JP7423079B2 - Deodorant manufacturing method - Google Patents
Deodorant manufacturing method Download PDFInfo
- Publication number
- JP7423079B2 JP7423079B2 JP2021102468A JP2021102468A JP7423079B2 JP 7423079 B2 JP7423079 B2 JP 7423079B2 JP 2021102468 A JP2021102468 A JP 2021102468A JP 2021102468 A JP2021102468 A JP 2021102468A JP 7423079 B2 JP7423079 B2 JP 7423079B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- water
- aluminum dross
- deodorant
- dross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002781 deodorant agent Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 60
- 229910052782 aluminium Inorganic materials 0.000 claims description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 49
- 229910001868 water Inorganic materials 0.000 claims description 49
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 32
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 16
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- 238000011282 treatment Methods 0.000 description 25
- 238000006703 hydration reaction Methods 0.000 description 19
- 238000001179 sorption measurement Methods 0.000 description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 14
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 230000005587 bubbling Effects 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000004445 quantitative analysis Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000001877 deodorizing effect Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000004451 qualitative analysis Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Processing Of Solid Wastes (AREA)
Description
本発明は、アルミニウムドロスを原料に用いた消臭剤とその製造方法に関する。 The present invention relates to a deodorant using aluminum dross as a raw material and a method for producing the same.
アルミニウム製品の製造工程においてアルミニウムを溶解すると、溶解したアルミニウムが空気と反応して酸化物や窒化物などが生成する。この酸化物などが含まれる副産物は、アルミニウムドロスと呼ばれ、鉄鋼製造用の副資材として有効利用されてきた。しかし、近頃、鉄鋼スラグからのフッ素等の溶出による水質汚染、土壌汚染が引き金となり、アルミニウムドロスの利用を取りやめる企業が出始めている。 When aluminum is melted in the manufacturing process of aluminum products, the melted aluminum reacts with air to produce oxides, nitrides, etc. This by-product containing oxides is called aluminum dross, and has been effectively used as an auxiliary material for steel manufacturing. However, recently, some companies have begun to stop using aluminum dross due to water and soil pollution caused by the elution of fluorine and other substances from steel slag.
こうした背景において、鉄鋼製造用の副資材として有効利用されないアルミニウムドロスが増加し、その大半は、産業廃棄物として埋め立て処分されている。しかし、アルミニウムドロスを埋め立て処分した場合は、アルミニウムと水の反応による水素の発生、窒化アルミニウムと水の反応によるアンモニアの発生、塩化物による塩害、フッ化物による環境汚染などのおそれがあった。 Against this background, aluminum dross, which is not effectively used as an auxiliary material for steel manufacturing, is increasing, and most of it is disposed of in landfills as industrial waste. However, if aluminum dross is disposed of in a landfill, there are risks such as hydrogen generation due to the reaction between aluminum and water, ammonia generation due to the reaction between aluminum nitride and water, salt damage due to chlorides, and environmental pollution due to fluoride.
このため、アルミニウムドロスの新たな用途の開拓が望まれていた。 Therefore, it has been desired to develop new uses for aluminum dross.
なお、アルミニウムドロスには、ハロゲンが含まれるため、有効利用する場合には、ハロゲンを除去することが望まれる。ハロゲンの除去方法としては、アルミニウムドロスを湿式処理する方法が知られており、さらに、特許文献1には、湿式処理中に発生するアンモニアをオゾンで酸化する方法が開示されている。また、特許文献1には、処理済みのアルミニウムドロスの用途として、鉄鋼プロセス以外の他の用途、例えば、建材などの各種セラミック製品の原料が提案されている。 Note that since aluminum dross contains halogen, it is desirable to remove the halogen if it is to be used effectively. As a method for removing halogen, a method of wet-processing aluminum dross is known, and furthermore, Patent Document 1 discloses a method of oxidizing ammonia generated during the wet-processing with ozone. Further, Patent Document 1 proposes uses of treated aluminum dross other than steel processes, such as raw materials for various ceramic products such as building materials.
そこで、本発明は、アルミニウムドロスの新たな用途を提供すること目的とする。 Therefore, an object of the present invention is to provide a new use for aluminum dross.
本発明者らは、アルミニウムドロスの新たな用途を見出すために鋭意検討したところ、アルミニウムドロスを水中で撹拌後、固形分を分離して焼成することにより、消臭性能に優れた消臭剤が得られることを見出し、本発明に想到した。 The inventors of the present invention conducted intensive studies to find new uses for aluminum dross, and found that a deodorizer with excellent deodorizing performance was created by stirring aluminum dross in water, separating the solid content, and baking it. They found that it can be obtained, and came up with the present invention.
すなわち、本発明の消臭剤の製造方法は、アルミニウムドロスを水中で撹拌後、固形分を分離して焼成することを特徴とする。 That is, the method for producing a deodorant of the present invention is characterized in that aluminum dross is stirred in water, the solid content is separated, and the aluminum dross is fired.
また、アルミニウムドロスを水中で撹拌する際に、水中にオゾンを供給する。 Also, when stirring aluminum dross in water, ozone is supplied into the water.
また、炭酸カルシウムが添加されたアルミニウムドロスを水中で撹拌する。 Also, aluminum dross to which calcium carbonate has been added is stirred in water.
本発明の消臭剤は、本発明の消臭剤の製造方法により得られたことを特徴とする。 The deodorant of the present invention is characterized by being obtained by the method for producing a deodorant of the present invention.
また、比表面積が60m2/g以上であることを特徴する。 Further, it is characterized in that the specific surface area is 60 m 2 /g or more.
また、JIS M 8853に基づく定量分析法による強熱減量が20%以上であることを特徴とする。 Further, it is characterized in that the loss on ignition measured by a quantitative analysis method based on JIS M 8853 is 20% or more.
また、吸着開始後24時間における硫化水素静的吸着容量が20g-H2S/100g試料以上であることを特徴とする。 Further, it is characterized in that the hydrogen sulfide static adsorption capacity 24 hours after the start of adsorption is 20 g-H 2 S/100 g sample or more.
本発明の消臭剤及びその製造方法によれば、アルミニウムドロスを原料に用いて、消臭性能に優れた消臭剤を提供することができる。 According to the deodorant and its manufacturing method of the present invention, it is possible to provide a deodorant with excellent deodorizing performance using aluminum dross as a raw material.
本発明の消臭剤の製造方法は、アルミニウムドロスを水中で撹拌後、固形分を分離して焼成するものである。 The method for producing a deodorant of the present invention involves stirring aluminum dross in water, separating the solid content, and then firing the aluminum dross.
アルミニウムドロスは、アルミニウム製品の製造工程においてアルミニウムを溶解したときに生成する副産物であり、酸化アルミニウムなどの酸化物、窒化アルミニウムなどの窒化物のほか、金属アルミニウム、ハロゲンなどが含まれる。 Aluminum dross is a byproduct produced when aluminum is melted in the manufacturing process of aluminum products, and includes oxides such as aluminum oxide, nitrides such as aluminum nitride, metal aluminum, and halogens.
本発明において用いられるアルミニウムドロスの組成は、特定の組成に限定されるものではなく、本発明においては種々の組成のアルミニウムドロスを使用することができ、アルミニウムドロス中の任意の成分を調整したものであってもよい。また、本発明において用いられるアルミニウムドロスの形態は、特定の形態に限定されるものではないが、水との反応性の高さの点から粉末であることが好ましい。 The composition of the aluminum dross used in the present invention is not limited to a specific composition, and in the present invention, aluminum dross with various compositions can be used, and any component in the aluminum dross can be adjusted. It may be. Further, the form of the aluminum dross used in the present invention is not limited to a specific form, but from the viewpoint of high reactivity with water, it is preferably a powder.
また、金属アルミニウムの粉末を含有するアルミニウムドロスは、発火のおそれがある。このため、安全管理のために、不燃性粉体として炭酸カルシウムをアルミニウムドロスに添加する場合がある。本発明においては、このような炭酸カルシウムが添加されたアルミニウムドロスも用いることができる。 Furthermore, aluminum dross containing metallic aluminum powder may catch fire. For this reason, calcium carbonate is sometimes added to aluminum dross as a nonflammable powder for safety control. In the present invention, aluminum dross to which such calcium carbonate is added can also be used.
アルミニウムドロスを水中で撹拌すると、アルミニウムドロスに含まれる金属アルミニウムが水と反応して水酸化アルミニウムと酸素が生成し、アルミニウムの窒化物が水と反応して、水酸化アルミニウムとアンモニアを生成する。この撹拌工程での水和反応処理におけるアルミニウムドロスと水の混合比、温度、撹拌時間等の条件については、特定の条件に限定されるものではないが、アルミニウムドロスに含まれるアルミニウムの窒化物と水の反応が効率的に進みむように設定するのが好ましい。また、撹拌工程は、アンモニアの発生が実質的に停止するまで行うのが好ましい。 When aluminum dross is stirred in water, the metal aluminum contained in the aluminum dross reacts with water to produce aluminum hydroxide and oxygen, and aluminum nitride reacts with water to produce aluminum hydroxide and ammonia. Conditions such as the mixing ratio of aluminum dross and water, temperature, stirring time, etc. in the hydration reaction treatment in this stirring step are not limited to specific conditions, but the aluminum nitride contained in the aluminum dross and It is preferable to set the temperature so that the water reaction proceeds efficiently. Further, the stirring step is preferably carried out until the generation of ammonia substantially stops.
また、撹拌の方法については、特定の方法に限定されるものではないが、水中に空気をバブリングすることによって撹拌を行えば、撹拌と空気の供給を同時に行うことができるため、水中の酸化反応を促進させることができる。なお、空気をバブリングする場合は、酸化反応をより促進させるために気泡が細かい方が好ましい。 In addition, the stirring method is not limited to a specific method, but if stirring is performed by bubbling air into the water, stirring and air supply can be performed at the same time, so the oxidation reaction in water can be promoted. In addition, when bubbling air, it is preferable that the bubbles be fine in order to further promote the oxidation reaction.
また、アルミニウムドロスを水中で撹拌する際に、水中にオゾンを供給すると、発生するアンモニアとオゾンが反応して、硝酸、水、酸素が生成し、アンモニアの大気への放出が防止される。したがって、製造工程中の悪臭の発生を防止するために、撹拌工程において水中にオゾンを供給してもよい。このオゾン水による水和反応処理におけるオゾンの供給方法や供給量等の条件については、特定の条件に限定されるものではないが、アンモニアの大気への放出が防止されるように設定するのが好ましい。また、撹拌にバブリングを用いる場合は、水中にバブリングする空気とともにオゾンを供給するようにしてもよい。 Furthermore, if ozone is supplied into the water when aluminum dross is stirred in the water, the generated ammonia and ozone react to produce nitric acid, water, and oxygen, thereby preventing ammonia from being released into the atmosphere. Therefore, in order to prevent the generation of bad odors during the manufacturing process, ozone may be supplied into the water during the stirring process. Conditions such as the ozone supply method and supply amount in this hydration reaction treatment using ozonated water are not limited to specific conditions, but they should be set to prevent ammonia from being released into the atmosphere. preferable. Moreover, when bubbling is used for stirring, ozone may be supplied together with air bubbling into the water.
撹拌工程の終了後、固形分を分離する。この分離工程は、ろ過などの公知の方法を用いて行うことができる。得られた固形分は、水和反応処理によって原料のアルミニウムドロスから金属アルミニウム、窒化アルミニウム、ハロゲンが除去され、主成分として水酸化アルミニウムを含むものであり、化学的に安定した組成になっている。 After the stirring step is completed, the solids are separated. This separation step can be performed using known methods such as filtration. The obtained solid content contains aluminum hydroxide as a main component and has a chemically stable composition, as metal aluminum, aluminum nitride, and halogen are removed from the raw aluminum dross through a hydration reaction treatment. .
分離工程の終了後、固形分を焼成する。分離工程後の水酸化アルミニウムは、付着水や結晶水が残存しているため比表面積が小さく、このままでは消臭剤として機能しない。そこで、この焼成工程において、適度の熱処理を行うことで付着水や結晶水をなくして、比表面積を大きくする。この焼成工程の熱処理における温度、時間等の条件については、特定の条件に限定されるものではないが、熱処理後の比表面積が大きくなるように設定するのが好ましい。好ましくは、300~400℃の温度で固形分を焼成する。なお、焼成工程の前に、固形分を乾燥させてもよい。なお、熱処理の温度が300℃未満であると、水酸化アルミニウムから付着水や結晶水が完全になくならず、熱処理後の水酸化アルミニウムの比表面積を大きくすることができないおそれがある。また、熱処理の温度が400℃を超えると、水酸化アルミニウムから水が取れて酸化アルミニウムに変換される。完全に酸化アルミニウムに変換されてしまうと、比表面積が低下するため、消臭剤として機能の低下があり、好ましくない。 After the separation process is completed, the solid content is calcined. Aluminum hydroxide after the separation process has a small specific surface area due to remaining adhering water and crystallized water, and does not function as a deodorant as it is. Therefore, in this firing step, by performing appropriate heat treatment, adhering water and crystal water are eliminated and the specific surface area is increased. Conditions such as temperature and time in the heat treatment of this firing step are not limited to specific conditions, but are preferably set so that the specific surface area after the heat treatment becomes large. Preferably, the solid content is calcined at a temperature of 300-400°C. Note that the solid content may be dried before the firing step. Note that if the temperature of the heat treatment is less than 300° C., adhering water and water of crystallization will not be completely removed from the aluminum hydroxide, and the specific surface area of the aluminum hydroxide after the heat treatment may not be able to be increased. Furthermore, when the temperature of the heat treatment exceeds 400° C., water is removed from aluminum hydroxide and converted to aluminum oxide. If it is completely converted to aluminum oxide, the specific surface area will decrease, resulting in a decrease in its function as a deodorant, which is not preferable.
本発明の消臭剤の製造方法により得られた消臭剤は、比表面積が大きく、60m2/g以上である。比表面積が大きいほど、消臭剤としての高い吸着性能が期待できる。 The deodorant obtained by the method for producing a deodorant of the present invention has a large specific surface area of 60 m 2 /g or more. The larger the specific surface area, the higher the adsorption performance as a deodorant can be expected.
また、本発明の消臭剤の製造方法により得られた消臭剤は、JIS M 8853に基づく定量分析法による強熱減量が20%以上である。 JIS M 8853に基づく定量分析法による強熱減量が多いことは、消臭剤における水酸基の数が多いことを示し、水酸基の数が多いほど、消臭剤としての高い吸着性能が期待できる。 Further, the deodorant obtained by the method for producing a deodorant of the present invention has a loss on ignition of 20% or more as determined by a quantitative analysis method based on JIS M 8853. A large loss on ignition as determined by a quantitative analysis method based on JIS M 8853 indicates that the deodorant has a large number of hydroxyl groups, and the larger the number of hydroxyl groups, the higher the adsorption performance of the deodorant can be expected.
また、本発明の消臭剤の製造方法により得られた消臭剤は、硫化水素の吸着性能が極めて高く、吸着開始後24時間における硫化水素静的吸着容量が20g-H2S/100g試料以上である。 In addition, the deodorant obtained by the deodorant manufacturing method of the present invention has extremely high hydrogen sulfide adsorption performance, and the hydrogen sulfide static adsorption capacity 24 hours after the start of adsorption is 20g-H 2 S/100g sample. That's all.
以上のように、本発明の消臭剤の製造方法によって得られた消臭剤は、極めて優れた消臭性能を有する。したがって、本発明の消臭剤及びその製造方法によれば、アルミニウムドロスを原料に用いて、消臭性能に優れた消臭剤を提供することができる。 As described above, the deodorant obtained by the method for producing a deodorant of the present invention has extremely excellent deodorizing performance. Therefore, according to the deodorant and the method for producing the same of the present invention, it is possible to provide a deodorant with excellent deodorizing performance using aluminum dross as a raw material.
以下、本発明の消臭剤及びその製造方法の実施形態について、具体的に説明する。なお、本発明は、以下の実施形態によって限定されるものではなく、種々の変形実施が可能である。 EMBODIMENT OF THE INVENTION Hereinafter, the embodiment of the deodorant of this invention and its manufacturing method is concretely described. Note that the present invention is not limited to the following embodiments, and various modifications can be made.
[試料の調整]
(1)水和反応処理を行った試料の調整
アルミニウムメーカーより入手したアルミニウムドロスの粉末45gを450mlの純水中に分散させ、50℃にて48時間、空気のバブリングにより撹拌した。その後、濾過により固形分を分離し、110℃で乾燥させた。こうして得られた粉末を400℃にて2時間焼成することより、硫化水素静的吸着試験用の試料を得た。
[Sample preparation]
(1) Preparation of sample subjected to hydration reaction treatment 45 g of aluminum dross powder obtained from an aluminum manufacturer was dispersed in 450 ml of pure water and stirred at 50° C. for 48 hours by bubbling air. Thereafter, the solid content was separated by filtration and dried at 110°C. The thus obtained powder was calcined at 400° C. for 2 hours to obtain a sample for a hydrogen sulfide static adsorption test.
(2)オゾン水による水和反応処理を行った試料の調整
アルミニウムメーカーより入手したアルミニウムドロスの粉末45gを450mlの純水中に分散させ、50℃にて48時間、空気のバブリングにより撹拌した。このとき、バブリングする空気を経由して、オゾンを2g/時の速度で水中に供給しながら撹拌した。その後、濾過により固形分を分離し、110℃にて乾燥させた。こうして得られた粉末を400℃にて2時間焼成することより、硫化水素静的吸着試験用の試料を得た。
(2) Preparation of sample subjected to hydration reaction treatment with ozonated water 45 g of aluminum dross powder obtained from an aluminum manufacturer was dispersed in 450 ml of pure water and stirred at 50° C. for 48 hours by air bubbling. At this time, ozone was supplied into the water at a rate of 2 g/hour via bubbling air while stirring. Thereafter, the solid content was separated by filtration and dried at 110°C. The thus obtained powder was calcined at 400° C. for 2 hours to obtain a sample for a hydrogen sulfide static adsorption test.
(3)炭酸カルシウム添加後の水和反応処理を行った試料の調整
アルミニウムメーカーより入手したアルミニウムドロスの粉末45gを450mlの純水中に分散させ、これにアルミニウムドロス100部に対して市販の炭酸カルシウム20部を添加し、50℃にて48時間撹拌した。その後、濾過により固形分を分離し、110℃で乾燥させた。こうして得られた粉末を400℃にて2時間焼成することより、硫化水素静的吸着試験用の試料を得た。
(3) Preparation of sample subjected to hydration reaction treatment after addition of calcium carbonate 45 g of aluminum dross powder obtained from an aluminum manufacturer was dispersed in 450 ml of pure water, and 100 parts of aluminum dross was mixed with commercially available carbonate. 20 parts of calcium was added and stirred at 50°C for 48 hours. Thereafter, the solid content was separated by filtration and dried at 110°C. The thus obtained powder was calcined at 400° C. for 2 hours to obtain a sample for a hydrogen sulfide static adsorption test.
(4)炭酸カルシウム添加後のオゾン水による水和反応処理を行った試料の調整
アルミニウムメーカーより入手したアルミニウムドロスの粉末45gを450mlの純水中に分散させ、これにアルミニウムドロス100部に対して市販の炭酸カルシウム20部を添加し、50℃にて48時間、空気のバブリングにより撹拌した。このとき、バブリングする空気を経由して、オゾンを2g/時の速度で水中に供給しながら撹拌した。その後、濾過により固形分を分離し、110℃にて乾燥させた。こうして得られた粉末を400℃にて2時間焼成することより、硫化水素静的吸着試験用の試料を得た。
(4) Preparation of a sample subjected to hydration reaction treatment with ozonated water after addition of calcium carbonate 45 g of aluminum dross powder obtained from an aluminum manufacturer was dispersed in 450 ml of pure water, and 100 parts of aluminum dross was added to the sample. 20 parts of commercially available calcium carbonate were added and stirred at 50° C. for 48 hours by bubbling air. At this time, ozone was supplied into the water at a rate of 2 g/hour via bubbling air while stirring. Thereafter, the solid content was separated by filtration and dried at 110°C. The thus obtained powder was calcined at 400° C. for 2 hours to obtain a sample for a hydrogen sulfide static adsorption test.
[試験と分析]
(1)比表面積の測定
マイクロメリテック社製TriStar II 3020を使用して、110℃にて脱気乾燥した試料0.3gについて、通常のBET法により比表面積を算出した。
[Test and analysis]
(1) Measurement of specific surface area Using TriStar II 3020 manufactured by Micromeritech, the specific surface area of 0.3 g of a sample degassed and dried at 110° C. was calculated by the usual BET method.
(2)定量分析及び定性分析
セラミックス用アルミノケイ酸塩質原料の化学分析法として規定されたJIS M8853:1998に基づき、定量分析を行った。また、理学電機工業株式会社製蛍光X線分析装置ZSX Primus IIを使用して定性分析を行った。
(2) Quantitative analysis and qualitative analysis Quantitative analysis was performed based on JIS M8853:1998, which is defined as a chemical analysis method for aluminosilicate raw materials for ceramics. In addition, qualitative analysis was performed using a fluorescent X-ray analyzer ZSX Primus II manufactured by Rigaku Denki Kogyo Co., Ltd.
(3)硫化水素静的吸着試験
粉末試料0.25~0.5gを容量10Lのテドラバッグに投入し、このテドラバッグに濃度1体積%の硫化水素10Lを注入し、試験を開始した。試験開始後6時間、24時間、48時間、72時間の時点でそれぞれテドラバッグから100mLの気体を採取し、株式会社ガステック製の硫化水素検知管を使用して硫化水素の残存濃度を測定した。そして、初期濃度と残存濃度から硫化水素静的吸着容量を算出した。
(3) Hydrogen sulfide static adsorption test 0.25 to 0.5 g of a powder sample was placed in a Tedra bag with a capacity of 10 L, and 10 L of hydrogen sulfide with a concentration of 1% by volume was poured into the Tedra bag, and the test was started. 100 mL of gas was collected from the Tedra bag at 6 hours, 24 hours, 48 hours, and 72 hours after the start of the test, and the residual concentration of hydrogen sulfide was measured using a hydrogen sulfide detection tube manufactured by Gastec Corporation. Then, the static hydrogen sulfide adsorption capacity was calculated from the initial concentration and residual concentration.
(4)X線回折測定
株式会社リガク製X線回折装置RINT-Ultima IIIを使用して測定を行った。
(4) X-ray diffraction measurement Measurement was performed using an X-ray diffraction device RINT-Ultima III manufactured by Rigaku Co., Ltd.
[結果]
調製した試料について、試験と分析の結果を以下の表1~5、図1、2に示す。なお、実施例1~5、比較例1、2の試料は、以下の処理を行ったものである。
実施例1:オゾン水による水和反応処理
実施例1-2:実施例1と同じ(試験での使用量のみ異なる)
実施例2:水和反応処理
実施例3:オゾン水による水和反応処理(実施例1、2とは異なるロットのアルミニウムドロスを使用)
実施例4:炭酸カルシウム添加後の水和反応処理
実施例5:炭酸カルシウム添加後のオゾン水にとる水和反応処理
比較例1:未処理
比較例2:炭酸カルシウムとの混合のみ
また、使用した炭酸カルシウムについて、定性分析結果を表6に、X線回折測定結果を図3に示す。
[result]
The test and analysis results for the prepared samples are shown in Tables 1 to 5 and Figures 1 and 2 below. The samples of Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to the following treatments.
Example 1: Hydration reaction treatment with ozonated water Example 1-2: Same as Example 1 (only the amount used in the test is different)
Example 2: Hydration reaction treatment Example 3: Hydration reaction treatment with ozonated water (using aluminum dross from a different lot from Examples 1 and 2)
Example 4: Hydration reaction treatment after addition of calcium carbonate Example 5: Hydration reaction treatment in ozonated water after addition of calcium carbonate Comparative example 1: Untreated Comparative example 2: Only mixing with calcium carbonate Also used Regarding calcium carbonate, qualitative analysis results are shown in Table 6, and X-ray diffraction measurement results are shown in FIG.
[まとめ]
表1の比表面積測定結果より、水和反応処理またはオゾン水による水和反応処理のいずれかの処理を行った場合に、極めて比表面積が大きくなった。特に、炭酸カルシウム添加後に処理を行った場合に、比表面積が大きくなった。
[summary]
From the specific surface area measurement results in Table 1, the specific surface area became extremely large when either the hydration reaction treatment or the hydration reaction treatment with ozone water was performed. In particular, when the treatment was performed after adding calcium carbonate, the specific surface area increased.
また、表2の強熱減量の数値から明らかなように、水和反応処理またはオゾン水による水和反応処理のいずれかの処理を行った場合に、強熱減量の数値が大きくなった。 Furthermore, as is clear from the values of loss on ignition in Table 2, the value of loss on ignition increased when either the hydration reaction treatment or the hydration reaction treatment with ozone water was performed.
また、表5の硫化水素静的吸着容量の数値から明らかなように、水和反応処理またはオゾン水による水和反応処理のいずれかの処理を行った場合に、極めて高い硫化水素吸着性能を有することが分かった。そして、炭酸カルシウムを添加して処理した場合は、さらに高い吸着性能が確認された。炭酸カルシウムは、単体では吸着性能を示さないため、炭酸カルシウムを添加して処理した場合に吸着性能が向上したのは予想外であった。 In addition, as is clear from the hydrogen sulfide static adsorption capacity values in Table 5, it has extremely high hydrogen sulfide adsorption performance when either hydration reaction treatment or hydration reaction treatment with ozonated water is performed. That's what I found out. When calcium carbonate was added to the treatment, even higher adsorption performance was confirmed. Since calcium carbonate alone does not exhibit adsorption performance, it was unexpected that the adsorption performance improved when calcium carbonate was added to the treatment.
また、図1、2より、オゾン水による水和反応処理後において、金属アルミニウム、窒化アルミニウムのピークがほぼ消滅し、主成分として水酸化アルミニウムが生成したことが確認された。 Furthermore, from FIGS. 1 and 2, it was confirmed that after the hydration reaction treatment with ozonated water, the peaks of metal aluminum and aluminum nitride almost disappeared, and aluminum hydroxide was produced as the main component.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021102468A JP7423079B2 (en) | 2021-06-21 | 2021-06-21 | Deodorant manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021102468A JP7423079B2 (en) | 2021-06-21 | 2021-06-21 | Deodorant manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023001632A JP2023001632A (en) | 2023-01-06 |
JP7423079B2 true JP7423079B2 (en) | 2024-01-29 |
Family
ID=84688713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021102468A Active JP7423079B2 (en) | 2021-06-21 | 2021-06-21 | Deodorant manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7423079B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166385A1 (en) * | 2023-02-10 | 2024-08-15 | 国立大学法人東北大学 | Sulfur oxide removal material, method for removing sulfur oxide, and sulfur oxide removal device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3030320B2 (en) | 1994-06-03 | 2000-04-10 | クリ−ンセイコン有限会社 | air purifier |
JP2002045824A (en) | 2000-08-07 | 2002-02-12 | Nippon Light Metal Co Ltd | Method for treating aluminum dross residual ash |
JP2003071840A (en) | 2001-09-06 | 2003-03-12 | Sanai Fujita | Method for disposing of waste plastic including metal and the like and disposal device |
JP2015097995A (en) | 2013-11-19 | 2015-05-28 | 株式会社エコ・プロジェクト | ION EXCHANGER INCLUDING PROCESSED SLUDGE PRODUCT CONTAINING ALUMINIUM COMPONENT (Al COMPONENT), MANUFACTURING METHOD OF ION EXCHANGER, AND HARMFUL ELEMENT ION REMOVING AGENT CONTAINING ION EXCHANGER |
JP2017006911A (en) | 2015-06-25 | 2017-01-12 | 宇部興産株式会社 | Insolubilizer and insolubilization method |
JP2020142190A (en) | 2019-03-06 | 2020-09-10 | 株式会社スズムラ | Processor of aluminum dross, and processing method of aluminum dross |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413482A (en) * | 1977-07-04 | 1979-01-31 | Shigeki Mutoo | Adsorbent and its manufacture |
DE4138231C1 (en) * | 1991-11-21 | 1992-10-22 | Skw Trostberg Ag, 8223 Trostberg, De | |
JPH0812323A (en) * | 1994-06-24 | 1996-01-16 | Sumitomo Chem Co Ltd | Production of fine particle-shaped aluminum hydroxide powder and fine particle-shaped alumina powder |
JPH0889795A (en) * | 1994-09-17 | 1996-04-09 | Miyuki Kogyo Kk | Adsorbent for phosphorus and its preparation |
-
2021
- 2021-06-21 JP JP2021102468A patent/JP7423079B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3030320B2 (en) | 1994-06-03 | 2000-04-10 | クリ−ンセイコン有限会社 | air purifier |
JP2002045824A (en) | 2000-08-07 | 2002-02-12 | Nippon Light Metal Co Ltd | Method for treating aluminum dross residual ash |
JP2003071840A (en) | 2001-09-06 | 2003-03-12 | Sanai Fujita | Method for disposing of waste plastic including metal and the like and disposal device |
JP2015097995A (en) | 2013-11-19 | 2015-05-28 | 株式会社エコ・プロジェクト | ION EXCHANGER INCLUDING PROCESSED SLUDGE PRODUCT CONTAINING ALUMINIUM COMPONENT (Al COMPONENT), MANUFACTURING METHOD OF ION EXCHANGER, AND HARMFUL ELEMENT ION REMOVING AGENT CONTAINING ION EXCHANGER |
JP2017006911A (en) | 2015-06-25 | 2017-01-12 | 宇部興産株式会社 | Insolubilizer and insolubilization method |
JP2020142190A (en) | 2019-03-06 | 2020-09-10 | 株式会社スズムラ | Processor of aluminum dross, and processing method of aluminum dross |
Also Published As
Publication number | Publication date |
---|---|
JP2023001632A (en) | 2023-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1053597C (en) | Process for preparation of solid capture agent of mercury | |
US5352419A (en) | Recovery of aluminium and fluoride values from spent pot lining | |
JPH09278444A (en) | Multiple oxide having oxygen absorbing and releasing ability and its production | |
FR2859470A1 (en) | COMPOSITION BASED ON CERIUM OXIDE AND ZIRCONIUM OXIDE WITH REDUCIBILITY AND HIGH SURFACE, PREPARATION METHOD AND USE AS CATALYST | |
JP7423079B2 (en) | Deodorant manufacturing method | |
WO2019062455A1 (en) | Flue gas desulfurization and denitration agent, preparation method therefor and applications thereof | |
JP2016193802A (en) | Dolomite-based material having high specific surface area, manufacturing method therefor and quality control method therefor | |
WO2016185033A1 (en) | Lime-based sorbent composition for mercury removal and its manufacturing process | |
RU2385294C2 (en) | Method of producing bismuth (iii) oxide powder | |
EP1343734A2 (en) | Method for inerting ash, artificial pozzolan obtained by said method | |
JP2010537947A (en) | Method for treating a gas stream containing silicon tetrafluoride and hydrogen chloride | |
JP7527651B2 (en) | Deodorant and its manufacturing method | |
JP2004315243A (en) | Activated carbon and method for manufacturing the same | |
KR20190067507A (en) | Method of treating waste water including fluorine compound of ammonium ion having improved environmental friendliness and solid-liquid separation | |
JP6300197B2 (en) | Method for stabilizing radioactive cesium adsorbed on ferrocyanide | |
JPH0657354B2 (en) | Simultaneous removal method of arsenic and silicon | |
JP4536257B2 (en) | Method for producing sodium chloride aqueous solution | |
US4578260A (en) | Method for purifying diamond | |
JPH07308573A (en) | Treating agent for air pollution material | |
CN1063088A (en) | Improved spent lining recovery process | |
CN1559681A (en) | High performance carbon monoxide oxidation catalyst and its preparation method | |
JP2001137805A (en) | Stabilizing treatment agent and stabilizing treatment method for municipal waste incineration flying ash | |
JP2021127280A (en) | Metal oxide composite and its production method, and method of separating carbon dioxide | |
JP5827457B2 (en) | Nitrogen oxide removing material and nitrogen oxide removing method | |
JP2007000721A (en) | Flue gas treatment method and production method of flue gas treatment agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7423079 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |