~0.3MPaであるように制御し、除塵機と、粒子除去フィルタと、油煙除去捕集器と、活性炭吸着器とを含む前処理ユニットに送り込み、順にダスト、粒子、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、前処理を経て形成された浄化原料ガスをクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)クロロシランとHClの混合液体を吸収剤とするスプレー吸収塔をリアクタとして採用し、前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔の底部から入らせて吸収剤と向流交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを中温圧力スイング吸着工程に入らせるクロロシラン/HClスプレー吸収工程と、
(3)二段の圧力スイング吸着工程からなり、各段の圧力スイング吸着工程において2つ以上の吸着塔からなり、少なくとも1つの吸着塔が吸着ステップにあり、残りの吸着塔が脱着ステップにあり、クロロシラン/HClスプレー吸収工程からの不凝縮ガス1を一段目のPSA(1#PSA)吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してから次の工程であるHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目のPSA(2#PSA)吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合してから戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)上下二段の精留からなる精留塔を含み、中温圧力スイング吸着工程からの粗HFガスが凝縮してから得られた精製HF液体をHF精留工程における精留塔に入らせ、精製HF液体を下段精留塔の頂部又は上段精留塔の底部から入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に戻し、上段精留塔の底部又は下段精留塔の頂部の留出物が凝縮を経て形成した不凝縮ガス4が無水HF(AHF)ガスであり、純度が99.99%以上であり、それを直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段又は下段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の一部を多段蒸発・圧縮・凝縮工程に入らせ、残りの一部を排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用するHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体をHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)HCl精留塔及び真空精留塔を含み、HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、残りの一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガスが不凝縮ガス7であり、その一部を後続の排ガス吸収工程に入らせ、他の一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、他の一部をクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)精留塔を含み、多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を導入し、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部をHClと混合して混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、他の一部を硫酸と混合して排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)クロロシラン中弱冷精留工程からのクロロシラン液体と新鮮な硫酸の混合液を吸収剤とする排ガス吸収塔をリアクタとして採用し、HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガスと、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した不凝縮ガス5及びHCl精製工程からの不凝縮ガス7を混合したのちに排ガス吸収塔に入らせ、吸収塔の底部で形成したフルオロケイ酸溶液を原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、を含む。
The method for separating, recovering, circulating and reusing an HF/HCl-containing etching exhaust gas by FTrPSA comprises the steps of:
(1) a pretreatment process in which the temperature of the raw material gas is controlled to be room temperature and the pressure is controlled to be 0.2-0.3 MPa, and the raw material gas is sent to a pretreatment unit including a dust collector, a particle removal filter, a soot removal collector, and an activated carbon adsorber, and dust, particles, soot, VOCs, high fluorine silane/acid, and high chlorine silane are desorbed in order, and the purified raw material gas formed through the pretreatment is sent to a chlorosilane/HCl spray absorption process;
(2) A spray absorption tower using a mixed liquid of chlorosilanes and HCl as an absorbent is used as a reactor. The purified raw gas from the pretreatment process is heat-exchanged to 50-80°C, and then the raw gas enters the bottom of the spray absorption tower and is countercurrently exchanged with the absorbent. The absorbing liquid enriched in chlorosilanes/HCl flows out from the bottom of the spray absorption tower and is then sent to the subsequent multi-stage evaporation/compression/condensation process. At the same time, a small amount of residual particles, high chlorine silane, high fluorine silane/acid and other foreign matter flowing out from the bottom of the tower are sent out for environmental protection treatment. The non-condensable gas 1 enriched in HF and low boiling point components flows out from the top of the spray absorption tower and is then sent to the medium temperature pressure swing adsorption process. A chlorosilane/HCl spray absorption process.
(3) A two-stage pressure swing adsorption process, in which each stage of the pressure swing adsorption process comprises two or more adsorption towers, at least one of which is in the adsorption step and the remaining adsorption towers are in the desorption step, the non-condensable gas 1 from the chlorosilane/HCl spray absorption process is introduced into the bottom of the first-stage PSA (1#PSA) adsorption tower, the operating pressure of the 1#PSA is 0.2-0.3 MPa, and the operating temperature is 50-80°C, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, the non-condensable gas 2 formed through condensation is subjected to precision filtration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40%, which is then sent out, and the non-condensable gas 3 formed through water absorption is hydrogen-rich gas, which is sent out and used as fuel gas, or used for hydrogen purification by pressure swing adsorption. The raw gas produced by the process is used as the raw gas for the process, and the crude HF liquid formed through condensation is subjected to precision filtration before being fed to the next process, which is the HF rectification process. The desorption gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is pressurized and heat exchanged before being fed to the bottom of the second-stage PSA (2# PSA) adsorption tower. The operation pressure of the 2# PSA adsorption tower is 0.2-0.3 MPa, and the operation temperature is 50-80°C. The non-adsorbed intermediate gas flowing out from the top of the 2# PSA adsorption tower in the adsorption step is mixed with the non-condensed gas 1 from the chlorosilane/HCl spray absorption process and then returned to the 1# PSA adsorption tower, and the effective components HF and HCl are further recovered. The desorption gas flowing out from the bottom of the 2# PSA adsorption tower is a concentrated gas, which is returned to the chlorosilane/HCl spray absorption process, and the effective components are further recovered.
(4) A distillation tower consisting of upper and lower two-stage rectification, in which the purified HF liquid obtained after condensing the crude HF gas from the medium temperature pressure swing adsorption step is introduced into the distillation tower in the HF distillation step, the purified HF liquid is introduced from the top of the lower rectification tower or the bottom of the upper rectification tower, and the light component foreign gas distilled at the top of the upper rectification tower is returned to the subsequent exhaust gas absorption step, and the non-condensable gas 4 formed through condensation of the distillate at the bottom of the upper rectification tower or the top of the lower rectification tower is anhydrous HF (AHF) gas and has a purity of 99.99% or more. a HF rectification process in which the HF product gas is directly returned to the dry etching process as electronic grade HF product gas for recycling, the liquid formed through condensation is used as reflux for the upper or lower stage rectification, a part of the non-condensable gas 5 formed through condensation of the column bottom fluid containing a small amount of heavy foreign matter components distilled at the bottom of the lower stage rectification is introduced into a multi-stage evaporation/compression/condensation process, and the remaining part is introduced into an exhaust gas absorption process, and the liquid formed through condensation is returned as an absorbent to the chlorosilane/HCl spray absorption process for recycling;
(5) The absorbent from the chlorosilane/HCl spray absorption step is fed to a multi-stage evaporation step, then fed to a condenser, from which a gaseous crude HCl gas is obtained, which is mixed with the non-condensable gas 5 obtained by condensing the bottom flow of the heavy component from the HF rectification step, and the crude HCl liquid formed through the condensation is fed to an HCl purification step, and the crude chlorosilane liquid flows out from the condenser, which is fed to the subsequent chlorosilane medium-low cold rectification step, and the non-condensable gas 6 flowing out from the condenser is heat-exchanged and returned to the medium-temperature pressure swing adsorption step, and further, a multi-stage evaporation, compression and condensation step in which the effective components HF and HCl are recovered;
(6) comprising an HCl rectification column and a vacuum rectification column, the operating pressure of the HCl rectification column is 0.3-0.6 MPa and the operating temperature is 50-80°C, the operating pressure of the vacuum rectification column is -0.08--0.1 MPa and the operating temperature is 60-120°C, a part of the HCl product gas with a purity of more than 99.99% flowing out from the top of the HCl rectification column is recycled back to the dry etching process for reuse, and the remaining part is liquefied and then converted into chlorosilane/H an HCl purification step in which the HCl rectification tower is recycled as an absorbent in a Cl spray absorption step, the effluent from the bottom of the HCl rectification tower is fed to a vacuum rectification tower, the overhead gas flowing out from the top of the vacuum rectification tower is a non-condensable gas 7, a part of which is fed to the subsequent exhaust gas absorption step, another part is returned to the medium temperature pressure swing adsorption step, a part of the heavy components flowing out from the bottom of the vacuum rectification tower is returned to the multi-stage evaporation/compression/condensation step, and another part is fed to a chlorosilane medium weak cold rectification step;
(7) a chlorosilane medium-low cold rectification step including a rectification tower, into which the crude chlorosilane liquid from the multi-stage evaporation/compression/condensation step and/or the heavy component fluid from the bottom of the vacuum tower from the HCl purification step are introduced, the operation temperature being −35 to 10° C. and the operation pressure being 0.6 to 2.0 MPa, the non-condensable gas 8 flowing out from the top of the rectification tower is heat exchanged and then returned to the medium temperature pressure swing adsorption step, a part of the chlorosilane liquid flowing out from the bottom of the rectification tower is mixed with HCl to form a mixed liquid, which is returned to the chlorosilane/HCl spray absorption step as an absorbent for recycling, and the other part is mixed with sulfuric acid and used as an absorbent in the exhaust gas absorption step;
(8) An exhaust gas absorption step in which an exhaust gas absorption tower is used as a reactor, and a mixture of chlorosilane liquid from the chlorosilane medium-low cold rectification step and fresh sulfuric acid is used as an absorbent, and the light component foreign matter gas distilled at the top of the upper rectification tower from the HF rectification step, the non-condensable gas 5 formed through condensation of the heavy components flowing out from the bottom of the lower rectification tower from the HF rectification step, and the non-condensable gas 7 from the HCl purification step are mixed and then introduced into the exhaust gas absorption tower, and the fluorosilicic acid solution formed at the bottom of the absorption tower is sent out as a raw material and recycled as a raw material liquid in the production process of preparing AHF by a fluorosilicic acid removal method, and the non-condensable gas 9 flowing out from the top of the absorption tower is directly discharged as exhaust gas.
更に、前記原料ガスにおけるHClの含有量が1%より小さい場合、前記浄化原料ガスを中温圧力スイング吸着工程に直接入らせ、1#PSA塔頂から流出する粗HFガスが凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目のPSA(2#PSA)吸着塔の底部から入らせ、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを直接戻して1#PSA吸着塔に入らせ、更に有効成分を回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、新しく増設された凝縮器を経てから形成した不凝縮ガス1を更に中温圧力スイング吸着工程の粗HFガスと混合して有効成分HFを回収し、新しく増設された凝縮器の後に形成した液体をHCl精製工程に直接入らせてHClを回収し、HCl精製工程から流出する重質成分を処理してから直接排出することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮及び中弱冷クロロシラン精留工程を省く。 Furthermore, when the HCl content in the raw gas is less than 1%, the purified raw gas is directly fed to the medium temperature pressure swing adsorption step, the crude HF gas flowing out from the top of the 1# PSA tower is condensed and the non-condensable gas 2 is subjected to precision filtration and absorption with deionized water to obtain an aqueous HF solution with a concentration of 40%, which is then sent out to the outside, the non-condensable gas 3 formed through water absorption is a hydrogen-rich gas, which is sent out to be used as a fuel gas or as a raw gas for hydrogen purification by pressure swing adsorption, the crude HF liquid formed through condensation is precision filtered and then sent to the HF rectification step, the desorbed gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is pressurized and heat exchanged, and then sent to the second stage PS A (2# PSA) adsorption tower is entered from the bottom, the non-adsorbed intermediate gas flowing out from the top of the 2# PSA adsorption tower in the adsorption step is directly returned to the 1# PSA adsorption tower to further recover the active ingredient, the desorbed gas flowing out from the bottom of the 2# PSA adsorption tower is a concentrated gas, and the non-condensed gas 1 formed after passing through the newly added condenser is further mixed with the crude HF gas from the medium temperature pressure swing adsorption process to recover the active ingredient HF, the liquid formed after the newly added condenser is directly entered into the HCl purification process to recover HCl, and the heavy ingredients flowing out from the HCl purification process are treated and then directly discharged, thereby eliminating the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, and medium/weak cold chlorosilane rectification processes.
更に、前記原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。 Furthermore, when the HF concentration in the feed gas is less than the HCl concentration, the purified feed gas from the pretreatment process is heat exchanged to 80-160°C and then fed to a chlorosilane/HCl spray absorption process, non-condensable gas 1 flowing out from the top of the spray absorption tower is condensed to form non-condensable gas 2, which is further fed to a medium-temperature pressure swing adsorption process consisting of two stages of PSA, the condensed liquid formed through condensation is fed directly to the HCl purification process, and the absorbed liquid flowing out from the bottom of the spray absorption tower is fed to a multi-stage evaporation/compression/condensation process.
更に、前記原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、不凝縮ガス2を一段目のPSA(1#PSA)吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが中間ガスであり、それを二段目の(2#PSA)吸着塔の底部に導入し、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス3に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス4が水素富化ガスであり、それを送り出し、燃料ガスとして又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガス及び2#PSA吸着塔の底部から流出する濃縮ガスをそれぞれクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収し、不凝縮ガス1が凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。 Furthermore, when the concentration of HF in the raw gas is smaller than the concentration of HCl, the purified raw gas from the pretreatment process is heat-exchanged to 80-160°C and then introduced into the chlorosilane/HCl spray absorption process, and the non-condensable gas 2 formed by condensing the non-condensable gas 1 flowing out from the top of the spray absorption tower is further introduced into a medium temperature pressure swing adsorption process consisting of two stages of PSA, and the non-condensable gas 2 is introduced from the bottom of the first stage PSA (1#PSA) adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, the operating temperature is 50-80°C, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is intermediate gas, which is introduced into the bottom of the second stage (2#PSA) adsorption tower, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, which is condensed and then introduced into the bottom of the second stage (2#PSA) adsorption tower. The non-condensable gas 3 formed by this is subjected to precision filtration and absorption with deionized water to obtain a 40% HF aqueous solution, which is then sent out; the non-condensable gas 4 formed through water absorption is a hydrogen-rich gas, which is sent out and used as a fuel gas or as a raw material gas for hydrogen purification by pressure swing adsorption; the crude HF liquid formed through condensation is precision filtered and then sent to the HF rectification process; the desorption gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step and the concentrated gas flowing out from the bottom of the 2# PSA adsorption tower are each returned to the chlorosilane/HCl spray absorption process, and further active ingredients are recovered; the condensed liquid formed through condensation of the non-condensable gas 1 is directly sent to the HCl purification process; and the absorption liquid flowing out from the bottom of the spray absorption tower is sent to the multi-stage evaporation, compression, and condensation process.
更に、前記原料ガスにおけるHFとHClの濃度が合計で3%を超えていない場合、原料ガスに前処理工程を行って得られた浄化原料ガスを一段のPSAからなる中温圧力スイング吸着工程に直接入らせ、一段のPSAが2つ以上の吸着塔からなり、1つの吸着塔が吸着ステップにあり、残りの吸着塔が降圧・逆ガス抜き又は真空引き又は昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が70~90℃であり、浄化原料ガスをPSA吸着塔の底部から入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが吸着廃ガスであり、それを燃料ガスとして、又は圧力スイング吸着による水素精製の原料ガスとして使用し、脱着ステップにある吸着塔の底部から流出する濃縮ガスが凝縮を経て形成した不凝縮ガス1を浄化原料ガスと混合して中温圧力スイング吸着工程に戻し、更に有効成分を回収し、凝縮を経て形成した凝縮液体を更にHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス2を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留工程を省くことができ、またこの動作状況は従来の水洗吸収法によりエッチング排ガスを処理した後の低濃度HF/HCl含有酸性排ガスの分離と回収再利用にも適する。 Furthermore, when the total concentration of HF and HCl in the feed gas does not exceed 3%, the purified feed gas obtained by subjecting the feed gas to a pretreatment process is directly fed into a medium temperature pressure swing adsorption process consisting of a single stage of PSA, the single stage of PSA being composed of two or more adsorption towers, one of which is in the adsorption step and the remaining adsorption towers are in the desorption step including different stages of depressurization/back gas venting or vacuuming or pressurization or final gas filling, the operating pressure of the adsorption tower is 0.2-0.3 MPa, the operating temperature is 70-90°C, the purified feed gas is fed from the bottom of the PSA adsorption tower, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is the adsorption waste gas, which is used as fuel gas or as a feed gas for hydrogen purification by pressure swing adsorption, and the concentrated gas flowing out from the bottom of the adsorption tower in the desorption step is condensed gas. The non-condensable gas 1 formed through the above process is mixed with the purified raw material gas and returned to the medium temperature pressure swing adsorption process, and the active components are further recovered. The condensed liquid formed through the condensation process is further fed to the HF rectification process. The non-condensable gas 2 flowing out from the HF rectification process is fed to the exhaust gas absorption process for treatment. The HF product gas flowing out from the HF rectification process is fed back to the dry etching process for recycling. The heavy component fluid flowing out from the bottom of the HF rectification tower is fed directly to the HCl purification process. The HCl product gas thus obtained is fed back to the dry etching process for recycling. This makes it possible to omit the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, and medium/weak cold chlorosilane rectification processes. This operating condition is also suitable for separating and recovering and reusing low-concentration HF/HCl-containing acidic exhaust gas after etching exhaust gas is treated by the conventional water washing and absorption method.
更に、前記原料ガスにおけるHF/HClの濃度が20%を超えている場合、前処理工程を経た浄化原料ガスを凝縮して形成した不凝縮ガス1に対して、水洗により少量の残留酸性成分を脱離させ、希酸を生成して外部へ送り出す処理を行い、水洗を経て形成した不凝縮ガス2を燃料ガス又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した凝縮液をHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス3を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留及び中温圧力スイング吸着工程を省き、この動作状況がプラズマにより洗浄した後に生成された高濃度HF/HCl含有排ガスの分離と回収再利用にも適する。 Furthermore, if the HF/HCl concentration in the raw gas exceeds 20%, the purified raw gas that has been subjected to the pretreatment process is condensed to form non-condensable gas 1, which is washed with water to remove small amounts of residual acidic components, and dilute acid is generated and sent to the outside. The non-condensable gas 2 formed after washing with water is used as fuel gas or raw gas for hydrogen purification by pressure swing adsorption, the condensate formed after condensation is introduced into the HF rectification process, and the non-condensable gas 3 flowing out from the HF rectification process is introduced into the exhaust gas absorption process for treatment, and the HF rectification process is used as fuel gas or raw gas for hydrogen purification by pressure swing adsorption. The HF product gas flowing out from the distillation process is returned to the dry etching process for recycling, and the heavy component fluid flowing out from the bottom of the HF distillation tower is directly introduced into the HCl purification process, thus obtaining HCl product gas, which is returned to the dry etching process for recycling, eliminating the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, medium-low temperature chlorosilane distillation and medium temperature pressure swing adsorption processes, and this operating condition is also suitable for separating and recovering and reusing the high concentration HF/HCl-containing exhaust gas generated after cleaning with plasma.
更に、前記中温圧力スイング吸着工程において、圧力スイング吸着による水素精製の原料ガスが水洗後に生成された不凝縮ガス又は吸着廃ガスであり、まず不凝縮ガス又は吸着廃ガスを乾燥塔に入らせ、その中の水分及び少量のフッ素と塩素を含有する酸性成分を脱離させ、続いて吸着浄化段階に入らせ、シラン、ホスホラン、金属イオンを含む異物を脱離させ、水素を富化した浄化メタン-水素ガスを得、1.0~3.0MPaに加圧してから常温まで熱交換し、4つ以上の吸着塔からなる圧力スイング吸着による水素精製工程に入らせ、そうすることで吸着塔の頂部から純度が99.99~99.999%の超純粋水素が流出し、それをパラジウム膜又は金属ゲッタからなる水素ガス純化工程に入らせ、電子グレードの水素ガス基準に合致するH2製品ガスを得、乾式エッチングプロセスに戻して循環使用するか又は外部へ送り出すことで吸着塔の底部から流出する脱着ガスがメタン富化ガスであり、それを燃料ガスとして直接使用する。 Furthermore, in the medium temperature pressure swing adsorption process, the raw material gas for hydrogen purification by pressure swing adsorption is the non-condensable gas or adsorption waste gas generated after water washing. The non-condensable gas or adsorption waste gas is first introduced into a drying tower to desorb the moisture and acidic components containing a small amount of fluorine and chlorine therein, and then into the adsorption purification stage to desorb foreign matter containing silane, phosphorane, and metal ions, and obtain purified methane-hydrogen gas enriched in hydrogen. The gas is pressurized to 1.0-3.0 MPa and then heat exchanged to room temperature, and then into the hydrogen purification process by pressure swing adsorption consisting of four or more adsorption towers, so that ultra-pure hydrogen with a purity of 99.99-99.999% flows out from the top of the adsorption tower, which is then introduced into the hydrogen gas purification process consisting of a palladium membrane or metal getter to obtain H2 product gas that meets the electronic grade hydrogen gas standard, which is then returned to the dry etching process for recycling or sent out to the outside, and the desorbed gas flowing out from the bottom of the adsorption tower is methane-enriched gas, which is directly used as fuel gas.
本発明の有益効果は、以下の通りである。
(1)本発明によれば、HF/HCl含有乾式エッチング排ガスからHFとHClを分離して回収するとともに、エッチングプロセスに戻して循環使用することが実現され、そのことでエッチングガス原料のコスト及び排ガスの環境保護処理コストが大幅に削減され、従来技術においてただ標準に達せば排出してしまい、排ガスの総合利用を実現できない課題が解決され、この技術分野における空白が埋められた。
(2)本発明において、原料ガスにおける各成分(HF/HClが有効成分であり、残りが異物成分である)自身の異なる圧力と温度での吸着・吸収・精留・凝縮係数及び物理化学性質の差異を利用し、二段の中温圧力スイング吸着工程を主として採用し、この工程をクロロシランスプレー吸収、HF精留、HCl精製(精留)、クロロシラン精留及び蒸発・圧縮・凝縮と結合することで、中温圧力スイング吸着過程における吸着と脱着がマッチング・平衡しやすくなり、吸着と脱着の循環操作により分離と浄化を行うことで、HF/HClを他の異物成分と分離して精製するとともに、乾式エッチングプロセスに戻して循環使用することを実現する。
(3)本発明は、従来の化学吸着法において、HFと吸着剤が低温で化学反応(キレート)を起こして吸着し、高温で分解反応して脱着することにより、吸着と脱着の頻繁な循環操作過程における吸着剤の損失率が大きくなり、吸着剤が水などの異物成分とも化学反応を起こすため、吸着剤の粉状化と失活がひどくなり吸着分離を効果的に行うことができないという問題を克服し、HFとHClの両者の極性が強く吸着されやすいが脱着されにくいという特徴を利用し、独自の中温圧力スイング吸着の物理吸着過程を採用し、精留又は凝縮の過程と組み合わせて吸着と脱着の循環操作を調節することにより、このような現象を回避し、吸着剤の使用寿命を延ばすことができる。
(4)本発明は、異なる原料ガスの場合、フローを効果的に簡略化することでHF/HClの回収再利用を実現することができるため、従来の環境保護を目的とする水洗法又はプラズマ法と本発明を結合してエッチング排ガスを処理し、HF/HClを効果的に回収してエッチングプロセス又は乾式洗浄プロセスに戻して循環使用することができ、従来の処理方法では回収できない欠陥が解決され、同様に排出基準に達する。
(5)本発明は、エッチング排ガスからHF/HClを回収して循環再利用することができると同時に、PSAを追加して水素を精製することで価値のある電子グレードのH2製品を得ることができ、且つ、乾式エッチングプロセスに戻して循環使用することも可能であり、又は半導体の他のプロセスの水素源とすることも可能であり、同時に、プロセスキャリアガスがアルゴンガス又は窒素ガス又は水素との混合ガスである場合、PSAを調整することで水素精製又はアルゴン精製又は窒素精製を行うか、もしくは低温吸着を追加して電子グレードのアルゴンガス、窒素ガスなどの製品を得ることができる。
The beneficial effects of the present invention are as follows:
(1) The present invention realizes the separation and recovery of HF and HCl from the HF/HCl-containing dry etching exhaust gas, and the recycling of the HF and HCl back into the etching process, thereby greatly reducing the cost of etching gas raw materials and the cost of environmental protection and treatment of the exhaust gas. This solves the problem in the prior art that the exhaust gas is simply discharged once it reaches the standard, and the comprehensive utilization of the exhaust gas cannot be realized, and fills the gap in this technical field.
(2) In the present invention, the differences in the adsorption, absorption, rectification, and condensation coefficients and physicochemical properties of each component in the raw gas (HF/HCl are active components, and the rest are foreign matter components) at different pressures and temperatures are utilized, and a two-stage medium temperature pressure swing adsorption process is mainly adopted. This process is combined with chlorosilane spray absorption, HF rectification, HCl purification (rectification), chlorosilane rectification, and evaporation, compression, and condensation, which facilitates matching and equilibrium of adsorption and desorption in the medium temperature pressure swing adsorption process. Separation and purification are achieved by circulating the adsorption and desorption, which allows HF/HCl to be separated and purified from other foreign matter components, and can be returned to the dry etching process for recycling.
(3) The present invention overcomes the problems of the conventional chemical adsorption method in which HF and an adsorbent undergo a chemical reaction (chelation) at low temperatures to adsorb, and a decomposition reaction at high temperatures to desorb, resulting in a large loss of the adsorbent during the frequent cyclic operation of adsorption and desorption, and the adsorbent also undergoes a chemical reaction with foreign components such as water, which causes the adsorbent to become powdered and deactivated severely, making it difficult to perform adsorption and separation. By utilizing the characteristics of both HF and HCl, which have strong polarity and are easily adsorbed but difficult to desorb, the present invention employs a unique medium-temperature pressure swing adsorption physical adsorption process and combines it with a rectification or condensation process to adjust the cyclic operation of adsorption and desorption, thereby avoiding such phenomena and extending the service life of the adsorbent.
(4) In the case of different raw material gases, the present invention can effectively simplify the flow and realize the recovery and reuse of HF/HCl. Therefore, the present invention can be combined with the conventional environmentally friendly water washing method or plasma method to treat the etching exhaust gas, and the HF/HCl can be effectively recovered and recycled back into the etching process or dry cleaning process for recycling, thereby solving the defects of the conventional treatment methods that cannot be recovered, and also meeting the emission standards.
(5) The present invention can recover HF/HCl from the etching exhaust gas and recycle it, and at the same time, add PSA to purify hydrogen to obtain valuable electronic grade H2 products, which can be recycled back into the dry etching process or used as a hydrogen source for other semiconductor processes. At the same time, when the process carrier gas is argon gas, nitrogen gas, or a mixed gas of argon and hydrogen, the PSA can be adjusted to perform hydrogen purification, argon purification, or nitrogen purification, or low-temperature adsorption can be added to obtain electronic grade argon gas, nitrogen gas, and other products.
本発明の目的、技術的解決手段及び利点をより明らかにするために、本発明を更に詳細に説明する。ここで記載されている具体的な実施例は、本発明を解釈するためのものに過ぎず、本発明の実施形態を限定するためのものではなく、即ち、記載されている実施例は、本発明の一部の実施例に過ぎず、全ての実施例ではないことを理解すべきである。 The present invention will be described in more detail to make the objectives, technical solutions and advantages of the present invention clearer. The specific examples described herein are merely for the purpose of interpreting the present invention, and are not intended to limit the embodiments of the present invention; that is, it should be understood that the described examples are merely some examples of the present invention, and not all examples.
実施例1
図1に示すように、FTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスは、ケイ素ベースのウエハチップの乾式エッチング過程で生じた排ガスに由来し、主に不活性キャリアガスである水素ガス(H2)83%(v/v)、有効成分であるフッ化水素(HF)9%と塩化水素(HCl)5%、及び少量の水(H2O)、四フッ化ケイ素(SiF4)、四塩化ケイ素(SiCl4)、シラン(SiH4)、メタン(CH4)、一酸化炭素(CO)、二酸化炭素(CO2)、及び微量又は痕跡量の揮発性有機物(VOC)、金属イオン(Me+)、微細固体とエーロゾル粒子(SS)、一部の高フッ素シラン酸/高塩素シランの異物成分を含有し、常温常圧である。
Example 1
As shown in FIG. 1, in the method of separating, recovering, and recycling HF/HCl-containing etching exhaust gas by FTrPSA, the raw gas is derived from the exhaust gas generated during the dry etching process of silicon-based wafer chips, and mainly contains 83% (v/v) of inert carrier gas hydrogen gas ( H2 ), 9% of active ingredients hydrogen fluoride (HF) and 5% of hydrogen chloride (HCl), as well as a small amount of water ( H2O ), silicon tetrafluoride ( SiF4 ), silicon tetrachloride ( SiCl4 ), silane ( SiH4 ), methane ( CH4 ), carbon monoxide (CO), carbon dioxide ( CO2 ), and small or trace amounts of volatile organic compounds (VOCs), metal ions (Me+), fine solids and aerosol particles (SS), and some foreign matter components of high fluorine silane acid/high chlorine silane, and is at room temperature and pressure.
具体的な実施工程は、
(1)原料ガスを増圧した後に、除塵機と、粒子除去フィルタと、油煙除去捕集器と、
活性炭吸着器とからなる前処理ユニットに送り込み、0.2~0.3MPaの圧力と常温の操作条件下で、順にダスト、粒子(SS)、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、形成された浄化原料ガスを次の工程であるクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔に底部から導入し、クロロシランとHCl(1:1~1.4)の混合液体を吸収剤として採用し、スプレー吸収塔の頂部から下へスプレーして浄化原料ガスと向流交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを次の工程である中温圧力スイング吸着工程に直接入らせるクロロシラン/HClスプレー吸収工程と、
(3)クロロシラン/HClスプレー吸収工程からの不凝縮ガス1を二段の圧力スイング吸着(PSA)からなる中温圧力スイング吸着工程に入らせ、一段目、二段目の圧力スイング吸着(1#PSA、2#PSA)がいずれも3つの吸着塔からなり、そのうち1つの吸着塔が吸着ステップにあり、残りの2つの吸着塔が降圧・逆ガス抜き又は真空引き、
昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、不凝縮ガス1を1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過(10マイクロメートルより小さい)した後に次の工程であるHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスを0.2~0.3MPaに増圧した後に2#PSA吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合して戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)中温圧力スイング吸着工程からの粗HFガスが凝縮を経て形成した精製HF液体をHF精留工程の精留塔に入らせ、本工程の精留塔が上下二段の精留からなり、精製HF液体を下段精留の頂部に入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に入らせて処理し、上段精留の底部の留出物が凝縮を経て形成した不凝縮ガス4が無水HF(AHF)ガスであり、純度が99.99%以上であり、直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の70%を次の工程である多段蒸発・圧縮・凝縮工程に入らせ、30%を後続の排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、二段の精留塔の操作温度が18~100℃であり、操作圧力が0.03~0.2MPaであるHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体を次の工程であるHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)多段蒸発・圧縮・凝縮工程からの粗HCl液体をHCl精留塔と真空精留塔からなるHCl精製工程に入らせ、HCl精留塔の操作圧力が0.3~0.6MPaであり、
操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.
99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、
一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、
HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガス(不凝縮ガス7)の一部を後続の排ガス吸収工程に入らせ、一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、一部を次の工程であるクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を混合した後に入らせ、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部がHClと適切な割合(1:1~1.4)で混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、一部を硫酸と混合して次の工程である排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガス、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した一部の不凝縮ガス5及びHCl精製工程からの一部の不凝縮ガス7を混合した後に、クロロシラン中弱冷精留工程からのクロロシラン液体と新鮮な硫酸の混合液を吸収剤とする排ガス吸収塔に入らせ、吸収塔の底部でフルオロケイ酸溶液を形成し、原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、を含む。
The specific implementation process is as follows:
(1) After the raw gas is pressurized, a dust collector, a particle removal filter, and a smoke removal collector are installed.
a pretreatment step in which the purified raw gas is fed to a pretreatment unit consisting of a scrubber and an activated carbon adsorber, where dust, particles (SS), oil smoke, VOCs, high fluorine silane/acid, and high chlorine silane are desorbed in that order under operating conditions of 0.2-0.3 MPa pressure and room temperature, and the resulting purified raw gas is sent to the next step, the chlorosilane/HCl spray absorption step;
(2) The purified raw gas from the pretreatment step is heat-exchanged to 50-80°C, and then introduced into the spray absorption tower from the bottom. A mixed liquid of chlorosilane and HCl (1:1-1.4) is used as an absorbent, which is sprayed downward from the top of the spray absorption tower to be countercurrently exchanged with the purified raw gas. The absorbing liquid enriched in chlorosilane/HCl flows out from the bottom of the spray absorption tower and is then introduced into the subsequent multi-stage evaporation, compression and condensation steps. At the same time, a small amount of residual particles, high chlorine silane, high fluorine silane/acid and other foreign matter flowing out from the bottom of the tower are sent out for environmental protection treatment. The non-condensable gas 1 enriched in HF and low boiling point components flows out from the top of the spray absorption tower and is then directly introduced into the next step, the medium temperature pressure swing adsorption step.
(3) The non-condensable gas 1 from the chlorosilane/HCl spray absorption process is introduced into a medium temperature pressure swing adsorption process consisting of two-stage pressure swing adsorption (PSA). The first and second stages of pressure swing adsorption (1#PSA, 2#PSA) each consist of three adsorption towers, one of which is in the adsorption step, and the remaining two adsorption towers are depressurized and back-vented or evacuated.
The desorption step includes different stages of pressurization or final gas filling. Non-condensable gas 1 is introduced from the bottom of the #1 PSA adsorption tower. The operating pressure of #1 PSA is 0.2-0.3 MPa, and the operating temperature is 50-80°C. The non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas. Non-condensable gas 2 formed through condensation is subjected to precision filtration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40%, which is sent out to the outside. Non-condensable gas 3 formed through water absorption is hydrogen-rich gas, which is sent out and used as fuel gas. The crude HF liquid formed through condensation is subjected to precision filtration (less than 10 micrometers) before being passed through the next step, the HF rectification process. the desorption step is performed by increasing the pressure of the desorbed gas flowing out from the bottom of the 1# PSA adsorption tower to 0.2-0.3 MPa and then allowing it to enter the bottom of the 2# PSA adsorption tower; the operation pressure of the 2# PSA adsorption tower is 0.2-0.3 MPa and the operation temperature is 50-80°C; the non-adsorbed intermediate gas flowing out from the top of the 2# PSA adsorption tower in the adsorption step is mixed with the non-condensed gas 1 from the chlorosilane/HCl spray absorption step and returned to the 1# PSA adsorption tower to further recover the effective components HF and HCl; and the desorbed gas flowing out from the bottom of the 2# PSA adsorption tower is a concentrated gas, which is returned to the chlorosilane/HCl spray absorption step to further recover the effective components;
(4) The crude HF gas from the medium temperature pressure swing adsorption process is condensed to form a refined HF liquid, which is then fed into the rectification tower of the HF rectification process. The rectification tower in this process is composed of two stages of rectification, upper and lower. The refined HF liquid is fed into the top of the lower rectification tower, and the light component foreign gas distilled at the top of the upper rectification tower is fed into the subsequent exhaust gas absorption process for treatment. The non-condensed gas 4 formed by the condensation of the bottom distillate of the upper rectification tower is anhydrous HF (AHF) gas, with a purity of 99.99% or more, which can be directly used as electronic grade HF product gas in the dry etching process. the liquid formed through condensation is used as reflux for the upper-stage rectification; the bottoms fluid containing a small amount of heavy components distilled at the bottom of the lower-stage rectification is condensed to form non-condensable gas 5, of which 70% is sent to the next step of multi-stage evaporation/compression/condensation step, and 30% is sent to the subsequent exhaust gas absorption step; the liquid formed through condensation is returned as an absorbent to the chlorosilane/HCl spray absorption step for recycling; and the operating temperature of the two-stage rectification tower is 18-100° C., and the operating pressure is 0.03-0.2 MPa;
(5) The absorbent from the chlorosilane/HCl spray absorption step is fed to a multi-stage evaporation step, then fed to a condenser, from which a gaseous crude HCl gas is obtained, which is mixed with the non-condensable gas 5 obtained by condensing the bottom flow of the heavy components from the HF rectification step, and the crude HCl liquid formed through the condensation is fed to the next step, the HCl purification step, and the crude chlorosilane liquid flows out from the condenser, which is fed to the subsequent chlorosilane medium-low cold rectification step, and the non-condensable gas 6 flowing out from the condenser is heat-exchanged and returned to the medium-temperature pressure swing adsorption step, and further the effective components HF and HCl are recovered in a multi-stage evaporation, compression and condensation step;
(6) The crude HCl liquid from the multi-stage evaporation-compression-condensation process is introduced into an HCl purification process consisting of an HCl rectification tower and a vacuum rectification tower, and the operating pressure of the HCl rectification tower is 0.3-0.6 MPa;
The operating temperature is 50-80°C, the operating pressure of the vacuum rectification column is -0.08--0.1 MPa, the operating temperature is 60-120°C, and the purity of the HCl effluent from the top of the HCl rectification column is 99.
recycling a portion of the HCl product gas greater than 99% back into the dry etching process;
A part of it is liquefied and recycled as an absorbent in the chlorosilane/HCl spray absorption process.
an HCl purification step in which the effluent from the bottom of the HCl distillation tower is fed to a vacuum distillation tower, a portion of the overhead gas (non-condensable gas 7) flowing out from the top of the vacuum distillation tower is fed to a subsequent exhaust gas absorption step, a portion of the non-condensable gas 7 is returned to the intermediate temperature pressure swing adsorption step, a portion of the heavy components flowing out from the bottom of the vacuum distillation tower is returned to the multi-stage evaporation/compression/condensation step, and a portion of the heavy components flowing out from the bottom of the vacuum distillation tower is fed to the next step, a chlorosilane medium-low cold distillation step;
(7) a chlorosilane medium-low-temperature rectification step in which the crude chlorosilane liquid from the multi-stage evaporation/compression/condensation step and/or the heavy component fluid from the bottom of the vacuum tower from the HCl purification step are mixed and then fed, the operation temperature being −35 to 10° C., the operation pressure being 0.6 to 2.0 MPa, the non-condensable gas 8 flowing out from the top of the rectification tower is heat exchanged and then returned to the medium-temperature pressure swing adsorption step, a part of the chlorosilane liquid flowing out from the bottom of the rectification tower forms a mixed liquid with HCl in an appropriate ratio (1:1 to 1.4), which is returned to the chlorosilane/HCl spray absorption step as an absorbent for recycling, and a part of it is mixed with sulfuric acid and used as an absorbent in the next step, the exhaust gas absorption step;
(8) An exhaust gas absorption step in which the light component foreign matter gas distilled at the top of the upper rectification tower from the HF rectification step, a portion of the non-condensable gas 5 formed through condensation of the heavy components flowing out from the bottom of the lower rectification tower from the HF rectification step, and a portion of the non-condensable gas 7 from the HCl purification step are mixed and then introduced into an exhaust gas absorption tower using a mixed liquid of chlorosilane liquid from the chlorosilane medium-low cold rectification step and fresh sulfuric acid as an absorbent, a fluorosilicic acid solution is formed at the bottom of the absorption tower, which is sent out as a raw material and recycled as the raw material liquid in the production process of preparing AHF by a fluorosilicic acid removal method, and the non-condensable gas 9 flowing out from the top of the absorption tower is directly discharged as exhaust gas.
実施例2
図2に示すように、実施例1を基に、原料ガスにおけるHClの濃度が1%より小さく、HFの濃度が13%程度に増えた場合、浄化原料ガスを中温圧力スイング吸着工程に直接入らせ、1#PSA塔頂から流出する粗HFガスが凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスを0.2~0.3MPaに増圧した後に2#PSA吸着塔の底部から入らせ、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを直接戻して1#PSA吸着塔に入らせ、更に有効成分を回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、新しく増設された凝縮器を経てから形成した不凝縮ガス1を更に中温圧力スイング吸着工程の粗HFガスと混合して有効成分HFを回収し、新しく増設された凝縮器の後に形成した液体をHCl精製工程に直接入らせてHClを回収し、HCl精製工程から流出する重質成分を処理してから直接排出することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮及び中弱冷クロロシラン精留工程を省く。
Example 2
As shown in FIG. 2, based on Example 1, when the HCl concentration in the feed gas is less than 1% and the HF concentration increases to about 13%, the purified feed gas is directly introduced into the medium temperature pressure swing adsorption process, the crude HF gas flowing out from the top of the 1# PSA tower is condensed and the non-condensable gas 2 is subjected to precision filtration and absorption with deionized water to obtain a 40% HF aqueous solution, which is then sent out to the outside, and the non-condensable gas 3 formed through water absorption is a hydrogen-rich gas, which is sent out and used as fuel gas, but the crude HF liquid formed through condensation is precision filtered before being introduced into the HF rectification process, and the desorbed gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is pressurized to 0.2-0.3 MPa, and then The desorbed gas flowing out from the bottom of the PSA adsorption tower 2# is concentrated gas, and the non-condensable gas 1 formed after passing through the newly added condenser is further mixed with the crude HF gas from the medium temperature pressure swing adsorption step to recover the effective component HF. The liquid formed after the newly added condenser is directly fed into the HCl purification step to recover HCl. The heavy components flowing out from the HCl purification step are treated and then directly discharged, thereby eliminating the steps of chlorosilane/HCl spray absorption, multi-stage evaporation, compression, condensation, and medium/weak cold chlorosilane rectification.
実施例3
図3に示すように、実施例1を基に、原料ガスにおけるHFの濃度(5%)がHClの濃度(9%)より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。
Example 3
As shown in FIG. 3, based on Example 1, when the HF concentration (5%) in the raw gas is smaller than the HCl concentration (9%), the purified raw gas from the pretreatment step is heat-exchanged to 80-160° C. and then fed to the chlorosilane/HCl spray absorption step, the non-condensable gas 1 flowing out from the top of the spray absorption tower is condensed to form non-condensable gas 2, which is further fed to a medium-temperature pressure swing adsorption step consisting of two stages of PSA, the condensed liquid formed through the condensation is directly fed to the HCl purification step, and the absorbed liquid flowing out from the bottom of the spray absorption tower is fed to a multi-stage evaporation/compression/condensation step.
実施例4
図4に示すように、実施例1及び実施例3を基に、原料ガスにおけるHFの濃度が5%であり、HClの濃度が9%である場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、不凝縮ガス2を50~80℃に冷却した後に1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが中間ガスであり、それを2#PSA吸着塔の底部に入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス3に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス4が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガス及び2#PSA吸着塔の底部から流出する濃縮ガスをそれぞれクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収し、不凝縮ガス1が凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。
Example 4
As shown in FIG. 4, based on Example 1 and Example 3, when the HF concentration in the raw gas is 5% and the HCl concentration is 9%, the purified raw gas from the pretreatment step is heat-exchanged to 80-160°C and then fed into the chlorosilane/HCl spray absorption step; the non-condensable gas 1 flowing out from the top of the spray absorption tower is condensed to form non-condensable gas 2, which is then fed into the medium temperature pressure swing adsorption step consisting of two stages of PSA; the non-condensable gas 2 is cooled to 50-80°C and then fed into the bottom of the 1# PSA adsorption tower; the operation pressure of the 1# PSA is 0.2-0.3MPa, the operation temperature is 50-80°C, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is the intermediate gas, which is fed into the bottom of the 2# PSA adsorption tower; and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is the intermediate gas, which is fed into the bottom of the 2# PSA adsorption tower. The non-adsorbed phase gas flowing out is a crude HF gas, and the non-condensable gas 3 formed through condensation is subjected to precision filtration and absorption with deionized water to obtain an aqueous HF solution with a concentration of 40%, which is then sent out to the outside. The non-condensable gas 4 formed through water absorption is a hydrogen-enriched gas, which is sent out and used as fuel gas. The crude HF liquid formed through condensation is precision filtered before being sent to the HF rectification process. The desorbed gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step and the concentrated gas flowing out from the bottom of the 2# PSA adsorption tower are each returned to the chlorosilane/HCl spray absorption process, and further effective components are recovered. The condensed liquid formed through condensation of the non-condensable gas 1 is directly sent to the HCl purification process, and the absorption liquid flowing out from the bottom of the spray absorption tower is sent to the multi-stage evaporation/compression/condensation process.
実施例5
図5に示すように、実施例1を基に、原料ガスにおけるHFとHClの濃度が合計で3%を超えておらず、H2の含有量が90%を超えている場合、前処理工程を経て得られた浄化原料ガスを一段のPSAからなる中温圧力スイング吸着工程に直接入らせ、一段のPSAが4つの吸着塔からなり、1つの吸着塔が吸着ステップにあり、残りの吸着塔が降圧・逆ガス抜き又は真空引き、昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が70~90℃であり、浄化原料ガスをPSA吸着塔の底部から入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが吸着廃ガスであり、それを燃料ガスとして使用し、脱着ステップにある吸着塔の底部から流出する濃縮ガスが凝縮を経て形成した不凝縮ガス1を浄化原料ガスと混合して中温圧力スイング吸着工程に戻し、更に有効成分を回収し、凝縮を経て形成した凝縮液体を更にHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス2を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留工程を省く。この動作状況は従来の水洗吸収法によりエッチング排ガスを処理した後の低濃度HF/HCl含有酸性排ガスの分離と回収再利用にも適する。
Example 5
As shown in FIG. 5, based on Example 1, when the concentration of HF and HCl in the feed gas does not exceed 3% in total and the content of H2 exceeds 90%, the purified feed gas obtained through the pretreatment process is directly fed into a medium temperature pressure swing adsorption process consisting of one stage of PSA, in which one stage of PSA consists of four adsorption towers, one adsorption tower is in the adsorption step, and the remaining adsorption towers are in the desorption step, including different stages of depressurization/back gas venting or vacuuming, pressure increase or final gas filling, the operation pressure of the adsorption tower is 0.2-0.3 MPa, the operation temperature is 70-90°C, the purified feed gas is fed into the bottom of the PSA adsorption tower, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is the adsorption waste gas, which is used as fuel gas and the non-adsorbed phase gas flowing out from the bottom of the adsorption tower in the desorption step is the adsorption waste gas, which is used as fuel gas and the non-adsorbed phase gas flowing out from the bottom of the adsorption tower in the desorption step is the non-adsorbed phase gas flowing out from the top of the adsorption tower in the ad ... non-adsorbed phase gas flowing out from the bottom of the adsorption tower in the desorption step. The concentrated gas discharged from the HF rectification tower is condensed to form non-condensable gas 1, which is mixed with the purified raw gas and returned to the medium temperature pressure swing adsorption process, and useful components are further recovered. The condensed liquid formed through condensation is further fed to the HF rectification process, the non-condensable gas 2 discharged from the HF rectification process is fed to the exhaust gas absorption process for treatment, the HF product gas discharged from the HF rectification process is fed back to the dry etching process for recycling, and the heavy component fluid discharged from the bottom of the HF rectification tower is fed directly to the HCl purification process, thus obtaining the HCl product gas, which is fed back to the dry etching process for recycling, thereby eliminating the steps of chlorosilane/HCl spray absorption, multi-stage evaporation, compression, condensation, and medium-low temperature chlorosilane rectification. This operating situation is also suitable for the separation and recovery/reuse of low-concentration HF/HCl-containing acidic exhaust gas after the etching exhaust gas is treated by the conventional water washing and absorption method.
実施例6
図6に示すように、実施例1を基に、原料ガスにおけるHF/HClの濃度が30%であり、水素ガス濃度が70%より小さい場合、前処理工程を経た浄化原料ガスを凝縮して形成した不凝縮ガス1に対して、水洗を行い少量の残留酸性成分を脱離させ、希酸を生成して外部へ送り出す処理を行い、水洗を経て形成した不凝縮ガス2を燃料ガスとし、凝縮を経て形成した凝縮液をHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス3を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留及び中温圧力スイング吸着工程を省く。この動作状況はプラズマにより洗浄した後に生成された高濃度HF/HCl含有排ガスの分離と回収再利用にも適する。
Example 6
As shown in FIG. 6, based on Example 1, when the HF/HCl concentration in the raw gas is 30% and the hydrogen gas concentration is less than 70%, the non-condensable gas 1 formed by condensing the purified raw gas that has passed through the pretreatment process is washed with water to remove a small amount of residual acidic components, and a dilute acid is generated and sent to the outside. The non-condensable gas 2 formed after washing with water is used as fuel gas, and the condensate formed after condensation is introduced into the HF rectification process. The non-condensable gas 3 flowing out from the HF rectification process is introduced into the exhaust gas absorption process for treatment. The HF product gas flowing out from the HF rectification process is returned to the dry etching process for recycling, and the heavy component fluid flowing out from the bottom of the HF rectification tower is directly introduced into the HCl purification process. The HCl product gas is thus obtained and returned to the dry etching process for recycling, thereby eliminating the steps of chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, medium-low cold chlorosilane rectification, and medium temperature pressure swing adsorption. This operating condition is also suitable for separation and recovery/reuse of the high HF/HCl-containing tail gases produced after cleaning by plasma.
実施例7
図7に示すように、実施例1~6を基に、中温圧力スイング吸着工程において水洗後に生成された不凝縮ガス又は吸着廃ガスを全て燃料ガスとして使用することを、圧力スイング吸着による水素精製の原料ガスとして使用することに変換し、まず不凝縮ガス又は吸着廃ガスを乾燥塔に入らせ、その中の水分及び少量のフッ素と塩素を含有する酸性成分を脱離させ、続いて吸着浄化段階に入らせ、シラン、ホスホラン、金属イオンを含む異物を脱離させ、水素を富化した浄化メタン-水素ガスを得て、2.6~3.0MPaに加圧してから、常温まで熱交換し、5つの吸着塔からなる圧力スイング吸着による水素精製工程に入らせ、吸着塔の頂部から純度が99.99~99.999%の超純粋水素が流出し、それを金属ゲッタからなる水素ガス純化工程に入らせ、電子グレードの水素ガス基準に合致するH2製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、吸着塔の底部から流出する脱着ガスがメタン富化ガスであり、それを燃料ガスとして使用する。
Example 7
As shown in FIG. 7, based on Examples 1 to 6, the non-condensable gas or adsorption waste gas generated after water washing in the medium temperature pressure swing adsorption process is converted from being used as fuel gas to being used as raw material gas for hydrogen purification by pressure swing adsorption. The non-condensable gas or adsorption waste gas is first introduced into a drying tower to desorb the moisture and acidic components containing a small amount of fluorine and chlorine therein, and then into the adsorption purification stage to desorb foreign matter containing silane, phosphorane, and metal ions, and obtain purified methane-hydrogen gas enriched in hydrogen. The gas is pressurized to 2.6 to 3.0 MPa, and then heat exchanged to room temperature and introduced into the hydrogen purification process by pressure swing adsorption consisting of five adsorption towers. Ultra-pure hydrogen with a purity of 99.99 to 99.999% flows out from the top of the adsorption tower, which is introduced into the hydrogen gas purification process consisting of a metal getter to obtain H2 product gas that meets the electronic grade hydrogen gas standard, which is returned to the dry etching process for recycling. The desorption gas flowing out from the bottom of the adsorption tower is methane-enriched gas, which is used as fuel gas.
明らかに、以上に記載の実施例は、本発明の実施例の一部に過ぎず、実施形態の全てではない。本発明に記載の実施例に基づき、当業者が創造的な労働をすることなく得られた他の全ての実施例、又は本発明の示唆に基づいてなされた構造の改変は、本発明と同じ又は類似する技術的解決手段を有していれば、全て本発明の保護範囲内に含まれる。 Obviously, the above-described examples are only some of the examples of the present invention, and are not all of the embodiments. All other examples obtained by a person skilled in the art without creative labor based on the embodiments described in the present invention, or structural modifications made based on the suggestions of the present invention, are all included in the protection scope of the present invention, as long as they have the same or similar technical solutions as the present invention.
Claims (7)
(2)クロロシランとHClの混合液体を吸収剤とするスプレー吸収塔をリアクタとして採用し、前記前処理工程からの前記浄化原料ガスを50~80℃まで熱交換した後、当該スプレー吸収塔の底部から入らせて、前記吸収剤と向流交換させ、当該スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に当該スプレー吸収塔の塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して、当該スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、当該不凝縮ガス1を後続の中温圧力スイング吸着工程に入らせるクロロシラン/HClスプレー吸収工程と、
(3)二段の圧力スイング吸着工程からなり、各段の圧力スイング吸着工程において2つ以上の吸着塔からなり、2つ以上の当該吸着塔の内、少なくとも1つの吸着塔が吸着ステップにあり、残りの吸着塔が脱着ステップにあり、前記クロロシラン/HClスプレー吸収工程からの前記不凝縮ガス1が一段目の圧力スイング吸着1#PSA吸着塔の底部から入らせ、当該1#PSA塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある当該吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収の処理を行ってからHF溶液を得て外部に送り出し、当該処理を経て形成した不凝縮ガス3が水素富化ガスであり、当該水素富化ガスを送り出し、燃料ガスとして使用するか、圧力スイング吸着による水素精製の原料ガスとして使用し、当該凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある当該1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目の圧力スイング吸着2#PSA吸着塔の底部から入らせ、当該2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある当該2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを前記クロロシラン/HClスプレー吸収工程からの前記不凝縮ガス1と混合してから戻して当該1#PSA吸着塔に入らせ、更にHFを回収し、当該2#PSA吸着塔の底部から流出する脱着ガスを前記クロロシラン/HClスプレー吸収工程に戻す中温圧力スイング吸着工程と、
(4)上下二段の精留からなる精留塔を含み、前記中温圧力スイング吸着工程において吸着ステップにある前記吸着塔の頂部から流出する粗HFガスが凝縮して得られた粗HF液体を下段精留塔の頂部又は上段精留塔の底部から入らせ、当該上段精留塔の頂部で留出された異物ガスを後続の排ガス吸収工程に戻し、上段精留塔の底部又は下段精留塔の頂部の留出物が凝縮を経て形成した不凝縮ガス4を無水HFガスとして乾式エッチングプロセスに戻して循環使用し、当該凝縮を経て形成した液体を当該上段精留塔又は当該下段精留塔への還流とし、当該下段精留塔の底部で留出された異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の一部を後続の多段蒸発・圧縮・凝縮工程に入らせ、他の一部を後の排ガス吸収工程に入らせ、当該凝縮を経て形成した液体を前記吸収剤として前記クロロシラン/HClスプレー吸収工程に戻して循環使用するHF精留工程と、
(5)前記クロロシラン/HClスプレー吸収工程からの前記吸収液を多段蒸発させてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、前記HF精留工程において得られた前記不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体を後のHCl精製工程に入らせ、当該凝縮器から粗クロロシラン液体が流出し、当該粗クロロシラン液体を後続のクロロシラン中弱冷精留工程に入らせ、当該凝縮器から流出する不凝縮ガス6を熱交換してから前記中温圧力スイング吸着工程に戻す多段蒸発・圧縮・凝縮工程と、
(6)HCl精留塔及び真空精留塔を含み、当該HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、当該真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、当該HCl精留塔の頂部から流出するHClガスの一部を乾式エッチングプロセスに戻して循環使用し、他の一部を液化してから前記クロロシラン/HClスプレー吸収工程の前記吸収剤として循環使用し、当該HCl精留塔の底部の流出物を当該真空精留塔に入らせ、当該真空精留塔の頂部から流出するガスが不凝縮ガス7であり、その一部を後続の排ガス吸収工程に入らせ、他の一部を前記中温圧力スイング吸着工程に戻し、当該真空精留塔の底部から流出する流体の一部を前記多段蒸発・圧縮・凝縮工程に戻し、他の一部を後続のクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)精留塔を含み、前記多段蒸発・圧縮・凝縮工程からの前記粗クロロシラン液体、及び/又は前記HCl精製工程において前記真空精留塔の底部から流出する流体を当該精留塔に入らせ、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、当該精留塔の塔頂から流出する不凝縮ガス8を熱交換してから前記中温圧力スイング吸着工程に戻し、当該精留塔の塔底から流出するクロロシラン液体の一部をHClと混合して混合液を形成し、当該混合液を吸収剤として前記クロロシラン/HClスプレー吸収工程に戻して循環使用し、他の一部を硫酸と混合しこの混合液を後続の排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)前記クロロシラン中弱冷精留工程からのクロロシラン液体と硫酸の前記混合液を吸収剤とする排ガス吸収塔をリアクタとして採用し、前記HF精留工程において前記上段精留塔の頂部で留出された前記異物ガス、前記HF精留工程からの前記不凝縮ガス5及び前記HCl精製工程からの前記不凝縮ガス7を排ガス吸収塔に入らせ、当該排ガス吸収塔の底部でフルオロケイ酸溶液を形成し、送り出し、フルオロケイ酸除去方法によりAHFを調製する生産プロセスにおける原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、
を含む
ことを特徴とするFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 (1) A pre-treatment process in which the temperature of the raw material gas is controlled to be room temperature and the pressure is controlled to be 0.2-0.3 MPa, and the raw material gas is sent to a pre-treatment unit including a dust collector, a particle removal filter, a soot removal collector, and an activated carbon adsorber, and the dust, particles, soot, VOCs, high fluorine silane/acid, and high chlorine silane are desorbed in order, and the purified raw material gas formed through the pre-treatment is sent to the subsequent chlorosilane/HCl spray absorption process;
(2) A chlorosilane/HCl spray absorption step in which a spray absorption tower using a mixed liquid of chlorosilane and HCl as an absorbent is used as a reactor, the purified raw gas from the pretreatment step is heat-exchanged to 50-80°C, and then the purified raw gas is introduced from the bottom of the spray absorption tower and countercurrently exchanged with the absorbent, an absorption liquid enriched in chlorosilane/HCl flows out from the bottom of the spray absorption tower, and the absorption liquid is introduced into the subsequent multi-stage evaporation/compression/condensation step, and at the same time, a small amount of residual particles, high chlorine silane, high fluorine silane/acid and other foreign matter flowing out from the bottom of the spray absorption tower are sent out, and non-condensable gas 1 enriched in HF and low boiling point components flows out from the top of the spray absorption tower, and the non-condensable gas 1 is introduced into the subsequent medium temperature pressure swing adsorption step;
(3) A two-stage pressure swing adsorption process, in which each stage of the pressure swing adsorption process comprises two or more adsorption towers, of which at least one adsorption tower is in the adsorption step and the remaining adsorption tower is in the desorption step, the non-condensable gas 1 from the chlorosilane/HCl spray absorption process is introduced into the bottom of the first-stage pressure swing adsorption 1# PSA adsorption tower, the operating pressure of the 1# PSA tower is 0.2-0.3 MPa, and the operating temperature is 50-80° C., the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, the non-condensable gas 2 formed through condensation is subjected to precision filtration and absorption with deionized water to obtain an HF solution and send it to the outside, the non-condensable gas 3 formed through the process is hydrogen-rich gas, and the hydrogen-rich gas is sent out and used as fuel gas. the HF gas is used as a raw gas for hydrogen purification by pressure swing adsorption, and the crude HF liquid formed through the condensation is microfiltered before being fed to an HF rectification step; the desorbed gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is pressurized and heat exchanged before being fed to the bottom of the 2# PSA adsorption tower in the second stage of pressure swing adsorption ; the 2# PSA adsorption tower has an operating pressure of 0.2-0.3 MPa and an operating temperature of 50-80° C.; the non-adsorbed intermediate gas flowing out from the top of the 2# PSA adsorption tower in the adsorption step is mixed with the non-condensed gas 1 from the chlorosilane/HCl spray absorption step and then fed back to the 1# PSA adsorption tower; and a medium temperature pressure swing adsorption step in which HF is recovered and the desorbed gas flowing out from the bottom of the 2# PSA adsorption tower is fed back to the chlorosilane/HCl spray absorption step.
(4) A distillation tower having two stages of upper and lower distillation, in which the crude HF gas flowing out from the top of the adsorption tower in the adsorption step in the intermediate temperature pressure swing adsorption process is condensed to obtain a crude HF liquid, which is introduced from the top of the lower rectification tower or the bottom of the upper rectification tower, and the foreign matter gas distilled at the top of the upper rectification tower is returned to the subsequent exhaust gas absorption process, and the non-condensable gas 4 formed by condensing the distillate at the bottom of the upper rectification tower or the top of the lower rectification tower is used as anhydrous HF gas for a dry etching process. a HF rectification step in which the liquid formed by the condensation is returned to the upper rectification tower or the lower rectification tower as reflux, a part of the non-condensable gas 5 formed by the condensation of the bottom fluid containing foreign matter components distilled at the bottom of the lower rectification tower is introduced into a subsequent multi-stage evaporation/compression/condensation step, and another part is introduced into a subsequent exhaust gas absorption step, and the liquid formed by the condensation is returned to the chlorosilane/HCl spray absorption step as the absorbent for recycling;
(5) a multi-stage evaporation/compression/condensation process in which the absorption liquid from the chlorosilane/HCl spray absorption process is evaporated in multiple stages, then fed into a condenser to obtain a gaseous crude HCl gas, which is mixed with the non-condensable gas 5 obtained in the HF rectification process, and the crude HCl liquid formed through condensation is fed into a subsequent HCl purification process, and a crude chlorosilane liquid flows out from the condenser, which is fed into a subsequent chlorosilane medium-low cold rectification process, and the non-condensable gas 6 flowing out from the condenser is heat-exchanged and then returned to the medium-temperature pressure swing adsorption process;
(6) A process for producing a HCl rectification column and a vacuum rectification column, the operation pressure of the HCl rectification column is 0.3-0.6 MPa and the operation temperature is 50-80° C., the operation pressure of the vacuum rectification column is −0.08-−0.1 MPa and the operation temperature is 60-120° C., and a part of the HCl gas flowing out from the top of the HCl rectification column is recycled back to the dry etching process, and the other part is liquefied and then used in the chlorosilane/HCl spray absorption step. an HCl purification step in which the absorbent is recycled, the effluent from the bottom of the HCl rectification tower is fed to the vacuum rectification tower, the gas flowing out from the top of the vacuum rectification tower is a non-condensable gas 7, a part of which is fed to the subsequent exhaust gas absorption step, another part is returned to the intermediate temperature pressure swing adsorption step, a part of the fluid flowing out from the bottom of the vacuum rectification tower is returned to the multi-stage evaporation/compression/condensation step, and another part is fed to the subsequent chlorosilane medium-low temperature rectification step;
(7) A chlorosilane medium-low-temperature rectification step including a distillation tower, the crude chlorosilane liquid from the multi-stage evaporation/compression/condensation step and/or the fluid flowing out from the bottom of the vacuum distillation tower in the HCl purification step are introduced into the distillation tower, the operation temperature is -35 to 10°C, the operation pressure is 0.6 to 2.0 MPa, the non-condensable gas 8 flowing out from the top of the distillation tower is heat exchanged and then returned to the medium-temperature pressure swing adsorption step, a part of the chlorosilane liquid flowing out from the bottom of the distillation tower is mixed with HCl to form a mixed liquid, the mixed liquid is returned as an absorbent to the chlorosilane/HCl spray absorption step for recycling, and the other part is mixed with sulfuric acid, and the mixed liquid is used as an absorbent in the subsequent exhaust gas absorption step;
(8) an exhaust gas absorption step in which an exhaust gas absorption tower using the mixed liquid of chlorosilane liquid from the chlorosilane medium-low cold rectification step and sulfuric acid as an absorbent is used as a reactor, the foreign matter gas distilled at the top of the upper rectification tower in the HF rectification step, the non-condensable gas 5 from the HF rectification step, and the non-condensable gas 7 from the HCl purification step are introduced into the exhaust gas absorption tower, a fluorosilicic acid solution is formed at the bottom of the exhaust gas absorption tower, the solution is sent out, and the solution is recycled and used as a raw material liquid in a production process for preparing AHF by a fluorosilicic acid removal method, and the non-condensable gas 9 flowing out from the top of the absorption tower is directly discharged as exhaust gas;
A method for separating, recovering, circulating and reusing an etching exhaust gas containing HF/HCl by FTrPSA, comprising:
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 When the HCl content in the raw gas in the pretreatment step is less than 1%, the purified raw gas is directly fed to the intermediate temperature pressure swing adsorption step, the crude HF gas flowing out from the top of the 1# PSA adsorption tower is condensed and the non-condensable gas 2 is subjected to the above-mentioned treatment of microfiltration and absorption with deionized water to obtain an HF solution, which is then sent out to the outside, the non-condensable gas 3 formed through this treatment is a hydrogen-rich gas, which is sent out to be used as a fuel gas or used as a raw gas for hydrogen purification by pressure swing adsorption, the crude HF liquid formed through condensation is microfiltered and then sent to the HF rectification step, and the desorbed gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is pressurized and heat exchanged, 2. The method for separating, recovering, circulating and reusing an etching exhaust gas containing HF/HCl by FTrPSA according to claim 1, characterized in that: the gas is introduced from the bottom of the #2 PSA adsorption tower; a non-adsorbed intermediate gas flowing out from the top of the #2 PSA adsorption tower in the adsorption step is directly returned to the #1 PSA adsorption tower to further recover HF; the desorbed gas flowing out from the bottom of the #2 PSA adsorption tower is passed through a condenser separate from the condenser to form a non-condensable gas 1, which is further mixed with the crude HF gas of the medium temperature pressure swing adsorption step to recover HF; a liquid formed after the newly added separate condenser is directly introduced into the HCl purification step to recover HCl; and the fluid flowing out from the bottom of the vacuum rectification tower in the HCl purification step is treated and then directly discharged, thereby eliminating the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation and medium/weak cold chlorosilane rectification steps.
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 The method for separating, recovering, circulating and reusing an etching exhaust gas containing HF/HCl by FTrPSA according to claim 1, characterized in that, when the concentration of HF in the raw gas in the pretreatment step is smaller than the concentration of HCl, the purified raw gas from the pretreatment step is heat-exchanged to 80-160°C before being fed into the chlorosilane/HCl spray absorption step, the non-condensable gas 1 flowing out from the top of the spray absorption tower is condensed to form the non-condensable gas 2, which is further fed into the medium temperature pressure swing adsorption step consisting of two stages of PSA, the condensed liquid formed through the condensation is directly fed into the HCl purification step, and the absorbent flowing out from the bottom of the spray absorption tower is fed into the multi-stage evaporation/compression/condensation step.
ことを特徴とする請求項3に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 When the concentration of HF in the raw gas of the pretreatment step is smaller than the concentration of HCl, the purified raw gas from the pretreatment step is heat-exchanged to 80-160°C and then fed to the chlorosilane/HCl spray absorption step; the non-condensable gas 2 formed by condensing the non-condensable gas 1 flowing out from the top of the spray absorption tower is further fed to the medium temperature pressure swing adsorption step consisting of two stages of PSA; the non-condensable gas 2 is fed from the bottom of the 1# PSA adsorption tower; the operating pressure of the 1# PSA adsorption tower is 0.2-0.3 MPa and the operating temperature is 50-80°C; the non-adsorbed phase gas flowing out from the top of the 1# PSA adsorption tower in the adsorption step is an intermediate gas; the intermediate gas is fed to the bottom of the 2# PSA adsorption tower; the non-adsorbed phase gas flowing out from the top of the 2# PSA adsorption tower in the adsorption step is the crude HF gas; 4. The method for separating, recovering, circulating and reusing an etching exhaust gas containing HF/HCl by FTrPSA according to claim 3, characterized in that the non-condensable gas 3 formed through condensation is subjected to precision filtration and absorption with deionized water to obtain an HF aqueous solution and send it to the outside, the non-condensable gas 4 formed through this treatment is a hydrogen-rich gas, the hydrogen-rich gas is sent out and used as a fuel gas or as a raw material gas for hydrogen purification by pressure swing adsorption, the crude HF liquid formed through condensation is precision filtered and then sent to the HF rectification step, the desorbed gas flowing out from the bottom of the first PSA adsorption tower in the desorption step and the desorbed gas flowing out from the bottom of the second PSA adsorption tower are respectively returned to the chlorosilane/HCl spray absorption step, and HF is further recovered, the condensed liquid formed through condensation of the non-condensable gas 1 is directly sent to the HCl purification step, and the absorption liquid flowing out from the bottom of the spray absorption tower is sent to the multi-stage evaporation, compression and condensation step.
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 When the total concentration of HF and HCl in the feed gas of the pretreatment step does not exceed 3%, instead of subjecting the feed gas to the pretreatment step and passing the purified feed gas obtained through the chlorosilane/HCl spray absorption step and the intermediate temperature pressure swing adsorption step consisting of the two-stage pressure swing adsorption step, the purified feed gas is directly introduced into an intermediate temperature pressure swing adsorption step consisting of a single stage of PSA, the single stage of PSA consisting of two or more adsorption towers, one of which is in an adsorption step and the remaining adsorption towers are in a desorption step including different stages of depressurization/back gas venting or evacuation, pressurization or final gas filling, the operation pressure of the adsorption tower is 0.2-0.3 MPa, the operation temperature is 70-90° C., the purified feed gas is introduced from the bottom of the adsorption tower, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is an adsorption exhaust gas. and the non-condensable gas 1 formed by the desorption gas flowing out from the bottom of the adsorption tower in the desorption step is mixed with the purified raw gas and returned to the medium temperature pressure swing adsorption step, and HF is further recovered, and the condensed liquid formed by the condensation is further fed to the HF rectification step, and the non-condensable gas 2 flowing out from the HF rectification step is fed to the exhaust gas absorption step for treatment, and the HF gas flowing out from the HF rectification step is fed back to the dry etching process for recycling, and the fluid flowing out from the bottom of the rectification tower in the HF rectification step is directly fed to the HCl purification step, and the HCl gas thus obtained is fed back to the dry etching process for recycling, and the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, and medium/weak cold chlorosilane rectification steps are omitted.
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 When the concentration of HF/HCl in the raw gas in the pretreatment step exceeds 20%, the non-condensable gas 1 formed by condensing the purified raw gas after the pretreatment step is washed with water to remove a small amount of residual acidic components, generate a dilute acid, and send it to the outside. The non-condensable gas 2 formed by washing with water is used as a fuel gas or a raw gas for hydrogen purification by pressure swing adsorption. The condensate formed by the condensation is introduced into the HF rectification step. The non-condensable gas 3 flowing out from the HF rectification step is introduced into an exhaust gas absorption step for treatment. The HF gas flowing out from the HF rectification step is returned to the dry etching process for recycling. The fluid flowing out from the bottom of the rectification tower in the HF rectification step is directly introduced into the HCl purification step. The HCl gas thus obtained is returned to the dry etching process for recycling. The steps of chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, medium-low-temperature chlorosilane rectification, and medium-temperature pressure swing adsorption are omitted. 2. The method for separating, recovering, circulating and reusing an etching exhaust gas containing HF/HCl by FTrPSA according to claim 1.
ことを特徴とする請求項1~6のいずれか一項に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 The method for separating, recovering, circulating and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to any one of claims 1 to 6, characterized in that in the medium temperature pressure swing adsorption process, the raw gas for hydrogen purification by pressure swing adsorption is the non-condensed gas or adsorption exhaust gas generated after water washing, the non-condensed gas or adsorption exhaust gas is first introduced into a drying tower to desorb the moisture and acidic components containing a small amount of fluorine and chlorine therein, and then into the adsorption purification stage to desorb foreign matter containing silane, phosphorane and metal ions , and obtain purified methane-hydrogen gas enriched in hydrogen, which is pressurized to 1.0-3.0 MPa and then heat exchanged to room temperature and then into the hydrogen purification process by pressure swing adsorption consisting of four or more adsorption towers, hydrogen flows out from the top of the adsorption tower, and the hydrogen is introduced into a hydrogen gas purification process consisting of a palladium membrane or a metal getter to obtain purified H2 gas, which is returned to the dry etching process for recycling or sent out to the outside, and the desorbed gas flowing out from the bottom of the adsorption tower is methane-enriched gas, which is directly used as fuel gas.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011485842.2 | 2020-12-16 | ||
CN202011485842.2A CN112707373B (en) | 2020-12-16 | 2020-12-16 | Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas |
PCT/CN2021/094254 WO2022127019A1 (en) | 2020-12-16 | 2021-05-18 | Method for ftrpsa separation and recovery and recycling of hf/hcl-containing etching tail gas |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2023535850A JP2023535850A (en) | 2023-08-22 |
JPWO2022127019A5 JPWO2022127019A5 (en) | 2024-03-01 |
JP7541763B2 true JP7541763B2 (en) | 2024-08-29 |
Family
ID=75543422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022512788A Active JP7541763B2 (en) | 2020-12-16 | 2021-05-18 | Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7541763B2 (en) |
CN (1) | CN112707373B (en) |
WO (1) | WO2022127019A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112707373B (en) * | 2020-12-16 | 2022-06-10 | 浙江天采云集科技股份有限公司 | Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas |
CN113860257B (en) * | 2021-11-04 | 2022-04-22 | 浙江容跃环保科技有限公司 | Method and system for regenerating and recycling glass thinning waste acid liquor |
CN115231524B (en) * | 2022-07-12 | 2024-03-12 | 浙江省天正设计工程有限公司 | Separation and purification method and device for tail gas containing hydrogen fluoride in fluorine chemical production |
CN115650240A (en) * | 2022-09-08 | 2023-01-31 | 洛阳中硅高科技有限公司 | Process for preparing monochlorosilane |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105854516A (en) | 2016-03-31 | 2016-08-17 | 四川天采科技有限责任公司 | Full-temperature-range pressure-swing adsorption method for simultaneously recycling H2, C2 and above components out of refinery dry gas |
JP2017043523A (en) | 2015-08-28 | 2017-03-02 | 信越化学工業株式会社 | Hydrogen gas recovery system, and separation and recovery method for hydrogen gas |
CN108658042A (en) | 2018-05-29 | 2018-10-16 | 四川天采科技有限责任公司 | A kind of LED-MOCVD processing procedures tail gas warm journey pressure-variable adsorption full constituent recycling method entirely |
CN108744882A (en) | 2018-05-29 | 2018-11-06 | 浙江天采云集科技股份有限公司 | A kind of LED-MOCVD processing procedures exhaust gas method that warm journey pressure-variable adsorption puies forward ammonia recycling entirely |
US20180318750A1 (en) | 2016-03-31 | 2018-11-08 | Sichuan Techairs Co., Ltd. | Method for Gas Separation, Purification and Clarification by FTrPSA |
CN109092010A (en) | 2018-05-29 | 2018-12-28 | 浙江天采云集科技股份有限公司 | A kind of LED-MOCVD processing procedure exhaust gas method that warm journey pressure-variable adsorption proposes hydrogen recycling entirely |
US20200070090A1 (en) | 2018-09-03 | 2020-03-05 | South China Institute Of Environmental Science. Mee | Waste gas purification system and method |
CN211799895U (en) | 2020-03-17 | 2020-10-30 | 大连海奥膜技术有限公司 | Process system for separating mixed gas containing hydrogen chloride and hydrogen |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3025653B2 (en) * | 1996-01-29 | 2000-03-27 | 東洋エンジニアリング株式会社 | Improved pressure swing adsorption method |
US7790130B2 (en) * | 2007-08-31 | 2010-09-07 | Uop Llc | Wide mesoporous alumina composites having trimodal pore structure |
CN108715436B (en) * | 2018-05-29 | 2019-11-08 | 四川天采科技有限责任公司 | The method that the useless hydrogen Quan Wencheng Pressure Swing Adsorption of manufacture of semiconductor normal pressure recycles |
CN112591711B (en) * | 2020-12-16 | 2022-05-20 | 浙江天采云集科技股份有限公司 | High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas |
CN112707373B (en) * | 2020-12-16 | 2022-06-10 | 浙江天采云集科技股份有限公司 | Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas |
-
2020
- 2020-12-16 CN CN202011485842.2A patent/CN112707373B/en active Active
-
2021
- 2021-05-18 JP JP2022512788A patent/JP7541763B2/en active Active
- 2021-05-18 WO PCT/CN2021/094254 patent/WO2022127019A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043523A (en) | 2015-08-28 | 2017-03-02 | 信越化学工業株式会社 | Hydrogen gas recovery system, and separation and recovery method for hydrogen gas |
CN105854516A (en) | 2016-03-31 | 2016-08-17 | 四川天采科技有限责任公司 | Full-temperature-range pressure-swing adsorption method for simultaneously recycling H2, C2 and above components out of refinery dry gas |
US20180318750A1 (en) | 2016-03-31 | 2018-11-08 | Sichuan Techairs Co., Ltd. | Method for Gas Separation, Purification and Clarification by FTrPSA |
CN108658042A (en) | 2018-05-29 | 2018-10-16 | 四川天采科技有限责任公司 | A kind of LED-MOCVD processing procedures tail gas warm journey pressure-variable adsorption full constituent recycling method entirely |
CN108744882A (en) | 2018-05-29 | 2018-11-06 | 浙江天采云集科技股份有限公司 | A kind of LED-MOCVD processing procedures exhaust gas method that warm journey pressure-variable adsorption puies forward ammonia recycling entirely |
CN109092010A (en) | 2018-05-29 | 2018-12-28 | 浙江天采云集科技股份有限公司 | A kind of LED-MOCVD processing procedure exhaust gas method that warm journey pressure-variable adsorption proposes hydrogen recycling entirely |
US20200070090A1 (en) | 2018-09-03 | 2020-03-05 | South China Institute Of Environmental Science. Mee | Waste gas purification system and method |
CN211799895U (en) | 2020-03-17 | 2020-10-30 | 大连海奥膜技术有限公司 | Process system for separating mixed gas containing hydrogen chloride and hydrogen |
Also Published As
Publication number | Publication date |
---|---|
JP2023535850A (en) | 2023-08-22 |
CN112707373B (en) | 2022-06-10 |
CN112707373A (en) | 2021-04-27 |
WO2022127019A1 (en) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7541763B2 (en) | Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA | |
TWI691359B (en) | Method for pressure swing adsorption, purification and reuse of full-pressure waste hydrogen gas in semiconductor process | |
US7794523B2 (en) | Method for the recovery and re-use of process gases | |
US5976222A (en) | Recovery of perfluorinated compounds from the exhaust of semiconductor fabs using membrane and adsorption in series | |
US5730779A (en) | Fluorochemical recovery and recycle using membranes | |
TW201113218A (en) | Method for reusing hydrogen | |
JP2023524919A (en) | Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA | |
CN112266318A (en) | Method for purifying hexafluoro-1, 3-butadiene in grading manner | |
JP2012106146A (en) | Apparatus for processing exhaust gas and method for processing exhaust gas | |
JP5344114B2 (en) | Hydrogen purification recovery method and hydrogen purification recovery equipment | |
WO2023026721A1 (en) | Deuterium recovery method and deuterium recovery equipment | |
KR101843563B1 (en) | Flue gas Enrichment Separation System and its operating method for abatement of nondegradable hazardous gas by vent concept | |
CN112744787A (en) | FTrPSA separation and purification method for HCl gas containing high-concentration HF through deep defluorination and drying | |
JP2000005561A (en) | Treatment of fluoride | |
TWI682894B (en) | Hydrogen recovery and reuse system | |
CN112777569B (en) | Method for recycling FTrPSA (fluorine-based SiC-CVD) tail gas in film growth process | |
TW201938487A (en) | Method of removing oxygen from crude carbon monoxide gas and method of purifying carbon monoxide gas | |
JP3463873B2 (en) | How to recycle perfluoro compounds | |
JPWO2022127019A5 (en) | ||
JP3650588B2 (en) | Perfluoro compound recycling method | |
KR101952945B1 (en) | Method for recorvering nitrous oxide | |
TW483774B (en) | Process for the separation and recovery of fluorochemicals from a gas stream containing a diluent gas and fluorochemicals | |
CN115722027A (en) | Method and device for recovering nitrogen trifluoride from dry etching tail gas | |
JPH1025102A (en) | Chlorine removal apparatus and oxygen separation by pressure swing adsorption | |
CN112755725A (en) | Method for recycling effective components of FTrPSA (fluorine-containing gas pressure swing adsorption) in HF (hydrogen fluoride) -containing industrial tail gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20230501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230904 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231204 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20231204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20231208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240111 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20240119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7541763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |