Nothing Special   »   [go: up one dir, main page]

JP7435856B2 - Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system - Google Patents

Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system Download PDF

Info

Publication number
JP7435856B2
JP7435856B2 JP2023022404A JP2023022404A JP7435856B2 JP 7435856 B2 JP7435856 B2 JP 7435856B2 JP 2023022404 A JP2023022404 A JP 2023022404A JP 2023022404 A JP2023022404 A JP 2023022404A JP 7435856 B2 JP7435856 B2 JP 7435856B2
Authority
JP
Japan
Prior art keywords
evaluation
value
formula
concentration
metabolites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023022404A
Other languages
Japanese (ja)
Other versions
JP2023058683A (en
Inventor
英寛 中村
直子 嵐田
瑠美 西本
聡子 上野
咲乃 東江
明 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2023022404A priority Critical patent/JP7435856B2/en
Publication of JP2023058683A publication Critical patent/JP2023058683A/en
Application granted granted Critical
Publication of JP7435856B2 publication Critical patent/JP7435856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、胃癌の評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、評価システム、及び端末装置に関するものである。 The present invention relates to a gastric cancer evaluation method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal device.

日本における胃癌による死亡は、2003年で男32846人・女17711人で、全ての癌による死亡の総数のうち2位で、男では癌による死亡の第2位、女性では癌による死亡の1位となっている。 Deaths due to gastric cancer in Japan were 32,846 men and 17,711 women in 2003, ranking second among all cancer deaths, second among men and first among women. It becomes.

胃癌の治療は、腫瘍が粘膜と粘膜下層に限局している場合は予後がよく、初期(I~II期)の胃癌の5年生存率は50%以上、特にIA期の胃癌(深達度が粘膜及び粘膜下層でリンパ節転移がないもの)では5年生存率は約90%である。 When treating gastric cancer, the prognosis is good if the tumor is localized to the mucosa and submucosa. The 5-year survival rate is approximately 90% for those with no lymph node metastasis in the mucosa or submucosa.

しかし、胃癌の病期の進行とともに生存率は低下するため、早期発見が胃癌治癒にとっては重要である。 However, as the survival rate decreases as the stage of gastric cancer progresses, early detection is important for curing gastric cancer.

ここで、胃癌の診断には、ペプシノゲン検査、X線検査、内視鏡検査、腫瘍マーカーなどがある。 Here, diagnosis of gastric cancer includes a pepsinogen test, an X-ray test, an endoscopy, a tumor marker, and the like.

しかし、ペプシノゲン検査、X線検査、腫瘍マーカーは確定診断とはならない。例えばペプシノゲン検査の場合、侵襲性は低いが、感度は報告により異なり概ね40~85%で、特異度は70~85%である。しかし、ペプシノゲン検査での要精密検査率は20%であり、見逃しも多いと考えられている。また、X線検査(間接撮影)の場合、感度は報告より異なるが概ね70~80%で、特異度は85~90%である。しかし、バリウム飲用による副作用や放射線被爆の可能性がある。なお、腫瘍マーカーについては、現時点では胃癌の存在診断に有効なものは存在しない。 However, pepsinogen tests, X-ray tests, and tumor markers do not provide a definitive diagnosis. For example, the pepsinogen test is less invasive, but the sensitivity varies depending on the report and is generally 40-85%, and the specificity is 70-85%. However, the rate of detailed examination required for pepsinogen testing is only 20%, and it is thought that many cases are missed. Furthermore, in the case of X-ray examination (indirect photography), the sensitivity is generally 70-80%, although it differs from reports, and the specificity is 85-90%. However, there are possible side effects and radiation exposure from drinking barium. As for tumor markers, there are currently no effective ones for diagnosing the presence of gastric cancer.

一方、内視鏡検査は確定診断になるが、侵襲度の高い検査であり、スクリーニングの段階で内視鏡検査を行うことは現実的ではない。さらに、内視鏡検査のような侵襲的診断では、患者が苦痛を伴うなど負担があり、また検査による出血などのリスクも起こりえる。 On the other hand, although endoscopy provides a definitive diagnosis, it is a highly invasive test and it is not realistic to perform endoscopy at the screening stage. Furthermore, invasive diagnosis such as endoscopy is burdensome for the patient, such as pain, and there may be risks such as bleeding due to the test.

そこで、患者に対する身体的負担および費用対効果の面から、胃癌発症の可能性の高い被験者を絞り込んで、その者を治療の対象とすることが望ましい。具体的には、侵襲が少なく且つ感度・特異度の高い方法で被験者を選択し、選択した被験者に対し胃内視鏡を実施することで被験者を絞り込み、胃癌の確定診断が得られた被験者を治療の対象とすることが望ましい。 Therefore, in terms of physical burden on patients and cost-effectiveness, it is desirable to narrow down subjects who are likely to develop gastric cancer and target them for treatment. Specifically, we will select subjects using a minimally invasive method with high sensitivity and specificity, narrow down the subjects by performing gastric endoscopy on the selected subjects, and select subjects with a definitive diagnosis of gastric cancer. It is desirable to target this for treatment.

ところで、血中アミノ酸の濃度が、癌発症により変化することについては知られている。例えば、シノベールによれば(非特許文献1)、例えばグルタミンは主に酸化エネルギー源として、アルギニンは窒素酸化物やポリアミンの前駆体として、メチオニンは癌細胞がメチオニン取り込み能の活性化により、それぞれ癌細胞での消費量が増加するという報告がある。また、ヴィッセルスら(非特許文献2)やパーク(非特許文献3)によれば、大腸癌患者の血漿中アミノ酸組成は健常者と異なっていることが報告されている。 By the way, it is known that the concentration of amino acids in blood changes with the onset of cancer. For example, according to Sinobel (Non-Patent Document 1), glutamine is mainly used as an oxidation energy source, arginine is used as a precursor of nitrogen oxides and polyamines, and methionine is used as a precursor for cancer cells to take up methionine. There are reports that consumption in cells increases. Furthermore, according to Vissels et al. (Non-Patent Document 2) and Park (Non-Patent Document 3), it has been reported that the plasma amino acid composition of colon cancer patients is different from that of healthy individuals.

また、先行特許として、アミノ酸濃度を用いて胃癌の状態を評価する方法に関する特許文献1が公開されている。 Further, as a prior patent, Patent Document 1 relating to a method for evaluating the state of gastric cancer using amino acid concentration has been published.

国際公開第2009/099005号International Publication No. 2009/099005

Cynober, L. ed., Metabolic and therapeutic aspects of amino acids in clinical nutrition. 2nd ed., CRC PressCynober, L. ed., Metabolic and therapeutic aspects of amino acids in clinical nutrition. 2nd ed., CRC Press Vissers, Y. LJ., et.al., Plasma arginine concentration are reduced in cancer patients: evidence for arginine deficiency?, The American Journal of Clinical Nutrition, 2005. 81, p1142-1146Vissers, Y. LJ., et.al., Plasma arginine concentration are reduced in cancer patients: evidence for arginine deficiency?, The American Journal of Clinical Nutrition, 2005. 81, p1142-1146 Park, K.G., et.al., Arginine metabolism in benign and maglinant disease of breast and colon: evidence for possible inhibition of tumor-infiltrating macropharges., Nutrition, 1991. 7, p.185-188Park, K.G., et.al., Arginine metabolism in benign and maglinant disease of breast and colon: evidence for possible inhibition of tumor-infiltrating macrophages., Nutrition, 1991. 7, p.185-188

しかしながら、これまでに、血液中の代謝物を腫瘍マーカーとして胃癌を診断する技術の開発は、行われていない、実用化されていない、又は精度が十分でないという問題点があった。 However, until now, techniques for diagnosing gastric cancer using metabolites in the blood as tumor markers have not been developed, have not been put to practical use, or have insufficient accuracy.

本発明は、上記に鑑みてなされたもので、胃癌の状態を知る上で参考となり得る信頼性の高い情報を提供することができる評価方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、記録媒体、評価システムおよび端末装置を提供することを目的とする。 The present invention has been made in view of the above, and is an evaluation method, a calculation method, an evaluation device, a calculation device, an evaluation program, and a calculation method that can provide highly reliable information that can be used as a reference for understanding the state of gastric cancer. The purpose is to provide programs, recording media, evaluation systems, and terminal devices.

上述した課題を解決し、目的を達成するために、本発明にかかる評価方法は、評価対象の血液中の32種類の代謝物(1-Me-His(1-methyl-histidine)(1-メチルヒスチジン)、3-Hydroxykynurenine(3-ヒドロキシキヌレニン)、3-Me-His(3-methyl-histidine)(3-メチルヒスチジン)、5-HydroxyTrp(5-ヒドロキシトルプトファン)、aABA(α-アミノ酪酸)、aAiBA(α-amino-iso-butyric acid)(α-アミノイソ酪酸)、ADMA(asymmetric dimethylarginine)(非対称性ジメチルアルギニン)、Aminoadipic acid(α-アミノアジピン酸)、bABA(β-aminobutyric acid)(β-アミノ酪酸)、bAiBA(β-amino-iso-butyric acid)(β-アミノイソ酪酸)、Cadaverine(カダベリン)、GABA(γ-aminobutyric acid)(γ-アミノ酪酸)、Homoarginine(ホモアルギニン)、Homocitrulline(ホモシトルリン)、Hypotaurine(ヒポタウリン)、Hydroxyproline(ヒドロキシプロリン)、Kinurenine(キヌレニン)、L-Cystathionine(L-シスタチオニン)、N8-Acetylspermidine(N8-アセチルスペルミジン)、Pipecolic acid(ピペコリン酸)、Putrescine(プトレシン)、SAH(S-Adenosylhomocysteine)(S-アデノシルホモシステイン)、Sarcosine(サルコシン)、Serotonin(セロトニン)、Spermidine(スペルミジン)、Spermine(スペルミン)、Methylcysteine(メチルシステイン)、Allylcysteine(アリルシステイン)、Propylcysteine(プロピルシステイン)、SDMA(symmetric dimethylarginine)(対称性ジメチルアルギニン)、N6-Acetyl-L-Lys(N6-Acetyl-L-Lysine)(N6-アセチル-L-リジン)およびN-Me-bABA(N-methyl-β-aminobutyric acid)(N-メチル-β-アミノ酪酸))のうちの少なくとも1つの代謝物の濃度値、または、前記代謝物の濃度値が代入される変数を含む式および前記代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌の状態を評価する評価ステップを含むこと、を特徴とするものである。 In order to solve the above-mentioned problems and achieve the objectives, the evaluation method according to the present invention evaluates 32 types of metabolites (1-Me-His (1-methyl-histidine)) in the blood of the evaluation target. histidine), 3-Hydroxykynurenine, 3-Me-His (3-methyl-histidine), 5-HydroxyTrp (5-hydroxytrptophan), aABA (α-aminobutyric acid) ), aAiBA (α-amino-iso-butyric acid), ADMA (asymmetric dimethylarginine), Aminoadipic acid (α-aminoadipic acid), bABA (β-amino butyric acid) ( bAiBA (β-amino-iso-butyric acid), Cadaverine, GABA (γ-aminobutyric acid), Homoarginine, Homocitr ulline (Homocitrulline), Hypotaurine, Hydroxyproline, Kinurenine, L-Cystathionine, N8-Acetylspermidine, Pipecoli c acid (pipecolic acid), Putrescine (putrescine) ), SAH (S-Adenosylhomocysteine), Sarcosine, Serotonin, Spermidine, Spermine, Methylcysteine, Al lylcysteine, propylcysteine (propylcysteine), SDMA (symmetric dimethylarginine), N6-Acetyl-L-Lysine (N6-Acetyl-L-Lysine) and N-Me-bABA (N - methyl-β-aminobutyric acid) (N-methyl-β-aminobutyric acid), or a formula including a variable to which the concentration value of the metabolite is substituted, and the metabolism The present invention is characterized in that it includes an evaluation step of evaluating the state of gastric cancer in the evaluation target using the value of the formula calculated using the concentration value of the substance.

また、本発明にかかる評価方法は、前記評価ステップでは、前記代謝物の濃度値および前記評価対象の血液中の20種類のアミノ酸(Glu、Asn、His、Thr、Ala、Cit、Arg、Tyr、Val、Met、Lys、Trp、Gly、Pro、Orn、Ile、Leu、Phe、SerおよびGln)のうちの少なくとも1つのアミノ酸の濃度値、または、前記アミノ酸の濃度値が代入される変数を含む前記式、前記代謝物の濃度値および前記アミノ酸の濃度値を用いて算出された前記式の値を用いること、を特徴とするものである。 Further, in the evaluation method according to the present invention, in the evaluation step, the concentration value of the metabolite and the 20 types of amino acids (Glu, Asn, His, Thr, Ala, Cit, Arg, Tyr, Val, Met, Lys, Trp, Gly, Pro, Orn, He, Leu, Phe, Ser, and Gln), or a variable to which the concentration value of the amino acid is substituted. The present invention is characterized in that a value of the formula calculated using a formula, a concentration value of the metabolite, and a concentration value of the amino acid is used.

ここで、本明細書では各種アミノ酸を主に略称で表記するが、それらの正式名称は以下の通りである。
(略称) (正式名称)
Ala Alanine
Arg Arginine
Asn Asparagine
Cit Citrulline
Gln Glutamine
Glu Glutamic acid
Gly Glycine
His Histidine
Ile Isoleucine
Leu Leucine
Lys Lysine
Met Methionine
Orn Ornithine
Phe Phenylalanine
Pro Proline
Ser Serine
Thr Threonine
Trp Tryptophan
Tyr Tyrosine
Val Valine
Here, various amino acids are mainly expressed by abbreviations in this specification, but their official names are as follows.
(abbreviation) (official name)
Ala Alanine
Arg Arginine
Asn Asparagine
Cit Citrulline
Gln Glutamine
Glu Glutamic acid
Gly Glycine
His Histidine
Ile Isoleucine
Leu Leucine
Lys Lysine
Met Methionine
Ornithine
Phe Phenylanine
Pro Proline
Ser Serine
Thr Threonine
Trp Tryptophan
Tyr Tyrosine
Val Valine

また、本発明にかかる評価方法は、前記評価ステップが、制御部を備えた情報処理装置の前記制御部において実行されること、を特徴とするものである。 Further, the evaluation method according to the present invention is characterized in that the evaluation step is executed in the control section of an information processing apparatus including a control section.

また、本発明にかかる算出方法は、評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値、および、前記代謝物の濃度値が代入される変数を含む胃癌の状態を評価するための式を用いて、前記式の値を算出する算出ステップを含むこと、を特徴とするものである。 Further, the calculation method according to the present invention includes a concentration value of at least one metabolite among the 32 types of metabolites in the blood to be evaluated, and a variable to which the concentration value of the metabolite is substituted. The present invention is characterized in that it includes a calculation step of calculating a value of the expression using an expression for evaluating the state of the expression.

また、本発明にかかる算出方法は、前記算出ステップでは、前記評価対象の血液中の前記20種類のアミノ酸のうちの少なくとも1つのアミノ酸の濃度値が代入される変数を含む前記式、前記代謝物の濃度値および前記アミノ酸の濃度値を用いること、を特徴とするものである。 Further, in the calculation method according to the present invention, in the calculation step, the formula includes a variable to which a concentration value of at least one amino acid among the 20 types of amino acids in the blood of the evaluation target is substituted, the metabolite and the concentration value of the amino acid are used.

また、本発明にかかる算出方法は、前記算出ステップが、制御部を備えた情報処理装置の前記制御部において実行されること、を特徴とするものである。 Further, the calculation method according to the present invention is characterized in that the calculation step is executed in the control unit of an information processing device including a control unit.

また、本発明にかかる評価装置は、制御部を備える評価装置であって、前記制御部が、評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値、または、前記代謝物の濃度値が代入される変数を含む式および前記代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌の状態を評価する評価手段を備えること、を特徴とするものである。 Further, the evaluation device according to the present invention is an evaluation device including a control unit, wherein the control unit controls the concentration value of at least one metabolite among the 32 types of metabolites in the blood of the evaluation target, or , an evaluation means for evaluating the state of gastric cancer for the evaluation target using a formula including a variable to which the concentration value of the metabolite is substituted, and a value of the formula calculated using the concentration value of the metabolite; It is characterized by being prepared.

また、本発明にかかる評価装置は、前記濃度値に関する濃度データまたは前記式の値を提供する端末装置とネットワークを介して通信可能に接続され、前記制御部が、前記端末装置から送信された前記評価対象の前記濃度データまたは前記式の値を受信するデータ受信手段と、前記評価手段で得られた評価結果を前記端末装置へ送信する結果送信手段と、をさらに備え、前記評価手段が、前記データ受信手段で受信した前記濃度データに含まれている前記濃度値または前記式の値を用いること、を特徴とするものである。 Further, the evaluation device according to the present invention is communicably connected via a network to a terminal device that provides the concentration data regarding the concentration value or the value of the formula, and the control unit is configured to control the concentration data transmitted from the terminal device. The evaluation means further comprises a data receiving means for receiving the concentration data to be evaluated or the value of the formula, and a result transmitting means for transmitting the evaluation result obtained by the evaluation means to the terminal device, and the evaluation means The present invention is characterized in that the concentration value included in the concentration data received by the data receiving means or the value of the formula is used.

また、本発明にかかる算出装置は、制御部を備える算出装置であって、前記制御部が、評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値、および、前記代謝物の濃度値が代入される変数を含む胃癌の状態を評価するための式を用いて、前記式の値を算出する算出手段を備えること、を特徴とするものである。 Further, the calculation device according to the present invention is a calculation device including a control unit, wherein the control unit controls the concentration value of at least one metabolite among the 32 types of metabolites in the blood to be evaluated; The present invention is characterized by comprising a calculation means for calculating the value of the expression using an expression for evaluating the state of gastric cancer that includes a variable into which the concentration value of the metabolite is substituted.

また、本発明にかかる評価プログラムは、制御部を備える情報処理装置において実行させるための評価プログラムであって、前記制御部において実行させるための、評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値、または、前記代謝物の濃度値が代入される変数を含む式および前記代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌の状態を評価する評価ステップを含むこと、を特徴とするものである。 Further, the evaluation program according to the present invention is an evaluation program to be executed in an information processing device including a control unit, and the evaluation program is to be executed in an information processing device including a control unit, and is to be executed in the control unit to evaluate the 32 types of metabolites in the blood to be evaluated. The evaluation is performed using a concentration value of at least one of the metabolites, or a formula including a variable to which the concentration value of the metabolite is substituted, and a value of the formula calculated using the concentration value of the metabolite. The present invention is characterized in that it includes an evaluation step of evaluating the state of gastric cancer in the subject.

また、本発明にかかる算出プログラムは、制御部を備える情報処理装置において実行させるための算出プログラムであって、前記制御部において実行させるための、評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値、および、前記代謝物の濃度値が代入される変数を含む胃癌の状態を評価するための式を用いて、前記式の値を算出する算出ステップを含むこと、を特徴とするものである。 Further, the calculation program according to the present invention is a calculation program to be executed in an information processing device including a control unit, and the calculation program is to be executed in the control unit to calculate the 32 types of metabolites in the blood to be evaluated. a calculation step of calculating the value of the formula using a formula for evaluating the state of gastric cancer that includes a concentration value of at least one of the metabolites and a variable to which the concentration value of the metabolite is substituted; It is characterized by:

また、本発明にかかる記録媒体は、前記評価プログラムまたは前記算出プログラムを記録したコンピュータ読み取り可能な記録媒体である。具体的には、本発明にかかる記録媒体は、一時的でないコンピュータ読み取り可能な記録媒体であって、情報処理装置に前記評価方法または前記算出方法を実行させるためのプログラム化された命令を含むこと、を特徴とするものである。 Moreover, the recording medium according to the present invention is a computer-readable recording medium on which the evaluation program or the calculation program is recorded. Specifically, the recording medium according to the present invention is a non-temporary computer-readable recording medium, and includes programmed instructions for causing an information processing device to execute the evaluation method or the calculation method. It is characterized by the following.

また、本発明にかかる評価システムは、制御部を備える評価装置と、制御部を備え、評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値に関する濃度データ、または、前記代謝物の濃度値が代入される変数を含む式および前記代謝物の濃度値を用いて算出された前記式の値を提供する端末装置とを、ネットワークを介して通信可能に接続して構成される評価システムであって、前記端末装置の前記制御部が、前記評価対象の前記濃度データまたは前記式の値を前記評価装置へ送信するデータ送信手段と、前記評価装置から送信された、前記評価対象についての胃癌の状態に関する評価結果を受信する結果受信手段と、を備え、前記評価装置の前記制御部が、前記端末装置から送信された前記評価対象の前記濃度データまたは前記式の値を受信するデータ受信手段と、前記データ受信手段で受信した前記評価対象の前記濃度データに含まれている前記代謝物の濃度値または前記式の値を用いて、前記評価対象について、胃癌の状態を評価する評価手段と、前記評価手段で得られた前記評価結果を前記端末装置へ送信する結果送信手段と、を備えること、を特徴とするものである。 Further, the evaluation system according to the present invention includes an evaluation device including a control unit, and concentration data regarding the concentration value of at least one metabolite among the 32 types of metabolites in the blood of the evaluation target; Alternatively, a terminal device that provides a formula including a variable to which the concentration value of the metabolite is substituted and a value of the formula calculated using the concentration value of the metabolite are communicably connected via a network. the control unit of the terminal device includes data transmitting means for transmitting the concentration data of the evaluation target or the value of the formula to the evaluation device; , a result receiving means for receiving an evaluation result regarding the state of gastric cancer for the evaluation object, and the control unit of the evaluation device receives the concentration data of the evaluation object transmitted from the terminal device or the expression of the expression. A data receiving means for receiving a value, and a concentration value of the metabolite included in the concentration data of the evaluation object received by the data receiving means or a value of the formula, are used to determine the gastric cancer for the evaluation object. The present invention is characterized by comprising an evaluation means for evaluating a state, and a result transmission means for transmitting the evaluation result obtained by the evaluation means to the terminal device.

また、本発明にかかる端末装置は、制御部を備えた端末装置であって、前記制御部が、評価対象についての胃癌の状態に関する評価結果を取得する結果取得手段を備え、前記評価結果が、前記評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値、または、前記代謝物の濃度値が代入される変数を含む式および前記代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌の状態を評価した結果であること、を特徴とするものである。 Further, a terminal device according to the present invention is a terminal device including a control unit, wherein the control unit includes a result acquisition means for acquiring an evaluation result regarding the state of gastric cancer for an evaluation subject, and the evaluation result is Using the concentration value of at least one metabolite among the 32 types of metabolites in the blood of the evaluation target, or a formula including a variable to which the concentration value of the metabolite is substituted, and the concentration value of the metabolite. The present invention is characterized in that it is a result of evaluating the state of gastric cancer in the evaluation target using the value of the formula calculated by the method.

また、本発明にかかる端末装置は、前記評価対象について胃癌の状態を評価する評価装置とネットワークを介して通信可能に接続されており、前記制御部が、前記評価対象の血液中の前記32種類の代謝物のうちの少なくとも1つの代謝物の濃度値に関する濃度データまたは前記式の値を前記評価装置へ送信するデータ送信手段を備え、前記結果取得手段が、前記評価装置から送信された前記評価結果を受信すること、を特徴とするものである。 Further, the terminal device according to the present invention is communicably connected via a network to an evaluation device that evaluates the state of gastric cancer in the evaluation target, and the control unit controls the 32 types in the blood of the evaluation target. data transmitting means for transmitting concentration data regarding the concentration value of at least one metabolite among the metabolites or the value of the formula to the evaluation device, the result acquisition means transmitting the evaluation information transmitted from the evaluation device. The method is characterized by receiving results.

本発明によれば、胃癌の状態を知る上で参考となり得る信頼性の高い情報を提供することができるという効果を奏する。 According to the present invention, it is possible to provide highly reliable information that can be used as a reference for understanding the state of gastric cancer.

図1は、第1実施形態の基本原理を示す原理構成図である。FIG. 1 is a principle configuration diagram showing the basic principle of the first embodiment. 図2は、第2実施形態の基本原理を示す原理構成図である。FIG. 2 is a principle configuration diagram showing the basic principle of the second embodiment. 図3は、本システムの全体構成の一例を示す図である。FIG. 3 is a diagram showing an example of the overall configuration of this system. 図4は、本システムの全体構成の他の一例を示す図である。FIG. 4 is a diagram showing another example of the overall configuration of this system. 図5は、本システムの評価装置100の構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of the evaluation device 100 of this system. 図6は、濃度データファイル106aに格納される情報の一例を示す図である。FIG. 6 is a diagram showing an example of information stored in the density data file 106a. 図7は、指標状態情報ファイル106bに格納される情報の一例を示す図である。FIG. 7 is a diagram showing an example of information stored in the index state information file 106b. 図8は、指定指標状態情報ファイル106cに格納される情報の一例を示す図である。FIG. 8 is a diagram showing an example of information stored in the specified index state information file 106c. 図9は、式ファイル106d1に格納される情報の一例を示す図である。FIG. 9 is a diagram showing an example of information stored in the formula file 106d1. 図10は、評価結果ファイル106eに格納される情報の一例を示す図である。FIG. 10 is a diagram showing an example of information stored in the evaluation result file 106e. 図11は、評価部102dの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the evaluation section 102d. 図12は、本システムのクライアント装置200の構成の一例を示すブロック図である。FIG. 12 is a block diagram showing an example of the configuration of the client device 200 of this system. 図13は、本システムのデータベース装置400の構成の一例を示すブロック図である。FIG. 13 is a block diagram showing an example of the configuration of the database device 400 of this system.

以下に、本発明にかかる評価方法および算出方法の実施形態(第1実施形態)ならびに本発明にかかる評価装置、算出装置、評価方法、算出方法、評価プログラム、算出プログラム、記録媒体、評価システムおよび端末装置の実施形態(第2実施形態)を、図面に基づいて詳細に説明する。なお、本発明はこれらの実施形態により限定されるものではない。 Below, an embodiment (first embodiment) of the evaluation method and calculation method according to the present invention, an evaluation device, a calculation device, an evaluation method, a calculation method, an evaluation program, a calculation program, a recording medium, an evaluation system and An embodiment (second embodiment) of the terminal device will be described in detail based on the drawings. Note that the present invention is not limited to these embodiments.

[第1実施形態]
[1-1.第1実施形態の概要]
ここでは、第1実施形態の概要について図1を参照して説明する。図1は第1実施形態の基本原理を示す原理構成図である。
[First embodiment]
[1-1. Overview of first embodiment]
Here, an overview of the first embodiment will be described with reference to FIG. 1. FIG. 1 is a principle configuration diagram showing the basic principle of the first embodiment.

まず、評価対象(例えば動物やヒトなどの個体)から採取した血液(例えば血漿、血清などを含む)中の物質(「前記32種類の代謝物および前記20種類のアミノ酸」のうちの少なくとも1つを含む血中物質)の濃度値に関する濃度データを取得する(ステップS11)。 First, a substance (at least one of the above 32 types of metabolites and the above 20 types of amino acids) in blood (including plasma, serum, etc.) collected from an evaluation target (for example, an individual such as an animal or a human). Concentration data regarding the concentration value of blood substances (including blood substances) is acquired (step S11).

なお、ステップS11では、例えば、濃度値測定を行う企業等が測定した前記血中物質に関する濃度データを取得してもよい。また、評価対象から採取した血液から、例えば以下の(A)、(B)、または(C)などの測定方法により前記血中物質の濃度値を測定することで前記血中物質の濃度値に関する濃度データを取得してもよい。ここで、前記血中物質の濃度値の単位は、例えばモル濃度、重量濃度又は酵素活性であってもよく、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
(A)採取した血液サンプルを遠心することにより血液から血漿を分離する。全ての血漿サンプルは、濃度値の測定時まで-80℃で凍結保存する。濃度値測定時には、アセトニトリルを添加し除蛋白処理を行った後、標識試薬(3-アミノピリジル-N-ヒドロキシスクシンイミジルカルバメート)を用いてプレカラム誘導体化を行い、そして、液体クロマトグラフ質量分析計(LC/MS)により濃度値を分析する(国際公開第2003/069328号、国際公開第2005/116629号を参照)。もしくは、除蛋白処理を行った血漿を、固層抽出によるリン脂質除去後、LC/MSにより濃度値(ピーク面積値)を分析する。
(B)採取した血液サンプルを遠心することにより血液から血漿を分離する。全ての血漿サンプルは、濃度値の測定時まで-80℃で凍結保存する。濃度値測定時には、スルホサリチル酸を添加し除蛋白処理を行った後、ニンヒドリン試薬を用いたポストカラム誘導体化法を原理としたアミノ酸分析計により濃度値を分析する。
(C)採取した血液サンプルを、膜やMEMS技術または遠心分離の原理を用いて血球分離を行い、血液から血漿または血清を分離する。血漿または血清取得後すぐに濃度値の測定を行わない血漿または血清サンプルは、濃度値の測定時まで-80℃で凍結保存する。濃度値測定時には、酵素やアプタマーなど、標的とする血中物質と反応または結合する分子等を用い、基質認識によって増減する物質や分光学的値を定量等することにより濃度値を分析する。
Note that in step S11, for example, concentration data regarding the blood substance measured by a company or the like that performs concentration value measurement may be acquired. Further, the concentration value of the blood substance can be determined by measuring the concentration value of the blood substance from the blood collected from the evaluation subject, for example, by the following measurement method (A), (B), or (C). Concentration data may also be obtained. Here, the unit of the concentration value of the blood substance may be, for example, molar concentration, weight concentration, or enzyme activity, or may be obtained by adding, subtracting, multiplying, or dividing these concentrations by an arbitrary constant.
(A) Plasma is separated from blood by centrifuging the collected blood sample. All plasma samples are stored frozen at -80°C until concentration values are determined. When measuring concentration values, acetonitrile is added to perform protein removal treatment, pre-column derivatization is performed using a labeling reagent (3-aminopyridyl-N-hydroxysuccinimidyl carbamate), and then liquid chromatography mass spectrometry is performed. The concentration value is analyzed by a spectrometer (LC/MS) (see WO 2003/069328 and WO 2005/116629). Alternatively, the concentration value (peak area value) is analyzed by LC/MS after phospholipids are removed from protein-depleted plasma by solid-phase extraction.
(B) Separate plasma from blood by centrifuging the collected blood sample. All plasma samples are stored frozen at -80°C until concentration values are determined. When measuring the concentration value, sulfosalicylic acid is added to perform protein removal treatment, and then the concentration value is analyzed using an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
(C) The collected blood sample is subjected to blood cell separation using a membrane, MEMS technology, or the principle of centrifugation to separate plasma or serum from the blood. Plasma or serum samples whose concentration values are not measured immediately after acquisition are stored frozen at -80°C until concentration values are measured. When measuring the concentration value, molecules such as enzymes and aptamers that react with or bind to the target blood substance are used, and the concentration value is analyzed by quantifying the substance that increases or decreases due to substrate recognition and spectroscopic values.

つぎに、ステップS11で取得した濃度データに含まれている、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値を用いて、評価対象について胃癌の状態を評価する(ステップS12)。なお、ステップS12を実行する前に、ステップS11で取得した濃度データから欠損値や外れ値などのデータを除去してもよい。ここで、状態を評価するとは、例えば、現在の状態を検査することである。 Next, the state of gastric cancer of the evaluation target is evaluated using the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids included in the concentration data acquired in step S11 ( Step S12). Note that before executing step S12, data such as missing values and outlier values may be removed from the density data acquired in step S11. Here, evaluating the state means, for example, inspecting the current state.

以上、第1実施形態によれば、ステップS11では評価対象の濃度データを取得し、ステップS12では、ステップS11で取得した評価対象の濃度データに含まれている、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値を用いて、評価対象について胃癌の状態を評価する(要するに、評価対象について胃癌の状態を評価するための情報または評価対象について胃癌の状態を知る上で参考となり得る信頼性の高い情報を取得する)。これにより、評価対象について胃癌の状態を評価するための情報または評価対象について胃癌の状態を知る上で参考となり得る信頼性の高い情報を提供することができる。 As described above, according to the first embodiment, in step S11, the concentration data of the evaluation target is acquired, and in step S12, the 32 types of metabolites and the Evaluate the gastric cancer status of the evaluation target using the concentration value of at least one of the 20 types of amino acids (in short, information for evaluating the gastric cancer status of the evaluation target or information for knowing the gastric cancer status of the evaluation target) to obtain reliable information that can be used as a reference). Thereby, it is possible to provide information for evaluating the state of gastric cancer in the subject to be evaluated, or highly reliable information that can be used as a reference for knowing the state of gastric cancer in the subject to be evaluated.

また、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が評価対象についての胃癌の状態を反映したものであると決定してもよく、さらに、濃度値を例えば以下に挙げた手法などで変換し、変換後の値が評価対象についての胃癌の状態を反映したものであると決定してもよい。換言すると、濃度値又は変換後の値そのものを、評価対象についての胃癌の状態に関する評価結果として扱ってもよい。
濃度値の取り得る範囲が所定範囲(例えば0.0から1.0までの範囲、0.0から10.0までの範囲、0.0から100.0までの範囲、又は-10.0から10.0までの範囲、など)に収まるようにするためなどに、例えば、濃度値に対して任意の値を加減乗除したり、濃度値を所定の変換手法(例えば、指数変換、対数変換、角変換、平方根変換、プロビット変換、逆数変換、Box-Cox変換、又はべき乗変換など)で変換したり、また、濃度値に対してこれらの計算を組み合わせて行ったりすることで、濃度値を変換してもよい。例えば、濃度値を指数としネイピア数を底とする指数関数の値(具体的には、胃癌の状態が所定の状態(例えば、基準値を超えた、胃癌に罹患している可能性が高い状態、など)である確率pを定義したときの自然対数ln(p/(1-p))が濃度値と等しいとした場合におけるp/(1-p)の値)をさらに算出してもよく、また、算出した指数関数の値を1と当該値との和で割った値(具体的には、確率pの値)をさらに算出してもよい。
また、特定の条件のときの変換後の値が特定の値となるように、濃度値を変換してもよい。例えば、特異度が80%のときの変換後の値が5.0となり且つ特異度が95%のときの変換後の値が8.0となるように濃度値を変換してもよい。
また、各代謝物および各アミノ酸ごとに、濃度分布を正規分布化した後、平均50、標準偏差10となるように偏差値化してもよい。
なお、これらの変換は、男女別や年齢別に行ってもよい。
なお、本明細書における濃度値は、濃度値そのものであってもよく、濃度値を変換した後の値であってもよい。
Further, the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids may be determined to reflect the state of gastric cancer of the evaluation subject, and the concentration value may be determined as follows, for example. The converted value may be determined to reflect the state of gastric cancer of the subject to be evaluated. In other words, the concentration value or the converted value itself may be treated as the evaluation result regarding the state of gastric cancer for the evaluation target.
The possible range of the concentration value is a predetermined range (for example, from 0.0 to 1.0, from 0.0 to 10.0, from 0.0 to 100.0, or from -10.0 to 10.0, etc.), for example, add, subtract, multiply, or divide the density value by arbitrary values, or convert the density value using a predetermined conversion method (e.g., exponential conversion, logarithmic conversion, etc.). Concentration values can be converted by converting them using angular conversion, square root conversion, probit conversion, reciprocal conversion, Box-Cox conversion, or power conversion), or by performing a combination of these calculations on concentration values. You may. For example, the value of an exponential function that uses the concentration value as an index and Napier's number as the base (specifically, the state of gastric cancer is in a predetermined state (for example, a state in which the state of gastric cancer exceeds a standard value or is highly likely to have gastric cancer) , etc.), the natural logarithm ln (the value of p/(1-p) when p/(1-p)) is equal to the concentration value) may be further calculated. , or a value obtained by dividing the calculated value of the exponential function by the sum of 1 and the value (specifically, the value of probability p) may be further calculated.
Further, the density value may be converted so that the converted value under specific conditions becomes a specific value. For example, the concentration value may be converted such that when the specificity is 80%, the converted value is 5.0, and when the specificity is 95%, the converted value is 8.0.
Alternatively, the concentration distribution may be normalized for each metabolite and each amino acid, and then converted to a deviation value such that the average is 50 and the standard deviation is 10.
Note that these conversions may be performed by gender or age.
Note that the density value in this specification may be the density value itself, or may be a value after converting the density value.

また、モニタ等の表示装置又は紙等の物理媒体に視認可能に示される所定の物差し上における所定の目印の位置に関する位置情報を、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値又は当該濃度値を変換した場合にはその変換後の値を用いて生成し、生成した位置情報が評価対象についての胃癌の状態を反映したものであると決定してもよい。なお、所定の物差しとは、胃癌の状態を評価するためのものであり、例えば、目盛りが示された物差しであって、「濃度値又は変換後の値の取り得る範囲、又は、当該範囲の一部分」における上限値と下限値に対応する目盛りが少なくとも示されたもの、などである。また、所定の目印とは、濃度値又は変換後の値に対応するものであり、例えば、丸印又は星印などである。 In addition, positional information regarding the position of a predetermined mark on a predetermined ruler visibly shown on a display device such as a monitor or a physical medium such as paper is displayed on at least one of the 32 types of metabolites and the 20 types of amino acids. If one concentration value or the concentration value is converted, the converted value may be used to generate the position information, and it may be determined that the generated position information reflects the state of gastric cancer for the evaluation target. The predetermined ruler is for evaluating the state of gastric cancer, and is, for example, a ruler with markings indicating the range that the concentration value or the value after conversion can take, or the range within the range. At least a scale corresponding to an upper limit value and a lower limit value for "a portion" is shown. Further, the predetermined mark corresponds to the density value or the value after conversion, and is, for example, a circle mark or a star mark.

また、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が、所定値(平均値±1SD、2SD、3SD、N分位点、Nパーセンタイル又は臨床的意義の認められたカットオフ値など)より低い若しくは所定値以下の場合又は所定値以上若しくは所定値より高い場合に、評価対象について、胃癌の状態を評価してもよい。その際、濃度値そのものではなく、濃度偏差値(各代謝物および各アミノ酸ごとに、男女別に濃度分布を正規分布化した後、平均50、標準偏差10となるように偏差値化した値)を用いてもよい。例えば、濃度偏差値が平均値-2SD未満の場合(濃度偏差値<30の場合)又は濃度偏差値が平均値+2SDより高い場合(濃度偏差値>70の場合)に、評価対象について、胃癌の状態を評価してもよい。 In addition, the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids is determined to be a predetermined value (mean ± 1SD, 2SD, 3SD, N quantile, N percentile, or a value of clinical significance). The state of gastric cancer of the subject may be evaluated when the target is lower than a predetermined value (such as a cutoff value) or below a predetermined value, or when it is above a predetermined value or higher than a predetermined value. In this case, rather than the concentration value itself, the concentration deviation value (value converted into a deviation value with an average of 50 and a standard deviation of 10 after normalizing the concentration distribution for each sex for each metabolite and each amino acid) May be used. For example, when the concentration deviation value is less than the mean value - 2SD (when the concentration deviation value < 30) or when the concentration deviation value is higher than the mean value + 2SD (when the concentration deviation value > 70), the evaluation target is The condition may be evaluated.

また、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値、および、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が代入される変数を含む式を用いて、式の値を算出することで、評価対象について胃癌の状態を評価してもよい。 Also, a variable to which a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids and a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids are substituted. The state of gastric cancer in the evaluation target may be evaluated by calculating the value of the expression using an expression including .

また、算出した式の値が評価対象についての胃癌の状態を反映したものであると決定してもよく、さらに、式の値を例えば以下に挙げた手法などで変換し、変換後の値が評価対象についての胃癌の状態を反映したものであると決定してもよい。換言すると、式の値又は変換後の値そのものを、評価対象についての胃癌の状態に関する評価結果として扱ってもよい。
式の値の取り得る範囲が所定範囲(例えば0.0から1.0までの範囲、0.0から10.0までの範囲、0.0から100.0までの範囲、又は-10.0から10.0までの範囲、など)に収まるようにするためなどに、例えば、式の値に対して任意の値を加減乗除したり、式の値を所定の変換手法(例えば、指数変換、対数変換、角変換、平方根変換、プロビット変換、逆数変換、Box-Cox変換、又はべき乗変換など)で変換したり、また、式の値に対してこれらの計算を組み合わせて行ったりすることで、式の値を変換してもよい。例えば、式の値を指数としネイピア数を底とする指数関数の値(具体的には、胃癌の状態が所定の状態(例えば、基準値を超えた、胃癌に罹患している可能性が高い状態、など)である確率pを定義したときの自然対数ln(p/(1-p))が式の値と等しいとした場合におけるp/(1-p)の値)をさらに算出してもよく、また、算出した指数関数の値を1と当該値との和で割った値(具体的には、確率pの値)をさらに算出してもよい。
また、特定の条件のときの変換後の値が特定の値となるように、式の値を変換してもよい。例えば、特異度が80%のときの変換後の値が5.0となり且つ特異度が95%のときの変換後の値が8.0となるように式の値を変換してもよい。
また、平均50、標準偏差10となるように偏差値化してもよい。
なお、これらの変換は、男女別や年齢別に行ってもよい。
なお、本明細書における式の値は、式の値そのものであってもよく、式の値を変換した後の値であってもよい。
Furthermore, it may be determined that the calculated value of the formula reflects the state of gastric cancer for the evaluation target, and further, the value of the formula may be converted using, for example, the method listed below, and the converted value may be It may be determined that it reflects the state of gastric cancer of the subject to be evaluated. In other words, the value of the expression or the value after conversion itself may be treated as the evaluation result regarding the state of gastric cancer for the evaluation target.
The possible range of the value of the expression is a predetermined range (for example, the range from 0.0 to 1.0, the range from 0.0 to 10.0, the range from 0.0 to 100.0, or -10.0). to 10.0, etc.), for example, you can add, subtract, multiply, or divide the value of the formula by arbitrary values, or convert the value of the formula using a predetermined conversion method (for example, exponential conversion, etc.). Logarithmic transformation, angular transformation, square root transformation, probit transformation, reciprocal transformation, Box-Cox transformation, power transformation, etc.), or by performing a combination of these calculations on the value of the expression, You may convert the value of the expression. For example, the value of an exponential function with the value of the formula as the index and Napier's number as the base (specifically, the state of gastric cancer is in a predetermined state (e.g., exceeds the standard value, there is a high possibility of suffering from gastric cancer) Further calculate the natural logarithm ln (the value of p/(1-p) when p/(1-p)) is equal to the value of the expression) when defining the probability p that is a state, etc.) Alternatively, a value obtained by dividing the calculated value of the exponential function by the sum of 1 and the value (specifically, the value of probability p) may be further calculated.
Further, the value of the expression may be converted so that the value after conversion under a specific condition becomes a specific value. For example, the value of the equation may be converted such that the converted value is 5.0 when the specificity is 80%, and 8.0 when the specificity is 95%.
Alternatively, the deviation value may be converted to an average of 50 and a standard deviation of 10.
Note that these conversions may be performed by gender or age.
Note that the value of a formula in this specification may be the value of the formula itself, or may be a value after converting the value of the formula.

また、モニタ等の表示装置又は紙等の物理媒体に視認可能に示される所定の物差し上における所定の目印の位置に関する位置情報を、式の値又は当該式の値を変換した場合にはその変換後の値を用いて生成し、生成した位置情報が評価対象についての胃癌の状態を反映したものであると決定してもよい。なお、所定の物差しとは、胃癌の状態を評価するためのものであり、例えば、目盛りが示された物差しであって、「式の値又は変換後の値の取り得る範囲、又は、当該範囲の一部分」における上限値と下限値に対応する目盛りが少なくとも示されたもの、などである。また、所定の目印とは、式の値又は変換後の値に対応するものであり、例えば、丸印又は星印などである。 In addition, positional information regarding the position of a predetermined mark on a predetermined ruler that is visibly shown on a display device such as a monitor or on a physical medium such as paper, the value of an expression, or the conversion if the value of the expression is converted. The latter value may be used to generate the position information, and it may be determined that the generated position information reflects the state of gastric cancer for the evaluation target. Note that the predetermined ruler is for evaluating the state of gastric cancer, and is, for example, a ruler with a scale that indicates "the range that the value of the formula or the value after conversion can take, or the range. At least a scale corresponding to an upper limit value and a lower limit value for a portion of ``is shown.'' Further, the predetermined mark corresponds to the value of the formula or the value after conversion, and is, for example, a circle mark or a star mark.

また、評価対象が胃癌に罹患している可能性の程度を定性的に評価してもよい。具体的には、「前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値および予め設定された1つまたは複数の閾値」または「前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が代入される変数を含む式、および予め設定された1つまたは複数の閾値」を用いて、評価対象を、胃癌に罹患している可能性の程度を少なくとも考慮して定義された複数の区分のうちのどれか1つに分類してもよい。なお、複数の区分には、胃癌に罹患している可能性の程度が高い対象(例えば、胃癌に罹患していると見做す対象)を属させるための区分、胃癌に罹患している可能性の程度が低い対象(例えば、胃癌に罹患していないと見做す対象)を属させるための区分、および胃癌に罹患している可能性の程度が中程度である対象を属させるための区分が含まれていてもよい。また、複数の区分には、胃癌に罹患している可能性の程度が高い対象を属させるための区分、および、胃癌に罹患している可能性の程度が低い対象を属させるための区分(例えば、健常である可能性が高い対象(例えば健常であると見做す対象)を属させるための区分など)が含まれていてもよい。また、濃度値又は式の値を所定の手法で変換し、変換後の値を用いて評価対象を複数の区分のうちのどれか1つに分類してもよい。 Furthermore, the degree of possibility that the evaluation subject is suffering from gastric cancer may be qualitatively evaluated. Specifically, "the concentration value and one or more preset threshold values of at least one of the 32 types of metabolites and the 20 types of amino acids" or "the 32 types of metabolites and the 20 types of amino acids" a concentration value of at least one of the amino acids, a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids, and one or more preset The evaluation target may be classified into any one of a plurality of categories defined by taking into account at least the degree of possibility that the subject is suffering from gastric cancer. Note that the multiple categories include categories to which subjects with a high possibility of having gastric cancer (for example, subjects who are considered to be suffering from gastric cancer) belong to them; A classification for assigning subjects with a low degree of gender (for example, subjects considered not to have gastric cancer), and a classification for assigning subjects with a moderate probability of having gastric cancer. May include classification. In addition, the multiple categories include a category to which subjects with a high probability of suffering from gastric cancer belong, and a category to which subjects with a low probability of suffering from stomach cancer belong ( For example, it may include a category to which objects that are likely to be healthy (for example, objects that are considered to be healthy) belong thereto. Alternatively, the concentration value or the value of the formula may be converted using a predetermined method, and the evaluation target may be classified into one of a plurality of categories using the converted value.

また、評価の際に用いる式について、その形式は特に問わないが、例えば、以下に示す形式のものでもよい。
・最小二乗法に基づく重回帰式、線形判別式、主成分分析、正準判別分析などの線形モデル
・最尤法に基づくロジスティック回帰、Cox回帰などの一般化線形モデル
・一般化線形モデルに加えて個体間差、施設間差などの変量効果を考慮した一般化線形混合モデル
・K-means法、階層的クラスタ解析などクラスタ解析で作成された式
・MCMC(マルコフ連鎖モンテカルロ法)、ベイジアンネットワーク、階層ベイズ法などベイズ統計に基づき作成された式
・サポートベクターマシンや決定木などクラス分類により作成された式
・分数式など上記のカテゴリに属さない手法により作成された式
・異なる形式の式の和で示されるような式
Further, the format of the formula used in the evaluation is not particularly limited, but it may be in the format shown below, for example.
・Linear models such as multiple regression equation, linear discriminant, principal component analysis, and canonical discriminant analysis based on the least squares method ・Generalized linear models such as logistic regression and Cox regression based on the maximum likelihood method ・In addition to generalized linear models Generalized linear mixed models that take into account random effects such as inter-individual differences and inter-facility differences, K-means method, hierarchical cluster analysis, etc., MCMC (Markov chain Monte Carlo method), Bayesian network, Formulas created based on Bayesian statistics such as the hierarchical Bayes method; Formulas created by class classification such as support vector machines and decision trees; Formulas created by methods that do not belong to the above categories, such as fractional formulas; Sums of formulas in different formats. The expression as shown in

また、評価の際に用いる式を、例えば、本出願人による国際出願である国際公開第2004/052191号に記載の方法又は本出願人による国際出願である国際公開第2006/098192号に記載の方法で作成してもよい。なお、これらの方法で得られた式であれば、入力データとしての濃度データにおける代謝物および/またはアミノ酸の濃度値の単位に因らず、当該式を胃癌の状態を評価するのに好適に用いることができる。 In addition, the formula used in the evaluation may be, for example, the method described in WO 2004/052191, an international application filed by the applicant, or the method described in WO 2006/098192, an international application filed by the applicant. You can create it by any method. It should be noted that the formula obtained by these methods can be used suitably to evaluate the state of gastric cancer, regardless of the unit of the concentration value of the metabolite and/or amino acid in the concentration data as input data. Can be used.

ここで、重回帰式、多重ロジスティック回帰式、正準判別関数などにおいては各変数に係数及び定数項が付加されるが、この係数及び定数項は、好ましくは実数であれば構わず、より好ましくは、データから前記の各種分類を行うために得られた係数及び定数項の99%信頼区間の範囲に属する値であれば構わず、さらに好ましくは、データから前記の各種分類を行うために得られた係数及び定数項の95%信頼区間の範囲に属する値であれば構わない。また、各係数の値及びその信頼区間は、それを実数倍したものでもよく、定数項の値及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。ロジスティック回帰式、線形判別式、重回帰式などを評価の際に用いる場合、線形変換(定数の加算、定数倍)及び単調増加(減少)の変換(例えばlogit変換など)は評価性能を変えるものではなく変換前と同等であるので、これらの変換が行われた後のものを用いてもよい。 Here, in multiple regression equations, multiple logistic regression equations, canonical discriminant functions, etc., coefficients and constant terms are added to each variable, but these coefficients and constant terms may preferably be real numbers, and more preferably may be any value that falls within the 99% confidence interval of the coefficients and constant terms obtained for performing the above various classifications from the data, and more preferably, Any value may be used as long as it falls within the 95% confidence interval of the calculated coefficient and constant term. Furthermore, the value of each coefficient and its confidence interval may be multiplied by a real number, and the value of a constant term and its confidence interval may be obtained by adding, subtracting, multiplying or dividing by any real constant. When using logistic regression formulas, linear discriminant formulas, multiple regression formulas, etc. for evaluation, linear transformations (addition of constants, constant multiplication) and monotonically increasing (decreasing) transformations (such as logit transformations) change the evaluation performance. Instead, it is equivalent to the value before conversion, so the value after these conversions may be used.

また、分数式とは、当該分数式の分子が変数A,B,C,・・・の和で表わされ及び/又は当該分数式の分母が変数a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられる変数にはそれぞれ適当な係数がついても構わない。また、分子や分母に用いられる変数は重複しても構わない。また、各分数式に適当な係数がついても構わない。また、各変数の係数の値や定数項の値は、実数であれば構わない。ある分数式と、当該分数式において分子の変数と分母の変数が入れ替えられたものとでは、目的変数との相関の正負の符号が概して逆転するものの、それらの相関性は保たれるが故に、評価性能も同等と見做せるので、分数式には、分子の変数と分母の変数が入れ替えられたものも含まれる。 In addition, a fractional expression is one in which the numerator of the fractional expression is expressed as the sum of variables A, B, C, ... and/or the denominator of the fractional expression is the sum of variables a, b, c, ... It is expressed as Further, the fractional expression includes the sum of fractional expressions α, β, γ, . . . (for example, α+β) having such a configuration. Furthermore, fractional expressions include divided fractional expressions. Note that appropriate coefficients may be attached to the variables used in the numerator and denominator. Also, variables used for the numerator and denominator may be duplicated. Further, an appropriate coefficient may be attached to each fractional expression. Further, the value of the coefficient of each variable and the value of the constant term may be real numbers. Although the sign of the correlation with the target variable is generally reversed between a certain fractional formula and a fractional formula in which the numerator variable and denominator variable are swapped, the correlation between them is maintained. Since the evaluation performance can be considered to be the same, fractional expressions include those in which the numerator variable and denominator variable are swapped.

そして、胃癌の状態を評価する際、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値以外に、他の生体情報に関する値(例えば、以下に挙げた値など)をさらに用いても構わない。また、評価の際に用いる式には、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が代入される変数以外に、他の生体情報に関する値(例えば、以下に挙げた値など)が代入される1つ又は複数の変数がさらに含まれていてもよい。
1.アミノ酸以外の他の血中の代謝物(アミノ酸代謝物・糖類・脂質等)、タンパク質、ペプチド、ミネラル、ホルモン等の濃度値
2.アルブミン、総蛋白、トリグリセリド(中性脂肪)、HbA1c、糖化アルブミン、インスリン抵抗性指数、総コレステロール、LDLコレステロール、HDLコレステロール、アミラーゼ、総ビリルビン、クレアチニン、推算糸球体濾過量(eGFR)、尿酸、GOT(AST)、GPT(ALT),GGTP(γ-GTP)、グルコース(血糖値)、CRP(C反応性蛋白)、赤血球、ヘモグロビン、ヘマトクリット、MCV、MCH,MCHC、白血球、血小板数等の血液検査値
3.超音波エコー、X線、CT、MRI、内視鏡像等の画像情報から得られる値
4.年齢、身長、体重、BMI、腹囲、収縮期血圧、拡張期血圧、性別、喫煙情報、食事情報、飲酒情報、運動情報、ストレス情報、睡眠情報、家族の既往歴情報、疾患歴情報(糖尿病等)等の生体指標に関する値
When evaluating the state of gastric cancer, in addition to the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids, values related to other biological information (for example, the values listed below) are evaluated. It may be used further. In addition, in addition to variables into which the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids is substituted, values related to other biological information (for example, the following It may further include one or more variables to which the values listed (such as the listed values) are assigned.
1. Concentration values of blood metabolites other than amino acids (amino acid metabolites, sugars, lipids, etc.), proteins, peptides, minerals, hormones, etc. 2. Albumin, total protein, triglyceride (neutral fat), HbA1c, glycated albumin, insulin resistance index, total cholesterol, LDL cholesterol, HDL cholesterol, amylase, total bilirubin, creatinine, estimated glomerular filtration rate (eGFR), uric acid, GOT Blood tests such as (AST), GPT (ALT), GGTP (γ-GTP), glucose (blood sugar level), CRP (C-reactive protein), red blood cells, hemoglobin, hematocrit, MCV, MCH, MCHC, white blood cells, platelet count, etc. Value 3. Values obtained from image information such as ultrasound echoes, X-rays, CT, MRI, and endoscopic images4. Age, height, weight, BMI, waist circumference, systolic blood pressure, diastolic blood pressure, gender, smoking information, dietary information, drinking information, exercise information, stress information, sleep information, family medical history information, disease history information (diabetes, etc.) ) values related to biological indicators such as

[第2実施形態]
[2-1.第2実施形態の概要]
ここでは、第2実施形態の概要について図2を参照して説明する。図2は第2実施形態の基本原理を示す原理構成図である。なお、本第2実施形態の説明では、上述した第1実施形態と重複する説明を省略する場合がある。特に、ここでは、胃癌の状態を評価する際に、式の値又はその変換後の値を用いるケースを一例として記載しているが、例えば、「前記32種類の代謝物および前記20種類のアミノ酸」のうちの少なくとも1つの濃度値又はその変換後の値(例えば濃度偏差値など)を用いてもよい。
[Second embodiment]
[2-1. Overview of second embodiment]
Here, an overview of the second embodiment will be described with reference to FIG. 2. FIG. 2 is a principle configuration diagram showing the basic principle of the second embodiment. Note that in the description of the second embodiment, descriptions that overlap with those of the first embodiment described above may be omitted. In particular, here, when evaluating the state of gastric cancer, the case where the value of the formula or the value after its conversion is used is described as an example. '' or its converted value (for example, a concentration deviation value) may be used.

制御部は、血液中の前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値に関する予め取得した評価対象(例えば動物やヒトなどの個体)の濃度データに含まれている、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値、および、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が代入される変数を含む予め記憶部に記憶された式を用いて、式の値を算出することで、評価対象について胃癌の状態を評価する(ステップS21)。これにより、胃癌の状態を知る上で参考となり得る信頼性の高い情報を提供することができる。 The control unit includes concentration data of an evaluation target (for example, an individual such as an animal or a human) obtained in advance regarding a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids in the blood. , a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids, and a variable to which the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids is substituted. The state of gastric cancer in the evaluation target is evaluated by calculating the value of the formula using the formula stored in the storage unit in advance (step S21). This makes it possible to provide highly reliable information that can serve as a reference for understanding the state of gastric cancer.

なお、ステップS21で用いられる式は、以下に説明する式作成処理(工程1~工程4)に基づいて作成されたものでもよい。ここで、式作成処理の概要について説明する。なお、ここで説明する処理はあくまでも一例であり、式の作成方法はこれに限定されない。 Note that the formula used in step S21 may be one created based on the formula creation process (steps 1 to 4) described below. Here, an overview of the expression creation process will be explained. Note that the process described here is just an example, and the method for creating the expression is not limited to this.

まず、制御部は、濃度データと胃癌の状態を表す指標に関する指標データとを含む予め記憶部に記憶された指標状態情報(欠損値や外れ値などを持つデータが事前に除去されているものでもよい)から所定の式作成手法に基づいて、候補式(例えば、y=a1x1+a2x2+・・・+anxn、y:指標データ、xi:濃度データ、ai:定数、i=1,2,・・・,n)を作成する(工程1)。 First, the control unit selects the indicator status information stored in the storage unit in advance, including concentration data and index data related to indicators representing the status of gastric cancer (even if data with missing values, outlier values, etc. have been removed in advance). candidate formula (for example, y=a1x1+a2x2+...+anxn, y: index data, xi: density data, ai: constant, i=1, 2,..., n ) (Step 1).

なお、工程1において、指標状態情報から、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、Cox回帰分析、ロジスティック回帰分析、k-means法、クラスター解析、決定木などの多変量解析に関するものを含む。)を併用して複数の候補式を作成してもよい。具体的には、多数の健常群および胃癌群から得た血液を分析して得た濃度データおよび指標データから構成される多変量データである指標状態情報に対して、複数の異なるアルゴリズムを利用して複数群の候補式を同時並行的に作成してもよい。例えば、異なるアルゴリズムを利用して判別分析およびロジスティック回帰分析を同時に行い、2つの異なる候補式を作成してもよい。また、主成分分析を行って作成した候補式を利用して指標状態情報を変換し、変換した指標状態情報に対して判別分析を行うことで候補式を作成してもよい。これにより、最終的に、評価に最適な式を作成することができる。 In addition, in step 1, several different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, Cox regression analysis, logistic regression analysis, k-means method, cluster analysis, determination (including those related to multivariate analysis such as trees) may be used in combination to create multiple candidate expressions. Specifically, multiple different algorithms are used for index status information, which is multivariate data consisting of concentration data and index data obtained by analyzing blood obtained from a large number of healthy subjects and gastric cancer groups. multiple groups of candidate expressions may be created simultaneously. For example, two different candidate formulas may be created by simultaneously performing discriminant analysis and logistic regression analysis using different algorithms. Alternatively, the candidate expression may be created by converting the index status information using a candidate expression created by performing principal component analysis, and performing discriminant analysis on the converted index status information. In this way, it is possible to finally create an expression that is optimal for evaluation.

ここで、主成分分析を用いて作成した候補式は、全ての濃度データの分散を最大にするような各変数を含む一次式である。また、判別分析を用いて作成した候補式は、各群内の分散の和の全ての濃度データの分散に対する比を最小にするような各変数を含む高次式(指数や対数を含む)である。また、サポートベクターマシンを用いて作成した候補式は、群間の境界を最大にするような各変数を含む高次式(カーネル関数を含む)である。また、重回帰分析を用いて作成した候補式は、全ての濃度データからの距離の和を最小にするような各変数を含む高次式である。また、Cox回帰分析を用いて作成した候補式は、対数ハザード比を含む線形モデルで、そのモデルの尤度を最大とするような各変数とその係数を含む1次式であるである。また、ロジスティック回帰分析を用いて作成した候補式は、確率の対数オッズを表す線形モデルであり、その確率の尤度を最大にするような各変数を含む一次式である。また、k-means法とは、各濃度データのk個近傍を探索し、近傍点の属する群の中で一番多いものをそのデータの所属群と定義し、入力された濃度データの属する群と定義された群とが最も合致するような変数を選択する手法である。また、クラスター解析とは、全ての濃度データの中で最も近い距離にある点同士をクラスタリング(群化)する手法である。また、決定木とは、変数に序列をつけて、序列が上位である変数の取りうるパターンから濃度データの群を予測する手法である。 Here, the candidate equation created using principal component analysis is a linear equation that includes each variable that maximizes the variance of all concentration data. In addition, the candidate formula created using discriminant analysis is a high-order formula (including exponents and logarithms) that includes each variable that minimizes the ratio of the sum of variances within each group to the variance of all concentration data. be. Furthermore, the candidate expression created using the support vector machine is a high-order expression (including a kernel function) that includes variables that maximize the boundaries between groups. Further, the candidate equation created using multiple regression analysis is a high-order equation that includes each variable that minimizes the sum of distances from all concentration data. Further, the candidate equation created using Cox regression analysis is a linear model including a log hazard ratio, and is a linear equation including each variable and its coefficient that maximizes the likelihood of the model. Further, the candidate formula created using the logistic regression analysis is a linear model representing the log odds of the probability, and is a linear formula that includes each variable that maximizes the likelihood of the probability. In addition, the k-means method searches for k neighbors of each density data, defines the largest group among the groups to which the neighboring points belong, and defines the group to which the input density data belongs. This method selects the variable that best matches the defined group. Further, cluster analysis is a method of clustering (grouping) points that are closest to each other among all concentration data. Furthermore, a decision tree is a method of assigning a ranking to variables and predicting a group of concentration data from possible patterns of variables with higher rankings.

式作成処理の説明に戻り、制御部は、工程1で作成した候補式を、所定の検証手法に基づいて検証(相互検証)する(工程2)。候補式の検証は、工程1で作成した各候補式に対して行う。なお、工程2において、ブートストラップ法やホールドアウト法、N-フォールド法、リーブワンアウト法などのうち少なくとも1つに基づいて、候補式の判別率や感度、特異度、情報量基準、ROC_AUC(受信者特性曲線の曲線下面積)などのうち少なくとも1つに関して検証してもよい。これにより、指標状態情報や評価条件を考慮した予測性または頑健性の高い候補式を作成することができる。 Returning to the explanation of the formula creation process, the control unit verifies (cross-verifies) the candidate formula created in step 1 based on a predetermined verification method (step 2). Verification of candidate expressions is performed for each candidate expression created in step 1. In addition, in step 2, the discrimination rate, sensitivity, specificity, information criterion, ROC_AUC ( The verification may be performed with respect to at least one of the following: area under the receiver characteristic curve; Thereby, it is possible to create a highly predictive or robust candidate formula that takes into account the index status information and evaluation conditions.

ここで、判別率とは、本実施形態にかかる評価手法で、真の状態が陰性である評価対象(例えば、胃癌に罹患していない評価対象など)を正しく陰性と評価し、真の状態が陽性である評価対象(例えば、胃癌に罹患している評価対象など)を正しく陽性と評価している割合である。また、感度とは、本実施形態にかかる評価手法で、真の状態が陽性である評価対象を正しく陽性と評価している割合である。また、特異度とは、本実施形態にかかる評価手法で、真の状態が陰性である評価対象を正しく陰性と評価している割合である。また、赤池情報量規準とは、回帰分析などの場合に,観測データが統計モデルにどの程度一致するかを表す基準であり、「-2×(統計モデルの最大対数尤度)+2×(統計モデルの自由パラメータ数)」で定義される値が最小となるモデルを最もよいと判断する。また、ROC_AUCは、2次元座標上に(x,y)=(1-特異度,感度)をプロットして作成される曲線である受信者特性曲線(ROC)の曲線下面積として定義され、ROC_AUCの値は完全な判別では1となり、この値が1に近いほど判別性が高いことを示す。また、予測性とは、候補式の検証を繰り返すことで得られた判別率や感度、特異性を平均したものである。また、頑健性とは、候補式の検証を繰り返すことで得られた判別率や感度、特異性の分散である。 Here, the discrimination rate refers to the evaluation method according to the present embodiment, in which an evaluation object whose true state is negative (for example, an evaluation object not suffering from gastric cancer) is correctly evaluated as negative, and the true state is This is the percentage of positive evaluation subjects (for example, evaluation subjects suffering from gastric cancer) that are correctly evaluated as positive. Furthermore, the sensitivity is the rate at which evaluation targets whose true state is positive are correctly evaluated as positive by the evaluation method according to the present embodiment. Further, the specificity is the rate at which an evaluation target whose true state is negative is correctly evaluated as negative by the evaluation method according to the present embodiment. In addition, the Akaike information criterion is a standard that expresses the degree to which observed data matches a statistical model in cases such as regression analysis, and is defined as "-2 x (maximum log likelihood of statistical model) + 2 x (statistical model's maximum log likelihood)". The model with the minimum value defined by the number of free parameters of the model is determined to be the best. Furthermore, ROC_AUC is defined as the area under the receiver characteristic curve (ROC), which is a curve created by plotting (x, y) = (1 - specificity, sensitivity) on two-dimensional coordinates. The value of is 1 for perfect discrimination, and the closer this value is to 1, the higher the discrimination. Furthermore, predictability is the average of the discrimination rate, sensitivity, and specificity obtained by repeatedly verifying candidate formulas. Furthermore, robustness is the variance of the discrimination rate, sensitivity, and specificity obtained by repeatedly verifying candidate formulas.

式作成処理の説明に戻り、制御部は、所定の変数選択手法に基づいて候補式の変数を選択することで、候補式を作成する際に用いる指標状態情報に含まれる濃度データの組み合わせを選択する(工程3)。なお、工程3において、変数の選択は、工程1で作成した各候補式に対して行ってもよい。これにより、候補式の変数を適切に選択することができる。そして、工程3で選択した濃度データを含む指標状態情報を用いて再び工程1を実行する。また、工程3において、工程2での検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補式の変数を選択してもよい。なお、ベストパス法とは、候補式に含まれる変数を1つずつ順次減らしていき、候補式が与える評価指標を最適化することで変数を選択する方法である。 Returning to the explanation of the formula creation process, the control unit selects the combination of concentration data included in the index status information used when creating the candidate formula by selecting variables of the candidate formula based on a predetermined variable selection method. (Step 3). Note that in step 3, variables may be selected for each candidate expression created in step 1. Thereby, the variables of the candidate expression can be appropriately selected. Then, step 1 is executed again using the index state information including the concentration data selected in step 3. Furthermore, in step 3, variables for the candidate formula may be selected from the verification results in step 2 based on at least one of a stepwise method, a best path method, a neighborhood search method, and a genetic algorithm. Note that the best path method is a method in which variables included in a candidate formula are sequentially reduced one by one and variables are selected by optimizing the evaluation index provided by the candidate formula.

式作成処理の説明に戻り、制御部は、上述した工程1、工程2および工程3を繰り返し実行し、これにより蓄積した検証結果に基づいて、複数の候補式の中から評価の際に用いる候補式を選出することで、評価の際に用いる式を作成する(工程4)。なお、候補式の選出には、例えば、同じ式作成手法で作成した候補式の中から最適なものを選出する場合と、すべての候補式の中から最適なものを選出する場合とがある。 Returning to the explanation of the formula creation process, the control unit repeatedly executes the above-mentioned steps 1, 2, and 3, and based on the accumulated verification results, selects a candidate formula to be used for evaluation from among a plurality of candidate formulas. By selecting a formula, a formula to be used for evaluation is created (Step 4). Note that the selection of candidate formulas includes, for example, selecting the optimal one from among candidate formulas created using the same formula creation method, and selecting the optimal one from among all candidate formulas.

以上、説明したように、式作成処理では、指標状態情報に基づいて、候補式の作成、候補式の検証および候補式の変数の選択に関する処理を一連の流れで体系化(システム化)して実行することにより、胃癌の評価に最適な式を作成することができる。換言すると、式作成処理では、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つを含む血中物質の濃度を多変量の統計解析に用い、最適でロバストな変数の組を選択するために変数選択法とクロスバリデーションとを組み合わせて、評価性能の高い式を抽出する。 As explained above, in the formula creation process, processes related to creation of a candidate formula, verification of the candidate formula, and selection of variables in the candidate formula are systematized (systematized) in a series of steps based on the index status information. By executing this, it is possible to create an optimal formula for evaluating gastric cancer. In other words, in the formula creation process, the concentration of a blood substance containing at least one of the 32 types of metabolites and the 20 types of amino acids is used for multivariate statistical analysis, and an optimal and robust set of variables is determined. For selection, a variable selection method and cross validation are combined to extract formulas with high evaluation performance.

[2-2.第2実施形態の構成]
ここでは、第2実施形態にかかる評価システム(以下では本システムと記す場合がある。)の構成について、図3から図14を参照して説明する。なお、本システムはあくまでも一例であり、本発明はこれに限定されない。特に、ここでは、胃癌の状態を評価する際に、式の値又はその変換後の値を用いるケースを一例として記載しているが、例えば、「前記32種類の代謝物および前記20種類のアミノ酸」のうちの少なくとも1つの濃度値又はその変換後の値(例えば濃度偏差値など)を用いてもよい。
[2-2. Configuration of second embodiment]
Here, the configuration of the evaluation system (hereinafter sometimes referred to as the present system) according to the second embodiment will be described with reference to FIGS. 3 to 14. Note that this system is just an example, and the present invention is not limited to this. In particular, here, when evaluating the state of gastric cancer, the case where the value of the formula or the value after its conversion is used is described as an example. '' or its converted value (for example, a concentration deviation value) may be used.

まず、本システムの全体構成について図3および図4を参照して説明する。図3は本システムの全体構成の一例を示す図である。また、図4は本システムの全体構成の他の一例を示す図である。本システムは、図3に示すように、評価対象である個体について胃癌の状態を評価する評価装置100と、血液中の前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つを含む血中物質の濃度値に関する個体の濃度データを提供するクライアント装置200(本発明の端末装置に相当)とを、ネットワーク300を介して通信可能に接続して構成されている。 First, the overall configuration of this system will be explained with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing an example of the overall configuration of this system. Moreover, FIG. 4 is a diagram showing another example of the overall configuration of this system. As shown in FIG. 3, this system includes an evaluation device 100 that evaluates the state of gastric cancer in an individual to be evaluated, and at least one of the 32 types of metabolites and the 20 types of amino acids in the blood. A client device 200 (corresponding to the terminal device of the present invention) that provides concentration data of an individual regarding the concentration value of blood substances contained therein is communicably connected via a network 300.

なお、本システムにおいて、評価に用いられるデータの提供元となるクライアント装置200と評価結果の提供先となるクライアント装置200は別々のものであってもよい。本システムは、図4に示すように、評価装置100やクライアント装置200の他に、評価装置100で式を作成する際に用いる指標状態情報や、評価の際に用いる式などを格納したデータベース装置400を、ネットワーク300を介して通信可能に接続して構成されてもよい。これにより、ネットワーク300を介して、評価装置100からクライアント装置200やデータベース装置400へ、あるいはクライアント装置200やデータベース装置400から評価装置100へ、胃癌の状態を知る上で参考となる情報などが提供される。ここで、胃癌の状態を知る上で参考となる情報とは、例えば、ヒトを含む生物の胃癌の状態に関する特定の項目について測定した値に関する情報などである。また、胃癌の状態を知る上で参考となる情報は、評価装置100やクライアント装置200や他の装置(例えば各種の計測装置等)で生成され、主にデータベース装置400に蓄積される。 Note that in this system, the client device 200 that serves as a provider of data used for evaluation and the client device 200 that serves as a provider of evaluation results may be different devices. As shown in FIG. 4, this system includes, in addition to the evaluation device 100 and the client device 200, a database device that stores index state information used when creating formulas in the evaluation device 100, formulas used during evaluation, etc. 400 may be configured to be communicably connected via the network 300. As a result, information useful for understanding the state of stomach cancer is provided from the evaluation device 100 to the client device 200 or the database device 400, or from the client device 200 or the database device 400 to the evaluation device 100, via the network 300. be done. Here, the information that is useful for knowing the state of gastric cancer is, for example, information regarding values measured for specific items related to the state of gastric cancer in organisms including humans. Further, information useful for knowing the state of gastric cancer is generated by the evaluation device 100, the client device 200, and other devices (for example, various measuring devices, etc.), and is mainly stored in the database device 400.

つぎに、本システムの評価装置100の構成について図5から図11を参照して説明する。図5は、本システムの評価装置100の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。 Next, the configuration of the evaluation device 100 of this system will be explained with reference to FIGS. 5 to 11. FIG. 5 is a block diagram showing an example of the configuration of the evaluation device 100 of the present system, and conceptually shows only the portions of the configuration that are related to the present invention.

評価装置100は、当該評価装置を統括的に制御するCPU(Central Processing Unit)等の制御部102と、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して当該評価装置をネットワーク300に通信可能に接続する通信インターフェース部104と、各種のデータベースやテーブルやファイルなどを格納する記憶部106と、入力装置112や出力装置114に接続する入出力インターフェース部108と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。ここで、評価装置100は、各種の分析装置(例えばアミノ酸分析装置等)と同一筐体で構成されてもよい。例えば、血液中の前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つを含む所定の血中物質の濃度値を算出(測定)し、算出した値を出力(印刷やモニタ表示など)する構成(ハードウェアおよびソフトウェア)を備えた小型分析装置において、後述する評価部102dをさらに備え、当該評価部102dで得られた結果を前記構成を用いて出力すること、を特徴とするものでもよい。 The evaluation device 100 controls the evaluation device via a control unit 102 such as a CPU (Central Processing Unit) that centrally controls the evaluation device, and a communication device such as a router and a wired or wireless communication line such as a dedicated line. It consists of a communication interface unit 104 that is communicably connected to the network 300, a storage unit 106 that stores various databases, tables, files, etc., and an input/output interface unit 108 that connects to the input device 112 and output device 114. These parts are communicably connected via any communication path. Here, the evaluation device 100 may be configured in the same housing as various analytical devices (for example, amino acid analyzers, etc.). For example, the concentration value of a predetermined blood substance containing at least one of the 32 types of metabolites and the 20 types of amino acids in the blood is calculated (measured), and the calculated value is output (printed or displayed on a monitor). etc.), further comprising an evaluation section 102d described below, and outputting the results obtained by the evaluation section 102d using the configuration. It can be anything.

通信インターフェース部104は、評価装置100とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有する。 The communication interface unit 104 mediates communication between the evaluation device 100 and the network 300 (or a communication device such as a router). That is, the communication interface section 104 has a function of communicating data with other terminals via a communication line.

入出力インターフェース部108は、入力装置112や出力装置114に接続する。ここで、出力装置114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下では、出力装置114をモニタ114として記載する場合がある。)。入力装置112には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。 The input/output interface section 108 is connected to the input device 112 and the output device 114. Here, in addition to a monitor (including a home television), a speaker or a printer can be used as the output device 114 (hereinafter, the output device 114 may be referred to as the monitor 114). As the input device 112, in addition to a keyboard, a mouse, and a microphone, a monitor that cooperates with the mouse to realize a pointing device function can be used.

記憶部106は、ストレージ手段であり、例えば、RAM(Random Access Memory)・ROM(Read Only Memory)等のメモリ装置や、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いることができる。記憶部106には、OS(Operating System)と協働してCPUに命令を与え各種処理を行うためのコンピュータプログラムが記録されている。記憶部106は、図示の如く、濃度データファイル106aと、指標状態情報ファイル106bと、指定指標状態情報ファイル106cと、式関連情報データベース106dと、評価結果ファイル106eと、を格納する。 The storage unit 106 is a storage means, and for example, a memory device such as a RAM (Random Access Memory) or a ROM (Read Only Memory), a fixed disk device such as a hard disk, a flexible disk, an optical disk, etc. can be used. The storage unit 106 stores computer programs that work together with an OS (Operating System) to give commands to the CPU and perform various processes. As illustrated, the storage unit 106 stores a concentration data file 106a, an index state information file 106b, a specified index state information file 106c, a formula-related information database 106d, and an evaluation result file 106e.

濃度データファイル106aは、血液中の前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つを含む血中物質の濃度値に関する濃度データを格納する。図6は、濃度データファイル106aに格納される情報の一例を示す図である。濃度データファイル106aに格納される情報は、図6に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、濃度データとを相互に関連付けて構成されている。ここで、図6では、濃度データを数値、すなわち連続尺度として扱っているが、濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、濃度データに、他の生体情報に関する値(上記参照)を組み合わせてもよい。 The concentration data file 106a stores concentration data regarding concentration values of blood substances containing at least one of the 32 types of metabolites and the 20 types of amino acids in the blood. FIG. 6 is a diagram showing an example of information stored in the density data file 106a. As shown in FIG. 6, the information stored in the concentration data file 106a is configured by correlating an individual number for uniquely identifying an individual (sample) to be evaluated with concentration data. Here, in FIG. 6, the concentration data is treated as a numerical value, that is, on a continuous scale, but the concentration data may be on a nominal scale or an ordinal scale. In addition, in the case of a nominal scale or an ordinal scale, analysis may be performed by giving arbitrary numerical values to each state. Further, the concentration data may be combined with values related to other biological information (see above).

図5に戻り、指標状態情報ファイル106bは、式を作成する際に用いる指標状態情報を格納する。図7は、指標状態情報ファイル106bに格納される情報の一例を示す図である。指標状態情報ファイル106bに格納される情報は、図7に示すように、個体番号と、胃癌の状態を表す指標(指標T1、指標T2、指標T3・・・)に関する指標データ(T)と、濃度データと、を相互に関連付けて構成されている。ここで、図7では、指標データおよび濃度データを数値(すなわち連続尺度)として扱っているが、指標データおよび濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、指標データは、胃癌の状態のマーカーとなる既知の指標などであり、数値データを用いてもよい。 Returning to FIG. 5, the index status information file 106b stores index status information used when creating an expression. FIG. 7 is a diagram showing an example of information stored in the index state information file 106b. As shown in FIG. 7, the information stored in the index status information file 106b includes an individual number, index data (T) related to indicators representing the status of gastric cancer (index T1, index T2, index T3, etc.), It is constructed by correlating the concentration data with each other. Here, in FIG. 7, the index data and concentration data are treated as numerical values (ie, continuous scale), but the index data and concentration data may be on a nominal scale or an ordinal scale. In addition, in the case of a nominal scale or an ordinal scale, analysis may be performed by giving arbitrary numerical values to each state. Further, the index data is a known index that serves as a marker for the state of gastric cancer, and numerical data may be used.

図5に戻り、指定指標状態情報ファイル106cは、後述する指定部102bで指定した指標状態情報を格納する。図8は、指定指標状態情報ファイル106cに格納される情報の一例を示す図である。指定指標状態情報ファイル106cに格納される情報は、図8に示すように、個体番号と、指定した指標データと、指定した濃度データと、を相互に関連付けて構成されている。 Returning to FIG. 5, the designated index status information file 106c stores index status information designated by the specification section 102b, which will be described later. FIG. 8 is a diagram showing an example of information stored in the specified index status information file 106c. As shown in FIG. 8, the information stored in the designated index state information file 106c is configured by correlating an individual number, designated index data, and designated concentration data.

図5に戻り、式関連情報データベース106dは、後述する式作成部102cで作成した式を格納する式ファイル106d1で構成される。式ファイル106d1は、評価の際に用いる式を格納する。図9は、式ファイル106d1に格納される情報の一例を示す図である。式ファイル106d1に格納される情報は、図9に示すように、ランクと、式(図9では、Fp(Homo,・・・)やFp(Homo,GABA,Asn)、Fk(Homo,GABA,Asn,・・・)など)と、各式作成手法に対応する閾値と、各式の検証結果(例えば各式の値)と、を相互に関連付けて構成されている。なお、“Homo”という文字は、Homoarginineを意味するものである。 Returning to FIG. 5, the formula related information database 106d is composed of a formula file 106d1 that stores formulas created by the formula creation unit 102c, which will be described later. The formula file 106d1 stores formulas used during evaluation. FIG. 9 is a diagram showing an example of information stored in the formula file 106d1. As shown in FIG. 9, the information stored in the formula file 106d1 includes ranks, formulas (in FIG. 9, Fp(Homo,...), Fp(Homo, GABA, Asn), Fk(Homo, GABA, Asn, . . . ), threshold values corresponding to each formula creation method, and verification results of each formula (for example, the value of each formula) are mutually associated with each other. Note that the character "Homo" means Homoarginine.

図5に戻り、評価結果ファイル106eは、後述する評価部102dで得られた評価結果を格納する。図10は、評価結果ファイル106dに格納される情報の一例を示す図である。評価結果ファイル106dに格納される情報は、評価対象である個体(サンプル)を一意に識別するための個体番号と、予め取得した個体の濃度データと、胃癌の状態に関する評価結果(例えば、後述する算出部102d1で算出した式の値、後述する変換部102d2で式の値を変換した後の値、後述する生成部102d3で生成した位置情報、又は、後述する分類部102d4で得られた分類結果、など)と、を相互に関連付けて構成されている。 Returning to FIG. 5, the evaluation result file 106e stores evaluation results obtained by the evaluation section 102d, which will be described later. FIG. 10 is a diagram showing an example of information stored in the evaluation result file 106d. The information stored in the evaluation result file 106d includes an individual number for uniquely identifying the individual (sample) to be evaluated, concentration data of the individual obtained in advance, and evaluation results regarding the state of gastric cancer (for example, The value of the formula calculated by the calculation unit 102d1, the value after converting the value of the formula by the conversion unit 102d2 (described later), the position information generated by the generation unit 102d3 (described later), or the classification result obtained by the classification unit 102d4 (described later). , etc.) and are constructed by relating them to each other.

図5に戻り、制御部102は、OS等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部102は、図示の如く、大別して、取得部102aと指定部102bと式作成部102cと評価部102dと結果出力部102eと送信部102fとを備えている。制御部102は、データベース装置400から送信された指標状態情報やクライアント装置200から送信された濃度データに対して、欠損値のあるデータの除去・外れ値の多いデータの除去・欠損値のあるデータの多い変数の除去などのデータ処理も行う。 Returning to FIG. 5, the control unit 102 has an internal memory for storing control programs such as an OS, programs specifying various processing procedures, required data, etc., and performs various information processing based on these programs. Execute. As shown in the figure, the control section 102 is broadly divided into an acquisition section 102a, a specification section 102b, an expression creation section 102c, an evaluation section 102d, a result output section 102e, and a transmission section 102f. The control unit 102 removes data with missing values, removes data with many outliers, and removes data with missing values from the index status information transmitted from the database device 400 and the concentration data transmitted from the client device 200. It also performs data processing such as removing variables with a large number of variables.

取得部102aは、情報(具体的には、濃度データや指標状態情報、式など)を取得する。例えば、取得部102aは、クライアント装置200やデータベース装置400から送信された情報(具体的には、濃度データや指標状態情報、式など)を、ネットワーク300を介して受信することで、情報の取得を行ってもよい。なお、取得部102aは、評価結果の送信先のクライアント装置200とは異なるクライアント装置200から送信された評価に用いられるデータを受信してもよい。また、例えば、記録媒体に記録されている情報の読み出しを行うための機構(ハードウェアおよびソフトウェアを含む)を評価装置100が備える場合、取得部102aは、記録媒体に記録されている情報(具体的には、濃度データや指標状態情報、式など)を当該機構を介して読み出すことで、情報の取得を行ってもよい。指定部102bは、式を作成するにあたり対象とする指標データおよび濃度データを指定する。 The acquisition unit 102a acquires information (specifically, concentration data, index state information, formulas, etc.). For example, the acquisition unit 102a acquires information by receiving information (specifically, concentration data, index status information, formulas, etc.) transmitted from the client device 200 and the database device 400 via the network 300. You may do so. Note that the acquisition unit 102a may receive data used for evaluation transmitted from a client device 200 different from the client device 200 to which the evaluation results are transmitted. Further, for example, when the evaluation device 100 includes a mechanism (including hardware and software) for reading information recorded on a recording medium, the acquisition unit 102a may read information recorded on the recording medium (specifically Specifically, the information may be acquired by reading concentration data, index state information, equations, etc.) via the mechanism. The designation unit 102b designates target index data and density data when creating an equation.

式作成部102cは、取得部102aで取得した指標状態情報や指定部102bで指定した指標状態情報に基づいて式を作成する。なお、式が予め記憶部106の所定の記憶領域に格納されている場合には、式作成部102cは、記憶部106から所望の式を選択することで、式を作成してもよい。また、式作成部102cは、式を予め格納した他のコンピュータ装置(例えばデータベース装置400)から所望の式を選択しダウンロードすることで、式を作成してもよい。 The formula creation unit 102c creates a formula based on the index status information acquired by the acquisition unit 102a and the index status information specified by the specification unit 102b. Note that if the formula is stored in advance in a predetermined storage area of the storage unit 106, the formula creation unit 102c may create the formula by selecting a desired formula from the storage unit 106. Further, the formula creation unit 102c may create a formula by selecting and downloading a desired formula from another computer device (for example, the database device 400) that stores formulas in advance.

評価部102dは、事前に得られた式(例えば、式作成部102cで作成した式、又は、取得部102aで取得した式など)、及び、取得部102aで取得した個体の濃度データに含まれる、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値を用いて、式の値を算出することで、個体について胃癌の状態を評価する。なお、評価部102dは、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値又は当該濃度値の変換後の値(例えば濃度偏差値)を用いて、個体について胃癌の状態を評価してもよい。 The evaluation unit 102d evaluates the concentration data contained in the formula obtained in advance (for example, the formula created by the formula creation unit 102c or the formula acquired by the acquisition unit 102a) and the concentration data of the individual acquired by the acquisition unit 102a. The state of gastric cancer in an individual is evaluated by calculating the value of the formula using the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids. The evaluation unit 102d uses the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids or the converted value (for example, concentration deviation value) of the concentration value to determine the risk of gastric cancer in the individual. The condition may be evaluated.

ここで、評価部102dの構成について図11を参照して説明する。図11は、評価部102dの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。評価部102dは、算出部102d1と、変換部102d2と、生成部102d3と、分類部102d4と、をさらに備えている。 Here, the configuration of the evaluation section 102d will be explained with reference to FIG. 11. FIG. 11 is a block diagram showing the configuration of the evaluation unit 102d, conceptually showing only the portions of the configuration that are related to the present invention. The evaluation section 102d further includes a calculation section 102d1, a conversion section 102d2, a generation section 102d3, and a classification section 102d4.

算出部102d1は、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値、および、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値が代入される変数を少なくとも含む式を用いて、式の値を算出する。なお、評価部102dは、算出部102d1で算出した式の値を評価結果として評価結果ファイル106eの所定の記憶領域に格納してもよい。 The calculation unit 102d1 substitutes a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids, and a concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids. The value of the expression is calculated using an expression that includes at least the variable. Note that the evaluation unit 102d may store the value of the formula calculated by the calculation unit 102d1 as the evaluation result in a predetermined storage area of the evaluation result file 106e.

変換部102d2は、算出部102d1で算出した式の値を例えば上述した変換手法などで変換する。なお、評価部102dは、変換部102d2で変換した後の値を評価結果として評価結果ファイル106eの所定の記憶領域に格納してもよい。また、変換部102d2は、濃度データに含まれている、前記32種類の代謝物および前記20種類のアミノ酸のうちの少なくとも1つの濃度値を、例えば上述した変換手法などで変換してもよい。 The conversion unit 102d2 converts the value of the formula calculated by the calculation unit 102d1, for example, using the conversion method described above. Note that the evaluation unit 102d may store the value converted by the conversion unit 102d2 in a predetermined storage area of the evaluation result file 106e as the evaluation result. Further, the conversion unit 102d2 may convert the concentration value of at least one of the 32 types of metabolites and the 20 types of amino acids included in the concentration data, for example, using the conversion method described above.

生成部102d3は、モニタ等の表示装置又は紙等の物理媒体に視認可能に示される所定の物差し上における所定の目印の位置に関する位置情報を、算出部102d1で算出した式の値又は変換部102d2で変換した後の値(濃度値又は当該濃度値の変換後の値でもよい)を用いて生成する。なお、評価部102dは、生成部102d3で生成した位置情報を評価結果として評価結果ファイル106eの所定の記憶領域に格納してもよい。 The generation unit 102d3 generates positional information regarding the position of a predetermined mark on a predetermined ruler that is visibly shown on a display device such as a monitor or a physical medium such as paper, using the value of the formula calculated by the calculation unit 102d1 or the conversion unit 102d2. It is generated using the value after conversion (which may be the density value or the value after conversion of the density value). Note that the evaluation unit 102d may store the position information generated by the generation unit 102d3 as an evaluation result in a predetermined storage area of the evaluation result file 106e.

分類部102d4は、算出部102d1で算出した式の値又は変換部102d2で変換した後の値(濃度値又は当該濃度値の変換後の値でもよい)を用いて、個体を、胃癌に罹患している可能性の程度を少なくとも考慮して定義された複数の区分のうちのどれか1つに分類する。 The classification unit 102d4 uses the value of the formula calculated by the calculation unit 102d1 or the value converted by the conversion unit 102d2 (which may be a concentration value or a value after conversion of the concentration value) to classify the individual as having gastric cancer. Classify into one of a plurality of categories, taking into account at least the degree of possibility that the

結果出力部102eは、制御部102の各処理部での処理結果(評価部102dで得られた評価結果を含む)等を出力装置114に出力する。 The result output unit 102e outputs the processing results of each processing unit of the control unit 102 (including the evaluation results obtained by the evaluation unit 102d), etc. to the output device 114.

送信部102fは、個体の濃度データの送信元のクライアント装置200に対して評価結果を送信したり、データベース装置400に対して、評価装置100で作成した式や評価結果を送信したりする。なお、送信部102fは、評価に用いられるデータの送信元のクライアント装置200とは異なるクライアント装置200に対して評価結果を送信してもよい。 The transmitting unit 102f transmits the evaluation results to the client device 200, which is the source of the concentration data of the individual, and transmits the formula created by the evaluation device 100 and the evaluation results to the database device 400. Note that the transmitter 102f may transmit the evaluation result to a client device 200 different from the client device 200 that is the source of the data used for the evaluation.

つぎに、本システムのクライアント装置200の構成について図12を参照して説明する。図12は、本システムのクライアント装置200の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。 Next, the configuration of the client device 200 of this system will be explained with reference to FIG. 12. FIG. 12 is a block diagram showing an example of the configuration of the client device 200 of this system, conceptually showing only the portions of the configuration that are related to the present invention.

クライアント装置200は、制御部210とROM220とHD(Hard Disk)230とRAM240と入力装置250と出力装置260と入出力IF270と通信IF280とで構成されており、これら各部は任意の通信路を介して通信可能に接続されている。クライアント装置200は、プリンタ・モニタ・イメージスキャナ等の周辺装置を必要に応じて接続した情報処理装置(例えば、既知のパーソナルコンピュータ・ワークステーション・家庭用ゲーム装置・インターネットTV・PHS(Personal Handyphone System)端末・携帯端末・移動体通信端末・PDA(Personal Digital Assistant)等の情報処理端末など)を基にしたものであってもよい。 The client device 200 is composed of a control section 210, a ROM 220, an HD (Hard Disk) 230, a RAM 240, an input device 250, an output device 260, an input/output IF 270, and a communication IF 280, and these sections are connected via an arbitrary communication path. are connected for communication. The client device 200 is an information processing device (for example, a known personal computer, workstation, home game device, Internet TV, PHS (Personal Handyphone System)) to which peripheral devices such as a printer, monitor, and image scanner are connected as necessary. It may be based on a terminal, a mobile terminal, a mobile communication terminal, an information processing terminal such as a PDA (Personal Digital Assistant), etc.).

入力装置250はキーボードやマウスやマイク等である。なお、後述するモニタ261もマウスと協働してポインティングデバイス機能を実現する。出力装置260は、通信IF280を介して受信した情報を出力する出力手段であり、モニタ(家庭用テレビを含む)261およびプリンタ262を含む。この他、出力装置260にスピーカ等を設けてもよい。入出力IF270は入力装置250や出力装置260に接続する。 The input device 250 is a keyboard, mouse, microphone, or the like. Note that a monitor 261, which will be described later, also cooperates with the mouse to realize a pointing device function. The output device 260 is an output means for outputting information received via the communication IF 280, and includes a monitor (including a home television) 261 and a printer 262. In addition, the output device 260 may be provided with a speaker or the like. The input/output IF 270 is connected to the input device 250 and the output device 260.

通信IF280は、クライアント装置200とネットワーク300(またはルータ等の通信装置)とを通信可能に接続する。換言すると、クライアント装置200は、モデムやTA(Terminal Adapter)やルータなどの通信装置および電話回線を介して、または専用線を介してネットワーク300に接続される。これにより、クライアント装置200は、所定の通信規約に従って評価装置100にアクセスすることができる。 Communication IF 280 communicably connects client device 200 and network 300 (or a communication device such as a router). In other words, the client device 200 is connected to the network 300 via a communication device such as a modem, a TA (Terminal Adapter), or a router, and a telephone line, or via a dedicated line. This allows the client device 200 to access the evaluation device 100 according to the predetermined communication protocol.

制御部210は、受信部211および送信部212を備えている。受信部211は、通信IF280を介して、評価装置100から送信された評価結果などの各種情報を受信する。送信部212は、通信IF280を介して、個体の濃度データなどの各種情報を評価装置100へ送信する。 The control section 210 includes a receiving section 211 and a transmitting section 212. The receiving unit 211 receives various information such as evaluation results transmitted from the evaluation device 100 via the communication IF 280. The transmitter 212 transmits various information such as individual concentration data to the evaluation device 100 via the communication IF 280.

制御部210は、当該制御部で行う処理の全部または任意の一部を、CPUおよび当該CPUにて解釈して実行するプログラムで実現してもよい。ROM220またはHD230には、OSと協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。当該コンピュータプログラムは、RAM240にロードされることで実行され、CPUと協働して制御部210を構成する。また、当該コンピュータプログラムは、クライアント装置200と任意のネットワークを介して接続されるアプリケーションプログラムサーバに記録されてもよく、クライアント装置200は、必要に応じてその全部または一部をダウンロードしてもよい。また、制御部210で行う処理の全部または任意の一部を、ワイヤードロジック等によるハードウェアで実現してもよい。 The control unit 210 may implement all or any part of the processing performed by the control unit using a CPU and a program that is interpreted and executed by the CPU. A computer program is recorded in the ROM 220 or the HD 230 to cooperate with the OS and give instructions to the CPU to perform various processes. The computer program is executed by being loaded into the RAM 240, and constitutes the control unit 210 in cooperation with the CPU. Further, the computer program may be recorded on an application program server connected to the client device 200 via an arbitrary network, and the client device 200 may download all or part of it as necessary. . Further, all or any part of the processing performed by the control unit 210 may be realized by hardware such as wired logic.

ここで、制御部210は、評価装置100に備えられている評価部102dが有する機能と同様の機能を有する評価部210a(算出部210a1、変換部210a2、生成部210a3、及び分類部210a4を含む)を備えていてもよい。そして、制御部210に評価部210aが備えられている場合には、評価部210aは、評価装置100から送信された評価結果に含まれている情報に応じて、変換部210a2で式の値(濃度値でもよい)を変換したり、生成部210a3で式の値又は変換後の値(濃度値又は当該濃度値の変換後の値でもよい)に対応する位置情報を生成したり、分類部210a4で式の値又は変換後の値(濃度値又は当該濃度値の変換後の値でもよい)を用いて個体を複数の区分のうちのどれか1つに分類したりしてもよい。 Here, the control unit 210 includes an evaluation unit 210a (including a calculation unit 210a1, a conversion unit 210a2, a generation unit 210a3, and a classification unit 210a4) having the same functions as the evaluation unit 102d included in the evaluation device 100. ). When the control unit 210 is equipped with the evaluation unit 210a, the evaluation unit 210a uses the conversion unit 210a2 to convert the value of the expression ( The generation unit 210a3 generates position information corresponding to the expression value or the converted value (which may be the density value or the converted value of the density value), and the classification unit 210a4 An individual may be classified into one of a plurality of categories using the value of the formula or the converted value (which may be the concentration value or the converted value of the concentration value).

つぎに、本システムのネットワーク300について図3、図4を参照して説明する。ネットワーク300は、評価装置100とクライアント装置200とデータベース装置400とを相互に通信可能に接続する機能を有し、例えばインターネットやイントラネットやLAN(Local Area Network)(有線/無線の双方を含む)等である。なお、ネットワーク300は、VAN(Value-Added Network)や、パソコン通信網や、公衆電話網(アナログ/デジタルの双方を含む)や、専用回線網(アナログ/デジタルの双方を含む)や、CATV(Community Antenna TeleVision)網や、携帯回線交換網または携帯パケット交換網(IMT(International Mobile Telecommunication)2000方式、GSM(登録商標)(Global System for Mobile Communications)方式またはPDC(Personal Digital Cellular)/PDC-P方式等を含む)や、無線呼出網や、Bluetooth(登録商標)等の局所無線網や、PHS網や、衛星通信網(CS(Communication Satellite)、BS(Broadcasting Satellite)またはISDB(Integrated Services Digital Broadcasting)等を含む)等でもよい。 Next, the network 300 of this system will be explained with reference to FIGS. 3 and 4. The network 300 has a function of connecting the evaluation device 100, the client device 200, and the database device 400 so that they can communicate with each other, such as the Internet, an intranet, a LAN (Local Area Network) (including both wired and wireless networks), etc. It is. Note that the network 300 includes a VAN (Value-Added Network), a personal computer communication network, a public telephone network (including both analog and digital), a dedicated line network (including both analog and digital), and CATV ( Community Antenna Telecommunication) network, mobile line switching network or mobile packet switching network (IMT (International Mobile Telecommunication) 2000 system, GSM (registered trademark) (Global System for Mobile) e-Communications method or PDC (Personal Digital Cellular)/PDC-P wireless paging networks, local wireless networks such as Bluetooth (registered trademark), PHS networks, satellite communication networks (CS (Communication Satellite), BS (Broadcasting Satellite)) or ISDB (Integrated Services). Digital Broadcasting ) etc. may be used.

つぎに、本システムのデータベース装置400の構成について図13を参照して説明する。図13は、本システムのデータベース装置400の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。 Next, the configuration of the database device 400 of this system will be explained with reference to FIG. 13. FIG. 13 is a block diagram showing an example of the configuration of the database device 400 of this system, conceptually showing only the portions of the configuration that are related to the present invention.

データベース装置400は、評価装置100または当該データベース装置で式を作成する際に用いる指標状態情報や、評価装置100で作成した式、評価装置100での評価結果などを格納する機能を有する。図13に示すように、データベース装置400は、当該データベース装置を統括的に制御するCPU等の制御部402と、ルータ等の通信装置および専用線等の有線または無線の通信回路を介して当該データベース装置をネットワーク300に通信可能に接続する通信インターフェース部404と、各種のデータベースやテーブルやファイル(例えばWebページ用ファイル)などを格納する記憶部406と、入力装置412や出力装置414に接続する入出力インターフェース部408と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。 The database device 400 has a function of storing index state information used when creating a formula in the evaluation device 100 or the database device, formulas created in the evaluation device 100, evaluation results in the evaluation device 100, and the like. As shown in FIG. 13, the database device 400 connects the database device 400 to a control unit 402 such as a CPU that centrally controls the database device, and a communication device such as a router and a wired or wireless communication circuit such as a dedicated line. A communication interface section 404 that communicatively connects the device to the network 300, a storage section 406 that stores various databases, tables, files (for example, Web page files), and an input device that connects to an input device 412 and an output device 414. and an output interface section 408, and these sections are communicably connected via any communication path.

記憶部406は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用いることができる。記憶部406には、各種処理に用いる各種プログラム等を格納する。通信インターフェース部404は、データベース装置400とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部404は、他の端末と通信回線を介してデータを通信する機能を有する。入出力インターフェース部408は、入力装置412や出力装置414に接続する。ここで、出力装置414には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる。また、入力装置412には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。 The storage unit 406 is a storage means, and can use, for example, a memory device such as a RAM/ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like. The storage unit 406 stores various programs used for various processes. The communication interface unit 404 mediates communication between the database device 400 and the network 300 (or a communication device such as a router). That is, the communication interface unit 404 has a function of communicating data with other terminals via a communication line. The input/output interface section 408 is connected to an input device 412 and an output device 414. Here, as the output device 414, in addition to a monitor (including a home television), a speaker or a printer can be used. Further, as the input device 412, in addition to a keyboard, a mouse, and a microphone, a monitor that cooperates with the mouse to realize a pointing device function can be used.

制御部402は、OS等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部402は、図示の如く、大別して、送信部402aと受信部402bを備えている。送信部402aは、指標状態情報や式などの各種情報を、評価装置100へ送信する。受信部402bは、評価装置100から送信された、式や評価結果などの各種情報を受信する。 The control unit 402 has an internal memory for storing control programs such as an OS, programs defining various processing procedures, required data, and the like, and executes various information processing based on these programs. As shown in the figure, the control section 402 is broadly divided into a transmitting section 402a and a receiving section 402b. The transmitter 402a transmits various information such as index state information and formulas to the evaluation device 100. The receiving unit 402b receives various information such as formulas and evaluation results transmitted from the evaluation device 100.

なお、本説明では、評価装置100が、濃度データの取得から、式の値の算出、個体の区分への分類、そして評価結果の送信までを実行し、クライアント装置200が評価結果の受信を実行するケースを例として挙げたが、クライアント装置200に評価部210aが備えられている場合は、評価装置100は式の値の算出を実行すれば十分であり、例えば式の値の変換、位置情報の生成、及び、個体の区分への分類などは、評価装置100とクライアント装置200とで適宜分担して実行してもよい。
例えば、クライアント装置200は、評価装置100から式の値を受信した場合には、評価部210aは、変換部210a2で式の値を変換したり、生成部210a3で式の値又は変換後の値に対応する位置情報を生成したり、分類部210a4で式の値又は変換後の値を用いて個体を複数の区分のうちのどれか1つに分類したりしてもよい。
また、クライアント装置200は、評価装置100から変換後の値を受信した場合には、評価部210aは、生成部210a3で変換後の値に対応する位置情報を生成したり、分類部210a4で変換後の値を用いて個体を複数の区分のうちのどれか1つに分類したりしてもよい。
また、クライアント装置200は、評価装置100から式の値又は変換後の値と位置情報とを受信した場合には、評価部210aは、分類部210a4で式の値又は変換後の値を用いて個体を複数の区分のうちのどれか1つに分類してもよい。
In this description, the evaluation device 100 executes the steps from acquiring concentration data, calculating the value of the formula, classifying individuals into categories, and transmitting the evaluation results, and the client device 200 receives the evaluation results. However, if the client device 200 is equipped with the evaluation unit 210a, it is sufficient for the evaluation device 100 to calculate the value of the expression, for example, convert the value of the expression, calculate the position information, etc. The evaluation device 100 and the client device 200 may share and execute the generation of the data, the classification of individuals into categories, etc. as appropriate.
For example, when the client device 200 receives the value of the expression from the evaluation device 100, the evaluation section 210a converts the value of the expression using the conversion section 210a2, or converts the value of the expression or the value after conversion using the generation section 210a3. The classification unit 210a4 may classify the individual into one of a plurality of categories using the value of the formula or the value after conversion.
Further, when the client device 200 receives the converted value from the evaluation device 100, the evaluation section 210a generates position information corresponding to the converted value using the generation section 210a3, and generates the position information corresponding to the converted value using the classification section 210a4. The latter value may be used to classify the individual into one of a plurality of categories.
Further, when the client device 200 receives the expression value or the converted value and the position information from the evaluation device 100, the evaluation section 210a uses the expression value or the converted value in the classification section 210a4. Individuals may be classified into any one of a plurality of categories.

[2-3.他の実施形態]
本発明にかかる評価装置、算出装置、評価方法、算出方法、評価プログラム、算出プログラム、記録媒体、評価システムおよび端末装置は、上述した第2実施形態以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施形態にて実施されてよいものである。
[2-3. Other embodiments]
In addition to the second embodiment described above, the evaluation device, calculation device, evaluation method, calculation method, evaluation program, calculation program, recording medium, evaluation system, and terminal device according to the present invention include the technology described in the claims. The invention may be implemented in various different embodiments within the scope of the invention.

また、第2実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。 Further, among the processes described in the second embodiment, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually All or part of this can also be performed automatically using known methods.

このほか、上記文献中や図面中で示した処理手順、制御手順、具体的名称、各処理の登録データや検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。 In addition, information including processing procedures, control procedures, specific names, parameters such as registered data and search conditions for each process, screen examples, and database configurations shown in the above documents and drawings are excluded unless otherwise specified. It can be changed arbitrarily.

また、評価装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。 Further, regarding the evaluation device 100, each illustrated component is functionally conceptual, and does not necessarily need to be physically configured as illustrated.

例えば、評価装置100が備える処理機能、特に制御部102にて行われる各処理機能については、その全部または任意の一部を、CPUおよび当該CPUにて解釈実行されるプログラムにて実現してもよく、また、ワイヤードロジックによるハードウェアとして実現してもよい。尚、プログラムは、情報処理装置に本発明にかかる評価方法または算出方法を実行させるためのプログラム化された命令を含む一時的でないコンピュータ読み取り可能な記録媒体に記録されており、必要に応じて評価装置100に機械的に読み取られる。すなわち、ROMまたはHDD(Hard Disk Drive)などの記憶部106などには、OSと協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して制御部を構成する。 For example, the processing functions provided in the evaluation device 100, especially each processing function performed by the control unit 102, may be realized in whole or in part by a CPU and a program interpreted and executed by the CPU. Alternatively, it may be implemented as hardware using wired logic. Note that the program is recorded on a non-temporary computer-readable recording medium containing programmed instructions for causing an information processing device to execute the evaluation method or calculation method according to the present invention, and the program can be evaluated as needed. Mechanically read by device 100. That is, in a storage unit 106 such as a ROM or an HDD (Hard Disk Drive), a computer program is recorded that cooperates with the OS to give instructions to the CPU and perform various processes. This computer program is executed by being loaded into the RAM, and constitutes a control unit in cooperation with the CPU.

また、このコンピュータプログラムは評価装置100に対して任意のネットワークを介して接続されたアプリケーションプログラムサーバに記憶されていてもよく、必要に応じてその全部または一部をダウンロードすることも可能である。 Further, this computer program may be stored in an application program server connected to the evaluation device 100 via an arbitrary network, and it is also possible to download all or part of it as necessary.

また、本発明にかかる評価プログラムまたは算出プログラムを、一時的でないコンピュータ読み取り可能な記録媒体に格納してもよく、また、プログラム製品として構成することもできる。ここで、この「記録媒体」とは、メモリーカード、USB(Universal Serial Bus)メモリ、SD(Secure Digital)カード、フレキシブルディスク、光磁気ディスク、ROM、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)(登録商標)、CD-ROM(Compact Disc Read Only Memory)、MO(Magneto-Optical disk)、DVD(Digital Versatile Disk)、および、Blu-ray(登録商標) Disc等の任意の「可搬用の物理媒体」を含むものとする。 Furthermore, the evaluation program or calculation program according to the present invention may be stored in a non-temporary computer-readable recording medium, or may be configured as a program product. Here, this "recording medium" includes a memory card, a USB (Universal Serial Bus) memory, an SD (Secure Digital) card, a flexible disk, a magneto-optical disk, a ROM, an EPROM (Erasable Programmable Read Only Memory), and an EEPR. OM (Electrically Erasable and Programmable Read Only Memory) (registered trademark), CD-ROM (Compact Disc Read Only Memory), MO (Magneto-Optical disk), DVD (Digital Versatile Disc), Blu-ray (registered trademark) Disc, etc. shall include any “portable physical medium”.

また、「プログラム」とは、任意の言語または記述方法にて記述されたデータ処理方法であり、ソースコードまたはバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OSに代表される別個のプログラムと協働してその機能を達成するものをも含む。なお、実施形態に示した各装置において記録媒体を読み取るための具体的な構成および読み取り手順ならびに読み取り後のインストール手順等については、周知の構成や手順を用いることができる。 Further, a "program" is a data processing method written in any language or writing method, and does not matter in the form of source code or binary code. Note that a "program" is not necessarily limited to a unitary structure, but may be distributed as multiple modules or libraries, or may work together with separate programs such as an OS to achieve its functions. Including things. Note that well-known configurations and procedures can be used for the specific configuration and reading procedure for reading the recording medium in each device shown in the embodiments, and the installation procedure after reading.

記憶部106に格納される各種のデータベース等は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、および、光ディスク等のストレージ手段であり、各種処理やウェブサイト提供に用いる各種のプログラム、テーブル、データベース、および、ウェブページ用ファイル等を格納する。 Various databases and the like stored in the storage unit 106 are storage means such as memory devices such as RAM and ROM, fixed disk devices such as hard disks, flexible disks, and optical disks, and various databases used for various processing and website provision. Stores programs, tables, databases, web page files, etc.

また、評価装置100は、既知のパーソナルコンピュータまたはワークステーション等の情報処理装置として構成してもよく、また、任意の周辺装置が接続された当該情報処理装置として構成してもよい。また、評価装置100は、当該情報処理装置に本発明の評価方法または算出方法を実現させるソフトウェア(プログラムまたはデータ等を含む)を実装することにより実現してもよい。 Furthermore, the evaluation device 100 may be configured as an information processing device such as a known personal computer or workstation, or may be configured as the information processing device to which any peripheral device is connected. Furthermore, the evaluation device 100 may be implemented by installing software (including programs, data, etc.) that allows the information processing device to implement the evaluation method or calculation method of the present invention.

更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じてまたは機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。すなわち、上述した実施形態を任意に組み合わせて実施してもよく、実施形態を選択的に実施してもよい。 Furthermore, the specific form of dispersion and integration of devices is not limited to what is shown in the diagram, and all or part of them can be functionally or physically divided into arbitrary units according to various additions or functional loads. It can be configured in a distributed/integrated manner. That is, the embodiments described above may be implemented in any combination, or the embodiments may be implemented selectively.

胃癌の確定診断が行われた胃癌患者(胃癌群:36名)、及び、性別、年齢及びBMIを胃癌群とマッチングさせた、癌の既往歴及び罹患歴がない健常者(健常群:36名)の血漿サンプルから、前述の代謝物分析法(A)により血中代謝物濃度を測定した。 Gastric cancer patients with a confirmed diagnosis of gastric cancer (gastric cancer group: 36 patients) and healthy individuals with no history of cancer or disease who were matched with the gastric cancer group on gender, age, and BMI (healthy group: 36 patients) The blood metabolite concentration was measured from the plasma sample of the patient) by the above-mentioned metabolite analysis method (A).

32種類の代謝物(1-Me-His,3-Hydroxykynurenine,3-Me-His,5-HydroxyTrp,aABA,aAiBA,ADMA,Aminoadipic acid,bABA,bAiBA,Cadaverine,GABA,Homoarginine,Homocitrulline,Hypotaurine,Hydroxyproline,Kinurenine,L-Cystathionine,N8-Acetylspermidine,Pipecolic acid,Putrescine,SAH,Sarcosine,Serotonin,Spermidine,Spermine,Methylcysteine,Allylcysteine,Propylcysteine,SDMA,N6-Acetyl-L-Lys,N-Me-bABA)の血漿中濃度値(nmol/ml)もしくはピーク面積値のデータを用いて、各代謝物について胃癌群と健常群の判別能をROC_AUCで評価した。表1に各代謝物の判別能を評価する際の指標となるROC_AUCを示す。 32 types of metabolites (1-Me-His, 3-Hydroxykynurenine, 3-Me-His, 5-HydroxyTrp, aABA, aAiBA, ADMA, Aminoadipic acid, bABA, bAiBA, Cadaverine, GABA, Homoa rginine, Homocitrulline, Hypotaurine, Hydroxyproline , Kinurenine, L-Cystathionine, N8-Acetylspermidine, Pipecolic acid, Putrescine, SAH, Sarcosine, Serotonin, Spermidine, Spermine, Methy plasma of lcysteine, Allylcysteine, Propylcysteine, SDMA, N6-Acetyl-L-Lys, N-Me-bABA) Using data on intermediate concentration values (nmol/ml) or peak area values, the ability to discriminate between the gastric cancer group and the healthy group for each metabolite was evaluated using ROC_AUC. Table 1 shows ROC_AUC, which is an index for evaluating the discrimination ability of each metabolite.

Figure 0007435856000001
Figure 0007435856000001

ノンパラメトリックの仮定のもとで帰無仮説を「ROC_AUC=0.5」とした場合の検定でROC_AUCが有意(p<0.05)であった代謝物は、3-Hydroxykynurenine,ADMA,bABA,Kynurenine,L-Cystathionine,N8-Acetylspermidine,Pipecolic acid,Serotonin,Spermine,SDMA,N-Me-bABAであった。3-Hydroxykynurenine,Pipecolic acid,Serotonin,Spermineは胃癌群で有意に減少し、ADMA,bABA,Kynurenine,L-Cystathionine,N8-Acetylspermidine,SDMA,N-Me-bABAは胃癌群で有意に増加した。これらの代謝物の濃度値は、ROC_AUCが有意であることから、健常の状態を考慮した、胃癌の状態の評価において有用なものであると考えられる。 The metabolites whose ROC_AUC was significant (p<0.05) in the test when the null hypothesis was "ROC_AUC=0.5" under the non-parametric assumption were 3-Hydroxykynurenine, ADMA, bABA, They were Kynurenine, L-Cystathionine, N8-Acetylspermidine, Pipecolic acid, Serotonin, Spermine, SDMA, and N-Me-bABA. 3-Hydroxykynurenine, Pipecolic acid, Serotonin, Spermine significantly decreased in the gastric cancer group, ADMA, bABA, Kynurenine, L-Cystathionine, N8-Acetylspermidine, SDM A,N-Me-bABA was significantly increased in the gastric cancer group. Since ROC_AUC is significant, the concentration values of these metabolites are considered to be useful in evaluating the state of gastric cancer in consideration of the healthy state.

実施例1で得られたサンプルデータを用いた。血漿中の代謝物濃度値もしくはピーク面積値が代入される変数を含む、胃癌群と健常群との2群を判別するための多変量判別式(多変量関数)を求めた。 The sample data obtained in Example 1 was used. A multivariate discriminant (multivariate function) for distinguishing between the two groups, the gastric cancer group and the healthy group, including variables into which plasma metabolite concentration values or peak area values are substituted, was determined.

多変量判別式としてロジスティック回帰式を用いた。ロジスティック回帰式に含める2個の変数の組み合わせを、上記32種類の代謝物のうち少なくとも1つを必須としたうえで、20種類のアミノ酸(Glu,Asn,His,Thr,Ala,Cit,Arg,Tyr,Val,Met,Lys,Trp,Gly,Pro,Orn,Ile,Leu,Phe,Ser,Gln)および上記32種類の代謝物から探索し、胃癌群と健常群の判別能が良好なロジスティック回帰式の探索を実施した。 A logistic regression equation was used as a multivariate discriminant. The combination of the two variables included in the logistic regression equation is such that at least one of the above 32 types of metabolites is essential, and 20 types of amino acids (Glu, Asn, His, Thr, Ala, Cit, Arg, Tyr, Val, Met, Lys, Trp, Gly, Pro, Orn, Ile, Leu, Phe, Ser, Gln) and the above 32 metabolites, and the logistic regression has good discrimination ability between gastric cancer group and healthy group We conducted a search for Eq.

胃癌群と健常群のROC_AUC値が0.700以上で、変数の個数が2個のロジスティック回帰式の一覧を、以下の[11.2変数の式]に示した。これらのロジスティック回帰式は、ROC_AUC値が高いことから、前記の評価において有用なものであると考えられる。なお、以下の[11.2変数の式]には、各式に関して、式に含まれる変数とROC_AUC値が示されている(以下同様)。 A list of logistic regression equations in which the ROC_AUC values for the gastric cancer group and the healthy group are 0.700 or more and the number of variables is 2 is shown in [11.2 Variable equation] below. Since these logistic regression equations have high ROC_AUC values, they are considered to be useful in the above evaluation. Note that in [11.2 Variable Formula] below, the variables included in the formula and the ROC_AUC value are shown for each formula (the same applies below).

実施例1で用いたサンプルデータを用いた。血漿中の代謝物濃度値もしくはピーク面積値が代入される変数を含む、胃癌群と健常群との2群を判別するための多変量判別式(多変量関数)を求めた。 The sample data used in Example 1 was used. A multivariate discriminant (multivariate function) for distinguishing between the two groups, the gastric cancer group and the healthy group, including variables into which plasma metabolite concentration values or peak area values are substituted, was determined.

多変量判別式としてロジスティック回帰式を用いた。Ala,Val,Leu,His,Trp,Lysの6個のアミノ酸を変数とする、胃癌群と健常群のROC_AUC値が0.7369であるロジスティック回帰式に追加する1個の変数または2個の変数の組み合わせを、上記32種類の代謝物から探索し、胃癌群と健常群の判別能が良好なロジスティック回帰式の探索を実施した。 A logistic regression equation was used as a multivariate discriminant. One variable or two variables to be added to the logistic regression equation in which the ROC_AUC value of the gastric cancer group and healthy group is 0.7369, which uses the six amino acids Ala, Val, Leu, His, Trp, and Lys as variables. We searched for combinations of the above 32 types of metabolites, and searched for a logistic regression formula that would have a good ability to discriminate between the gastric cancer group and the healthy group.

追加される変数が1個の場合の探索において、胃癌群と健常群のROC_AUC値が前記0.7369以上となるロジスティック回帰式に追加された代謝物を、以下の[12.1変数追加]に示した。また、追加される変数が2個の場合の探索において、胃癌群と健常群のROC_AUC値が前記0.7369以上となるロジスティック回帰式に追加された代謝物を、[13.2変数追加]に示した。これらのロジスティック回帰式は、ROC_AUC値が高いことから、前記の評価において有用なものであると考えられる。 In the search when only one variable is added, the metabolites added to the logistic regression equation for which the ROC_AUC values of the gastric cancer group and the healthy group are 0.7369 or more are added to [12.1 Variable addition] below. Indicated. In addition, in the search when two variables are added, the metabolites added to the logistic regression equation for which the ROC_AUC values of the gastric cancer group and the healthy group are 0.7369 or more are added to [13.2 variables added]. Indicated. Since these logistic regression equations have high ROC_AUC values, they are considered to be useful in the above evaluation.

以上のように、本発明は、産業上の多くの分野、特に医薬品や食品、医療などの分野で広く実施することができ、特に、胃癌の状態の進行予測や疾病リスク予測やプロテオームやメタボローム解析などを行うバイオインフォマティクス分野において極めて有用である。 As described above, the present invention can be widely implemented in many industrial fields, particularly in the pharmaceutical, food, and medical fields, and is particularly applicable to prediction of progression of gastric cancer, disease risk prediction, and proteome and metabolome analysis. It is extremely useful in the bioinformatics field, which conducts such things as

100 評価装置(算出装置を含む)
102 制御部
102a 取得部
102b 指定部
102c 式作成部
102d 評価部
102d1 算出部
102d2 変換部
102d3 生成部
102d4 分類部
102e 結果出力部
102f 送信部
104 通信インターフェース部
106 記憶部
106a 濃度データファイル
106b 指標状態情報ファイル
106c 指定指標状態情報ファイル
106d 式関連情報データベース
106d1 式ファイル
106e 評価結果ファイル
108 入出力インターフェース部
112 入力装置
114 出力装置
200 クライアント装置(端末装置(情報通信端末装置))
300 ネットワーク
400 データベース装置
100 Evaluation device (including calculation device)
102 Control unit 102a Acquisition unit 102b Designation unit 102c Formula creation unit 102d Evaluation unit 102d1 Calculation unit 102d2 Conversion unit 102d3 Generation unit 102d4 Classification unit 102e Result output unit 102f Transmission unit 104 Communication interface unit 106 Storage unit 106a Concentration data file 106b Index Status information File 106c Specified index status information file 106d Formula related information database 106d1 Formula file 106e Evaluation result file 108 Input/output interface unit 112 Input device 114 Output device 200 Client device (terminal device (information and communication terminal device))
300 Network 400 Database device

[11.2変数の式]
1-Me-His,N-Me-bABA,1.0000;Kynurenine,N-Me-bABA,1.0000;His,N-Me-bABA,0.9992;Val,N-Me-bABA,0.9992;Leu,N-Me-bABA,0.9992;Aminoadipic acid,N-Me-bABA,0.9992;Homoarginine,N-Me-bABA,0.9992;Homocitrulline,N-Me-bABA,0.9992;Ile,N-Me-bABA,0.9985;Cadaverine,N-Me-bABA,0.9985;GABA,N-Me-bABA,0.9985;Hypotaurine,N-Me-bABA,0.9985;SDMA,N-Me-bABA,0.9985;N6-Acetyl-L-Lys,N-Me-bABA,0.9985;Glu,N-Me-bABA,0.9977;Asn,N-Me-bABA,0.9977;Tyr,N-Me-bABA,0.9977;Lys,N-Me-bABA,0.9977;3-Me-His,N-Me-bABA,0.9977;5-HydroxyTrp,N-Me-bABA,0.9977;bAiBA,N-Me-bABA,0.9977;N8-Acetylspermidine,N-Me-bABA,0.9977;Putrescine,N-Me-bABA,0.9977;Sarcosine,N-Me-bABA,0.9977;Methylcystein,N-Me-bABA,0.9977;Allylcysteine,N-Me-bABA,0.9977;Propylcysteine,N-Me-bABA,0.9977;Gly,N-Me-bABA,0.9969;Gln,N-Me-bABA,0.9969;Thr,N-Me-bABA,0.9969;Ala,N-Me-bABA,0.9969;Cit,N-Me-bABA,0.9969;Arg,N-Me-bABA,0.9969;Pro,N-Me-bABA,0.9969;Met,N-Me-bABA,0.9969;Phe,N-Me-bABA,0.9969;3-Hydroxykynurenine,N-Me-bABA,0.9969;aABA,N-Me-bABA,0.9969;aAiBA,N-Me-bABA,0.9969;bABA,N-Me-bABA,0.9969;Hydroxyproline,N-Me-bABA,0.9969;L-Cystathionine,N-Me-bABA,0.9969;Pipecolic acid,N-Me-bABA,0.9969;SAH,N-Me-bABA,0.9969;Serotonin,N-Me-bABA,0.9969;Spermidine,N-Me-bABA,0.9969;Spermine,N-Me-bABA,0.9969;Trp,N-Me-bABA,0.9961;ADMA,N-Me-bABA,0.9961;Ser,N-Me-bABA,0.9954;Orn,N-Me-bABA,0.9954;3-Hydroxykynurenine,bABA,0.9244;bABA,L-Cystathionine,0.9174;His,bABA,0.9136;Glu,bABA,0.9059;bABA,SDMA,0.9051;bABA,Pipecolic acid,0.9043;bABA,Serotonin,0.9035;Glu,L-Cystathionine,0.9005;bABA,Spermine,0.8981;Pro,bABA,0.8935;Lys,bABA,0.8935;bABA,N6-Acetyl-L-Lys,0.8912;aABA,bABA,0.8904;5-HydroxyTrp,bABA,0.8897;bABA,Homocitrulline,0.8897;bABA,Methylcystein,0.8897;bABA,Allylcysteine,0.8889;1-Me-His,bABA,0.8881;3-Me-His,bABA,0.8858;Met,bABA,0.8850;ADMA,bABA,0.8850;Aminoadipic acid,bABA,0.8850;bABA,Spermidine,0.8843;His,Serotonin,0.8835;bABA,Kynurenine,0.8835;bABA,SAH,0.8835;Thr,bABA,0.8827;bABA,Hypotaurine,0.8827;bABA,Propylcysteine,0.8827;Trp,bABA,0.8819;bABA,N8-Acetylspermidine,0.8819;Gly,bABA,0.8812;Orn,bABA,0.8804;Ala,bABA,0.8796;Tyr,bABA,0.8789;Phe,bABA,0.8789;bABA,bAiBA,0.8789;Ser,bABA,0.8781;Ile,bABA,0.8781;bABA,GABA,0.8781;bABA,Homoarginine,0.8781;Cit,bABA,0.8773;bABA,Hydroxyproline,0.8773;bABA,Putrescine,0.8773;bABA,Sarcosine,0.8773;Asn,bABA,0.8765;Leu,bABA,0.8765;Gln,bABA,0.8758;Arg,bABA,0.8758;Val,bABA,0.8742;aAiBA,bABA,0.8742;bABA,Cadaverine,0.8742;Trp,Serotonin,0.8665;Glu,3-Hydroxykynurenine,0.8619;L-Cystathionine,Serotonin,0.8619;aAiBA,Serotonin,0.8603;Glu,Serotonin,0.8596;Kynurenine,Serotonin,0.8596;Ala,Serotonin,0.8580;ADMA,Serotonin,0.8565;Serotonin,Allylcysteine,0.8565;Thr,Serotonin,0.8557;3-Hydroxykynurenine,Serotonin,0.8557;Ser,Serotonin,0.8549;Serotonin,Spermine,0.8549;Serotonin,Methylcystein,0.8549;Pro,Serotonin,0.8534;Cadaverine,Serotonin,0.8526;Hypotaurine,Serotonin,0.8526;N8-Acetylspermidine,Serotonin,0.8526;Cit,Serotonin,0.8519;Gly,Serotonin,0.8511;Arg,Serotonin,0.8511;5-HydroxyTrp,Serotonin,0.8511;1-Me-His,Serotonin,0.8503;Serotonin,Spermidine,0.8503;Putrescine,Serotonin,0.8495;SAH,Serotonin,0.8495;Ile,Serotonin,0.8488;Aminoadipic acid,Serotonin,0.8480;Homoarginine,Serotonin,0.8480;Phe,Serotonin,0.8472;GABA,Serotonin,0.8472;Serotonin,N6-Acetyl-L-Lys,0.8472;Gln,Serotonin,0.8465;Val,Serotonin,0.8465;Orn,Serotonin,0.8465;Leu,Serotonin,0.8465;Pipecolic acid,Serotonin,0.8457;Serotonin,SDMA,0.8449;aABA,Serotonin,0.8441;His,L-Cystathionine,0.8434;Met,Serotonin,0.8434;Sarcosine,Serotonin,0.8426;Tyr,Serotonin,0.8403;Asn,Serotonin,0.8395;Serotonin,Propylcysteine,0.8387;Glu,SDMA,0.8364;Homocitrulline,Serotonin,0.8364;Lys,Serotonin,0.8349;bAiBA,Serotonin,0.8349;Hydroxyproline,Serotonin,0.8341;His,3-Hydroxykynurenine,0.8333;3-Hydroxykynurenine,SAH,0.8326;Glu,ADMA,0.8310;His,SDMA,0.8302;L-Cystathionine,SAH,0.8302;Trp,L-Cystathionine,0.8295;L-Cystathionine,Spermine,0.8287;Trp,3-Hydroxykynurenine,0.8248;3-Me-His,Serotonin,0.8241;3-Hydroxykynurenine,5-HydroxyTrp,0.8171;Glu,Aminoadipic acid,0.8148;L-Cystathionine,SDMA,0.8148;Glu,Kynurenine,0.8140;1-Me-His,L-Cystathionine,0.8125;3-Hydroxykynurenine,Methylcystein,0.8117;Gly,L-Cystathionine,0.8110;5-HydroxyTrp,L-Cystathionine,0.8102;SAH,SDMA,0.8094;Pro,3-Hydroxykynurenine,0.8071;Hypotaurine,L-Cystathionine,0.8056;3-Hydroxykynurenine,Pipecolic acid,0.8025;L-Cystathionine,Methylcystein,0.8025;3-Hydroxykynurenine,Propylcysteine,0.8002;3-Hydroxykynurenine,L-Cystathionine,0.7978;Tyr,L-Cystathionine,0.7971;3-Hydroxykynurenine,Spermine,0.7971;L-Cystathionine,Allylcysteine,0.7971;3-Hydroxykynurenine,Allylcysteine,0.7963;Ser,3-Hydroxykynurenine,0.7955;Gly,3-Hydroxykynurenine,0.7948;Glu,Pipecolic acid,0.7940;Val,L-Cystathionine,0.7940;1-Me-His,3-Hydroxykynurenine,0.7940;L-Cystathionine,Pipecolic acid,0.7940;Glu,N8-Acetylspermidine,0.7924;Leu,L-Cystathionine,0.7924;Lys,L-Cystathionine,0.7917;bAiBA,L-Cystathionine,0.7917;L-Cystathionine,Propylcysteine,0.7917;Pro,L-Cystathionine,0.7909;Ala,L-Cystathionine,0.7901;L-Cystathionine,Spermidine,0.7901;Glu,3-Me-His,0.7894;Glu,Spermine,0.7886;Glu,Homocitrulline,0.7878;Asn,L-Cystathionine,0.7878;3-Hydroxykynurenine,Hydroxyproline,0.7878;Thr,L-Cystathionine,0.7870;Cit,3-Hydroxykynurenine,0.7870;Tyr,3-Hydroxykynurenine,0.7870;ADMA,L-Cystathionine,0.7870;Glu,1-Me-His,0.7863;Met,L-Cystathionine,0.7863;L-Cystathionine,N8-Acetylspermidine,0.7863;Ser,L-Cystathionine,0.7855;3-Hydroxykynurenine,Sarcosine,0.7847;3-Me-His,L-Cystathionine,0.7847;Glu,N6-Acetyl-L-Lys,0.7840;Arg,L-Cystathionine,0.7840;3-Hydroxykynurenine,N8-Acetylspermidine,0.7840;aABA,L-Cystathionine,0.7840;L-Cystathionine,N6-Acetyl-L-Lys,0.7840;Glu,Spermidine,0.7832;3-Hydroxykynurenine,Aminoadipic acid,0.7832;3-Hydroxykynurenine,bAiBA,0.7832;Hydroxyproline,L-Cystathionine,0.7832;Ile,3-Hydroxykynurenine,0.7824;3-Hydroxykynurenine,Homoarginine,0.7824;aAiBA,L-Cystathionine,0.7824;Thr,3-Hydroxykynurenine,0.7816;Ile,L-Cystathionine,0.7816;3-Hydroxykynurenine,Homocitrulline,0.7816;Homocitrulline,L-Cystathionine,0.7816;3-Hydroxykynurenine,Cadaverine,0.7809;3-Hydroxykynurenine,Spermidine,0.7809;Aminoadipic acid,L-Cystathionine,0.7809;Kynurenine,L-Cystathionine,0.7809;Phe,L-Cystathionine,0.7801;L-Cystathionine,Putrescine,0.7801;Ala,3-Hydroxykynurenine,0.7793;Lys,3-Hydroxykynurenine,0.7793;Trp,SDMA,0.7793;Gln,L-Cystathionine,0.7785;Orn,3-Hydroxykynurenine,0.7785;Orn,L-Cystathionine,0.7785;3-Hydroxykynurenine,SDMA,0.7785;GABA,L-Cystathionine,0.7785;Cit,L-Cystathionine,0.7778;3-Hydroxykynurenine,3-Me-His,0.7778;3-Hydroxykynurenine,aABA,0.7778;L-Cystathionine,Sarcosine,0.7778;Trp,Spermine,0.7770;3-Hydroxykynurenine,Kynurenine,0.7770;3-Hydroxykynurenine,Putrescine,0.7770;Glu,Hydroxyproline,0.7762;Val,3-Hydroxykynurenine,0.7762;Leu,3-Hydroxykynurenine,0.7762;Homoarginine,L-Cystathionine,0.7762;Gln,3-Hydroxykynurenine,0.7747;3-Hydroxykynurenine,aAiBA,0.7747;3-Hydroxykynurenine,N6-Acetyl-L-Lys,0.7747;Asn,3-Hydroxykynurenine,0.7739;3-Hydroxykynurenine,ADMA,0.7739;His,ADMA,0.7724;Arg,3-Hydroxykynurenine,0.7724;His,Spermine,0.7716;Met,3-Hydroxykynurenine,0.7716;3-Hydroxykynurenine,GABA,0.7716;Glu,Cadaverine,0.7708;Phe,3-Hydroxykynurenine,0.7708;3-Hydroxykynurenine,Hypotaurine,0.7708;His,Homocitrulline,0.7701;Cadaverine,L-Cystathionine,0.7701;Glu,Methylcystein,0.7693;Trp,Aminoadipic acid,0.7685;Glu,5-HydroxyTrp,0.7662;Glu,aAiBA,0.7662;Glu,aABA,0.7639;Glu,Hypotaurine,0.7639;His,3-Me-His,0.7639;His,N6-Acetyl-L-Lys,0.7639;Glu,GABA,0.7623;Gly,SDMA,0.7623;Glu,SAH,0.7600;Glu,Homoarginine,0.7585;Methylcystein,SDMA,0.7569;Trp,N6-Acetyl-L-Lys,0.7562;Glu,bAiBA,0.7554;Pro,SDMA,0.7554;5-HydroxyTrp,SDMA,0.7554;Glu,Propylcysteine,0.7546;Ser,SDMA,0.7546;Glu,Sarcosine,0.7531;His,Kynurenine,0.7523;Trp,Kynurenine,0.7523;Glu,Putrescine,0.7515;Orn,SDMA,0.7515;1-Me-His,SDMA,0.7515;N8-Acetylspermidine,Spermine,0.7515;Allylcysteine,SDMA,0.7515;Spermine,SDMA,0.7508;His,Aminoadipic acid,0.7492;Leu,SDMA,0.7477;Glu,Allylcysteine,0.7469;Thr,SDMA,0.7469;Trp,Methylcystein,0.7469;Trp,3-Me-His,0.7446;Trp,N8-Acetylspermidine,0.7446;Val,SDMA,0.7431;N8-Acetylspermidine,SDMA,0.7431;Spermidine,SDMA,0.7431;Propylcysteine,SDMA,0.7431;SDMA,N6-Acetyl-L-Lys,0.7431;Met,SDMA,0.7423;ADMA,SDMA,0.7423;Hypotaurine,SDMA,0.7423;Kynurenine,SDMA,0.7423;Lys,SDMA,0.7392;His,Allylcysteine,0.7384;Lys,Aminoadipic acid,0.7377;Lys,N6-Acetyl-L-Lys,0.7377;Trp,Homocitrulline,0.7377;Trp,Sarcosine,0.7369;Trp,Cadaverine,0.7361;Aminoadipic acid,SDMA,0.7361;Sarcosine,SDMA,0.7361;Trp,Hypotaurine,0.7353;Tyr,SDMA,0.7346;Cadaverine,SDMA,0.7346;Gly,N8-Acetylspermidine,0.7338;His,5-HydroxyTrp,0.7338;Trp,Allylcysteine,0.7338;Hydroxyproline,SDMA,0.7338;N8-Acetylspermidine,SAH,0.7338;Trp,ADMA,0.7330;aABA,SDMA,0.7323;N8-Acetylspermidine,Methylcystein,0.7323;Trp,Hydroxyproline,0.7315;Putrescine,SDMA,0.7315;His,Hypotaurine,0.7307;His,N8-Acetylspermidine,0.7307;His,Methylcystein,0.7307;Trp,1-Me-His,0.7307;3-Me-His,SDMA,0.7299;GABA,SDMA,0.7299;Asn,SDMA,0.7292;Trp,aAiBA,0.7292;Trp,Spermidine,0.7292;Pipecolic acid,SDMA,0.7292;Ala,SDMA,0.7284;Arg,SDMA,0.7284;Ile,SDMA,0.7284;Trp,SAH,0.7284;ADMA,Spermine,0.7284;bAiBA,SDMA,0.7284;Homocitrulline,SDMA,0.7276;Gln,SDMA,0.7269;Trp,Propylcysteine,0.7269;aAiBA,SDMA,0.7269;Phe,SDMA,0.7261;Trp,5-HydroxyTrp,0.7261;Trp,Pipecolic acid,0.7253;Spermine,N6-Acetyl-L-Lys,0.7253;Homoarginine,SDMA,0.7245;Lys,ADMA,0.7238;His,Hydroxyproline,0.7230;Trp,bAiBA,0.7230;1-Me-His,3-Me-His,0.7230;Trp,Homoarginine,0.7222;Cit,SDMA,0.7215;Trp,Putrescine,0.7215;Kynurenine,Spermine,0.7199;Trp,aABA,0.7168;Cadaverine,Pipecolic acid,0.7168;His,1-Me-His,0.7160;Trp,GABA,0.7153;Orn,Spermine,0.7145;Lys,N8-Acetylspermidine,0.7137;1-Me-His,N8-Acetylspermidine,0.7137;His,Propylcysteine,0.7130;Pipecolic acid,N6-Acetyl-L-Lys,0.7130;Gly,Kynurenine,0.7114;Pro,N8-Acetylspermidine,0.7114;N8-Acetylspermidine,N6-Acetyl-L-Lys,0.7114;Lys,Spermine,0.7099;His,Pipecolic acid,0.7076;Homocitrulline,N8-Acetylspermidine,0.7076;1-Me-His,Kynurenine,0.7068;N8-Acetylspermidine,Pipecolic acid,0.7068;His,bAiBA,0.7060;Spermine,Propylcysteine,0.7060;Lys,3-Me-His,0.7052;3-Me-His,N8-Acetylspermidine,0.7037;ADMA,Cadaverine,0.7029;ADMA,N8-Acetylspermidine,0.7029;His,Sarcosine,0.7022;Thr,N8-Acetylspermidine,0.7014;Lys,Kynurenine,0.7014;5-HydroxyTrp,Kynurenine,0.7014;ADMA,SAH,0.7006
[11.2 Variable formula]
1-Me-His,N-Me-bABA,1.0000;Kynurenine,N-Me-bABA,1.0000;His,N-Me-bABA,0.9992;Val,N-Me-bABA,0.9992;Leu,N-Me- bABA,0.9992;Aminoadipic acid,N-Me-bABA,0.9992;Homoarginine,N-Me-bABA,0.9992;Homocitrulline,N-Me-bABA,0.9992;Ile,N-Me-bABA,0.9985;Cadaverine,N-Me -bABA,0.9985;GABA,N-Me-bABA,0.9985;Hypotaurine,N-Me-bABA,0.9985;SDMA,N-Me-bABA,0.9985;N6-Acetyl-L-Lys,N-Me-bABA,0.9985 ;Glu,N-Me-bABA,0.9977;Asn,N-Me-bABA,0.9977;Tyr,N-Me-bABA,0.9977;Lys,N-Me-bABA,0.9977;3-Me-His,N-Me -bABA,0.9977;5-HydroxyTrp,N-Me-bABA,0.9977;bAiBA,N-Me-bABA,0.9977;N8-Acetylspermidine,N-Me-bABA,0.9977;Putrescine,N-Me-bABA,0.9977;Sarcosine ,N-Me-bABA,0.9977;Methylcysteine,N-Me-bABA,0.9977;Allylcysteine,N-Me-bABA,0.9977;Propylcysteine,N-Me-bABA,0.9977;Gly,N-Me-bABA,0.9969;Gln ,N-Me-bABA,0.9969;Thr,N-Me-bABA,0.9969;Ala,N-Me-bABA,0.9969;Cit,N-Me-bABA,0.9969;Arg,N-Me-bABA,0.9969;Pro ,N-Me-bABA,0.9969;Met,N-Me-bABA,0.9969;Phe,N-Me-bABA,0.9969;3-Hydroxykynurenine,N-Me-bABA,0.9969;aABA,N-Me-bABA,0.9969 ;aAiBA,N-Me-bABA,0.9969;bABA,N-Me-bABA,0.9969;Hydroxyproline,N-Me-bABA,0.9969;L-Cystathionine,N-Me-bABA,0.9969;Pipecolic acid,N-Me- bABA,0.9969;SAH,N-Me-bABA,0.9969;Serotonin,N-Me-bABA,0.9969;Spermidine,N-Me-bABA,0.9969;Spermine,N-Me-bABA,0.9969;Trp,N-Me- bABA,0.9961;ADMA,N-Me-bABA,0.9961;Ser,N-Me-bABA,0.9954;Orn,N-Me-bABA,0.9954;3-Hydroxykynurenine,bABA,0.9244;bABA,L-Cystathionine,0.9174; His,bABA,0.9136;Glu,bABA,0.9059;bABA,SDMA,0.9051;bABA,Pipecolic acid,0.9043;bABA,Serotonin,0.9035;Glu,L-Cystathionine,0.9005;bABA,Spermine,0.8981;Pro,bABA,0.8935 ;Lys,bABA,0.8935;bABA,N6-Acetyl-L-Lys,0.8912;aABA,bABA,0.8904;5-HydroxyTrp,bABA,0.8897;bABA,Homocitrulline,0.8897;bABA,Methylcystein,0.8897;bABA,Allylcysteine,0.8889 ;1-Me-His,bABA,0.8881;3-Me-His,bABA,0.8858;Met,bABA,0.8850;ADMA,bABA,0.8850;Aminoadipic acid,bABA,0.8850;bABA,Spermidine,0.8843;His,Serotonin, 0.8835;bABA,Kynurenine,0.8835;bABA,SAH,0.8835;Thr,bABA,0.8827;bABA,Hypotaurine,0.8827;bABA,Propylcysteine,0.8827;Trp,bABA,0.8819;bABA,N8-Acetylspermidine,0.8819;Gly,bABA, 0.8812;Orn,bABA,0.8804;Ala,bABA,0.8796;Tyr,bABA,0.8789;Phe,bABA,0.8789;bABA,bAiBA,0.8789;Ser,bABA,0.8781;Ile,bABA,0.8781;bABA,GABA,0.8781; bABA,Homoarginine,0.8781;Cit,bABA,0.8773;bABA,Hydroxyproline,0.8773;bABA,Putrescine,0.8773;bABA,Sarcosine,0.8773;Asn,bABA,0.8765;Leu,bABA,0.8765;Gln,bABA,0.8758;Arg, bABA,0.8758;Val,bABA,0.8742;aAiBA,bABA,0.8742;bABA,Cadaverine,0.8742;Trp,Serotonin,0.8665;Glu,3-Hydroxykynurenine,0.8619;L-Cystathionine,Serotonin,0.8619;aAiBA,Serotonin,0.86 03; Glu,Serotonin,0.8596;Kynurenine,Serotonin,0.8596;Ala,Serotonin,0.8580;ADMA,Serotonin,0.8565;Serotonin,Allylcysteine,0.8565;Thr,Serotonin,0.8557;3-Hydroxykynurenine,Serotonin,0.8557;Ser,S erotonin,0.8549; Serotonin,Spermine,0.8549;Serotonin,Methylcystein,0.8549;Pro,Serotonin,0.8534;Cadaverine,Serotonin,0.8526;Hypotaurine,Serotonin,0.8526;N8-Acetylspermidine,Serotonin,0.8526;Cit,Serotonin,0.8519;Gly, Serotonin,0.8511; Arg,Serotonin,0.8511;5-HydroxyTrp,Serotonin,0.8511;1-Me-His,Serotonin,0.8503;Serotonin,Spermidine,0.8503;Putrescine,Serotonin,0.8495;SAH,Serotonin,0.8495;Ile,Serotonin,0.8488;Aminoadi pic acid , Serotonin, 0.8480; HOMOARGININE, SEROTONIN, 0.8480; PHE, Serotonin, 0.8472; Gaba, Serotonin, 0.8472; Serotonin, N6-ACETYL-L-Lys, 0.8472; gln, Serotonin, 0. 8465; val, serotonin, 0.8465; orn, serotonin ,0.8465;Leu,Serotonin,0.8465;Pipecolic acid,Serotonin,0.8457;Serotonin,SDMA,0.8449;aABA,Serotonin,0.8441;His,L-Cystathionine,0.8434;Met,Serotonin,0.8434;Sarcosine,Serotonin,0.8426; Tyr, Serotonin,0.8403;Asn,Serotonin,0.8395;Serotonin,Propylcysteine,0.8387;Glu,SDMA,0.8364;Homocitrulline,Serotonin,0.8364;Lys,Serotonin,0.8349;bAiBA,Serotonin,0.8349;Hydroxyproline,Serotonin, 0.8341;His,3- Hydroxykykynureneine, 0.8333; 3-HYDROXYKYNURENINE, SAH, 0.8326; glu, ADMA, 0.8310; His, SDMA, 0.8302; Tathionine, 0.8295; L-CYSTATHIONINE, Spermine, 0.8287; TRP, 3-Hydroxykynurenine, 0.8248; 3-Me-His, Serotonin, 0.8241; -His,L-Cystathionine,0.8125;3-Hydroxykynurenine,Methylcystein,0.8117;Gly,L-Cystathionine,0.8110;5-HydroxyTrp,L-Cystathionine,0.8102;SAH,SDMA,0.8094;Pro,3-Hydroxykynurenine,0.8071; Hypotaurine ,L-Cystathionine,0.8056;3-Hydroxykynurenine,Pipecolic acid,0.8025;L-Cystathionine,Methylcystein,0.8025;3-Hydroxykynurenine,Propylcysteine,0.8002;3-Hydroxykynurenine,L-Cystathionine,0.7978;Tyr,L- Cystathionine,0.7971; 3-Hydroxykynurenine,Spermine,0.7971;L-Cystathionine,Allylcysteine,0.7971;3-Hydroxykynurenine,Allylcysteine,0.7963;Ser,3-Hydroxykynurenine,0.7955;Gly,3-Hydroxykynurenine,0.7948;Glu,Pipecolic acid, 0.7940;Val,L -Cystathionine,0.7940;1-Me-His,3-Hydroxykynurenine,0.7940;L-Cystathionine,Pipecolic acid,0.7940;Glu,N8-Acetylspermidine,0.7924;Leu,L-Cystathionine,0.7924;Lys,L-Cystathionine,0.7917; bAiBA,L-Cystathionine,0.7917;L-Cystathionine,Propylcysteine,0.7917;Pro,L-Cystathionine,0.7909;Ala,L-Cystathionine,0.7901;L-Cystathionine,Spermidine,0.7901;Glu,3-Me-His,0.7894; Glu,Spermine,0.7886;Glu,Homocitrulline,0.7878;Asn,L-Cystathionine,0.7878;3-Hydroxykynurenine,Hydroxyproline,0.7878;Thr,L-Cystathionine,0.7870;Cit,3-Hydroxykynurenine,0.7870;Tyr,3-H ydroxykynurenine, 0.7870;ADMA,L-Cystathionine,0.7870;Glu,1-Me-His,0.7863;Met,L-Cystathionine,0.7863;L-Cystathionine,N8-Acetylspermidine,0.7863;Ser,L-Cystathionine,0.7855;3-Hydroxykynurenine, Sarcosine,0.7847;3-Me-His,L-Cystathionine,0.7847;Glu,N6-Acetyl-L-Lys,0.7840;Arg,L-Cystathionine,0.7840;3-Hydroxykynurenine,N8-Acetylspermidine,0.7840;aABA,L- Cystathionine,0.7840;L-Cystathionine,N6-Acetyl-L-Lys,0.7840;Glu,Spermidine,0.7832;3-Hydroxykynurenine,Aminoadipic acid,0.7832;3-Hydroxykynurenine,bAiBA,0.7832;Hydroxyproline,L-Cystathionine,0 .7832;Ile ,3-Hydroxykynurenine,0.7824;3-Hydroxykynurenine,Homoarginine,0.7824;aAiBA,L-Cystathionine,0.7824;Thr,3-Hydroxykynurenine,0.7816;Ile,L-Cystathionine,0.7816;3-Hydroxykynurenine,Homocitru lline,0.7816;Homocitrulline,L -Cystathionine,0.7816;3-Hydroxykynurenine,Cadaverine,0.7809;3-Hydroxykynurenine,Spermidine,0.7809;Aminoadipic acid,L-Cystathionine,0.7809;Kynurenine,L-Cystathionine,0.7809;Phe,L-Cystathionine,0.780 1;L-Cystathionine, Putrescine,0.7801;Ala,3-Hydroxykynurenine,0.7793;Lys,3-Hydroxykynurenine,0.7793;Trp,SDMA,0.7793;Gln,L-Cystathionine,0.7785;Orn,3-Hydroxykynurenine,0.7785;Orn,L-Cystathionine, 0.7785; 3-Hydroxykynurene, SDMA, 0.7785; gaba, L-CYSTATHIONINE, 0.7785; CIT, L-CYSTATHIONEINE, 0.7778; 3-HYDROXYKYNURENINE, 3-ME-HIS, 0.7778; 3-HY Droxykynurenine, AABA, 0.7778; L-CYSTATHIONINE, SARCOSINE, 0.7778;Trp,Spermine,0.7770;3-Hydroxykynurenine,Kynurenine,0.7770;3-Hydroxykynurenine,Putrescine,0.7770;Glu,Hydroxyproline,0.7762;Val,3-Hydroxykynurenine,0.7762;Leu,3-Hydroxykynurenine ine,0.7762;Homoarginine,L- Cystathionine,0.7762;Gln,3-Hydroxykynurenine,0.7747;3-Hydroxykynurenine,aAiBA,0.7747;3-Hydroxykynurenine,N6-Acetyl-L-Lys,0.7747;Asn,3-Hydroxykynurenine,0.7739;3-Hydroxykynurenine ine,ADMA,0.7739; His,ADMA,0.7724;Arg,3-Hydroxykynurenine,0.7724;His,Spermine,0.7716;Met,3-Hydroxykynurenine,0.7716;3-Hydroxykynurenine,GABA,0.7716;Glu,Cadaverine,0.7708;Phe,3-Hydroxykynurenine,0. 7708; 3-Hydroxykynurenine,Hypotaurine,0.7708;His,Homocitrulline,0.7701;Cadaverine,L-Cystathionine,0.7701;Glu,Methylcystein,0.7693;Trp,Aminoadipic acid,0.7685;Glu,5-HydroxyTrp,0.7662;Glu,aAiBA, 0.7662;Glu ,aABA,0.7639;Glu,Hypotaurine,0.7639;His,3-Me-His,0.7639;His,N6-Acetyl-L-Lys,0.7639;Glu,GABA,0.7623;Gly,SDMA,0.7623;Glu,SAH,0.7600 ;Glu,Homoarginine,0.7585;Methylcystein,SDMA,0.7569;Trp,N6-Acetyl-L-Lys,0.7562;Glu,bAiBA,0.7554;Pro,SDMA,0.7554;5-HydroxyTrp,SDMA,0.7554;Glu,Propylcysteine,0.7546 ;Ser,SDMA,0.7546;Glu,Sarcosine,0.7531;His,Kynurenine,0.7523;Trp,Kynurenine,0.7523;Glu,Putrescine,0.7515;Orn,SDMA,0.7515;1-Me-His,SDMA,0.7515;N8-Acetylspermidine ,Spermine,0.7515;Allylcysteine,SDMA,0.7515;Spermine,SDMA,0.7508;His,Aminoadipic acid,0.7492;Leu,SDMA,0.7477;Glu,Allylcysteine,0.7469;Thr,SDMA,0.7469;Trp,Methylcysteine,0.7469;Trp, 3-Me-His,0.7446;Trp,N8-Acetyl-L-L- Lys,0.7431;Met,SDMA,0.7423;ADMA,SDMA,0.7423;Hypotaurine,SDMA,0.7423;Kynurenine,SDMA,0.7423;Lys,SDMA,0.7392;His,Allylcysteine,0.7384;Lys,Aminoadipic acid,0.7377;Lys,N6 -Acetyl-L-Lys,0.7377;Trp,Homocitrulline,0.7377;Trp,Sarcosine,0.7369;Trp,Cadaverine,0.7361;Aminoadipic acid,SDMA,0.7361;Sarcosine,SDMA,0.7361;Trp,Hypotaurine,0.7353;Tyr,SDMA, 0.7346;Cadaverine,SDMA,0.7346;Gly,N8-Acetylspermidine,0.7338;His,5-HydroxyTrp,0.7338;Trp,Allylcysteine,0.7338;Hydroxyproline,SDMA,0.7338;N8-Acetylspermidine,SAH,0.7338;Trp,ADMA ,0.7330; aABA,SDMA,0.7323;N8-Acetylspermidine,Methylcystein,0.7323;Trp,Hydroxyproline,0.7315;Putrescine,SDMA,0.7315;His,Hypotaurine,0.7307;His,N8-Acetylspermidine,0.7307;His,Methylcystein,0.7307; Trp,1- Me-His,0.7307;3-Me-His,SDMA,0.7299;GABA,SDMA,0.7299;Asn,SDMA,0.7292;Trp,aAiBA,0.7292;Trp,Spermidine,0.7292;Pipecolic acid,SDMA,0.7292;Ala,SDMA , 0.7284; ARG, SDMA, 0.7284; Ile, SDMA, 0.7284; Trp, SAH, 0.7284; ADMA, Spermine, 0.7284; GLN, SDMA, 0.7269; TRP, ProPylcysteine, 0.7269 ;aAiBA,SDMA,0.7269;Phe,SDMA,0.7261;Trp,5-HydroxyTrp,0.7261;Trp,Pipecolic acid,0.7253;Spermine,N6-Acetyl-L-Lys,0.7253;Homoarginine,SDMA,0.7245;Lys,ADMA, 0.7238;His,Hydroxyproline,0.7230;Trp,bAiBA,0.7230;1-Me-His,3-Me-His,0.7230;Trp,Homoarginine,0.7222;Cit,SDMA,0.7215;Trp,Putrescine,0.7215;Kynurenine,Spermine, 0.7199;Trp,aABA,0.7168;Cadaverine,Pipecolic acid,0.7168;His,1-Me-His,0.7160;Trp,GABA,0.7153;Orn,Spermine,0.7145;Lys,N8-Acetylspermidine,0.7137;1-Me-His ,N8-Acetylspermidine,0.7137;His,Propylcysteine,0.7130;Pipecolic acid,N6-Acetyl-L-Lys,0.7130;Gly,Kynurenine,0.7114;Pro,N8-Acetylspermidine,0.7114;N8-Acetylspermidine,N6-Acetyl-L- Lys,0.7114;Lys,Spermine,0.7099;His,Pipecolic acid,0.7076;Homocitrulline,N8-Acetylspermidine,0.7076;1-Me-His,Kynurenine,0.7068;N8-Acetylspermidine,Pipecolic acid,0.7068;His,bAiBA,0.7060 ; Spermine,Propylcysteine,0.7060;Lys,3-Me-His,0.7052;3-Me-His,N8-Acetylspermidine,0.7037;ADMA,Cadaverine,0.7029;ADMA,N8-Acetylspermidine,0.7029;His,Sarcosine,0.7022;Thr, N8-Acetylspermidine,0.7014;Lys,Kynurenine,0.7014;5-HydroxyTrp,Kynurenine,0.7014;ADMA,SAH,0.7006

[12.1変数追加]
N-Me-bABA,0.9992;bABA,0.8997;Serotonin,0.8711;L-Cystathionine,0.8372;3-Hydroxykynurenine,0.8349;SDMA,0.8056;Spermine,0.7955;Homocitrulline,0.7948;Methylcystein,0.7940;N6-Acetyl-L-Lys,0.7940;3-Me-His,0.7878;Sarcosine,0.7693;Allylcysteine,0.7670;ADMA,0.7654;Aminoadipic acid,0.7654;Hydroxyproline,0.7647;Hypotaurine,0.7623;Spermidine,0.7577;Kynurenine,0.7539;Propylcysteine,0.7539;bAiBA,0.7531;Pipecolic acid,0.7523;1-Me-His,0.7508;aAiBA,0.7492;5-HydroxyTrp,0.7446;Homoarginine,0.7431;N8-Acetylspermidine,0.7431;aABA,0.7415;Cadaverine,0.7392;GABA,0.7377
[12.1 Variable addition]
N-Me-bABA,0.9992;bABA,0.8997;Serotonin,0.8711;L-Cystathionine,0.8372;3-Hydroxykynurenine,0.8349;SDMA,0.8056;Spermine,0.7955;Homocitrulline,0.7948;Methylcystein,0.7940;N6-Acet yl-L- Lys,0.7940;3-Me-His,0.7878;Sarcosine,0.7693;Allylcysteine,0.7670;ADMA,0.7654;Aminoadipic acid,0.7654;Hydroxyproline,0.7647;Hypotaurine,0.7623;Spermidine,0.7577;Kynurenine,0.753 9;Propylcysteine,0.7539;bAiBA ,0.7531;Pipecolic acid,0.7523;1-Me-His,0.7508;aAiBA,0.7492;5-HydroxyTrp,0.7446;Homoarginine,0.7431;N8-Acetylspermidine,0.7431;aABA,0.7415;Cadaverine,0.7392;GABA,0.7 377

[13.2変数追加]
1-Me-His,N-Me-bABA,1.0000;aABA,N-Me-bABA,1.0000;Aminoadipic acid,N-Me-bABA,1.0000;GABA,N-Me-bABA,1.0000;Homoarginine,N-Me-bABA,1.0000;Homocitrulline,N-Me-bABA,1.0000;Hypotaurine,N-Me-bABA,1.0000;Hydroxyproline,N-Me-bABA,1.0000;Kynurenine,N-Me-bABA,1.0000;Pipecolic acid,N-Me-bABA,1.0000;SAH,N-Me-bABA,1.0000;Sarcosine,N-Me-bABA,1.0000;Spermidine,N-Me-bABA,1.0000;Methylcystein,N-Me-bABA,1.0000;Allylcysteine,N-Me-bABA,1.0000;Propylcysteine,N-Me-bABA,1.0000;SDMA,N-Me-bABA,1.0000;3-Hydroxykynurenine,N-Me-bABA,0.9992;3-Me-His,N-Me-bABA,0.9992;5-HydroxyTrp,N-Me-bABA,0.9992;aAiBA,N-Me-bABA,0.9992;ADMA,N-Me-bABA,0.9992;bABA,N-Me-bABA,0.9992;bAiBA,N-Me-bABA,0.9992;Cadaverine,N-Me-bABA,0.9992;L-Cystathionine,N-Me-bABA,0.9992;N8-Acetylspermidine,N-Me-bABA,0.9992;Putrescine,N-Me-bABA,0.9992;Serotonin,N-Me-bABA,0.9992;Spermine,N-Me-bABA,0.9992;N6-Acetyl-L-Lys,N-Me-bABA,0.9992;3-Hydroxykynurenine,bABA,0.9483;bABA,L-Cystathionine,0.9468;bABA,Allylcysteine,0.9259;aABA,bABA,0.9213;bABA,Serotonin,0.9198;bABA,Kynurenine,0.9151;bABA,SDMA,0.9144;bABA,Pipecolic acid,0.9128;bABA,Methylcystein,0.9128;1-Me-His,bABA,0.9090;bABA,Homocitrulline,0.9090;bABA,Spermine,0.9090;bABA,N6-Acetyl-L-Lys,0.9082;5-HydroxyTrp,bABA,0.9074;Aminoadipic acid,bABA,0.9066;3-Me-His,bABA,0.9059;bABA,Hypotaurine,0.9051;bABA,SAH,0.9051;aAiBA,bABA,0.9043;bABA,Putrescine,0.9035;bABA,Sarcosine,0.9035;bABA,Propylcysteine,0.9035;L-Cystathionine,Serotonin,0.9035;bABA,bAiBA,0.9020;L-Cystathionine,SAH,0.9020;bABA,N8-Acetylspermidine,0.9012;bABA,Spermidine,0.9012;ADMA,bABA,0.9005;bABA,Cadaverine,0.8997;bABA,Hydroxyproline,0.8997;bABA,Homoarginine,0.8989;bABA,GABA,0.8981;3-Hydroxykynurenine,Serotonin,0.8974;L-Cystathionine,Allylcysteine,0.8974;Kynurenine,Serotonin,0.8943;Serotonin,Allylcysteine,0.8912;Homocitrulline,Serotonin,0.8904;Serotonin,Methylcystein,0.8881;Serotonin,N6-Acetyl-L-Lys,0.8881;aABA,Serotonin,0.8866;L-Cystathionine,Spermine,0.8858;bAiBA,Serotonin,0.8835;ADMA,Serotonin,0.8819;Hydroxyproline,Serotonin,0.8812;Sarcosine,Serotonin,0.8812;3-Me-His,Serotonin,0.8804;N8-Acetylspermidine,Serotonin,0.8796;Aminoadipic acid,Serotonin,0.8789;Homoarginine,Serotonin,0.8789;Serotonin,SDMA,0.8773;GABA,Serotonin,0.8758;1-Me-His,Serotonin,0.8750;3-Hydroxykynurenine,L-Cystathionine,0.8742;aAiBA,Serotonin,0.8735;Putrescine,Serotonin,0.8735;Serotonin,Propylcysteine,0.8735;Pipecolic acid,Serotonin,0.8727;3-Hydroxykynurenine,SAH,0.8719;5-HydroxyTrp,Serotonin,0.8719;Cadaverine,Serotonin,0.8711;SAH,Serotonin,0.8711;Hypotaurine,Serotonin,0.8696;Serotonin,Spermidine,0.8688;Serotonin,Spermine,0.8688;L-Cystathionine,Methylcystein,0.8665;5-HydroxyTrp,L-Cystathionine,0.8650;3-Hydroxykynurenine,Allylcysteine,0.8642;3-Hydroxykynurenine,Methylcystein,0.8619;3-Hydroxykynurenine,5-HydroxyTrp,0.8611;1-Me-His,L-Cystathionine,0.8596;Hypotaurine,L-Cystathionine,0.8580;3-Hydroxykynurenine,aAiBA,0.8573;3-Hydroxykynurenine,Spermine,0.8526;SAH,SDMA,0.8519;1-Me-His,3-Hydroxykynurenine,0.8511;L-Cystathionine,SDMA,0.8495;bAiBA,L-Cystathionine,0.8480;3-Hydroxykynurenine,Propylcysteine,0.8472;3-Hydroxykynurenine,aABA,0.8465;Allylcysteine,SDMA,0.8457;3-Hydroxykynurenine,Aminoadipic acid,0.8449;3-Hydroxykynurenine,Homocitrulline,0.8441;3-Hydroxykynurenine,SDMA,0.8434;3-Hydroxykynurenine,Pipecolic acid,0.8426;3-Hydroxykynurenine,Putrescine,0.8426;3-Me-His,L-Cystathionine,0.8418;Homoarginine,L-Cystathionine,0.8418;ADMA,L-Cystathionine,0.8410;Kynurenine,L-Cystathionine,0.8410;L-Cystathionine,Propylcysteine,0.8410;L-Cystathionine,N6-Acetyl-L-Lys,0.8410;3-Hydroxykynurenine,Sarcosine,0.8403;3-Hydroxykynurenine,N6-Acetyl-L-Lys,0.8403;Homocitrulline,L-Cystathionine,0.8395;L-Cystathionine,N8-Acetylspermidine,0.8395;3-Hydroxykynurenine,Homoarginine,0.8387;aABA,L-Cystathionine,0.8387;aAiBA,L-Cystathionine,0.8387;L-Cystathionine,Pipecolic acid,0.8387;L-Cystathionine,Spermidine,0.8387;Methylcystein,SDMA,0.8387;3-Hydroxykynurenine,GABA,0.8380;3-Hydroxykynurenine,Spermidine,0.8380;3-Hydroxykynurenine,3-Me-His,0.8372;3-Hydroxykynurenine,Cadaverine,0.8372;Cadaverine,L-Cystathionine,0.8372;GABA,L-Cystathionine,0.8372;L-Cystathionine,Sarcosine,0.8372;3-Hydroxykynurenine,N8-Acetylspermidine,0.8364;Aminoadipic acid,L-Cystathionine,0.8364;L-Cystathionine,Putrescine,0.8364;3-Hydroxykynurenine,bAiBA,0.8356;Hydroxyproline,L-Cystathionine,0.8349;3-Hydroxykynurenine,Hydroxyproline,0.8341;3-Hydroxykynurenine,ADMA,0.8333;Spermine,SDMA,0.8333;3-Hydroxykynurenine,Kynurenine,0.8326;3-Hydroxykynurenine,Hypotaurine,0.8318;Homocitrulline,Spermine,0.8310;Spermine,Methylcystein,0.8287;Kynurenine,Spermine,0.8272;Allylcysteine,N6-Acetyl-L-Lys,0.8256;Spermine,N6-Acetyl-L-Lys,0.8248;3-Me-His,Spermine,0.8202;Sarcosine,Spermine,0.8202;Sarcosine,SDMA,0.8202;Hydroxyproline,SDMA,0.8194;Hypotaurine,SDMA,0.8187;Spermine,Allylcysteine,0.8179;Kynurenine,Methylcystein,0.8171;Homocitrulline,Methylcystein,0.8156;1-Me-His,3-Me-His,0.8148;Propylcysteine,SDMA,0.8148;5-HydroxyTrp,SDMA,0.8140;aAiBA,SDMA,0.8140;bAiBA,Spermine,0.8133;Homocitrulline,SAH,0.8133;Hydroxyproline,Spermine,0.8133;Putrescine,SDMA,0.8125;Spermidine,Spermine,0.8125;1-Me-His,SDMA,0.8117;N8-Acetylspermidine,Spermine,0.8117;1-Me-His,N6-Acetyl-L-Lys,0.8110;ADMA,Spermine,0.8110;Aminoadipic acid,Spermine,0.8110;bAiBA,SDMA,0.8110;Spermidine,SDMA,0.8110;Aminoadipic acid,SDMA,0.8102;Methylcystein,Propylcysteine,0.8102;3-Me-His,N6-Acetyl-L-Lys,0.8094;Kynurenine,Allylcysteine,0.8094;SDMA,N6-Acetyl-L-Lys,0.8094;aABA,SDMA,0.8086;Aminoadipic acid,Methylcystein,0.8086;Kynurenine,SDMA,0.8086;3-Me-His,Methylcystein,0.8079;Hypotaurine,N6-Acetyl-L-Lys,0.8079;ADMA,SDMA,0.8071;Homocitrulline,SDMA,0.8071;Homocitrulline,Hypotaurine,0.8063;Homocitrulline,Sarcosine,0.8063;Pipecolic acid,Allylcysteine,0.8063;1-Me-His,Homocitrulline,0.8056;3-Me-His,SDMA,0.8056;ADMA,Allylcysteine,0.8056;Homoarginine,SDMA,0.8056;N8-Acetylspermidine,SDMA,08056;Spermine,Propylcysteine,0.8056;Methylcystein,N6-Acetyl-L-Lys,0.8048;aAiBA,N6-Acetyl-L-Lys,0.8040;Homocitrulline,Allylcysteine,0.8040;Cadaverine,SDMA,0.8032;GABA,Spermine,0.8032;Pipecolic acid,N6-Acetyl-L-Lys,0.8032;Homocitrulline,Hydroxyproline,0.8025;5-HydroxyTrp,N6-Acetyl-L-Lys,0.8017;GABA,SDMA,0.8017;3-Me-His,aAiBA,0.8009;Hypotaurine,Methylcystein,0.8009;Pipecolic acid,SDMA,0.8009;Sarcosine,N6-Acetyl-L-Lys,0.8009;3-Me-His,Homocitrulline,0.8002;3-Me-His,Sarcosine,0.8002;5-HydroxyTrp,Homocitrulline,0.8002;Spermidine,N6-Acetyl-L-Lys,0.8002;Aminoadipic acid,Homocitrulline,0.7994;bAiBA,N6-Acetyl-L-Lys,0.7994;3-Me-His,5-HydroxyTrp,0.7986;Homocitrulline,Propylcysteine,0.7986;Hydroxyproline,N6-Acetyl-L-Lys,0.7986;aAiBA,Spermine,0.7978;3-Me-His,SAH,0.7971;Homocitrulline,N6-Acetyl-L-Lys,0.7971;1-Me-His,Spermine,0.7963;aABA,N6-Acetyl-L-Lys,0.7963;Homoarginine,Spermine,0.7963;N8-Acetylspermidine,Methylcystein,0.7963;Pipecolic acid,Spermine,0.7963;1-Me-His,Methylcystein,0.7955;3-Me-His,bAiBA,0.7955;aABA,Spermine,0.7955;Aminoadipic acid,N6-Acetyl-L-Lys,0.7955;Pipecolic acid,Methylcystein,0.7955;3-Me-His,Aminoadipic acid,0.7948;3-Me-His,Allylcysteine,0.7948;GABA,N6-Acetyl-L-Lys,0.7948;bAiBA,Homocitrulline,0.7940;SAH,Spermine,0.7940;Sarcosine,Methylcystein,0.7940;3-Me-His,Pipecolic acid,0.7932;GABA,Methylcystein,0.7932;Putrescine,Methylcystein,0.7932;3-Me-His,Hydroxyproline,0.7924;bAiBA,Sarcosine,0.7924;Spermidine,Methylcystein,0.7924;3-Me-His,Propylcysteine,0.7917;ADMA,Methylcystein,0.7917;Cadaverine,Methylcystein,0.7917;GABA,Homocitrulline,0.7917;Homoarginine,Homocitrulline,0.7917;Homoarginine,N6-Acetyl-L-Lys,0.7917;3-Me-His,aABA,0.7909;3-Me-His,Hypotaurine,0.7909;3-Me-His,Spermidine,0.7909;Aminoadipic acid,Allylcysteine,0.7909;Hypotaurine,Spermine,0.7909;Hydroxyproline,Methylcystein,0.7909;Putrescine,N6-Acetyl-L-Lys,0.7909;SAH,Methylcystein,0.7909;SAH,N6-Acetyl-L-Lys,0.7901;3-Me-His,Putrescine,0.7901;5-HydroxyTrp,Spermine,0.7901;5-HydroxyTrp,Methylcystein,0.7901;aABA,Methylcystein,0.7901;Homocitrulline,Pipecolic acid,0.7901;Homocitrulline,Spermidine,0.7901;aAiBA,Methylcystein,0.7894;Cadaverine,Spermine,0.7894;Homoarginine,Methylcystein,0.7894;3-Me-His,Homoarginine,0.7886;aAiBA,Sarcosine,0.7886;ADMA,Homocitrulline,0.7886;bAiBA,Methylcystein,0.7886;Putrescine,Spermine,0.7886;Propylcysteine,N6-Acetyl-L-Lys,0.7878;aABA,Homocitrulline,0.7870;bAiBA,Hydroxyproline,0.7870;3-Me-His,GABA,0.7863;aAiBA,Homocitrulline,0.7863;Cadaverine,Homocitrulline,0.7863;3-Me-His,Cadaverine,0.7855;ADMA,Propylcysteine,0.7855;ADMA,N6-Acetyl-L-Lys,0.7855;Cadaverine,N6-Acetyl-L-Lys,0.7855;Hypotaurine,Sarcosine,0.7855;Kynurenine,SAH,0.7855;Hypotaurine,Hydroxyproline,0.7847;Sarcosine,Allylcysteine,0.7847;Homocitrulline,N8-Acetylspermidine,0.7840;Methylcystein,Allylcysteine,0.7840;N8-Acetylspermidine,N6-Acetyl-L-Lys,0.7832;1-Me-His,ADMA,0.7824;1-Me-His,Kynurenine,0.7824;Homocitrulline,Putrescine,0.7824;Kynurenine,Spermidine,0.7824;Kynurenine,N6-Acetyl-L-Lys,0.7816;Sarcosine,Spermidine,0.7816;aABA,Aminoadipic acid,0.7809;Homocitrulline,Kynurenine,0.7809;Hypotaurine,Allylcysteine,0.7809;N8-Acetylspermidine,Allylcysteine,0.7809;3-Me-His,N8-Acetylspermidine,0.7801;ADMA,Sarcosine,0.7801;Aminoadipic acid,Sarcosine,0.7801;3-Me-His,ADMA,0.7793;Aminoadipic acid,Hydroxyproline,0.7793;Aminoadipic acid,Spermidine,0.7793;Hydroxyproline,Sarcosine,0.7793;1-Me-His,Sarcosine,0.7778;5-HydroxyTrp,Kynurenine,0.7778;aAiBA,Kynurenine,0.7778;Pipecolic acid,Sarcosine,0.7778;Aminoadipic acid,bAiBA,0.7770;Hypotaurine,Kynurenine,0.7770;Spermidine,Allylcysteine,0.7770;1-Me-His,Allylcysteine,0.7762;ADMA,Hydroxyproline,0.7762;bAiBA,Hypotaurine,0.7762;1-Me-His,Hydroxyproline,0.7755;Allylcysteine,Propylcysteine,0.7755;ADMA,bAiBA,0.7747;3-Me-His,Kynurenine,0.7739;5-HydroxyTrp,ADMA,0.7739;aABA,ADMA,0.7739;ADMA,Hypotaurine,0.7739;Aminoadipic acid,Propylcysteine,0.7739;Hypotaurine,Propylcysteine,0.7724;Pipecolic acid,Propylcysteine,0.7724;1-Me-His,bAiBA,0.7724;Homoarginine,Sarcosine,0.7724;Hydroxyproline,Allylcysteine,0.7724;Sarcosine,Propylcysteine,0.7724;5-HydroxyTrp,Hydroxyproline,0.7716;GABA,Sarcosine,0.7716;ADMA,Aminoadipic acid,0.7708;Hydroxyproline,Kynurenine,0.7708;aAiBA,Hydroxyproline,0.7701;ADMA,Spermidine,0.7701;Aminoadipic acid,SAH,0.7701;N8-Acetylspermidine,Sarcosine,0.7701;Putrescine,Sarcosine,0.7701;1-Me-His,Aminoadipic acid,0.7693;aABA,Kynurenine


,0.7693;ADMA,SAH,0.7693;Aminoadipic acid,Hypotaurine,0.7693;Aminoadipic acid,Pipecolic acid,0.7693;bAiBA,Kynurenine,0.7693;Hypotaurine,Spermidine,0.7693;aAiBA,Hypotaurine,0.7685;Hypotaurine,Pipecolic acid,0.7685;aAiBA,ADMA,0.7677;Homoarginine,Allylcysteine,0.7677;Hydroxyproline,Spermidine,0.7677;Hydroxyproline,Propylcysteine,0.7677;Kynurenine,Putrescine,0.7677;Kynurenine,Propylcysteine,0.7677;ADMA,Putrescine,0.7670;Aminoadipic acid,Cadaverine,0.7670;Homoarginine,Hydroxyproline,0.7670;Spermidine,Propylcysteine,0.7670;aAiBA,Aminoadipic acid,0.7662;ADMA,GABA,0.7662;Aminoadipic acid,Putrescine,0.7662;bAiBA,Allylcysteine,0.7662;Cadaverine,Sarcosine,0.7662;GABA,Hypotaurine,0.7662;SAH,Allylcysteine,0.7662;5-HydroxyTrp,Pipecolic acid,0.7654;Aminoadipic acid,N8-Acetylspermidine,0.7654;GABA,Hydroxyproline,0.7654;1-Me-His,N8-Acetylspermidine,0.7647;5-HydroxyTrp,Allylcysteine,0.7647;bAiBA,Spermidine,0.7647;Hydroxyproline,N8-Acetylspermidine,0.7647;Pipecolic acid,Spermidine,0.7647;Putrescine,Spermidine,0.7647;ADMA,Homoarginine,0.7639;ADMA,Pipecolic acid,0.7639;Aminoadipic acid,Homoarginine,0.7639;aABA,Sarcosine,0.7631;aABA,Allylcysteine,0.7631;ADMA,Cadaverine,0.7631;Aminoadipic acid,Kynurenine,0.7631;Homoarginine,Hypotaurine,0.7631;Hydroxyproline,Pipecolic acid,0.7631;Kynurenine,N8-Acetylspermidine,0.7631;Kynurenine,Pipecolic acid,0.7631;1-Me-His,5-HydroxyTrp,0.7623;ADMA,Kynurenine,0.7623;ADMA,N8-Acetylspermidine,0.7623;Homoarginine,Spermidine,0.7623;Aminoadipic acid,GABA,0.7616;bAiBA,Propylcysteine,0.7616;Hypotaurine,Putrescine,0.7616;Kynurenine,Sarcosine,0.7616;N8-Acetylspermidine,Spermidine,0.7616;Cadaverine,Hypotaurine,0.7608;Cadaverine,Spermidine,0.7608;Hypotaurine,N8-Acetylspermidine,0.7608;Hydroxyproline,Putrescine,0.7608;Putrescine,Allylcysteine,0.7608;5-HydroxyTrp,Hypotaurine,0.7600;Cadaverine,Hydroxyproline,0.7600;Cadaverine,Allylcysteine,0.7600;SAH,Sarcosine,0.7600;5-HydroxyTrp,Sarcosine,0.7593;aAiBA,Allylcysteine,0.7593;N8-Acetylspermidine,Pipecolic acid,0.7593;1-Me-His,Hypotaurine,0.7585;aABA,Hydroxyproline,0.7585;aAiBA,Spermidine,0.7585;Hypotaurine,SAH,0.7585;1-Me-His,Propylcysteine,0.7577;GABA,Spermidine,0.7577;GABA,Propylcysteine,0.7577;Hydroxyproline,SAH,0.7569;5-HydroxyTrp,Aminoadipic acid,0.7562;aAiBA,Propylcysteine,0.7562;Cadaverine,Kynurenine,0.7562;GABA,Kynurenine,0.7562;1-Me-His,Homoarginine,0.7554;aABA,Hypotaurine,0.7554;aAiBA,bAiBA,0.7554;1-Me-His,aAiBA,0.7546;1-Me-His,Spermidine,0.7546;5-HydroxyTrp,aABA,0.7546;aABA,N8-Acetylspermidine,0.7546;aABA,Propylcysteine,0.7546;bAiBA,Pipecolic acid,0.7546;Homoarginine,Kynurenine,0.7546;N8-Acetylspermidine,Propylcysteine,0.7546;Putrescine,Propylcysteine,0.7546;aAiBA,Pipecolic acid,0.7539;Cadaverine,Pipecolic acid,0.7539;SAH,Spermidine,0.7539;5-HydroxyTrp,bAiBA,0.7531;aABA,Homoarginine,0.7531;bAiBA,Cadaverine,0.7531;bAiBA,Homoarginine,0.7531;1-Me-His,aABA,0.7523;5-HydroxyTrp,aAiBA,0.7523;aABA,GABA,0.7523;GABA,Allylcysteine,0.7523;1-Me-His,Pipecolic acid,0.7515;5-HydroxyTrp,Spermidine,0.7515;aAiBA,Putrescine,0.7515;bAiBA,N8-Acetylspermidine,0.7515;Cadaverine,Propylcysteine,0.7515;1-Me-His,SAH,0.7508;5-HydroxyTrp,Propylcysteine,0.7508;bAiBA,Putrescine,0.7508;Homoarginine,Pipecolic acid,0.7508;Pipecolic acid,SAH,0.7508;1-Me-His,GABA,0.7500;aAiBA,N8-Acetylspermidine,0.7492;bAiBA,GABA,0.7492;Homoarginine,Propylcysteine,0.7492;N8-Acetylspermidine,SAH,0.7492;Pipecolic acid,Putrescine,0.7492;aABA,bAiBA,0.7485;GABA,Pipecolic acid,0.7485;aAiBA,Homoarginine,0.7477;bAiBA,SAH,0.7477;SAH,Propylcysteine,0.7477;1-Me-His,Putrescine,0.7469;aAiBA,Cadaverine,0.7469;aABA,aAiBA,0.7461;5-HydroxyTrp,N8-Acetylspermidine,0.7438;aABA,Cadaverine,0.7438;aABA,Spermidine,0.7438;Cadaverine,N8-Acetylspermidine,0.7438;GABA,N8-Acetylspermidine,0.7438;Homoarginine,N8-Acetylspermidine,0.7438;1-Me-His,Cadaverine,0.7431;5-HydroxyTrp,Homoarginine,0.7431;aABA,Putrescine,0.7431;5-HydroxyTrp,SAH,0.7423;aAiBA,GABA,0.7423;5-HydroxyTrp,Putrescine,0.7415;aABA,Pipecolic acid,0.7415;aAiBA,SAH,0.7415;Cadaverine,Putrescine,0.7415;Homoarginine,Putrescine,0.7415;Cadaverine,GABA,0.7400;GABA,Homoarginine,0.7400;5-HydroxyTrp,GABA,0.7392;Cadaverine,Homoarginine,0.7392;N8-Acetylspermidine,Putrescine,0.7392;GABA,Putrescine,0.7384
[13.2 Variable addition]
1-Me-His,N-Me-bABA,1.0000;aABA,N-Me-bABA,1.0000;Aminoadipic acid,N-Me-bABA,1.0000;GABA,N-Me-bABA,1.0000;Homoarginine,N-Me -bABA,1.0000;Homocitrulline,N-Me-bABA,1.0000;Hypotaurine,N-Me-bABA,1.0000;Hydroxyproline,N-Me-bABA,1.0000;Kynurenine,N-Me-bABA,1.0000;Pipecolic acid,N- Me-bABA,1.0000;SAH,N-Me-bABA,1.0000;Sarcosine,N-Me-bABA,1.0000;Spermidine,N-Me-bABA,1.0000;Methylcystein,N-Me-bABA,1.0000;Allylcysteine,N- Me-bABA,1.0000;Propylcysteine,N-Me-bABA,1.0000;SDMA,N-Me-bABA,1.0000;3-Hydroxykynurenine,N-Me-bABA,0.9992;3-Me-His,N-Me-bABA, 0.9992;5-HydroxyTrp,N-Me-bABA,0.9992;aAiBA,N-Me-bABA,0.9992;ADMA,N-Me-bABA,0.9992;bABA,N-Me-bABA,0.9992;bAiBA,N-Me- bABA,0.9992;Cadaverine,N-Me-bABA,0.9992;L-Cystathionine,N-Me-bABA,0.9992;N8-Acetylspermidine,N-Me-bABA,0.9992;Putrescine,N-Me-bABA,0.9992;Serotonin, N-Me-bABA,0.9992;Spermine,N-Me-bABA,0.9992;N6-Acetyl-L-Lys,N-Me-bABA,0.9992;3-Hydroxykynurenine,bABA,0.9483;bABA,L-Cystathionine,0.9468; bABA,Allylcysteine,0.9259;aABA,bABA,0.9213;bABA,Serotonin,0.9198;bABA,Kynurenine,0.9151;bABA,SDMA,0.9144;bABA,Pipecolic acid,0.9128;bABA,Methylcystein,0.9128;1-Me-His,bABA ,0.9090;bABA,Homocitrulline,0.9090;bABA,Spermine,0.9090;bABA,N6-Acetyl-L-Lys,0.9082;5-HydroxyTrp,bABA,0.9074;Aminoadipic acid,bABA,0.9066;3-Me-His,bABA, 0.9059;bABA,Hypotaurine,0.9051;bABA,SAH,0.9051;aAiBA,bABA,0.9043;bABA,Putrescine,0.9035;bABA,Sarcosine,0.9035;bABA,Propylcysteine,0.9035;L-Cystathionine,Serotonin,0.9035;bABA ,bAiBA, 0.9020;L-Cystathionine,SAH,0.9020;bABA,N8-Acetylspermidine,0.9012;bABA,Spermidine,0.9012;ADMA,bABA,0.9005;bABA,Cadaverine,0.8997;bABA,Hydroxyproline,0.8997;bABA,Homoarginine,0.8989 ;bABA, GABA,0.8981;3-Hydroxykynurenine,Serotonin,0.8974;L-Cystathionine,Allylcysteine,0.8974;Kynurenine,Serotonin,0.8943;Serotonin,Allylcysteine,0.8912;Homocitrulline,Serotonin,0.8904;Serotonin,Methylcysteine,0. 8881;Serotonin,N6-Acetyl- 3-Me-His , Serotonin,0.8804;N8-Acetylspermidine,Serotonin,0.8796;Aminoadipic acid,Serotonin,0.8789;Homoarginine,Serotonin,0.8789;Serotonin,SDMA,0.8773;GABA,Serotonin,0.8758;1-Me-His,Serotonin,0.8750;3-Hy droxykynurenine ,L-Cystathionine,0.8742;aAiBA,Serotonin,0.8735;Putrescine,Serotonin,0.8735;Serotonin,Propylcysteine,0.8735;Pipecolic acid,Serotonin,0.8727;3-Hydroxykynurenine,SAH,0.8719;5-HydroxyTrp,Sero tonin,0.8719;Cadaverine, Serotonin,0.8711;SAH,Serotonin,0.8711;Hypotaurine,Serotonin,0.8696;Serotonin,Spermidine,0.8688;Serotonin,Spermine,0.8688;L-Cystathionine,Methylcystein,0.8665;5-HydroxyTrp,L-Cystathionine,0.865 0;3-Hydroxykynurenine, Allylcysteine,0.8642;3-Hydroxykynurenine,Methylcystein,0.8619;3-Hydroxykynurenine,5-HydroxyTrp,0.8611;1-Me-His,L-Cystathionine,0.8596;Hypotaurine,L-Cystathionine,0.8580;3-Hydroxykynurenine, aAiBA,0.8573; 3-Hydroxykynurenine,Spermine,0.8526;SAH,SDMA,0.8519;1-Me-His,3-Hydroxykynurenine,0.8511;L-Cystathionine,SDMA,0.8495;bAiBA,L-Cystathionine,0.8480;3-Hydroxykynurenine,Propylcysteine,0. 8472; 3-Hydroxykynurenine,aABA,0.8465;Allylcysteine,SDMA,0.8457;3-Hydroxykynurenine,Aminoadipic acid,0.8449;3-Hydroxykynurenine,Homocitrulline,0.8441;3-Hydroxykynurenine,SDMA,0.8434;3-Hydroxykynurenine, Pipecolic acid,0.8426;3- Hydroxykynurenine,Putrescine,0.8426;3-Me-His,L-Cystathionine,0.8418;Homoarginine,L-Cystathionine,0.8418;ADMA,L-Cystathionine,0.8410;Kynurenine,L-Cystathionine,0.8410;L-Cystathionine,Propylcysteine,0 .8410; L-Cystathionine,N6-Acetyl-L-Lys,0.8410;3-Hydroxykynurenine,Sarcosine,0.8403;3-Hydroxykynurenine,N6-Acetyl-L-Lys,0.8403;Homocitrulline,L-Cystathionine,0.8395;L-Cystathionine,N8- Acetylspermidine,0.8395;3-Hydroxykynurenine,Homoarginine,0.8387;aABA,L-Cystathionine,0.8387;aAiBA,L-Cystathionine,0.8387;L-Cystathionine,Pipecolic acid,0.8387;L-Cystathionine,Spermidine,0.8387;Me thylcystein,SDMA,0.8387 ;3-Hydroxykynurenine,GABA,0.8380;3-Hydroxykynurenine,Spermidine,0.8380;3-Hydroxykynurenine,3-Me-His,0.8372;3-Hydroxykynurenine,Cadaverine,0.8372;Cadaverine,L-Cystathionine,0.8372;GABA,L-C ystathionine ,0.8372;L-Cystathionine,Sarcosine,0.8372;3-Hydroxykynurenine,N8-Acetylspermidine,0.8364;Aminoadipic acid,L-Cystathionine,0.8364;L-Cystathionine,Putrescine,0.8364;3-Hydroxykynurenine,bAiBA,0. 8356;Hydroxyproline,L- Cystathionine,0.8349;3-Hydroxykynurenine,Hydroxyproline,0.8341;3-Hydroxykynurenine,ADMA,0.8333;Spermine,SDMA,0.8333;3-Hydroxykynurenine,Kynurenine,0.8326;3-Hydroxykynurenine,Hypotaurine,0.831 8;Homocitrulline,Spermine,0.8310;Spermine, Methylcystein,0.8287;Kynurenine,Spermine,0.8272;Allylcysteine,N6-Acetyl-L-Lys,0.8256;Spermine,N6-Acetyl-L-Lys,0.8248;3-Me-His,Spermine,0.8202;Sarcosine,Spermine,0.8202; Sarcosine,SDMA,0.8202;Hydroxyproline,SDMA,0.8194;Hypotaurine,SDMA,0.8187;Spermine,Allylcysteine,0.8179;Kynurenine,Methylcystein,0.8171;Homocitrulline,Methylcystein,0.8156;1-Me-His,3-Me-His,0.814 8; Propylcysteine,SDMA,0.8148;5-HydroxyTrp,SDMA,0.8140;aAiBA,SDMA,0.8140;bAiBA,Spermine,0.8133;Homocitrulline,SAH,0.8133;Hydroxyproline,Spermine,0.8133;Putrescine,SDMA,0.8125;Spermidine ,Spermine,0.8125; 1-Me-His,SDMA,0.8117;N8-Acetylspermidine,Spermine,0.8117;1-Me-His,N6-Acetyl-L-Lys,0.8110;ADMA,Spermine,0.8110;Aminoadipic acid,Spermine,0.8110;bAiBA,SDMA ,0.8110;Spermidine,SDMA,0.8110;Aminoadipic acid,SDMA,0.8102;Methylcystein,Propylcysteine,0.8102;3-Me-His,N6-Acetyl-L-Lys,0.8094;Kynurenine,Allylcysteine,0.8094;SDMA,N6-Acetyl- L-Lys, 0.8094; aABA, SDMA, 0.8086; Aminoadipic acid, Methylcystein, 0.8086; Kynurenine, SDMA, 0.8086; ,0.8071;Homocitrulline,SDMA,0.8071;Homocitrulline,Hypotaurine,0.8063;Homocitrulline,Sarcosine,0.8063;Pipecolic acid,Allylcysteine,0.8063;1-Me-His,Homocitrulline,0.8056;3-Me-His,SDMA,0.8056;A DMA, Allylcysteine,0.8056;Homoarginine,SDMA,0.8056;N8-Acetylspermidine,SDMA,08056;Spermine,Propylcysteine,0.8056;Methylcysteine,N6-Acetyl-L-Lys,0.8048;aAiBA,N6-Acetyl-L-Lys,0.8040;Homocitrulline , Allylcysteine,0.8040;Cadaverine,SDMA,0.8032;GABA,Spermine,0.8032;Pipecolic acid,N6-Acetyl-L-Lys,0.8032;Homocitrulline,Hydroxyproline,0.8025;5-HydroxyTrp,N6-Acetyl-L-Lys,0.8017;GABA ,SDMA,0.8017;3-Me-His,aAiBA,0.8009;Hypotaurine,Methylcystein,0.8009;Pipecolic acid,SDMA,0.8009;Sarcosine,N6-Acetyl-L-Lys,0.8009;3-Me-His,Homocitrulline,0.8002; 3-Me-His,Sarcosine,0.8002;5-HydroxyTrp,Homocitrulline,0.8002;Spermidine,N6-Acetyl-L-Lys,0.8002;Aminoadipic acid,Homocitrulline,0.7994;bAiBA,N6-Acetyl-L-Lys,0.7994;3 -Me-His,5-HydroxyTrp,0.7986;Homocitrulline,Propylcysteine,0.7986;Hydroxyproline,N6-Acetyl-L-Lys,0.7986;aAiBA,Spermine,0.7978;3-Me-His,SAH,0.7971;Homocitrulline,N6-Acetyl -L-Lys,0.7971;1-Me-His,Spermine,0.7963;aABA,N6-Acetyl-L-Lys,0.7963;Homoarginine,Spermine,0.7963;N8-Acetylspermidine,Methylcystein,0.7963;Pipecolic acid,Spermine,0.7963; 1-Me-His,Methylcystein,0.7955;3-Me-His,bAiBA,0.7955;aABA,Spermine,0.7955;Aminoadipic acid,N6-Acetyl-L-Lys,0.7955;Pipecolic acid,Methylcystein,0.7955;3-Me- His,Aminoadipic acid,0.7948;3-Me-His,Allylcysteine,0.7948;GABA,N6-Acetyl-L-Lys,0.7948;bAiBA,Homocitrulline,0.7940;SAH,Spermine,0.7940;Sarcosine,Methylcysteine,0.7940;3-Me -His, pipecolic acid, 0.7932; gaba, methylcystein, 0.7932; Putrescine, Methylcystein, 0.7932; 3-Me-His, HYDROXYPROLINE, 0.7924; BAIBA, SARC OSINE, 0.7924; Spermidine, Methylcystein, 0.7924; 3-Me-His, Propylcysteine, 0.7917; ADMA, Methylcystein, 0.7917; Cadaverine, Methylcystein, 0.7917; Gaba, Homocitrulline, 0.7917; Homoargine, Homocitrulline, 0.7917; H OMOARGININE, N6-ACETYL-L-Lys, 0.7917; 3-Me-His, AABA, 0.7909; 3- Me-His,Hypotaurine,0.7909;3-Me-His,Spermidine,0.7909;Aminoadipic acid,Allylcysteine,0.7909;Hypotaurine,Spermine,0.7909;Hydroxyproline,Methylcystein,0.7909;Putrescine,N6-Acetyl-L-Lys,0.7909;SAH , Methylcystein, 0.7909; SAH, N6-ACETYL-L-Lys, 0.7901; 3-Me-His, Putrescine, 0.7901; 5-HYDROXYTRP, Spermine, 0.7901; 5-Hydroxytrp, Methylc ystein, 0.7901; aaba, methylcystein, 0.7901; HOMOCITRULLINE ,Pipecolic acid,0.7901;Homocitrulline,Spermidine,0.7901;aAiBA,Methylcystein,0.7894;Cadaverine,Spermine,0.7894;Homoarginine,Methylcystein,0.7894;3-Me-His,Homoarginine,0.7886;aAiBA,Sarcosine,0.7886 ;ADMA,Homocitrulline, 0.7886;bAiBA,Methylcystein,0.7886;Putrescine,Spermine,0.7886;Propylcysteine,N6-Acetyl-L-Lys,0.7878;aABA,Homocitrulline,0.7870;bAiBA,Hydroxyproline,0.7870;3-Me-His,GABA,0.7863; aAiBA, Homocitrulline,0.7863;Cadaverine,Homocitrulline,0.7863;3-Me-His,Cadaverine,0.7855;ADMA,Propylcysteine,0.7855;ADMA,N6-Acetyl-L-Lys,0.7855;Cadaverine,N6-Acetyl-L-Lys,0.7855; Hypotaurine,Sarcosine,0.7855;Kynurenine,SAH,0.7855;Hypotaurine,Hydroxyproline,0.7847;Sarcosine,Allylcysteine,0.7847;Homocitrulline,N8-Acetylspermidine,0.7840;Methylcystein,Allylcysteine,0.7840;N8-Acetyl spermidine,N6-Acetyl-L-Lys, 0.7832;1-Me-His,ADMA,0.7824;1-Me-His,Kynurenine,0.7824;Homocitrulline,Putrescine,0.7824;Kynurenine,Spermidine,0.7824;Kynurenine,N6-Acetyl-L-Lys,0.7816;Sarcosine,Spermidine, 0.7816;aABA,Aminoadipic acid,0.7809;Homocitrulline,Kynurenine,0.7809;Hypotaurine,Allylcysteine,0.7809;N8-Acetylspermidine,Allylcysteine,0.7809;3-Me-His,N8-Acetylspermidine,0.7801;ADMA,Sarcosine,0.7 801;Aminoadipic acid, Sarcosine,0.7801;3-Me-His,ADMA,0.7793;Aminoadipic acid,Hydroxyproline,0.7793;Aminoadipic acid,Spermidine,0.7793;Hydroxyproline,Sarcosine,0.7793;1-Me-His,Sarcosine,0.7778;5-HydroxyTrp,Kynurenine , ADMA,H ydroxyproline,0.7762; bAiBA,Hypotaurine,0.7762;1-Me-His,Hydroxyproline,0.7755;Allylcysteine,Propylcysteine,0.7755;ADMA,bAiBA,0.7747;3-Me-His,Kynurenine,0.7739;5-HydroxyTrp,ADMA,0.7739;aABA,ADMA, 0.7739;ADMA,Hypotaurine,0.7739;Aminoadipic acid,Propylcysteine,0.7739;Hypotaurine,Propylcysteine,0.7724;Pipecolic acid,Propylcysteine,0.7724;1-Me-His,bAiBA,0.7724;Homoarginine,Sarcosine,0.7724;Hy droxyproline,Allylcysteine,0.7724; Sarcosine,Propylcysteine,0.7724;5-HydroxyTrp,Hydroxyproline,0.7716;GABA,Sarcosine,0.7716;ADMA,Aminoadipic acid,0.7708;Hydroxyproline,Kynurenine,0.7708;aAiBA,Hydroxyproline,0.7701;ADMA,Spermidine ,0.7701;Aminoadipic acid,SAH, 0.7701;N8-Acetylspermidine,Sarcosine,0.7701;Putrescine,Sarcosine,0.7701;1-Me-His,Aminoadipic acid,0.7693;aABA,Kynurenine


,0.7693;ADMA,SAH,0.7693;Aminoadipic acid,Hypotaurine,0.7693;Aminoadipic acid,Pipecolic acid,0.7693;bAiBA,Kynurenine,0.7693;Hypotaurine,Spermidine,0.7693;aAiBA,Hypotaurine,0.7685;Hypotaurine,Pipecolic acid,0.7685;aAiBA ,ADMA,0.7677;Homoarginine,Allylcysteine,0.7677;Hydroxyproline,Spermidine,0.7677;Hydroxyproline,Propylcysteine,0.7677;Kynurenine,Putrescine,0.7677;Kynurenine,Propylcysteine,0.7677;ADMA,Putrescine,0.7 670;Aminoadipic acid,Cadaverine,0.7670;Homoarginine, Hydroxyproline,0.7670;Spermidine,Propylcysteine,0.7670;aAiBA,Aminoadipic acid,0.7662;ADMA,GABA,0.7662;Aminoadipic acid,Putrescine,0.7662;bAiBA,Allylcysteine,0.7662;Cadaverine,Sarcosine,0.7662;GABA,Hypot aurine,0.7662;SAH, Allylcysteine,0.7662;5-HydroxyTrp,Pipecolic acid,0.7654;Aminoadipic acid,N8-Acetylspermidine,0.7654;GABA,Hydroxyproline,0.7654;1-Me-His,N8-Acetylspermidine,0.7647;5-HydroxyTrp,Allylcysteine,0.764 7;bAiBA, Spermidine,0.7647;Hydroxyproline,N8-Acetylspermidine,0.7647;Pipecolic acid,Spermidine,0.7647;Putrescine,Spermidine,0.7647;ADMA,Homoarginine,0.7639;ADMA,Pipecolic acid,0.7639;Aminoadipic acid,Homoarginine,0.7639 ;aABA,Sarcosine,0.7631 ;aABA,Allylcysteine,0.7631;ADMA,Cadaverine,0.7631;Aminoadipic acid,Kynurenine,0.7631;Homoarginine,Hypotaurine,0.7631;Hydroxyproline,Pipecolic acid,0.7631;Kynurenine,N8-Acetylspermidine,0.7631;Kynurenine,Pipeco lic acid,0.7631;1- Me-His,5-HydroxyTrp,0.7623;ADMA,Kynurenine,0.7623;ADMA,N8-Acetylspermidine,0.7623;Homoarginine,Spermidine,0.7623;Aminoadipic acid,GABA,0.7616;bAiBA,Propylcysteine,0.7616;Hypotaurine,Putrescine, 0.7616;Kynurenine ,Sarcosine,0.7616;N8-Acetylspermidine,Spermidine,0.7616;Cadaverine,Hypotaurine,0.7608;Cadaverine,Spermidine,0.7608;Hypotaurine,N8-Acetylspermidine,0.7608;Hydroxyproline,Putrescine,0.7608;Putrescine, Allylcysteine,0.7608;5-HydroxyTrp,Hypotaurine ,0.7600;Cadaverine,Hydroxyproline,0.7600;Cadaverine,Allylcysteine,0.7600;SAH,Sarcosine,0.7600;5-HydroxyTrp,Sarcosine,0.7593;aAiBA,Allylcysteine,0.7593;N8-Acetylspermidine,Pipecolic acid,0.7 593;1-Me-His, Hypotaurine. SAH,0.7569; 5-HydroxyTrp,Aminoadipic acid,0.7562;aAiBA,Propylcysteine,0.7562;Cadaverine,Kynurenine,0.7562;GABA,Kynurenine,0.7562;1-Me-His,Homoarginine,0.7554;aABA,Hypotaurine,0.7554;aAiBA,bAiBA,0 .7554;1 -Me-His,aAiBA,0.7546;1-Me-His,Spermidine,0.7546;5-HydroxyTrp,aABA,0.7546;aABA,N8-Acetylspermidine,0.7546;aABA,Propylcysteine,0.7546;bAiBA,Pipecolic acid,0.7546;Homoarginine, Kynurenine,0.7546;N8-Acetylspermidine,Propylcysteine,0.7546;Putrescine,Propylcysteine,0.7546;aAiBA,Pipecolic acid,0.7539;Cadaverine,Pipecolic acid,0.7539;SAH,Spermidine,0.7539;5-HydroxyTrp,bAiBA,0 .7531;aABA,Homoarginine, 0.7531;bAiBA,Cadaverine,0.7531;bAiBA,Homoarginine,0.7531;1-Me-His,aABA,0.7523;5-HydroxyTrp,aAiBA,0.7523;aABA,GABA,0.7523;GABA,Allylcysteine,0.7523;1-Me-His, Pipecolic acid,0.7515;5-HydroxyTrp,Spermidine,0.7515;aAiBA,Putrescine,0.7515;bAiBA,N8-Acetylspermidine,0.7515;Cadaverine,Propylcysteine,0.7515;1-Me-His,SAH,0.7508;5-HydroxyTrp,Prop ylcysteine,0.7508 ;bAiBA,Putrescine,0.7508;Homoarginine,Pipecolic acid,0.7508;Pipecolic acid,SAH,0.7508;1-Me-His,GABA,0.7500;aAiBA,N8-Acetylspermidine,0.7492;bAiBA,GABA,0.7492;Homoarginine,Propylcysteine,0. 7492 ;N8-Acetylspermidine,SAH,0.7492;Pipecolic acid,Putrescine,0.7492;aABA,bAiBA,0.7485;GABA,Pipecolic acid,0.7485;aAiBA,Homoarginine,0.7477;bAiBA,SAH,0.7477;SAH,Propylcysteine,0.7477;1- Me -His,Putrescine,0.7469;aAiBA,Cadaverine,0.7469;aABA,aAiBA,0.7461;5-HydroxyTrp,N8-Acetylspermidine,0.7438;aABA,Cadaverine,0.7438;aABA,Spermidine,0.7438;Cadaverine,N8-Acetylspermidine,0 .7438;GABA ,N8-Acetylspermidine,0.7438;Homoarginine,N8-Acetylspermidine,0.7438;1-Me-His,Cadaverine,0.7431;5-HydroxyTrp,Homoarginine,0.7431;aABA,Putrescine,0.7431;5-HydroxyTrp,SAH,0.7423;aA iBA,GABA ,0.7423;5-HydroxyTrp,Putrescine,0.7415;aABA,Pipecolic acid,0.7415;aAiBA,SAH,0.7415;Cadaverine,Putrescine,0.7415;Homoarginine,Putrescine,0.7415;Cadaverine,GABA,0.7400;GABA,Homoarginine, 0.7400;5- HydroxyTrp,GABA,0.7392;Cadaverine,Homoarginine,0.7392;N8-Acetylspermidine,Putrescine,0.7392;GABA,Putrescine,0.7384

Claims (11)

評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値、または、前記2つの代謝物の濃度値が代入される変数を含む式および前記2つの代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌に罹患している可能性を評価するための情報を取得する取得ステップを含むこと、
を特徴とする取得方法。
Concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystationine, in the blood to be evaluated, or a formula including a variable into which the concentration values of the two metabolites are substituted, and the concentration of the two metabolites. comprising an acquisition step of acquiring information for evaluating the possibility that the evaluation target is suffering from gastric cancer, using the value of the formula calculated using the value;
An acquisition method featuring:
前記取得ステップは、制御部を備えた情報処理装置の前記制御部において実行されること、
を特徴とする請求項1に記載の取得方法。
The acquisition step is executed in the control unit of an information processing device including a control unit;
The acquisition method according to claim 1, characterized in that:
評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値、および、前記2つの代謝物の濃度値が代入される変数を含む胃癌に罹患している可能性を評価するための式を用いて、前記式の値を算出する算出ステップを含むこと、
を特徴とする算出方法。
Concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystathionine, in the blood of the subject to be evaluated, and a variable to which the concentration values of the two metabolites are substituted, including the possibility that the subject is suffering from gastric cancer. comprising a calculation step of calculating a value of the expression using an expression for evaluation;
A calculation method characterized by
前記算出ステップは、制御部を備えた情報処理装置の前記制御部において実行されること、
を特徴とする請求項3に記載の算出方法。
The calculation step is executed in the control unit of an information processing device including a control unit;
The calculation method according to claim 3, characterized in that:
制御部を備える評価装置であって、
前記制御部は、
評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値、または、前記2つの代謝物の濃度値が代入される変数を含む式および前記2つの代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌に罹患している可能性を評価する評価手段
を備えること、
を特徴とする評価装置。
An evaluation device comprising a control section,
The control unit includes:
Concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystationine, in the blood to be evaluated, or a formula including a variable into which the concentration values of the two metabolites are substituted, and the concentration of the two metabolites. comprising an evaluation means for evaluating the possibility that the evaluation target is suffering from gastric cancer using the value of the formula calculated using the value;
An evaluation device featuring:
前記濃度値に関する濃度データまたは前記式の値を提供する端末装置とネットワークを介して通信可能に接続され、
前記制御部は、
前記端末装置から送信された前記評価対象の前記濃度データまたは前記式の値を受信するデータ受信手段と、
前記評価手段で得られた評価結果を前記端末装置へ送信する結果送信手段と、
をさらに備え、
前記評価手段は、前記データ受信手段で受信した前記濃度データに含まれている前記濃度値または前記式の値を用いること、
を特徴とする請求項5に記載の評価装置。
communicably connected via a network to a terminal device that provides concentration data regarding the concentration value or the value of the formula;
The control unit includes:
data receiving means for receiving the concentration data of the evaluation target or the value of the formula transmitted from the terminal device;
result transmitting means for transmitting the evaluation results obtained by the evaluation means to the terminal device;
Furthermore,
the evaluation means uses the concentration value or the value of the formula included in the concentration data received by the data reception means;
The evaluation device according to claim 5, characterized in that:
制御部を備える算出装置であって、
前記制御部は、
評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値、および、前記2つの代謝物の濃度値が代入される変数を含む胃癌に罹患している可能性を評価するための式を用いて、前記式の値を算出する算出手段
を備えること、
を特徴とする算出装置。
A calculation device comprising a control unit,
The control unit includes:
Concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystathionine, in the blood of the subject to be evaluated, and a variable to which the concentration values of the two metabolites are substituted, including the possibility that the subject is suffering from gastric cancer. Calculating means for calculating the value of the formula using the formula for evaluation;
A calculation device characterized by.
制御部を備える情報処理装置において実行させるための評価プログラムであって、
前記制御部において実行させるための、
評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値、または、前記2つの代謝物の濃度値が代入される変数を含む式および前記2つの代謝物の濃度値を用いて算出された前記式の値を用いて、前記評価対象について、胃癌に罹患している可能性を評価する評価ステップ
を含むこと、
を特徴とする評価プログラム。
An evaluation program to be executed in an information processing device including a control unit, the program comprising:
for execution in the control unit,
Concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystationine, in the blood to be evaluated, or a formula including a variable into which the concentration values of the two metabolites are substituted, and the concentration of the two metabolites. an evaluation step of evaluating the possibility that the evaluation subject is suffering from gastric cancer using the value of the formula calculated using the value;
An evaluation program featuring:
制御部を備える情報処理装置において実行させるための算出プログラムであって、
前記制御部において実行させるための、
評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値、および、前記2つの代謝物の濃度値が代入される変数を含む胃癌に罹患している可能性を評価するための式を用いて、前記式の値を算出する算出ステップ
を含むこと、
を特徴とする算出プログラム。
A calculation program to be executed in an information processing device including a control unit, the calculation program comprising:
for execution in the control unit,
Concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystathionine, in the blood of the subject to be evaluated, and a variable to which the concentration values of the two metabolites are substituted, including the possibility that the subject is suffering from gastric cancer. comprising a calculation step of calculating the value of the formula using the formula for evaluation;
A calculation program featuring:
請求項8または9に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium recording the program according to claim 8 or 9. 制御部を備える評価装置と、制御部を備え、評価対象の血液中の少なくとも3-HydroxykynurenineとL-Cystathionineとの2つの代謝物の濃度値に関する濃度データ、または、前記2つの代謝物の濃度値が代入される変数を含む式および前記2つの代謝物の濃度値を用いて算出された前記式の値を提供する端末装置とを、ネットワークを介して通信可能に接続して構成される評価システムであって、
前記端末装置の前記制御部は、
前記評価対象の前記濃度データまたは前記式の値を前記評価装置へ送信するデータ送信手段と、
前記評価装置から送信された、前記評価対象についての胃癌に罹患している可能性に関する評価結果を受信する結果受信手段と、
を備え、
前記評価装置の前記制御部は、
前記端末装置から送信された前記評価対象の前記濃度データまたは前記式の値を受信するデータ受信手段と、
前記データ受信手段で受信した前記評価対象の前記濃度データに含まれている前記2つの代謝物の濃度値または前記式の値を用いて、前記評価対象について、胃癌に罹患している可能性を評価する評価手段と、
前記評価手段で得られた前記評価結果を前記端末装置へ送信する結果送信手段と、
を備えること、
を特徴とする評価システム。
an evaluation device comprising a control unit; and concentration data regarding the concentration values of at least two metabolites, 3-Hydroxykynurenine and L-Cystationine, in the blood of an evaluation target, or concentration values of the two metabolites. An evaluation system configured by communicably connecting a terminal device that provides a formula including a variable to which is substituted and a value of the formula calculated using the concentration values of the two metabolites via a network. And,
The control unit of the terminal device includes:
data transmitting means for transmitting the concentration data of the evaluation target or the value of the formula to the evaluation device;
a result receiving means for receiving an evaluation result regarding the possibility that the evaluation subject is suffering from gastric cancer, which is transmitted from the evaluation device;
Equipped with
The control unit of the evaluation device includes:
data receiving means for receiving the concentration data of the evaluation target or the value of the formula transmitted from the terminal device;
Using the concentration values of the two metabolites included in the concentration data of the evaluation target received by the data receiving means or the value of the formula, the possibility of the evaluation target suffering from gastric cancer is determined. an evaluation means to evaluate;
result transmitting means for transmitting the evaluation results obtained by the evaluation means to the terminal device;
to have
An evaluation system featuring:
JP2023022404A 2018-04-02 2023-02-16 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system Active JP7435856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023022404A JP7435856B2 (en) 2018-04-02 2023-02-16 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018071093A JP7230335B2 (en) 2018-04-02 2018-04-02 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system
JP2023022404A JP7435856B2 (en) 2018-04-02 2023-02-16 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018071093A Division JP7230335B2 (en) 2018-04-02 2018-04-02 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system

Publications (2)

Publication Number Publication Date
JP2023058683A JP2023058683A (en) 2023-04-25
JP7435856B2 true JP7435856B2 (en) 2024-02-21

Family

ID=68340671

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018071093A Active JP7230335B2 (en) 2018-04-02 2018-04-02 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system
JP2023022404A Active JP7435856B2 (en) 2018-04-02 2023-02-16 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018071093A Active JP7230335B2 (en) 2018-04-02 2018-04-02 Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system

Country Status (1)

Country Link
JP (2) JP7230335B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150204882A1 (en) 2012-08-10 2015-07-23 Cedars-Sinai Medical Center Methionine metabolites predict aggressive cancer progression
JP2017198694A (en) 2008-02-06 2017-11-02 味の素株式会社 Acquisition method, stomach cancer evaluation device, stomach cancer evaluation program, and stomach cancer evaluation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011146683A1 (en) * 2010-05-19 2011-11-24 Metabolon, Inc. Methods and reagents for metabolomics and histology in a biological sample and a kit for the same
GB201101667D0 (en) * 2011-01-31 2011-03-16 Imp Innovations Ltd Diagnostic method
WO2014116833A2 (en) * 2013-01-23 2014-07-31 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Compositions and methods for detecting neoplasia
KR101462206B1 (en) * 2013-06-26 2014-11-20 한국과학기술연구원 Method for providing basic information for diagnosing stomach cancer using the change of tryptophan metabolism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198694A (en) 2008-02-06 2017-11-02 味の素株式会社 Acquisition method, stomach cancer evaluation device, stomach cancer evaluation program, and stomach cancer evaluation system
US20150204882A1 (en) 2012-08-10 2015-07-23 Cedars-Sinai Medical Center Methionine metabolites predict aggressive cancer progression

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Frequent epigenetic silencing of the folate-metabolising gene cystatione-beta-synthase in gastrointestinal cancer,PLoS ONE,2012年,vol.7 No.11 49683,DOI:10.1371/journal.pone.0049683
Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma,2016年,vol.6 AN21319,DOI:10.1038/srep21319

Also Published As

Publication number Publication date
JP7230335B2 (en) 2023-03-01
JP2019184257A (en) 2019-10-24
JP2023058683A (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP7173240B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, and evaluation system
JP2022066387A (en) Acquisition method, computation method, evaluation device, computation device, evaluation program, computation program, and evaluation system
JP2024038394A (en) Method for acquisition, method for calculation, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system
JP7506646B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, and evaluation system
JP7489067B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal device
JP7435856B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system
JP7543251B2 (en) Method for assisting in the evaluation of accumulation of amyloid beta in the brain, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal device
JP7435855B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, and evaluation system
WO2019194144A1 (en) Breast cancer evaluation method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal unit
JP7093163B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, and evaluation system
JP7120027B2 (en) Acquisition method, calculation method, evaluation device, calculation device, evaluation program, calculation program, and evaluation system
WO2022009991A1 (en) Method for evaluating mild cognitive impairment, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal device
JP2017122655A (en) Method for evaluating skeletal muscle area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150