Nothing Special   »   [go: up one dir, main page]

JP7421742B2 - Nanocrystalline soft magnetic material - Google Patents

Nanocrystalline soft magnetic material Download PDF

Info

Publication number
JP7421742B2
JP7421742B2 JP2019125477A JP2019125477A JP7421742B2 JP 7421742 B2 JP7421742 B2 JP 7421742B2 JP 2019125477 A JP2019125477 A JP 2019125477A JP 2019125477 A JP2019125477 A JP 2019125477A JP 7421742 B2 JP7421742 B2 JP 7421742B2
Authority
JP
Japan
Prior art keywords
soft magnetic
alloy
magnetic material
nanocrystalline soft
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019125477A
Other languages
Japanese (ja)
Other versions
JP2021011602A (en
Inventor
祐也 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2019125477A priority Critical patent/JP7421742B2/en
Priority to CN202010628143.2A priority patent/CN112176246A/en
Priority to KR1020200080819A priority patent/KR20210004857A/en
Publication of JP2021011602A publication Critical patent/JP2021011602A/en
Application granted granted Critical
Publication of JP7421742B2 publication Critical patent/JP7421742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • B22F1/147Making a dispersion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、Fe基合金からなるアモルファス母相中に結晶粒子を分散させた軟磁性材料、及びその製造方法、これに用いられるFe基合金に関し、特に、加熱によりアモルファス母相中にナノ結晶粒子を分散晶出させたナノ結晶軟磁性材料、及びその製造方法、これに用いられるFe基合金に関する。 The present invention relates to a soft magnetic material in which crystal grains are dispersed in an amorphous matrix made of an Fe-based alloy, a method for producing the same, and an Fe-based alloy used therein, and in particular, nanocrystalline particles are dispersed in the amorphous matrix by heating. The present invention relates to a nanocrystalline soft magnetic material obtained by dispersing and crystallizing a nanocrystalline soft magnetic material, a method for producing the same, and an Fe-based alloy used therein.

車載リアクトルのような電子部品などに用いられる軟磁性材料において、使用周波数帯域が高周波数側に移行するに従って、高い飽和磁束密度と低い磁歪、低い保磁力が求められるようになってきた。しかしながら、一般的に、磁束密度と損失が互いにトレードオフの関係にあることから、その両立は容易でない。ここで、結晶性の軟磁性材料を非晶質化することで、保磁力を低く且つ飽和磁束密度を高くできることが見いだされている。 As the frequency band used moves toward higher frequencies, soft magnetic materials used in electronic components such as in-vehicle reactors are required to have high saturation magnetic flux density, low magnetostriction, and low coercive force. However, since magnetic flux density and loss generally have a trade-off relationship with each other, it is not easy to achieve both. Here, it has been discovered that by making a crystalline soft magnetic material amorphous, it is possible to lower the coercive force and increase the saturation magnetic flux density.

例えば、特許文献1では、原子%で、B:3.0~6.0%、Si:≦8.0%、P:4.0~8.0%、Cu:0.3~1.0%、C:8.0~12.0%、Cr:1.0~4.0%、残部をFeとした合金組成を有するFe基軟磁性合金からなるほぼアモルファス単相の軟磁性材料が開示されている。かかる軟磁性材料では、保磁力を低く、且つコアロスも低く出来るとしている。 For example, in Patent Document 1, in atomic %, B: 3.0 to 6.0%, Si: ≦8.0%, P: 4.0 to 8.0%, Cu: 0.3 to 1.0 %, C: 8.0 to 12.0%, Cr: 1.0 to 4.0%, and the balance is Fe. has been done. It is said that such soft magnetic materials can have low coercive force and low core loss.

また、アモルファス母相中に結晶粒子を分散晶出させた二相組織を有する軟磁性材料も提案されている。特許文献1でも、アモルファス母相中にナノサイズの粒子径のbcc-Fe結晶粒子を晶出させた二相組織を有するナノ結晶軟磁性材料についての言及がある。 Furthermore, soft magnetic materials having a two-phase structure in which crystal grains are dispersed and crystallized in an amorphous matrix have also been proposed. Patent Document 1 also mentions a nanocrystalline soft magnetic material having a two-phase structure in which BCC-Fe crystal particles having nano-sized particles are crystallized in an amorphous matrix.

特許文献2でも、アモルファス母相中に20nm以下の粒子径のbcc-Fe結晶粒子を晶出させた二相組織を有するナノ結晶軟磁性材料が開示されている。かかるナノ結晶軟磁性材料は、原子%で、P:6~10%、C:6~8%、B:2~6%、Cu:0.4~1%、Si:1~3%、Cr:2原子%以下、残部をFeとした合金組成を有するとしている。急冷凝固により得られたアモルファス粉末を熱処理し微細なbcc-Fe結晶粒子を晶出させて二相組織を得ている。これを圧粉成形することで所定形状の磁性体が製造できるとしている。 Patent Document 2 also discloses a nanocrystalline soft magnetic material having a two-phase structure in which BCC-Fe crystal particles having a particle size of 20 nm or less are crystallized in an amorphous matrix. Such a nanocrystalline soft magnetic material contains, in atomic percent, P: 6-10%, C: 6-8%, B: 2-6%, Cu: 0.4-1%, Si: 1-3%, Cr. : 2 atomic % or less, and the balance is Fe. The amorphous powder obtained by rapid solidification is heat treated to crystallize fine BCC-Fe crystal particles to obtain a two-phase structure. It is said that a magnetic body of a predetermined shape can be manufactured by compacting this material.

特開2016-211017号公報Japanese Patent Application Publication No. 2016-211017 特開2016-23340号公報JP2016-23340A

上記したように、アモルファス母相中に結晶粒子を分散させたナノ結晶軟磁性材料において、結晶磁気異方性は、RAM(ランダム磁気異方性)理論に基づくと、アモルファス母相中に晶出した結晶相粒子の粒子径の逆数に正比例する。そこで、保磁力を低くするには、結晶相粒子の粒子径を小さく且つ均一にすることが好ましい。一方、熱処理によって、より微細な結晶相粒子を得るには、高速加熱する方法が一般的に知られているが、その制御は難しく、生産性に乏しい。 As mentioned above, in a nanocrystalline soft magnetic material in which crystal particles are dispersed in an amorphous matrix, the magnetocrystalline anisotropy is based on the RAM (random magnetic anisotropy) theory. It is directly proportional to the reciprocal of the particle size of the crystalline phase particles. Therefore, in order to lower the coercive force, it is preferable to make the particle diameter of the crystalline phase particles small and uniform. On the other hand, in order to obtain finer crystal phase particles by heat treatment, a method of high-speed heating is generally known, but it is difficult to control and has poor productivity.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、Fe基合金からなるアモルファス母相中に結晶粒子を分散させたナノ結晶軟磁性材料であって、軟磁気特性に優れるとともに、高い生産性を有するナノ結晶軟磁性材料、及びその製造方法、これに用いられるFe基合金を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to provide a nanocrystalline soft magnetic material in which crystal particles are dispersed in an amorphous matrix made of an Fe-based alloy. An object of the present invention is to provide a nanocrystalline soft magnetic material having excellent soft magnetic properties and high productivity, a method for producing the same, and an Fe-based alloy used therein.

本発明によるナノ結晶軟磁性材料は、Fe基合金からなるアモルファス母相中に平均粒子径15nm以下の結晶粒子を分散させたナノ結晶軟磁性材料であって、原子%で、Si:0.1~5.0%、B:5.0~12.0%、C:0.1~5.0%、P:2.0~6.0%、Cu:x%(1.0<x<2.5)、Cr:y%(1.0<y<3.0)、但し、x+y>2.6、残部Fe及び不可避的不純物からなる合金組成を有し、保磁力Hcが15[A/m]よりも小さく、且つ、飽和磁束密度Bsが1.40[T]よりも大きいことを特徴とする。 The nanocrystalline soft magnetic material according to the present invention is a nanocrystalline soft magnetic material in which crystal grains with an average particle size of 15 nm or less are dispersed in an amorphous parent phase made of an Fe-based alloy, and has Si: 0.1 atomic %. ~5.0%, B: 5.0~12.0%, C: 0.1~5.0%, P: 2.0~6.0%, Cu: x% (1.0<x< 2.5), Cr:y% (1.0<y<3.0), however, x+y>2.6, the balance is Fe and unavoidable impurities, and the coercive force Hc is 15 [A /m], and the saturation magnetic flux density Bs is larger than 1.40 [T].

かかる発明によれば、軟磁気特性に優れるとともに、高い生産性を有する。 According to this invention, it has excellent soft magnetic properties and high productivity.

上記した発明において、前記合金組成は、原子%で、Si:0.1~3.0%、B:10.0~12.0%、C:0.1~3.0%、P:3.0~5.0%、Cu:x%(1.0<x<1.5)、Cr:y%(1.0<y<2.0)、但し、x+y>2.6、残部Fe及び不可避的不純物からなることを特徴としてもよい。また、前記合金組成は、Feを80.0原子%以上で含むことを特徴としてもよい。かかる発明によれば、高い生産性を維持しつつ、比較的容易に優れた軟磁気特性を得ることができる。 In the invention described above, the alloy composition is, in atomic %, Si: 0.1 to 3.0%, B: 10.0 to 12.0%, C: 0.1 to 3.0%, P: 3. .0 to 5.0%, Cu: x% (1.0<x<1.5), Cr:y% (1.0<y<2.0), however, x+y>2.6, balance Fe and unavoidable impurities. Further, the alloy composition may be characterized in that it contains Fe in an amount of 80.0 atomic % or more. According to this invention, excellent soft magnetic properties can be obtained relatively easily while maintaining high productivity.

上記した発明において、前記結晶粒子の平均粒子径が5nm以下であることを特徴としてもよい。かかる発明によれば、さらに優れた軟磁気特性を得ることができる。 The above invention may be characterized in that the average particle diameter of the crystal particles is 5 nm or less. According to this invention, even better soft magnetic properties can be obtained.

また、本発明によるナノ結晶軟磁性材料の製造方法は、Fe基合金からなるアモルファス母相中に平均粒子径15nm以下の結晶粒子を分散させたナノ結晶軟磁性材料の製造方法であって、原子%で、Si:0.1~5.0%、B:5.0~12.0%、C:0.1~5.0%、P:2.0~6.0%、Cu:x%(1.0<x<2.5)、Cr:y%(1.0<y<3.0)、但し、x+y>2.6、残部Fe及び不可避的不純物からなる合金組成を有する母合金を急冷凝固させて得られるアモルファス単相の合金リボンについて、保磁力Hcが15[A/m]よりも小さく、且つ、飽和磁束密度Bsが1.40[T]よりも大きくなるように、200℃/min以下の速度で加熱して前記結晶粒子を分散させることを特徴とする。 Further, the method for producing a nanocrystalline soft magnetic material according to the present invention is a method for producing a nanocrystalline soft magnetic material in which crystal particles having an average particle size of 15 nm or less are dispersed in an amorphous matrix composed of an Fe-based alloy, %, Si: 0.1 to 5.0%, B: 5.0 to 12.0%, C: 0.1 to 5.0%, P: 2.0 to 6.0%, Cu: x % (1.0<x<2.5), Cr:y% (1.0<y<3.0), however, x+y>2.6, the balance having an alloy composition consisting of Fe and inevitable impurities. For the amorphous single-phase alloy ribbon obtained by rapidly solidifying the alloy, the coercive force Hc is smaller than 15 [A/m] and the saturation magnetic flux density Bs is larger than 1.40 [T], The method is characterized in that the crystal particles are dispersed by heating at a rate of 200° C./min or less.

かかる発明によれば、高い生産性で軟磁気特性に優れるナノ結晶軟磁性材料を得られる。 According to this invention, a nanocrystalline soft magnetic material having excellent soft magnetic properties can be obtained with high productivity.

上記した発明において、前記合金組成は、原子%で、Si:0.1~3.0%、B:10.0~12.0%、C:0.1~3.0%、P:3.0~5.0%、Cu:x%(1.0<x<1.5)、Cr:y%(1.0<y<2.0)、但し、x+y>2.6、残部Fe及び不可避的不純物からなることを特徴としてもよい。また、前記合金組成は、Feを80.0原子%以上で含むことを特徴としてもよい。かかる発明によれば、高い生産性を維持しつつ、比較的容易に優れた軟磁気特性を有するナノ結晶軟磁性材料を得ることができる。 In the above invention, the alloy composition is, in atomic %, Si: 0.1 to 3.0%, B: 10.0 to 12.0%, C: 0.1 to 3.0%, P: 3. .0 to 5.0%, Cu: x% (1.0<x<1.5), Cr:y% (1.0<y<2.0), however, x+y>2.6, balance Fe and unavoidable impurities. Further, the alloy composition may be characterized in that it contains Fe in an amount of 80.0 atomic % or more. According to this invention, a nanocrystalline soft magnetic material having excellent soft magnetic properties can be obtained relatively easily while maintaining high productivity.

上記した発明において、前記結晶粒子の平均粒子径が5nm以下であることを特徴としてもよい。かかる発明によれば、さらに優れた軟磁気特性を有するナノ結晶軟磁性材料を得ることができる。 The above invention may be characterized in that the average particle diameter of the crystal particles is 5 nm or less. According to this invention, a nanocrystalline soft magnetic material having even better soft magnetic properties can be obtained.

さらに、本発明によるナノ結晶軟磁性材料用Fe基合金は、上記したナノ結晶軟磁性材料の製造方法に用いられる母合金としてのナノ結晶軟磁性材料用Fe基合金であって、原子%で、Si:0.1~5.0%、B:5.0~12.0%、C:0.1~5.0%、P:2.0~6.0%、Cu:x%(1.0<x<2.5)、Cr:y%(1.0<y<3.0)、但し、x+y>2.6、残部Fe及び不可避的不純物からなる合金組成を有することを特徴とする。 Furthermore, the Fe-based alloy for nanocrystalline soft magnetic material according to the present invention is an Fe-based alloy for nanocrystalline soft magnetic material as a master alloy used in the above-described method for producing the nanocrystalline soft magnetic material, and is Si: 0.1 to 5.0%, B: 5.0 to 12.0%, C: 0.1 to 5.0%, P: 2.0 to 6.0%, Cu: x% (1 .0 < x < 2.5), Cr: y% (1.0 < y < 3.0), provided that x + y > 2.6, the balance being Fe and inevitable impurities. do.

かかる発明によれば、高い生産性で軟磁気特性に優れるナノ結晶軟磁性材料を製造するための合金を得ることができる。 According to this invention, it is possible to obtain an alloy for producing a nanocrystalline soft magnetic material having excellent soft magnetic properties with high productivity.

上記した発明において、前記合金組成は、原子%で、Si:0.1~3.0%、B:10.0~12.0%、C:0.1~3.0%、P:3.0~5.0%、Cu:x%(1.0<x<1.5)、Cr:y%(1.0<y<2.0)、但し、x+y>2.6、残部Fe及び不可避的不純物からなることを特徴としてもよい。また、前記合金組成は、Feを80.0原子%以上で含むことを特徴としてもよい。かかる発明によれば、高い生産性を維持しつつ、比較的容易に優れた軟磁気特性を有するナノ結晶軟磁性材料を製造するための合金を得ることができる。 In the invention described above, the alloy composition is, in atomic %, Si: 0.1 to 3.0%, B: 10.0 to 12.0%, C: 0.1 to 3.0%, P: 3. .0 to 5.0%, Cu: x% (1.0<x<1.5), Cr:y% (1.0<y<2.0), however, x+y>2.6, balance Fe and unavoidable impurities. Further, the alloy composition may be characterized in that it contains Fe in an amount of 80.0 atomic % or more. According to this invention, an alloy for manufacturing a nanocrystalline soft magnetic material having excellent soft magnetic properties can be obtained relatively easily while maintaining high productivity.

本発明による1実施例におけるナノ結晶軟磁性材料の製造方法を示すフロー図である。FIG. 2 is a flow diagram showing a method for manufacturing a nanocrystalline soft magnetic material in one embodiment according to the present invention. 製造試験に用いた合金の成分組成及び得られた合金リボンの特性の一覧表である。This is a list of the composition of alloys used in manufacturing tests and the properties of the obtained alloy ribbons. 製造試験で得られた軟磁性材料の熱処理条件及び特性の一覧表である。This is a list of heat treatment conditions and characteristics of soft magnetic materials obtained in manufacturing tests.

本発明による1つの実施例としてのナノ結晶軟磁性材料の製造方法について、図1に沿って図2を用いて説明する。 A method for manufacturing a nanocrystalline soft magnetic material as one embodiment of the present invention will be described with reference to FIG. 2 along with FIG.

図1に示すように、まず、Fe基合金からなるアモルファス単相の合金リボンを製造する(S1)。 As shown in FIG. 1, first, an amorphous single-phase alloy ribbon made of an Fe-based alloy is manufactured (S1).

図2を併せて参照すると、このような合金リボンを得るためのFe基合金は、合金1、5~7に示す化学成分に代表されるような成分組成の合金である。詳細には、原子%で、Si:0.1~5.0%、B:5.0~12.0%、C:0.1~5.0%、P:2.0~6.0%、Cu:x%(1.0<x<2.5)、Cr:y%(1.0<y<3.0)で含有し、さらに、Cu及びCrの含有量に関し、x+y>2.6とするFe基合金である。特に、得られるナノ結晶軟磁性材料においてナノ結晶化を促進させる元素であるCu及びCrの含有量を多く含ませている。なお、ここで言うアモルファス単相の合金リボンとは、実質的にアモルファス単相であればよく、結晶化度が10%以下であると好ましい。 Referring also to FIG. 2, the Fe-based alloy for obtaining such an alloy ribbon is an alloy having a chemical composition represented by Alloys 1, 5 to 7. In detail, in atomic %, Si: 0.1 to 5.0%, B: 5.0 to 12.0%, C: 0.1 to 5.0%, P: 2.0 to 6.0 %, Cu:x% (1.0<x<2.5), Cr:y% (1.0<y<3.0), and further, regarding the content of Cu and Cr, x+y>2 It is an Fe-based alloy with a rating of .6. In particular, the resulting nanocrystalline soft magnetic material contains a large amount of Cu and Cr, which are elements that promote nanocrystallization. Note that the amorphous single-phase alloy ribbon referred to herein may be substantially amorphous single-phase, and preferably has a crystallinity of 10% or less.

このような成分組成を有するFe基合金を母合金として用い、例えば単ロール法によって合金リボンを製造する。すなわち、母合金を溶解し、高速回転する銅製の冷却ロールの表面に溶湯を抽出しつつ凝固させることでアモルファス単相のリボン状の急冷凝固薄体を得て、これを合金リボンとする。ここで、冷却ロールの周速は20~30m/sの範囲内として溶湯を急冷することが好ましく、これによって合金リボンをアモルファス単相とし得る。 An alloy ribbon is manufactured by using a Fe-based alloy having such a composition as a master alloy, for example, by a single roll method. That is, a mother alloy is melted and the molten metal is extracted and solidified on the surface of a copper cooling roll rotating at high speed to obtain an amorphous single-phase ribbon-like rapidly solidified thin body, which is used as an alloy ribbon. Here, it is preferable to rapidly cool the molten metal by setting the circumferential speed of the cooling roll within a range of 20 to 30 m/s, thereby making the alloy ribbon a single amorphous phase.

次に、得られた合金リボンを熱処理する(S2)。 Next, the obtained alloy ribbon is heat treated (S2).

単ロール法で得た合金リボンは、上記したようにアモルファス単相であり、昇温速度と保持温度及び保持時間を制御した熱処理によって、α-Feによる結晶粒子をアモルファス母相中に所定形態で分散晶出させることができる。特に、分散晶出させる結晶粒子の平均粒子径を15nm以下に制御することで、得られるナノ結晶軟磁性材料の軟磁気特性として、保磁力Hcを15[A/m]よりも小さくでき、飽和磁束密度Bsを1.40[T]よりも大きくするようにできる。この熱処理によって、合金リボンの局所構造を緩和し、高い靭性を得る。ただし、保持時間を長くし過ぎるなどして高い靭性を有していた素地を脆化させてしまう場合もある。また、FeB等の化合物相の析出を抑制するには、保持時間を長くし過ぎないようにすべきである。そのため、上記した熱処理として、後述する昇温速度とともに保持時間を10~70min、保持温度を440~470℃の範囲で調整することが好ましい。 As mentioned above, the alloy ribbon obtained by the single roll method has a single amorphous phase, and by heat treatment that controls the heating rate, holding temperature, and holding time, α-Fe crystal particles are formed into a predetermined shape in the amorphous matrix. It can be dispersed and crystallized. In particular, by controlling the average particle diameter of crystal grains to be dispersed and crystallized to 15 nm or less, the coercive force Hc of the obtained nanocrystalline soft magnetic material can be made smaller than 15 [A/m], and saturation is achieved. The magnetic flux density Bs can be made larger than 1.40 [T]. This heat treatment relaxes the local structure of the alloy ribbon and provides high toughness. However, if the holding time is too long, the base material, which had high toughness, may become brittle. Furthermore, in order to suppress precipitation of compound phases such as Fe 3 B, the holding time should not be made too long. Therefore, as for the above-mentioned heat treatment, it is preferable to adjust the temperature increase rate and the holding time in the range of 10 to 70 minutes and the holding temperature in the range of 440 to 470°C, which will be described later.

このとき、熱処理の昇温速度が遅すぎるとα-Feの結晶粒子が粗大に成長してしまい、上記したような軟磁気特性を損なう。そのため、一般には加熱時の昇温速度を200℃/min以上とするが、このような昇温速度とする高速加熱では、大量にエネルギーを消費するばかりか、ロットを大きくするほど制御も難しく、生産性に乏しくなる。他方、ロットを小さくしても使用するエネルギーに対する生産量や時間当たりの生産量を小さくして、生産性を乏しくしてしまう。ところが、上記したような成分組成の合金によってアモルファス単相の合金リボンを得ておけば、200℃/min以下の昇温速度としても上記したような結晶粒子の分散晶出を得ることができる。ここで、昇温速度を95~200℃/minとすることが好ましい。例えば、100℃/minの昇温速度であっても、上記した軟磁性特性を得ることができる。 At this time, if the temperature increase rate of the heat treatment is too slow, the α-Fe crystal grains will grow coarsely, impairing the above-mentioned soft magnetic properties. Therefore, the temperature increase rate during heating is generally set at 200°C/min or more, but high-speed heating at such a temperature increase rate not only consumes a large amount of energy, but also becomes difficult to control as the lot size increases. Productivity becomes poor. On the other hand, even if the lot size is made smaller, the amount of production relative to the energy used and the amount of production per hour are reduced, resulting in poor productivity. However, if an amorphous single-phase alloy ribbon is obtained from an alloy having the above-mentioned composition, the above-mentioned dispersed crystallization of crystal grains can be obtained even at a heating rate of 200° C./min or less. Here, it is preferable that the temperature increase rate is 95 to 200° C./min. For example, even at a temperature increase rate of 100° C./min, the above-mentioned soft magnetic properties can be obtained.

さらに、上記したようなアモルファス単相の合金リボンに対して、200℃/min以下の昇温速度の範囲内でも比較的速い昇温速度で加熱することで晶出するα-Feの結晶粒子の平均結晶粒子径を小さくすることができる傾向にある。例えば、この平均粒子径を5nm以下とすることもできる。 Furthermore, by heating the amorphous single-phase alloy ribbon as described above at a relatively fast temperature increase rate within the range of 200°C/min or less, α-Fe crystal particles crystallize. There is a tendency that the average crystal grain size can be reduced. For example, the average particle diameter can be set to 5 nm or less.

なお、Fe基合金の成分組成については、さらに、原子%で、Si:0.1~3.0%、B:10.0~12.0%、C:0.1~3.0%、P:3.0~5.0%、Cu:x%(1.0<x<1.5)、Cr:y%(1.0<y<2.0)、但し、x+y>2.6、とすることも好ましい。このような成分組成であれば、アモルファス単相の合金リボンをより容易に得ることができ、上記したような軟磁気特性を有するナノ結晶軟磁性材料の製造が容易になる。また、Feを80原子%以上で含むこともアモルファス単相の合金リボンを容易に得ることができて好ましい。 Furthermore, regarding the component composition of the Fe-based alloy, in atomic %, Si: 0.1 to 3.0%, B: 10.0 to 12.0%, C: 0.1 to 3.0%, P: 3.0 to 5.0%, Cu: x% (1.0<x<1.5), Cr:y% (1.0<y<2.0), however, x+y>2.6 , is also preferable. With such a component composition, an amorphous single-phase alloy ribbon can be obtained more easily, and a nanocrystalline soft magnetic material having the above-mentioned soft magnetic properties can be easily manufactured. It is also preferable to contain Fe in an amount of 80 atomic % or more because an amorphous single-phase alloy ribbon can be easily obtained.

[製造試験]
次に、ナノ結晶軟磁性材料を実際に製造した結果について、図2及び図3を用いて説明する。
[Manufacturing test]
Next, the results of actually manufacturing the nanocrystalline soft magnetic material will be explained using FIGS. 2 and 3.

図2に示すように、まず、合金1~合金12のそれぞれに示す成分組成の合金から合金リボンを製造した。合金リボンの製造には単ロール法を用い、ロール周速、ノズルから出湯させる溶湯の出湯温度、及びノズル前後の差圧のそれぞれについては製造条件の欄に示す通りとした。 As shown in FIG. 2, alloy ribbons were first manufactured from alloys having the compositions shown in Alloy 1 to Alloy 12, respectively. A single roll method was used to manufacture the alloy ribbon, and the peripheral speed of the roll, the tapping temperature of the molten metal tapped from the nozzle, and the differential pressure before and after the nozzle were as shown in the manufacturing conditions column.

得られた合金リボンについて、熱処理前の鋳放し状態での軟磁気特性として飽和磁束密度Bs及び保磁力Hcを測定し、さらに結晶化度、靭性について調査した。なお、飽和磁束密度Bsについては振動試料型磁力計を用い、保磁力HcについてはHcメータ(保磁力計)を用いてそれぞれ測定した。また、結晶化度については、XRDパターンにより算出した。詳細には、回折角20°<2θ<120°の範囲での全積分強度Iに対する結晶性ピーク(半値幅<5°)の面積強度Iの比率で算出した。つまり、結晶化度(%)=I/I×100である。靭性については、密着曲げ試験(180°曲げ試験)を実施して、破断するかどうかで評価した。 Regarding the obtained alloy ribbon, the saturation magnetic flux density Bs and coercive force Hc were measured as soft magnetic properties in the as-cast state before heat treatment, and the crystallinity and toughness were also investigated. The saturation magnetic flux density Bs was measured using a vibrating sample magnetometer, and the coercive force Hc was measured using an Hc meter (coercive force meter). Moreover, the crystallinity was calculated based on the XRD pattern. Specifically, it was calculated as the ratio of the areal intensity I C of the crystalline peak (half width <5°) to the total integrated intensity I T in the diffraction angle range of 20° < 2θ < 120°. That is, crystallinity (%)=I C /I T ×100. Toughness was evaluated by conducting a close bending test (180° bending test) and determining whether or not it would break.

合金1、合金5~合金7、合金10では、結晶化度の比較的小さいアモルファス単相の合金リボンを得ることができた。また、ナノ結晶化を促進させる元素であるCu及びCrの含有量も比較的多かったこともあって、続く熱処理によるナノ結晶化が見込まれた。 For Alloy 1, Alloy 5 to Alloy 7, and Alloy 10, amorphous single-phase alloy ribbons with relatively low crystallinity could be obtained. Furthermore, since the content of Cu and Cr, which are elements that promote nanocrystalization, was relatively high, nanocrystalization was expected to occur during the subsequent heat treatment.

合金2、合金4及び合金9については、結晶化度が20%以上と大きく、続く熱処理によってもナノ結晶化の見込みが小さかった。なお、この結果を受けて、合金4については続く熱処理をしなかった。合金3及び合金8については、結晶化度を比較的小さくしたものの、ナノ結晶化を促進させる元素であるCu及びCrの含有量が少なく、熱処理によるナノ結晶化の見込みが小さかった。このうち合金3については、続く熱処理をしなかった。 For Alloy 2, Alloy 4, and Alloy 9, the degree of crystallinity was as high as 20% or more, and there was little possibility of nanocrystallization even with subsequent heat treatment. In response to this result, Alloy 4 was not subjected to subsequent heat treatment. For Alloy 3 and Alloy 8, although the degree of crystallinity was relatively low, the content of Cu and Cr, which are elements that promote nanocrystalization, was low, and the prospect of nanocrystalization by heat treatment was small. Of these, Alloy 3 was not subjected to subsequent heat treatment.

次に合金リボンを熱処理した結果について説明する。 Next, the results of heat treating the alloy ribbon will be explained.

図3に示すように、合金1、合金2、合金5~合12によって得た合金リボンをそれぞれ「熱処理条件」に示す昇温速度、保持温度及び保持時間によって熱処理した。その結果、実施例1~実施例8については、飽和磁束密度Bsが1.40[T]よりも大きく、保磁力Hcが15[A/m]よりも小さかった。なお、実施例6~実施例8はそれぞれ合金5~合金7を用いており、熱処理前(図2参照)に比べて保磁力Hcを低下させることができた。熱処理によってナノ結晶化させることができたものと考えられる。 As shown in FIG. 3, the alloy ribbons obtained from Alloy 1, Alloy 2, and Alloys 5 to 12 were heat treated at the heating rate, holding temperature, and holding time shown in "Heat treatment conditions". As a result, in Examples 1 to 8, the saturation magnetic flux density Bs was larger than 1.40 [T] and the coercive force Hc was smaller than 15 [A/m]. Note that Examples 6 to 8 used Alloys 5 to 7, respectively, and were able to reduce the coercive force Hc compared to before heat treatment (see FIG. 2). It is thought that nanocrystalization could be achieved through heat treatment.

これに対して、比較例1及び比較例2では保磁力Hcが大きかった。熱処理の保持温度が低くα-Feの結晶粒子が粗大化したためと考えられる。 On the other hand, in Comparative Example 1 and Comparative Example 2, the coercive force Hc was large. This is thought to be because the holding temperature of the heat treatment was low and the α-Fe crystal particles became coarse.

比較例3では、保磁力Hcが大きかった。保持温度を450℃としたが、昇温速度が40℃/minと小さく、その結果、α-Feの結晶粒子が粗大に成長してしまったためと考えられる。 In Comparative Example 3, the coercive force Hc was large. Although the holding temperature was set at 450°C, the rate of temperature increase was as low as 40°C/min, which is thought to be because the α-Fe crystal particles grew coarsely.

比較例4では、保持温度を同じく450℃として昇温速度を100℃/minとしたが、これでも保磁力Hcが大きかった。実施例3では同じ昇温速度であっても保持温度を470℃と高くしたことで保磁力Hcを低く抑えることができていたので、比較例4では保持温度が低かったため、α-Feの結晶粒子が粗大化したものと考えられる。 In Comparative Example 4, the holding temperature was also 450° C. and the temperature increase rate was 100° C./min, but the coercive force Hc was still large. In Example 3, even at the same heating rate, the coercive force Hc was kept low by increasing the holding temperature to 470°C. In Comparative Example 4, the holding temperature was low, so the α-Fe crystal It is thought that the particles have become coarser.

比較例5及び比較例6では、実施例3と同じ保持温度470℃としたが、保磁力Hcが大きかった。昇温速度がそれぞれ30℃/min及び40℃/minと小さく、その結果、α-Feの結晶粒子が粗大に成長してしまったためと考えられる。 In Comparative Examples 5 and 6, the same holding temperature as in Example 3 was set at 470° C., but the coercive force Hc was large. This is thought to be because the temperature increase rates were small, 30° C./min and 40° C./min, respectively, and as a result, α-Fe crystal particles grew coarsely.

比較例7~比較例9では、合金2を使用し、いずれも熱処理の昇温速度を200℃/minと高くした。保持温度を430℃、450℃、470℃としたが、いずれも保磁力Hcを大きくしてしまった。合金2ではCuの含有量が少なく、Cu:x原子%、Cr:y原子%としたときのx+yの値も小さく、ナノ結晶化が充分ではなく、結晶粒子径が大きかったものと考えられる。 In Comparative Examples 7 to 9, Alloy 2 was used, and the temperature increase rate of the heat treatment was increased to 200° C./min in all cases. Although the holding temperature was set to 430°C, 450°C, and 470°C, the coercive force Hc increased in all cases. In Alloy 2, the Cu content was low, and the value of x+y was small when Cu: x atomic % and Cr: y atomic %, and it is thought that nanocrystallization was not sufficient and the crystal grain size was large.

比較例10では、合金8を用いたが、保磁力Hcが大きく、結晶粒子径が大きかった。x+yの値が小さかったためにナノ結晶化が充分ではなかったものと考えられる。 In Comparative Example 10, Alloy 8 was used, but the coercive force Hc was large and the crystal grain size was large. It is considered that nanocrystallization was not sufficient because the value of x+y was small.

比較例11~比較例13では、合金9を用いて保持温度を変えたが、いずれも保磁力Hcが大きかった。Crの含有量が少なく、x+yも小さかったことから、上記と同様にナノ結晶化が充分ではなく、結晶粒子径が大きかったものと考えられる。なお、熱処理の保持時間を10分と短くしたことによる影響は大きくなかったと考えられる。 In Comparative Examples 11 to 13, Alloy 9 was used and the holding temperature was changed, but the coercive force Hc was large in all cases. Since the Cr content was low and x+y was also small, it is thought that nanocrystalization was not sufficient and the crystal particle size was large, similar to the above. In addition, it is considered that the effect of shortening the holding time of the heat treatment to 10 minutes was not large.

比較例14では、合金10を用いたが、飽和磁束密度Bsが小さかった。Crの含有量が多く、相対的にFeの含有量が少なくなったためと考えられる。 In Comparative Example 14, Alloy 10 was used, but the saturation magnetic flux density Bs was small. This is probably because the Cr content was high and the Fe content was relatively low.

ところで、上記した実施例を含むナノ結晶軟磁性材料とほぼ同等の軟磁気特性を与え得るFe基合金の組成範囲は以下のように定められる。 By the way, the composition range of the Fe-based alloy that can provide soft magnetic properties almost equivalent to those of the nanocrystalline soft magnetic materials including the above-mentioned Examples is determined as follows.

Si、B、Cは、アモルファス形成元素であり、相互に協働して合金リボンにアモルファスを形成させる。他方、Siを過剰に含有させると、却ってアモルファス形成能を低下させ、得られるナノ結晶軟磁性材料の飽和磁束密度を低下させる。Bを過剰に含有させると結晶磁気異方性の高いFeBやFeBなどの化合物相を析出させ、またコスト増を招く。Cを過剰に含有させるとアモルファス相からの結晶化温度を低下させて晶出する結晶粒の粗大化を招く。これらと、それぞれの元素の含有量のバランスを考慮して以下のように含有量を定めた。すなわち、Siは、原子%で、0.1~5.0%の範囲内、好ましくは0.1~3.0%の範囲内である。また、Bは、原子%で、5.0~12.0%の範囲内、好ましくは10.0~12.0%の範囲内である。また、Cは、原子%で、0.1~5.0%の範囲内、好ましくは0.1~3.0%の範囲内である。 Si, B, and C are amorphous forming elements and cooperate with each other to form an amorphous state in the alloy ribbon. On the other hand, if Si is contained excessively, the ability to form an amorphous state will be reduced, and the saturation magnetic flux density of the resulting nanocrystalline soft magnetic material will be reduced. When B is contained excessively, compound phases such as Fe 3 B and Fe 2 B having high crystal magnetic anisotropy are precipitated, which also leads to an increase in cost. Excessive content of C lowers the crystallization temperature from the amorphous phase, leading to coarsening of crystal grains. Considering these and the balance between the content of each element, the content was determined as follows. That is, Si is in the range of 0.1 to 5.0%, preferably in the range of 0.1 to 3.0%, in atomic %. Further, B is in the range of 5.0 to 12.0%, preferably in the range of 10.0 to 12.0% in atomic %. Further, C is in the range of 0.1 to 5.0%, preferably in the range of 0.1 to 3.0% in atomic %.

Pは、アモルファス生成元素であるが、他のアモルファス形成元素との相互作用はあまりなく、単独の含有量増加でアモルファス形成能を高め得る。他方、Pを過剰に含有させると得られるナノ結晶軟磁性材料の飽和磁束密度を低下させる。これらを考慮して、Pは、原子%で、2.0~6.0%の範囲内、好ましくは3.0~5.0%の範囲内である。 Although P is an amorphous-forming element, it does not interact much with other amorphous-forming elements, and the amorphous-forming ability can be improved by increasing the content alone. On the other hand, when P is contained excessively, the saturation magnetic flux density of the resulting nanocrystalline soft magnetic material is reduced. Considering these, P is in the range of 2.0 to 6.0%, preferably in the range of 3.0 to 5.0%, in atomic %.

Cuは、Pと結合してナノヘテロ構造のクラスターを形成し、アモルファス母相中に微細に分散することでα-Fe結晶の粗大化を抑制する。他方、Cuを過剰に含有させると、得られるナノ結晶軟磁性材料の保磁力を増加させる。これらを考慮して、Cuは、原子%で、x%とし、1.0<x<2.5の範囲内、好ましくは1.0<x<1.5の範囲内である。 Cu combines with P to form clusters of nanoheterostructures and is finely dispersed in the amorphous matrix, thereby suppressing coarsening of α-Fe crystals. On the other hand, when Cu is contained excessively, the coercive force of the resulting nanocrystalline soft magnetic material increases. Taking these into consideration, Cu is defined as x% in atomic %, within the range of 1.0<x<2.5, preferably within the range of 1.0<x<1.5.

Crは、ナノ結晶化熱処理時に残存アモルファス相中で濃化し安定化を促進する。これによりナノ結晶粒の粗大化が抑制され、微細で均一なナノ結晶化組織を得やすい。また、耐食性を向上させて錆の発生を抑制し、得られるナノ結晶軟磁性材料の保磁力を低く維持させる。他方、Crを過剰に含有させるとアモルファス形成能を低下させ、得られるナノ結晶軟磁性材料の保磁力を増加させる。これらを考慮して、Crは、原子%で、y%とし、1.0<y<3.0の範囲内、好ましくは1.0<y<2.0の範囲内である。 Cr is concentrated in the remaining amorphous phase during the nanocrystallization heat treatment and promotes stabilization. This suppresses the coarsening of nanocrystal grains and facilitates obtaining a fine and uniform nanocrystalline structure. It also improves corrosion resistance, suppresses the occurrence of rust, and maintains the coercive force of the resulting nanocrystalline soft magnetic material at a low level. On the other hand, when Cr is contained excessively, the amorphous formation ability is reduced and the coercive force of the resulting nanocrystalline soft magnetic material is increased. Taking these into consideration, Cr is expressed as y% in atomic %, and is within the range of 1.0<y<3.0, preferably within the range of 1.0<y<2.0.

また、x+yは、得られるナノ結晶軟磁性材料においてナノ結晶化を促進させる元素であるCu及びCrの含有量の指標となり、x+y>2.6の範囲内である。 Moreover, x+y is an index of the content of Cu and Cr, which are elements that promote nanocrystallization in the obtained nanocrystalline soft magnetic material, and is within the range of x+y>2.6.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。例えば、本発明によるナノ結晶軟磁性材料は粉砕された粉末材料であってもよい。 Although typical embodiments of the present invention have been described above, the present invention is not necessarily limited to these, and those skilled in the art will understand without departing from the spirit of the present invention or the scope of the appended claims. , various alternative embodiments and modifications may be found. For example, the nanocrystalline soft magnetic material according to the invention may be a ground powder material.

Claims (4)

Fe基合金からなるアモルファス母相中に平均粒子径15nm以下の結晶粒子を分散させたナノ結晶軟磁性材料であって、
原子%で、
Si:1.0~5.0%、
B:10.0~12.0%、
C:1.2~5.0%、
P:2.0~6.0%、
Cu:x%(1.0<x<2.5)、
Cr:y%(1.0<y≦2.3)、但し、x+y>2.6、
残部Fe及び不可避的不純物からなる合金組成を有し、
結晶化度を60%以上とし、保磁力Hcが15[A/m]よりも小さく、且つ、飽和磁束密度B:sが1.40[T]よりも大きいことを特徴とするナノ結晶軟磁性材料。
A nanocrystalline soft magnetic material in which crystal particles with an average particle size of 15 nm or less are dispersed in an amorphous matrix consisting of an Fe-based alloy,
In atomic percent,
Si: 1.08 to 5.0%,
B: 10.0-12.0%,
C: 1.25 to 5.0%,
P: 2.0-6.0%,
Cu: x% (1.0<x<2.5),
Cr: y% (1.0<y≦2.3), however, x+y>2.6,
has an alloy composition consisting of the remainder Fe and unavoidable impurities,
Nanocrystalline soft magnetism characterized by having a crystallinity of 60% or more, a coercive force Hc smaller than 15 [A/m], and a saturation magnetic flux density B:s larger than 1.40 [T]. material.
前記合金組成は、原子%で、
Si:1.0~3.0%、
B:10.0~12.0%、
C:1.2~3.0%、
P:3.0~5.0%、
Cu:x%(1.0<x<1.5)、
Cr:y%(1.0<y<2.0)、但し、x+y>2.6、
残部Fe及び不可避的不純物からなることを特徴とする請求項1記載のナノ結晶軟磁性材料。
The alloy composition is in atomic %,
Si: 1.08 to 3.0%,
B: 10.0-12.0%,
C: 1.25 to 3.0%,
P: 3.0-5.0%,
Cu: x% (1.0<x<1.5),
Cr: y% (1.0<y<2.0), however, x+y>2.6,
The nanocrystalline soft magnetic material according to claim 1, characterized in that the remainder consists of Fe and unavoidable impurities.
前記合金組成は、Feを80.0原子%以上で含むことを特徴とする請求項1又は2に記載のナノ結晶軟磁性材料。 3. The nanocrystalline soft magnetic material according to claim 1, wherein the alloy composition contains Fe at 80.0 atomic % or more. 前記結晶粒子の平均粒子径が5nm以下であることを特徴とする請求項1乃至3のうちの1つに記載のナノ結晶軟磁性材料。 The nanocrystalline soft magnetic material according to claim 1, wherein the average particle diameter of the crystal particles is 5 nm or less.
JP2019125477A 2019-07-04 2019-07-04 Nanocrystalline soft magnetic material Active JP7421742B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019125477A JP7421742B2 (en) 2019-07-04 2019-07-04 Nanocrystalline soft magnetic material
CN202010628143.2A CN112176246A (en) 2019-07-04 2020-07-01 Nanocrystalline soft magnetic material, method for producing same, and Fe-based alloy for use therein
KR1020200080819A KR20210004857A (en) 2019-07-04 2020-07-01 Nanocrystalline soft-magnetic material, method of manufacturing the same, and iron-based alloy used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125477A JP7421742B2 (en) 2019-07-04 2019-07-04 Nanocrystalline soft magnetic material

Publications (2)

Publication Number Publication Date
JP2021011602A JP2021011602A (en) 2021-02-04
JP7421742B2 true JP7421742B2 (en) 2024-01-25

Family

ID=73919642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125477A Active JP7421742B2 (en) 2019-07-04 2019-07-04 Nanocrystalline soft magnetic material

Country Status (3)

Country Link
JP (1) JP7421742B2 (en)
KR (1) KR20210004857A (en)
CN (1) CN112176246A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024125720A (en) 2023-03-06 2024-09-19 味の素株式会社 Resin composition
JP2024125721A (en) 2023-03-06 2024-09-19 味の素株式会社 Resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070852A (en) 2008-08-22 2010-04-02 Teruhiro Makino ALLOY COMPOSITION, Fe-BASED NANO-CRYSTALLINE ALLOY, FORMING METHOD OF THE SAME AND MAGNETIC COMPONENT
JP2011171612A (en) 2010-02-22 2011-09-01 Alps Electric Co Ltd Fe-BASED SOFT MAGNETIC ALLOY POWDER AND METHOD OF PRODUCING THE SAME, AND MAGNETIC SHEET FOR VHF BAND AND MOLDED ARTICLE USING THE Fe-BASED SOFT MAGNETIC ALLOY POWDER, AND MAGNETIC CORE FOR VHF BAND
JP2012012699A (en) 2010-03-23 2012-01-19 Nec Tokin Corp ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE Fe-BASED NANOCRYSTALLINE ALLOY, AND MAGNETIC COMPONENT
CN102719746A (en) 2012-07-02 2012-10-10 苏州宝越新材料科技有限公司 Iron-based nanocrystalline magnetically soft alloy material and preparation method thereof
WO2018150952A1 (en) 2017-02-16 2018-08-23 株式会社トーキン Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
WO2019065500A1 (en) 2017-09-29 2019-04-04 株式会社トーキン Method for manufacturing powder magnetic core, powder magnetic core, and inductor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445889B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, manufacturing method thereof, and magnetic component
CN102543347B (en) * 2011-12-31 2015-10-14 中国科学院宁波材料技术与工程研究所 A kind of Fe-based nanocrystalline magnetically soft alloy and preparation method thereof
WO2013157596A1 (en) * 2012-04-19 2013-10-24 トピー工業株式会社 PROCESS FOR PRODUCING AMORPHOUS SPRAYED COATING CONTAINING α-Fe NANOCRYSTALS DISPERSED THEREIN
JP6282952B2 (en) 2014-07-22 2018-02-21 アルプス電気株式会社 Fe-based alloy composition, molded member, method for manufacturing molded member, dust core, electronic component, electronic device, magnetic sheet, communication component, communication device, and electromagnetic interference suppressing member
JP6471603B2 (en) 2015-04-30 2019-02-20 大同特殊鋼株式会社 Fe-based amorphous alloy composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070852A (en) 2008-08-22 2010-04-02 Teruhiro Makino ALLOY COMPOSITION, Fe-BASED NANO-CRYSTALLINE ALLOY, FORMING METHOD OF THE SAME AND MAGNETIC COMPONENT
JP2011171612A (en) 2010-02-22 2011-09-01 Alps Electric Co Ltd Fe-BASED SOFT MAGNETIC ALLOY POWDER AND METHOD OF PRODUCING THE SAME, AND MAGNETIC SHEET FOR VHF BAND AND MOLDED ARTICLE USING THE Fe-BASED SOFT MAGNETIC ALLOY POWDER, AND MAGNETIC CORE FOR VHF BAND
JP2012012699A (en) 2010-03-23 2012-01-19 Nec Tokin Corp ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE Fe-BASED NANOCRYSTALLINE ALLOY, AND MAGNETIC COMPONENT
CN102719746A (en) 2012-07-02 2012-10-10 苏州宝越新材料科技有限公司 Iron-based nanocrystalline magnetically soft alloy material and preparation method thereof
WO2018150952A1 (en) 2017-02-16 2018-08-23 株式会社トーキン Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
WO2019065500A1 (en) 2017-09-29 2019-04-04 株式会社トーキン Method for manufacturing powder magnetic core, powder magnetic core, and inductor

Also Published As

Publication number Publication date
CN112176246A (en) 2021-01-05
KR20210004857A (en) 2021-01-13
JP2021011602A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP2611994B2 (en) Fe-based alloy powder and method for producing the same
JP6181346B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP6046357B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP7387008B2 (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same
JP5697131B2 (en) Fe-based nanocrystalline alloy manufacturing method, Fe-based nanocrystalline alloy, magnetic component, Fe-based nanocrystalline alloy manufacturing apparatus
JP6035896B2 (en) Fe-based alloy composition
WO2018025931A1 (en) Method for producing soft magnetic material
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP7421742B2 (en) Nanocrystalline soft magnetic material
WO2022019335A1 (en) Fe-based nanocrystal soft magnetic alloy and magnetic component
US11371124B2 (en) Fe-based soft magnetic alloy, manufacturing method therefor, and magnetic parts using Fe-based soft magnetic alloy
JP2005068451A (en) Fe BASED SOFT MAGNETIC BULK AMORPHOUS-NANOCRYSTAL DUAL PHASE ALLOY, AND ITS PRODUCTION METHOD
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
WO2019031463A1 (en) Fe-BASED ALLOY, CRYSTALLINE Fe-BASED ALLOY ATOMIZED POWDER, AND MAGNETIC CORE
JP7326777B2 (en) Soft magnetic alloys and magnetic parts
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
US11078561B2 (en) Soft magnetic material and method for producing the same
JPH0711396A (en) Fe base soft magnetic alloy
KR102241959B1 (en) Iron based soft magnet and manufacturing method for the same
JP2020186422A (en) Fe-BASED NANOCRYSTAL ALLOY AND METHOD FOR PRODUCING THE SAME
JP2021134374A (en) Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME
JP2007211301A (en) Microcrystal alloy thin strip and magnetic core
JP2000144349A (en) Iron base soft magnetic alloy
JPH01149940A (en) Fe-base magnetic alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231228

R150 Certificate of patent or registration of utility model

Ref document number: 7421742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150