JP7412732B2 - Blended yarns and fiber structures - Google Patents
Blended yarns and fiber structures Download PDFInfo
- Publication number
- JP7412732B2 JP7412732B2 JP2019182738A JP2019182738A JP7412732B2 JP 7412732 B2 JP7412732 B2 JP 7412732B2 JP 2019182738 A JP2019182738 A JP 2019182738A JP 2019182738 A JP2019182738 A JP 2019182738A JP 7412732 B2 JP7412732 B2 JP 7412732B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- graphite
- fibers
- weight
- sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 188
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 183
- 239000000377 silicon dioxide Substances 0.000 claims description 105
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 76
- 239000010439 graphite Substances 0.000 claims description 76
- 229910002804 graphite Inorganic materials 0.000 claims description 76
- 230000001877 deodorizing effect Effects 0.000 claims description 62
- 239000004575 stone Substances 0.000 claims description 54
- 239000002781 deodorant agent Substances 0.000 claims description 46
- 239000000843 powder Substances 0.000 claims description 26
- -1 polybutylene terephthalate Polymers 0.000 claims description 25
- 239000002131 composite material Substances 0.000 claims description 24
- 239000011941 photocatalyst Substances 0.000 claims description 24
- 229910001463 metal phosphate Inorganic materials 0.000 claims description 19
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 18
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 17
- 150000004692 metal hydroxides Chemical class 0.000 claims description 17
- 229920001169 thermoplastic Polymers 0.000 claims description 14
- 239000003963 antioxidant agent Substances 0.000 claims description 7
- 230000003078 antioxidant effect Effects 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 description 34
- 239000004744 fabric Substances 0.000 description 30
- 238000005338 heat storage Methods 0.000 description 30
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 12
- 230000000737 periodic effect Effects 0.000 description 12
- 239000000306 component Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000000523 sample Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 9
- 235000011007 phosphoric acid Nutrition 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920002292 Nylon 6 Polymers 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 5
- 239000008358 core component Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229920002302 Nylon 6,6 Polymers 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 208000012886 Vertigo Diseases 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229920002972 Acrylic fiber Polymers 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical group OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004332 deodorization Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000000474 nursing effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 241000206761 Bacillariophyta Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- YDHWWBZFRZWVHO-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(O)=O YDHWWBZFRZWVHO-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 1
- 150000002009 diols Chemical group 0.000 description 1
- WMVRXDZNYVJBAH-UHFFFAOYSA-N dioxoiron Chemical compound O=[Fe]=O WMVRXDZNYVJBAH-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001248 thermal gelation Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Knitting Of Fabric (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Multicomponent Fibers (AREA)
- Woven Fabrics (AREA)
Description
本発明は、混紡糸およびこの混紡糸を用いた繊維構造物に関する。 The present invention relates to a blended yarn and a fiber structure using this blended yarn.
黒鉛珪石の微粉末を含有する繊維は、例えば、特許文献1などに記載されている。特許文献1には、「黒鉛珪石の微粉末を0.2~25重量%有する繊維であって、 前記黒鉛珪石は、平均粒径が70~80μmの黒鉛珪石粒子1gを上下電極に挟んで350gの加重を付与した状態における抵抗値が9×1010Ω以下である、繊維。」が開示されており、これによって、「蓄熱保温性能に優れた繊維を安定的に得ることができる。」とある。黒鉛珪石含有繊維を用いた肌着や被服は、遠赤外線効果などにより、薄くても暖かいという優れた特徴を有する。
Fibers containing fine powder of graphite silica are described in, for example,
前述したように、黒鉛珪石含有繊維を用いた肌着や被服には、蓄熱性に優れ、薄くても暖かいという優れた特徴がある。しかしながら、黒鉛珪石自体は多孔質で吸着性を有するものの、黒鉛珪石含有繊維の消臭性は不十分であった。 As mentioned above, underwear and clothing made of fibers containing graphite silica have excellent heat storage properties and are warm even when thin. However, although graphite silica itself is porous and has adsorption properties, graphite silica stone-containing fibers have insufficient deodorizing properties.
本発明は、上記課題を解決するものであり、蓄熱性に優れ、薄くても暖かいという黒鉛珪石含有繊維の優れた特徴を維持しつつ、十分な消臭性を有する混紡糸を提供することを目的とする。また、この混紡糸を用いた繊維構造物を提供することも目的とする。 The present invention solves the above problems, and aims to provide a blended yarn that has sufficient deodorizing properties while maintaining the excellent characteristics of graphite-silica-containing fibers, such as excellent heat storage properties and warmth even when thin. purpose. Another object of the present invention is to provide a fiber structure using this blended yarn.
上記課題を解決するために、黒鉛珪石の微粉末を含有する黒鉛珪石含有短繊維と、四価金属のリン酸塩、二価金属の水酸化物および光触媒を含有する熱可塑性ポリマーからなる消臭短繊維と、からなる混紡糸とした。 In order to solve the above problems, we developed a deodorizing material made of graphite silica stone-containing short fibers containing fine powder of graphite silica stone, and a thermoplastic polymer containing a tetravalent metal phosphate, a divalent metal hydroxide, and a photocatalyst. It was made into a blended yarn consisting of short fibers.
本願発明者は、蓄熱性に優れ、薄くても暖かいという黒鉛珪石含有繊維の優れた特徴を活かしつつ、消臭性を付与するために鋭意研究開発を重ねた。すると、黒鉛珪石含有短繊維と、四価金属のリン酸塩、二価金属の水酸化物および光触媒を含有する熱可塑性ポリマーからなる消臭短繊維と、からなる混紡糸によって上記課題が解決されることを見いだしたのである。
また、上記混紡糸を用いた衣類等は、上記消臭短繊維からなる混紡糸を用いたものよりも、蒸れ感が低減される。このように蒸れ感が低減される詳細な理由は不明であるが、黒鉛珪石から放出される遠赤外線によって発汗状態に変化が生じるからではないかと推察される。
以上のように、黒鉛珪石含有短繊維と消臭短繊維を混紡した混紡糸は、消臭性と蓄熱性を兼ね備えており、かつ蒸れ感が少ないという顕著な作用効果を奏する。
The inventors of the present invention have conducted intensive research and development to impart deodorizing properties while taking advantage of the excellent characteristics of graphite-silica-containing fibers, such as excellent heat storage properties and warmth even when thin. Then, the above problem was solved by a blended yarn consisting of graphite silica stone-containing short fibers and deodorizing short fibers made of a thermoplastic polymer containing a tetravalent metal phosphate, a divalent metal hydroxide, and a photocatalyst. I discovered that.
In addition, clothing made of the above-mentioned blended yarn has a less stuffy feeling than clothes made of the blended yarn made of the deodorizing short fibers. The detailed reason why the feeling of stuffiness is reduced in this way is unknown, but it is speculated that the far infrared rays emitted from graphite silica stone cause a change in the state of sweating.
As described above, the blended yarn obtained by blending the graphite silica stone-containing short fibers and the deodorizing short fibers has both deodorizing properties and heat storage properties, and has the remarkable effect of reducing the feeling of stuffiness.
また、黒鉛珪石含有短繊維が、芯部と鞘部からなる芯鞘型複合構造であり、前記芯部中にのみ黒鉛珪石の微粉末を含有しており、黒鉛珪石の含有量は、黒鉛珪石含有繊維の0.5~5重量%である、混紡糸とすることができる。 Further, the graphite silica stone-containing short fibers have a core-sheath type composite structure consisting of a core part and a sheath part, and contain fine powder of graphite silica stone only in the core part, and the content of graphite silica stone is It can be a blended yarn containing 0.5 to 5% by weight of the fibers contained.
この混紡糸は、蓄熱性に優れ、薄くても暖かいという黒鉛珪石含有繊維の優れた特徴を長期間維持しつつ、十分な消臭性を有する。
黒鉛珪石自体は多孔質で吸着性を有する。しかし、黒鉛珪石に不純物が吸着してしまうと、遠赤外線効果が低下するおそれがあった。そこで、黒鉛珪石含有短繊維を芯部と鞘部からなる芯鞘型複合構造とし、芯部中にのみ黒鉛珪石の微粉末を含有させた。これによって、黒鉛珪石が不純物を吸着しにくい構造を実現したのである。なお、芯部中にのみ黒鉛珪石の微粉末を含有させても、蓄熱性に優れ、薄くても暖かいという黒鉛珪石含有繊維の優れた特徴は確保される。
また、黒鉛珪石の含有量は、黒鉛珪石含有繊維の0.5~5重量%とすることが好ましく、0.5~4重量%含有することがより好ましい。
This blended yarn maintains the excellent characteristics of graphite-silica-containing fibers, such as excellent heat storage properties and warmth even though it is thin, for a long period of time, and has sufficient deodorizing properties.
Graphite silica itself is porous and adsorbent. However, if impurities were adsorbed to graphite silica, there was a risk that the far-infrared effect would deteriorate. Therefore, the graphite-silica stone-containing short fibers were made into a core-sheath type composite structure consisting of a core part and a sheath part, and fine powder of graphite-silica stone was contained only in the core part. This has resulted in a structure in which graphite silica is less likely to adsorb impurities. Note that even if the fine powder of graphite silica is contained only in the core, the excellent characteristics of graphite silica-containing fibers, such as excellent heat storage properties and warmth even when thin, can be maintained.
Further, the content of graphite silica is preferably 0.5 to 5% by weight, more preferably 0.5 to 4% by weight of the graphite silica-containing fiber.
また、黒鉛珪石含有短繊維が10~30重量%含まれており、消臭短繊維が10~90重量%含まれている、混紡糸とすることもできる。 Further, a blended yarn containing 10 to 30% by weight of graphite silica stone-containing short fibers and 10 to 90% by weight of deodorizing short fibers can also be used.
この混紡糸は、黒鉛珪石含有繊維の優れた特徴と十分な消臭性を高い次元で実現することができる。黒鉛珪石含有短繊維が15~30重量%含まれており、消臭短繊維が30~85重量%含まれている、混紡糸とすることが好ましい。 This blended yarn can realize the excellent characteristics of graphite-silica stone-containing fibers and sufficient deodorizing properties at a high level. It is preferable to use a blended yarn containing 15 to 30% by weight of graphite silica stone-containing short fibers and 30 to 85% by weight of deodorizing short fibers.
消臭短繊維が、芯部と鞘部からなる芯鞘型複合構造であり、前記芯部は、融点が150℃以上の熱可塑性ポリマーからなり、前記鞘部は、ポリブチレンテレフタレートからなり、前記鞘部に、四価金属のリン酸塩、二価金属の水酸化物および光触媒ならびに酸化防止剤が含有されてなる、混紡糸とすることもできる。 The deodorant short fiber has a core-sheath type composite structure consisting of a core part and a sheath part, the core part is made of a thermoplastic polymer with a melting point of 150°C or higher, the sheath part is made of polybutylene terephthalate, and the It is also possible to form a blended yarn in which the sheath contains a tetravalent metal phosphate, a divalent metal hydroxide, a photocatalyst, and an antioxidant.
この混紡糸も、黒鉛珪石含有繊維の優れた特徴と十分な消臭性を高い次元で実現することができる。また、四価金属のリン酸塩、二価金属の水酸化物および光触媒ならびに酸化防止剤が鞘部に含有されているため、四価金属のリン酸塩、二価金属の水酸化物および光触媒の使用量が少ない場合であっても大きな消臭効果を得ることができる。 This blended yarn can also achieve the excellent characteristics of graphite-silica-containing fibers and sufficient deodorizing properties at a high level. In addition, since tetravalent metal phosphates, divalent metal hydroxides, photocatalysts, and antioxidants are contained in the sheath, tetravalent metal phosphates, divalent metal hydroxides, and photocatalysts are contained in the sheath. A great deodorizing effect can be obtained even if the amount used is small.
これらの混紡糸を少なくとも一部に含む繊維構造物は、蓄熱性に優れ、薄くても暖かいという黒鉛珪石含有繊維の優れた特徴を維持しつつ、十分な消臭性を有するのである。 A fiber structure containing at least a portion of these blended yarns has sufficient deodorizing properties while maintaining the excellent characteristics of graphite-silica-containing fibers, such as excellent heat storage properties and being warm even when thin.
本発明により、蓄熱性に優れ薄くても暖かいという黒鉛珪石含有繊維の優れた特徴を維持しつつ、十分な消臭性を有する混紡糸を提供することができる。また、この混紡糸を用いた繊維構造物を提供することもできる。 According to the present invention, it is possible to provide a blended yarn having sufficient deodorizing properties while maintaining the excellent characteristics of graphite-silica-containing fibers, such as excellent heat storage properties and being warm even when thin. Furthermore, it is also possible to provide a fiber structure using this blended yarn.
以下、混紡糸を例示説明する。混紡糸は、黒鉛珪石含有短繊維と消臭短繊維からなる。
なお、以下の実施形態や実施例はあくまで本発明を例示説明するものであって、本発明は、以下の具体的な実施形態や実施例に限定されるものではない。最初に、黒鉛珪石含有短繊維について例示説明する。
Hereinafter, the blended yarn will be exemplified and explained. The blended yarn consists of graphite silica stone-containing short fibers and deodorizing short fibers.
Note that the following embodiments and examples are merely for illustrating the present invention, and the present invention is not limited to the following specific embodiments and examples. First, graphite silica stone-containing short fibers will be exemplified and explained.
[黒鉛珪石含有短繊維]
黒鉛珪石含有短繊維は、黒鉛珪石の微粉末を含有する短繊維である。黒鉛珪石含有短繊維は、黒鉛珪石含有繊維を短繊維化して得られる。黒鉛珪石含有繊維は、例えば、特開2017‐020141号公報に開示されている。
[Short fiber containing graphite silica]
Graphite silica stone-containing short fibers are short fibers containing fine powder of graphite silica stone. The graphite silica stone-containing short fibers are obtained by shortening graphite silica stone-containing fibers. The graphite silica stone-containing fiber is disclosed in, for example, Japanese Patent Application Publication No. 2017-020141.
1.黒鉛珪石
黒鉛珪石は、数億年に亘り海底に堆積した珪藻類が地表に隆起したものであると考えられている。黒鉛珪石は、SiO2 を主成分とし、黒鉛結晶(通常は約5%)を含んでいる。その他にも、アルミニウム、カリウム、チタンおよび二酸化鉄およびマグネシウムなどを、黒鉛珪石は含んでいる。黒鉛珪石はブラックシリカと称される場合がある。
1. Graphite silica Graphite silica is thought to be the product of diatoms that have been deposited on the ocean floor for hundreds of millions of years and have risen to the surface. Graphite silica is mainly composed of SiO 2 and contains graphite crystals (usually about 5%). Graphite silica also contains aluminum, potassium, titanium, iron dioxide, and magnesium. Graphite silica is sometimes referred to as black silica.
2.黒鉛珪石の微粉末化
黒鉛珪石を微粉末化する。このとき、平均粒径(d50:累積50%粒径)が3μm以下になるように黒鉛珪石を微粉末化することが好ましい。
2. Pulverization of graphite silica Pulverization of graphite silica. At this time, it is preferable to pulverize the graphite silica stone so that the average particle size (d50: cumulative 50% particle size) is 3 μm or less.
3.繊維化(長繊維化)
上記黒鉛珪石の微粉末を所定量含有する黒鉛珪石含有繊維(長繊維)を製造する。
3. Fiberization (long fiberization)
A graphite-silica stone-containing fiber (long fiber) containing a predetermined amount of the graphite-silica fine powder is produced.
黒鉛珪石含有繊維を構成するポリマー、すなわち黒鉛珪石の微粉末を練り込むポリマーは、特に制限されない。紡糸時の曵糸性や糸物性を考慮すると、ポリエチレンテレフタレート、ナイロン6、ナイロン66等が好ましい。また繊維断面が芯部と鞘部からなる芯鞘型の繊維とする場合には、例えば、上記ポリマーから2種類を選び、いずれかを芯部のポリマーとし、他方を鞘部のポリマーとすることができる。 The polymer constituting the graphite-silica-containing fiber, that is, the polymer into which the graphite-silica fine powder is kneaded, is not particularly limited. Considering spinnability and yarn physical properties during spinning, polyethylene terephthalate, nylon 6, nylon 66, etc. are preferred. In addition, in the case of making a core-sheath type fiber with a fiber cross section consisting of a core part and a sheath part, for example, select two types of polymers from the above, and use one as the polymer for the core part and the other as the polymer for the sheath part. I can do it.
このとき、黒鉛珪石の微粉末は、芯部のポリマーと鞘部のポリマーのどちらに添加してもよい。芯部のポリマーと鞘部のポリマーの双方に添加することもできる。また、黒鉛珪石の微粉末を芯部のポリマーにのみ添加して、その周りを鞘部のポリマーで覆った、いわゆる芯鞘型の繊維とすることが好ましい。 At this time, the graphite silica fine powder may be added to either the core polymer or the sheath polymer. It can also be added to both the core and sheath polymers. Further, it is preferable to add the fine powder of graphite silica stone only to the core polymer and cover the core with the sheath polymer, thereby forming a so-called core-sheath type fiber.
芯鞘型の繊維とする場合には、鞘部と芯部の比率(重量比率)としては、4:1~1:4の範囲が好ましく、3:1~1:3の範囲がより好ましく、2:1~1:1の範囲が最も好ましい。また、芯部は繊維中に一芯である必要はなく、2以上の多芯であってもよい。さらに、芯部の一部が繊維表面に露出していてもよいし、芯部が鞘部に覆われていてもよい。 In the case of a core-sheath type fiber, the ratio (weight ratio) of the sheath part to the core part is preferably in the range of 4:1 to 1:4, more preferably in the range of 3:1 to 1:3, A range of 2:1 to 1:1 is most preferred. Further, the core need not be one core in the fiber, but may be two or more multi-core. Furthermore, a portion of the core may be exposed on the fiber surface, or the core may be covered with a sheath.
黒鉛珪石の微粉末を熱可塑性重合体に添加する方法は特に制限されない。均一分散させるという面からは、二軸押出機を用いてマスターチップ化する方法が好ましい。
黒鉛珪石の微粉末の添加時期も特に制限されない。重合初期に反応系に添加し、直接紡糸することができる。また、黒鉛珪石の微粉末を溶融状態にある重合体に混練する、いわゆる後添加方式とすることもできる。さらに、黒鉛珪石の微粉末を高濃度に含有させたマスターチップを用いる、いわゆるマスターバッチ方式とすることもできる。
There are no particular restrictions on the method of adding the fine powder of graphite silica to the thermoplastic polymer. From the viewpoint of uniform dispersion, it is preferable to form a master chip using a twin-screw extruder.
The timing of adding the fine powder of graphite silica is also not particularly limited. It can be added to the reaction system at the initial stage of polymerization and directly spun. It is also possible to use a so-called post-addition method in which fine powder of graphite silica is kneaded into the polymer in a molten state. Furthermore, a so-called masterbatch method using a master chip containing fine powder of graphite silica at a high concentration can also be used.
黒鉛珪石の微粉末の添加量は、好ましくは黒鉛珪石含有繊維(黒鉛珪石含有短繊維)の0.5~8.0重量%であり、より好ましくは黒鉛珪石含有繊維の0.5~5.0重量%、さらに好ましくは黒鉛珪石含有繊維の0.5~4.0重量%である。 The amount of the fine powder of graphite silica stone added is preferably 0.5 to 8.0% by weight of the graphite silica stone-containing fiber (graphite silica stone-containing short fiber), more preferably 0.5 to 5.0% by weight of the graphite silica stone-containing fiber. 0% by weight, more preferably 0.5 to 4.0% by weight of the graphite-silica-containing fiber.
黒鉛珪石含有繊維として繊維化するには、上記材料を用いて、通常の繊維製造工程をそのまま用いることが可能である。繊維の太さとしては、0.5~15デシテックス(dtex)の範囲が好ましい。 In order to form fibers into graphite-silica-containing fibers, it is possible to use the above-mentioned materials and use ordinary fiber manufacturing processes as they are. The thickness of the fibers is preferably in the range of 0.5 to 15 decitex (dtex).
黒鉛珪石含有繊維の断面形状は特に制限されない。丸断面のほか、例えば、三~六角断面等の多角断面、T字型断面、U字型断面とすることができる。 The cross-sectional shape of the graphite-silica-containing fiber is not particularly limited. In addition to a round cross section, it may have a polygonal cross section such as a trigonal to hexagonal cross section, a T-shaped cross section, or a U-shaped cross section.
なお、黒鉛珪石含有繊維として、通常の繊維の表面に、黒鉛珪石の微粉末を含有する樹脂コーティング層が形成されているものも用いることもできる。ただし、摩擦耐久性などを考慮すると、黒鉛珪石の微粉末が繊維ポリマー中に練り混まれている黒鉛珪石含有繊維を用いることが好ましい。 Note that as the graphite-silica-containing fiber, it is also possible to use ordinary fibers with a resin coating layer containing fine powder of graphite-silica stone formed on the surface of the fibers. However, in consideration of friction durability and the like, it is preferable to use graphite-silica-containing fibers in which fine powder of graphite-silica stone is mixed into the fiber polymer.
4.短繊維化
得られた黒鉛珪石含有繊維を短繊維化して黒鉛珪石含有短繊維とする。黒鉛珪石含有繊維は、従来公知の方法で短繊維化することができる。黒鉛珪石含有短繊維の繊維長は、好ましくは25~150mmであり、より好ましくは35~100mm、最も好ましくは、40~60mmである。捲縮数は、例えば3.3dtexの場合、12~15個/inch、捲縮率は概ね10%とすることが好ましい。
4. Making short fibers The obtained graphite-silica stone-containing fibers are made into short fibers to obtain graphite-silica stone-containing short fibers. The graphite silica stone-containing fiber can be made into short fibers by a conventionally known method. The fiber length of the graphite silica stone-containing short fibers is preferably 25 to 150 mm, more preferably 35 to 100 mm, and most preferably 40 to 60 mm. For example, in the case of 3.3 dtex, the number of crimp is preferably 12 to 15 per inch, and the crimp rate is preferably approximately 10%.
次に、消臭短繊維について例示説明する。
[消臭短繊維]
消臭短繊維は、消臭繊維を短繊維化して得られる。消臭繊維は、四価金属のリン酸塩、二価金属の水酸化物および光触媒を含有する熱可塑性ポリマーからなる。このような消臭繊維は、例えば、特開2004‐169218号公報、特開平10‐37023号公報、特開平10‐219520号公報などに開示されている。また、このような消臭繊維は、例えば、株式会社クラレ製「シャインアップ」(登録商標)として販売されている。
なお、四価金属のリン酸塩および二価金属の水酸化物で構成される組成物を単に「吸着剤」と称する場合がある。また、この吸着剤と光触媒を合わせて「消臭剤」と称する場合がある。
Next, examples of deodorant short fibers will be explained.
[Deodorant short fiber]
Deodorant short fibers are obtained by shortening deodorant fibers. The deodorizing fiber consists of a thermoplastic polymer containing a tetravalent metal phosphate, a divalent metal hydroxide, and a photocatalyst. Such deodorizing fibers are disclosed in, for example, JP-A No. 2004-169218, JP-A No. 10-37023, and JP-A No. 10-219520. Further, such deodorizing fibers are sold, for example, as "Shine Up" (registered trademark) manufactured by Kuraray Co., Ltd.
Note that a composition composed of a tetravalent metal phosphate and a divalent metal hydroxide may be simply referred to as an "adsorbent." Moreover, this adsorbent and photocatalyst are sometimes collectively referred to as a "deodorant."
1.四価金属のリン酸塩
リン酸塩を形成する四価金属には周期表4族元素、たとえば、4A族元素(チタン、ジルコニウム、ハフニウム、トリウム等)、4B族元素(ゲルマニウム、錫、鉛等)が含まれる。これらの金属のうち、周期表4A族元素に属する金属、たとえばチタン、ジルコニウム、ハフニウムや、4B族元素、たとえば錫が好ましく、とくに、チタンおよびジルコニウムが好ましい。
1. Tetravalent metal phosphates Tetravalent metals that form phosphates include Group 4 elements of the periodic table, such as Group 4A elements (titanium, zirconium, hafnium, thorium, etc.) and Group 4B elements (germanium, tin, lead, etc.). ) is included. Among these metals, metals belonging to Group 4A elements of the periodic table, such as titanium, zirconium, and hafnium, and metals belonging to Group 4B elements, such as tin, are preferred, and titanium and zirconium are particularly preferred.
リン酸塩を構成するリン酸には種々のリン酸、たとえばオルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が含まれる。リン酸はオルトリン酸、メタリン酸またはピロリン酸である場合が多い。また、リン酸塩にはオルトリン酸水素塩等のリン酸水素塩も含まれる。なお、本明細書において、とくに言及しないかぎりリン酸とはオルトリン酸を意味する。 The phosphoric acid constituting the phosphate salt includes various phosphoric acids, such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid. The phosphoric acid is often orthophosphoric acid, metaphosphoric acid or pyrophosphoric acid. Phosphates also include hydrogen phosphates such as hydrogen orthophosphate. In this specification, unless otherwise specified, phosphoric acid means orthophosphoric acid.
これらの四価金属リン酸塩は、通常、水不溶性または水難溶性である。さらに、四価金属リン酸塩は結晶質塩であってもよいが、好ましくは非晶質塩である。これらの四価金属リン酸塩は単独または2種以上を組み合わせて使用できる。 These tetravalent metal phosphates are usually water-insoluble or poorly water-soluble. Furthermore, although the tetravalent metal phosphate may be a crystalline salt, it is preferably an amorphous salt. These tetravalent metal phosphates can be used alone or in combination of two or more.
2.水酸化物を形成する二価金属
水酸化物を形成する二価金属には、たとえば銅等の周期表1B族元素、マグネシウム、カルシウム、ストロンチウム、バリウム等の周期表2A族元素、亜鉛、カドミウム等の周期表2B族元素、クロム、モリブデン等の周期表6A族元素、マンガン等の周期表7A族元素、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム等の周期表8族元素などが挙げられる。これらの二価金属の水酸化物は単独で使用してもよく、2種以上混合して使用してもよい。
2. Divalent metals that form hydroxides Divalent metals that form hydroxides include elements of group 1B of the periodic table such as copper, elements of group 2A of the periodic table such as magnesium, calcium, strontium, and barium, zinc, cadmium, etc. Examples include elements of group 2B of the periodic table, elements of group 6A of the periodic table such as chromium and molybdenum, elements of group 7A of the periodic table such as manganese, and elements of group 8 of the periodic table such as iron, ruthenium, cobalt, rhodium, nickel, and palladium. These divalent metal hydroxides may be used alone or in combination of two or more.
好ましい二価金属には遷移金属、たとえば銅等の周期表1B族元素、亜鉛などの周期表2B族元素、マンガン等の周期表7A族元素、鉄、コバルト、ニッケル等の周期表8族元素が含まれる。好ましくは銅、亜鉛、鉄、コバルト、ニッケルである。 Preferred divalent metals include transition metals, such as elements of group 1B of the periodic table such as copper, group 2B elements of the periodic table such as zinc, group 7A elements of the periodic table such as manganese, and elements of group 8 of the periodic table such as iron, cobalt, and nickel. included. Preferred are copper, zinc, iron, cobalt and nickel.
これら二価金属の水酸化物は、通常、弱酸性~弱アルカリ性領域(pH4~10)で水不溶性または水難溶性である。また二価金属の水酸化物は結晶質であってもよいが、非晶質である場合が多い。 These divalent metal hydroxides are generally insoluble or poorly soluble in water in the weakly acidic to weakly alkaline range (pH 4 to 10). Furthermore, although the hydroxide of a divalent metal may be crystalline, it is often amorphous.
3.光触媒
消臭剤を構成する光触媒は、紫外線等の光線の照射により活性ラジカルを生成させ、多くの有害物、悪臭物を酸化分解し、光酸化触媒として機能するものである。このような光触媒を用いると、単なる吸着作用ではなく、触媒的な分解を利用して消臭できるため、消臭または脱臭効果が長期間に亘り持続できる。さらに、この光触媒は有害物、悪臭物を分解するだけでなく、殺菌作用、抗菌作用等も有している。
3. Photocatalyst The photocatalyst that constitutes the deodorant functions as a photooxidation catalyst by generating active radicals by irradiation with light such as ultraviolet rays, oxidizing and decomposing many harmful substances and malodorous substances. When such a photocatalyst is used, it is possible to deodorize using catalytic decomposition rather than mere adsorption, so that the deodorizing or deodorizing effect can be maintained for a long period of time. Furthermore, this photocatalyst not only decomposes harmful substances and malodorous substances, but also has bactericidal and antibacterial effects.
光触媒としては、無機、有機を問わず、種々の光半導体が使用できる。光触媒としては、例えば、CdS、ZnS等の硫化物半導体、TiO2 、ZnO、SnO2 、WO3 等の酸化物半導体が好ましく、特に酸化物半導体、たとえばTiO2 、ZnO等が好ましい。前述の光触媒を構成する光半導体の結晶構造はとくに制限されない。たとえばTiO2 はアナターゼ型、ブルカイト型、ルチル型、アモルファス型等のいずれであってもよい。特に好ましいTiO2 としてアナターゼ型を挙げることができる。 As the photocatalyst, various optical semiconductors can be used, regardless of whether they are inorganic or organic. As the photocatalyst, for example, sulfide semiconductors such as CdS and ZnS, and oxide semiconductors such as TiO 2 , ZnO, SnO 2 and WO 3 are preferable, and oxide semiconductors such as TiO 2 and ZnO are particularly preferable. The crystal structure of the optical semiconductor constituting the photocatalyst described above is not particularly limited. For example, TiO 2 may be anatase type, brookite type, rutile type, amorphous type, etc. Particularly preferred TiO 2 is anatase type.
光触媒はゾル状、ゲル状または粉粒状で使用することができる。光触媒を粉粒状で使用する場合、光触媒の平均粒子径は、光活性および脱臭効率を損なわない範囲で選択でき、たとえば0.05~5μm、好ましくは0.05~1μmである。 The photocatalyst can be used in the form of a sol, gel, or powder. When the photocatalyst is used in the form of powder, the average particle diameter of the photocatalyst can be selected within a range that does not impair photoactivity and deodorizing efficiency, and is, for example, 0.05 to 5 μm, preferably 0.05 to 1 μm.
光触媒の使用量は、触媒活性を損なわない広い範囲から選択でき、たとえば消臭繊維全体に対して0.1~25重量%、好ましくは0.3~20重量%、さらに好ましくは0.5~15重量%の範囲であり、一般に0.5~10重量%の範囲である場合が多い。 The amount of the photocatalyst to be used can be selected from a wide range that does not impair the catalytic activity, for example, 0.1 to 25% by weight, preferably 0.3 to 20% by weight, more preferably 0.5 to 20% by weight, based on the entire deodorant fiber. It is often in the range of 15% by weight, and generally in the range of 0.5 to 10% by weight.
4.吸着剤、消臭剤
四価金属のリン酸塩と二価金属の水酸化物との割合は、触媒活性、臭気成分に対する吸着能や脱臭能を損なわない範囲で選択でき、たとえば金属原子比換算で、金属原子比(二価金属/四価金属)=0.1~10、好ましくは0.2~7、さらに好ましくは0.2~5の範囲である。複数のリン酸塩および/または水酸化物を組み合わせて用いる場合には、それぞれの金属の総和量に基づく金属原子比が上述の範囲内であればよい。また、四価金属のリン酸塩と二価金属の水酸化物とで構成された組成物は、混合ゲル等のように共沈などにより複合化した状態でもよい。とくに四価金属のリン酸塩と二価金属の水酸化物とを組み合わせて構成された消臭剤と、前述の光触媒とを混合または共沈などにより複合化して用いると、高い触媒活性を示し、長期間に亘り効率よく臭気成分などの種々の化合物を除去することができる。
4. Adsorbent, deodorant The ratio of tetravalent metal phosphate and divalent metal hydroxide can be selected within a range that does not impair catalyst activity, adsorption capacity for odor components, and deodorization capacity. The metal atomic ratio (divalent metal/tetravalent metal) is in the range of 0.1 to 10, preferably 0.2 to 7, more preferably 0.2 to 5. When using a plurality of phosphates and/or hydroxides in combination, the metal atomic ratio based on the total amount of each metal may be within the above range. Further, the composition composed of a phosphate of a tetravalent metal and a hydroxide of a divalent metal may be in a composite state by coprecipitation, such as a mixed gel. In particular, when a deodorizing agent composed of a combination of a tetravalent metal phosphate and a divalent metal hydroxide is used in combination with the above-mentioned photocatalyst by mixing or coprecipitation, high catalytic activity is exhibited. , various compounds such as odor components can be efficiently removed over a long period of time.
四価金属のリン酸塩と二価金属の水酸化物の合計使用量は、繊維の構造に応じて適宜選択でき、たとえば繊維全体に対して0.1~25重量%、好ましくは0.5~20重量%、さらには1~10重量%の範囲が好ましい。
光触媒の量は、四価金属のリン酸塩と二価金属の水酸化物との合計量100重量部に対して1~1000重量部、好ましくは10~750重量部、さらには20~500重量部の範囲が好ましい。
The total amount of tetravalent metal phosphates and divalent metal hydroxides can be selected as appropriate depending on the structure of the fiber, and is, for example, 0.1 to 25% by weight, preferably 0.5% by weight based on the entire fiber. The range is preferably from 1 to 10% by weight, more preferably from 1 to 10% by weight.
The amount of the photocatalyst is 1 to 1000 parts by weight, preferably 10 to 750 parts by weight, and more preferably 20 to 500 parts by weight based on 100 parts by weight of the total amount of tetravalent metal phosphate and divalent metal hydroxide. A range of 50% is preferred.
四価金属のリン酸塩および二価金属の水酸化物は、比表面積を増加させ吸着容量を高める上で有用な二酸化ケイ素と組み合わせてもよい。 Tetravalent metal phosphates and divalent metal hydroxides may be combined with silicon dioxide, which is useful in increasing specific surface area and adsorption capacity.
消臭剤は非晶質、とくに共沈により生成する共沈物質であることが好ましい。共沈により生成する非晶性消臭剤は、通常、10~1000m2 /g、好ましくは30~1000m2 /g、さらに好ましくは50~1000m2 /gのBET比表面積を有している。そのため、このような消臭剤を含有する繊維は高い消臭性を有する消臭性繊維として機能するとともに、抗菌性能をも合わせ持つのである。 The deodorant is preferably amorphous, particularly a coprecipitated substance produced by coprecipitation. The amorphous deodorant produced by coprecipitation usually has a BET specific surface area of 10 to 1000 m 2 /g, preferably 30 to 1000 m 2 /g, and more preferably 50 to 1000 m 2 /g. Therefore, fibers containing such deodorants function as deodorizing fibers with high deodorizing properties, and also have antibacterial properties.
消臭剤は慣用の種々の方法により得ることができる。たとえば四価金属リン酸塩、二価金属の水酸化物および光触媒を、必要に応じてさらに他の消臭剤(二酸化ケイ素等)とともに混合することにより、消臭剤を簡便に得ることができる。前記混合に際しては粉砕等により得られたそれぞれの粉粒状成分を混合してもよい。消臭剤を得る方法は、例えば、前述した特開2004‐169218号公報、特開平10‐37023号公報、特開平10‐219520号公報に記載されている。 Deodorants can be obtained by various conventional methods. For example, a deodorant can be easily obtained by mixing a tetravalent metal phosphate, a divalent metal hydroxide, and a photocatalyst with other deodorants (silicon dioxide, etc.) as necessary. . In the above-mentioned mixing, respective powder components obtained by pulverization or the like may be mixed. Methods for obtaining deodorants are described, for example, in the aforementioned Japanese Patent Application Laid-Open Nos. 2004-169218, 10-37023, and 10-219520.
5.消臭繊維
消臭繊維を構成する熱可塑性ポリマーとして、例えば、ナイロン6、ナイロン66等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルを挙げることができる。また前記ポリアミド、前記ポリエステルが第3成分を含有していてもよい。
5. Deodorizing fiber Examples of the thermoplastic polymer constituting the deodorant fiber include polyamides such as nylon 6 and nylon 66, and polyesters such as polyethylene terephthalate and polybutylene terephthalate. Moreover, the polyamide and the polyester may contain a third component.
また、消臭繊維は、単一の熱可塑性ポリマーからなる単一繊維のみならず、複数の熱可塑性ポリマーからなる複合繊維であってもよい。複合形態もとくに限定されるものではなく、通常の芯鞘型、多芯芯鞘型、貼合わせ型、多層貼合わせ型、海島型、ランダム複合型、中空芯鞘型等を挙げることができる。また、アルカリ処理等によって、1成分を除去して異形断面繊維、あるいは極細繊維としてもよい。さらに、中空繊維であっても中実繊維であってもよく、その繊維断面形態にとくに限定はない。 Moreover, the deodorizing fiber may be not only a single fiber made of a single thermoplastic polymer, but also a composite fiber made of a plurality of thermoplastic polymers. The composite form is not particularly limited, and examples include a normal core-sheath type, a multicore-sheath type, a laminated type, a multilayer laminated type, an island-in-the-sea type, a random composite type, a hollow core-sheath type, and the like. Alternatively, one component may be removed by alkali treatment or the like to produce irregular cross-section fibers or ultrafine fibers. Further, the fibers may be hollow fibers or solid fibers, and there are no particular limitations on the cross-sectional shape of the fibers.
前記短一繊維または複合繊維に光触媒と吸着剤とからなる消臭剤を含有させる方法としては、熱可塑性ポリマーの重合時または重合直後に消臭剤を添加含有させる方法、熱可塑性ポリマー中に消臭剤を添加してマスターバッチを作製しておき、それを使用する方法、熱可塑性ポリマーが紡糸されるまでの任意の段階(たとえば、ポリマーのペレットの作製段階、溶融紡糸段階など)で消臭剤を添加させる方法などがある。 Methods of incorporating a deodorizing agent consisting of a photocatalyst and an adsorbent into the short fibers or composite fibers include methods of adding and incorporating the deodorizing agent during or immediately after polymerization of the thermoplastic polymer; A method of preparing a masterbatch by adding an odor agent and using it, deodorizing at any stage until the thermoplastic polymer is spun (for example, at the stage of making polymer pellets, melt spinning stage, etc.) There are methods of adding agents.
また、消臭剤は微粒子状態のものとして添加するが、粒子をそのままポリマー中に添加すると粒子の凝集により繊維化が困難となる場合や、繊維化ができたとしても強度の低いものしか得られない場合があるので、適当な分散媒に分散させたスラリー状態でポリマー中に添加することが好ましい。 In addition, deodorants are added in the form of fine particles, but if the particles are added to the polymer as they are, it may be difficult to form fibers due to agglomeration of the particles, or even if fibers can be formed, they may only have low strength. Therefore, it is preferable to add it to the polymer in the form of a slurry dispersed in a suitable dispersion medium.
消臭剤を熱可塑性ポリマーからなる紡糸原料中に添加して紡糸するに際し、その分散状態は、繊維の断面形態により各種考えられる。たとえば、繊維が単一繊維である場合、該断面に消臭剤が均一に分散されている状態、単一中空繊維である場合には、繊維表面から中空部に向かい消臭剤の濃度に勾配がある状態、または均一に分散されている状態である。
繊維が複合繊維である場合、その複合形態により消臭剤の分散状態は異なる。たとえば、芯鞘型複合繊維の場合には芯部または鞘部の一方のみに消臭剤を含有させるか、芯部と鞘部とで消臭剤の濃度を異ならしめる分散状態がある。また海島型複合繊維の場合には海部または島部の一方のみに消臭剤を含有させるか、海部と島部とで消臭剤の濃度を異ならしめる分散状態がある。サイドバイサイド型または多層貼合わせ型(2種類のポリマーからなる場合)の場合には一方の成分のみに消臭剤を含有させるか、一方の成分と他方の成分とで消臭剤の濃度を異ならしめる分散状態がある。
When a deodorant is added to a spinning raw material made of a thermoplastic polymer and then spun, the state of its dispersion can vary depending on the cross-sectional form of the fibers. For example, when the fiber is a single fiber, the deodorant is uniformly dispersed in the cross section, and when the fiber is a single hollow fiber, the concentration of the deodorant is gradient from the fiber surface to the hollow part. A state in which there is or is uniformly dispersed.
When the fiber is a composite fiber, the state of dispersion of the deodorant differs depending on its composite form. For example, in the case of a core-sheath type composite fiber, there is a dispersion state in which the deodorant is contained only in either the core or the sheath, or the concentration of the deodorant is different between the core and the sheath. In the case of sea-island composite fibers, there is a dispersion state in which the deodorant is contained only in either the sea or the island, or the concentration of the deodorant is different between the sea and the island. In the case of a side-by-side type or a multilayer laminated type (when it consists of two types of polymers), only one component contains the deodorant, or the concentration of the deodorant is different between one component and the other component. There is a distributed state.
繊維全体に含有させる消臭剤の量が低くても大きい消臭効果を求める場合には、鞘部にのみ消臭剤を含有させた芯鞘型複合繊維が好適である。以下、このような芯鞘型複合繊維について、詳述する。 If a large deodorizing effect is desired even if the amount of deodorant contained in the entire fiber is low, a core-sheath type composite fiber containing the deodorant only in the sheath portion is suitable. Hereinafter, such a core-sheath type composite fiber will be explained in detail.
芯鞘型複合繊維においては、その鞘部にのみ消臭剤を含有させることが好ましい。少ない消臭剤量で大きな消臭効果を奏することができるからである。この点に関し、単一繊維の場合、消臭剤の使用量は1~25重量%の範囲が好ましいが、芯鞘型複合繊維の場合、単一繊維と同じ程度の消臭効果を奏するためには、消臭剤の使用量は鞘部の割合にもよるが、繊維全体に対して0.01~10重量%、好ましくは0.1~7.5重量%、さらに好ましくは0.25~5重量%の範囲にまで低減できる。
また、芯鞘型複合繊維の鞘部と芯部との複合割合は、芯部/鞘部=5/95~95/5(重量部)、好ましくは10/90~90/10、さらに好ましくは30/70~70/30である。この時、芯鞘型複合繊維を構成するポリマーの種類はとくに限定されず、芯部のポリマーと鞘部のポリマーは同じ種類であっても異なった種類であってもよい。
In the core-sheath type composite fiber, it is preferable that the deodorant is contained only in the sheath portion. This is because a large deodorizing effect can be achieved with a small amount of deodorant. In this regard, in the case of single fibers, the amount of deodorizing agent used is preferably in the range of 1 to 25% by weight, but in the case of core-sheath type composite fibers, in order to achieve the same degree of deodorizing effect as single fibers, Although the amount of deodorant used depends on the proportion of the sheath, it is 0.01 to 10% by weight, preferably 0.1 to 7.5% by weight, more preferably 0.25 to 10% by weight based on the total fiber. It can be reduced to a range of 5% by weight.
Further, the composite ratio of the sheath part and the core part of the core-sheath type composite fiber is core part/sheath part = 5/95 to 95/5 (parts by weight), preferably 10/90 to 90/10, more preferably It is 30/70 to 70/30. At this time, the type of polymer constituting the core-sheath composite fiber is not particularly limited, and the core polymer and the sheath polymer may be the same type or different types.
鞘部のポリマー(A)として、ポリエステルを用いることができる。例えば、ポリブチレンテレフタレート(PBT)、ポリ乳酸、ポリトリメチレンテレフタレート等のポリエステルが使用され、好ましくはポリブチレンテレフタレート、ポリ乳酸であり、特にポリブチレンテレフタレートが好ましい。PBTは、テレフタル酸単位を主体とするジカルボン酸単位及び1,4‐ブタンジオール単位を主体とするジオール単位から主としてなり、その代表例としてはテレフタル酸単位と1,4‐ブタンジオール単位のみからなるポリブチレンテレフタレート(以下「PBT」ということがある)を挙げることができる。
PBTのガラス転移点温度(Tg)は、65℃以下であることが好ましく、40~60℃であることがより好ましく、45~55℃であることが最も好ましい。また、ポリブチレンテレフタレートは、有機スルホン酸化合物を含有していてもよい。
Polyester can be used as the polymer (A) of the sheath portion. For example, polyesters such as polybutylene terephthalate (PBT), polylactic acid, and polytrimethylene terephthalate are used, preferably polybutylene terephthalate and polylactic acid, with polybutylene terephthalate being particularly preferred. PBT is mainly composed of dicarboxylic acid units mainly composed of terephthalic acid units and diol units mainly composed of 1,4-butanediol units, and a typical example is composed of only terephthalic acid units and 1,4-butanediol units. Polybutylene terephthalate (hereinafter sometimes referred to as "PBT") can be mentioned.
The glass transition temperature (Tg) of PBT is preferably 65°C or lower, more preferably 40 to 60°C, and most preferably 45 to 55°C. Moreover, polybutylene terephthalate may contain an organic sulfonic acid compound.
前述したように、この鞘部のポリマー(A)に、消臭剤を含有させることが好ましい。 As mentioned above, it is preferable that the polymer (A) of the sheath portion contains a deodorant.
芯部のポリマー(B)としては、融点が150℃以上の結晶性熱可塑性ポリマーが好ましく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミドなどを挙げることができる。また、鞘部のポリマー(A)と複合された際に界面剥離を生じにくくするためには、ポリエステルを使用することが好ましい。 The core polymer (B) is preferably a crystalline thermoplastic polymer with a melting point of 150° C. or higher, such as polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate, and polyamides such as nylon 6 and nylon 66. can be mentioned. Further, in order to prevent interfacial peeling from occurring when combined with the polymer (A) of the sheath portion, it is preferable to use polyester.
ポリエステルとしては、特に制限されないが、ガラス転移点温度が、70~90℃であることが好ましく、75~85℃であることがより好ましい。また、融点が、250~270℃であることが好ましい。一方、ポリアミドとしてはナイロン6、ナイロン66、ナイロン12を主成分とするポリアミドを用いることができる。このとき、少量の第3成分を含んでもよい。
特に好ましいポリマーの組み合わせは、たとえば鞘部のポリマー(A)としてガラス転移点温度が65℃以下のポリブチレンテレフタレート、芯部のポリマー(B)として融点が150℃以上のポリエチレンテレフタレートを挙げることができる。
The polyester is not particularly limited, but preferably has a glass transition temperature of 70 to 90°C, more preferably 75 to 85°C. Further, it is preferable that the melting point is 250 to 270°C. On the other hand, polyamides containing nylon 6, nylon 66, and
Particularly preferred combinations of polymers include, for example, polybutylene terephthalate having a glass transition point temperature of 65°C or lower as the polymer (A) for the sheath, and polyethylene terephthalate having a melting point of 150°C or higher as the polymer (B) for the core. .
上記鞘部のポリマー(A)と上記芯部のポリマー(B)とからなる複合繊維を溶融紡糸するにおいて、鞘部のポリマー(A)の加熱に起因する自己架橋によるゲルの発生を抑制させるために、酸化防止剤を含有させるとともに、機能性を付与すべく消臭剤を含有させることが好ましい。
鞘部のポリマー(A)中に含有させる酸化防止剤はヒドロキシ第三ブチルフェニル系化合物であって、ヒドロキシ基がブチル基に対してオルト位に位置している化合物(以下、フェノール系化合物と称する)が好ましく、鞘部のポリマー(A)に対して0.08重量%以上添加することが好ましい。該フェノール系化合物は一般に酸化防止剤として使用されている。フェノール系化合物、とくに窒素原子を含む化合物は、鞘部のポリマー(A)のゲル化を抑制する点で際立った効果を発揮する。
一般に無機微粒子が添加されていると鞘部のポリマー(A)の熱分解が促進されたり、ゲル化が促進されたりする場合があるが、フェノール系化合物にはこれらを抑制する効果がある。フェノール系化合物(酸化防止剤)の添加量の上限値にはとくに制限はないが、5重量%以下であることが好ましく、とくに0.1~3重量%の範囲であることが好ましい。
To suppress the generation of gel due to self-crosslinking caused by heating of the polymer (A) in the sheath when melt-spinning a composite fiber consisting of the polymer (A) in the sheath and the polymer (B) in the core. In addition to containing an antioxidant, it is preferable to contain a deodorizing agent in order to impart functionality.
The antioxidant contained in the polymer (A) of the sheath is a hydroxy tert-butylphenyl compound, in which the hydroxy group is located at the ortho position to the butyl group (hereinafter referred to as a phenol compound). ) is preferable, and it is preferable to add 0.08% by weight or more to the polymer (A) of the sheath portion. The phenolic compound is generally used as an antioxidant. A phenolic compound, particularly a compound containing a nitrogen atom, exhibits a remarkable effect in suppressing gelation of the polymer (A) in the sheath portion.
Generally, when inorganic fine particles are added, thermal decomposition or gelation of the polymer (A) in the sheath portion may be promoted, but phenolic compounds have the effect of suppressing these. There is no particular upper limit to the amount of the phenolic compound (antioxidant) added, but it is preferably 5% by weight or less, particularly preferably in the range of 0.1 to 3% by weight.
消臭繊維の太さはとくに制限されるものではなく、繊維の長さ方向の形態も制限されるものではない。すなわち、繊維の長さ方向に程同じ直径を有する繊維であってもよく、太細を有するシックアンドシン繊維であってもよく、それ以外の繊維であってもよい。 The thickness of the deodorant fibers is not particularly limited, nor is the shape of the fibers in the longitudinal direction. That is, the fibers may have approximately the same diameter in the longitudinal direction of the fibers, may be thick and thin fibers having thick and thin fibers, or may be other fibers.
6.消臭短繊維
得られた消臭繊維を短繊維化して消臭短繊維とする。消臭繊維は、従来公知の方法で短繊維化することができる。消臭短繊維の繊維長は、好ましくは25~150mmであり、より好ましくは35~100mm、最も好ましくは、40~60mmである。捲縮数は、例えば3.3dtexの場合、12~15個/inch、捲縮率は概ね10%とすることが好ましい。
6. Deodorizing short fibers The obtained deodorant fibers are made into short fibers to obtain deodorant short fibers. The deodorizing fiber can be made into short fibers by a conventionally known method. The fiber length of the deodorant short fibers is preferably 25 to 150 mm, more preferably 35 to 100 mm, and most preferably 40 to 60 mm. For example, in the case of 3.3 dtex, the number of crimp is preferably 12 to 15 per inch, and the crimp rate is preferably approximately 10%.
[混紡糸]
上記黒鉛珪石含有短繊維と上記消臭短繊維を混紡して混紡糸を得る。混紡方法は特に制限されない。例えば、黒鉛珪石含有短繊維と消臭短繊維をカード(梳綿機)に通して所定の割合で混紡することで混紡糸を得ることができる。混紡の際、黒鉛珪石含有短繊維を10~30重量%、消臭短繊維を10~90重量%とすることが、黒鉛珪石含有繊維の優れた特徴と十分な消臭性を高い次元で実現することができて好ましい。
[Blended yarn]
The graphite silica stone-containing short fibers and the deodorizing short fibers are blended to obtain a blended yarn. The blending method is not particularly limited. For example, a blended yarn can be obtained by passing graphite-silica stone-containing short fibers and deodorizing short fibers through a card (carding machine) and blending them at a predetermined ratio. When blending, the graphite-silica-containing short fibers should be 10-30% by weight and the deodorizing short fibers should be 10-90% by weight to achieve the excellent characteristics of the graphite-silica-containing fibers and sufficient deodorizing properties at a high level. It is preferable that it can be done.
[繊維構造物]
上記混紡糸は、種々の繊維構造物(繊維製品)に利用することができる。例えば、織布、編布、不織布等の布帛;パイル織物、パイル編物等のパイル布帛;これらのものから形成された衣類やその他の身体着用品;インテリア製品類;寝具類;食品用包装材などを挙げることができる。具体的には下着、セーター、ジャケット、パジャマ、浴衣、白衣、スラックス、靴下、手袋、ストッキング、エプロン、マスク、タオル、ハンカチ、サポーター、ヘッドバンド、帽子、靴のインソール、芯地等の衣類や身体着用品;各種カーペット、カーテン、壁紙、障子紙、襖、繊維製ブラインド、人工観葉植物、椅子等の布張用生地、テーブルクロス、電気製品カバー、畳、布団の中詰材(詰綿等)、布団の側地、シーツ、毛布、布団カバー、枕、枕カバー、ベッドカバー、ベッドの中詰材、マット、衛生材料、便座カバー、ワイピングクロス、空気清浄機やエアーコンディショナー等のフィルターなどを挙げることができる。
優れた消臭殺菌作用と蓄熱性を長期に亘り持続することができる本発明の混紡糸および繊維構造物は、特に介護分野において好適に用いられる。
[Fiber structure]
The above blended yarn can be used for various fiber structures (textile products). For example, fabrics such as woven fabrics, knitted fabrics, and non-woven fabrics; pile fabrics such as pile fabrics and pile knitted fabrics; clothing and other personal items made from these; interior products; bedding; food packaging materials, etc. can be mentioned. Specifically, clothing and body items such as underwear, sweaters, jackets, pajamas, yukatas, white coats, slacks, socks, gloves, stockings, aprons, masks, towels, handkerchiefs, supporters, headbands, hats, shoe insoles, interlining, etc. Worn items: various carpets, curtains, wallpaper, shoji paper, sliding doors, textile blinds, artificial plants, upholstery fabrics for chairs, tablecloths, electrical appliance covers, tatami mats, futon filling materials (cotton stuffing, etc.) , futon side materials, sheets, blankets, duvet covers, pillows, pillowcases, bedspreads, bed filling materials, mats, sanitary materials, toilet seat covers, wiping cloths, filters for air purifiers, air conditioners, etc. be able to.
The blended yarn and fiber structure of the present invention, which can maintain excellent deodorizing and sterilizing effects and heat storage properties over a long period of time, are particularly suitable for use in the nursing care field.
次に、実施例を用いて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。実施例中の比率および%は、重量に関するものである。 Next, the present invention will be specifically explained using Examples, but the present invention is not limited thereto. The proportions and percentages in the examples are by weight.
[実施例1]
黒鉛珪石の微粉末(平均粒子径0.6μm)を10重量%添加したポリエステルを芯成分とし、ポリエステルを鞘成分とした芯鞘型複合構造の黒鉛珪石含有繊維(鞘/芯の比率=2/1、83dtex/24fの延伸系)を得た。これを合糸して40万デニールの繊維トウにし、押込捲縮機を用いて捲縮をかけて51mmにカットし、単糸繊度3デニールの黒鉛珪石含有短繊維(捲縮数12.0個/インチ)を得た。
[Example 1]
Graphite-silica-containing fiber with a core-sheath type composite structure (sheath/core ratio = 2/ 1, a stretched system of 83 dtex/24 f) was obtained. This was combined into a 400,000 denier fiber tow, which was then crimped using a push crimper and cut into 51 mm pieces.The graphite silica stone-containing short fibers (number of crimps: 12.0) had a single yarn fineness of 3 denier. /inch).
一方、消臭繊維は以下の手順で得た。まず、以下の方法により消臭剤[Cu(II)‐Ti(IV)‐SiO2 ‐TiO2 ]を調整した。硫酸銅の結晶(CuSO4 ・5H2 O、和光純薬製試薬特級)43.9gを蒸留水1リットルに溶解し、得られた水溶液に硫酸チタン溶液(約30重量%濃度、和光純薬製試薬)60gを添加した。この混合液はCu(II)0.175モル、Ti(IV)イオン0.075モル含んでいる。前記混合液のpHは約1であった。室温下で混合液を撹拌しながら15重量%のリン酸溶液約110gを滴下したところ、白色沈殿物が生成した。沈殿物が生成した混合液をそのまま一昼夜撹拌した。上記沈殿物を含有する液(A液)とケイ酸ナトリウムを含む水溶液(B液)471gとを別々のビーカー中で撹拌しながら、蒸留水500mlを入れた容器中へ平行して滴下したところ、Cu(II)‐Ti(IV)‐SiO2 を含む青白色の混合沈殿物が生成した。A液とB液との混合時のpHは常に約7となるようにA液とB液の滴下量を調整した。なお、B液はケイ酸ナトリウム(和光純薬製試薬)を蒸留水で30重量%に希釈し(SiO2 としては0.86モル含有)、15重量%の水酸化ナトリウム水溶液30mlを添加することにより調整した。 On the other hand, deodorizing fibers were obtained by the following procedure. First, a deodorant [Cu(II)-Ti(IV)-SiO 2 -TiO 2 ] was prepared by the following method. 43.9 g of copper sulfate crystals (CuSO 4 5H 2 O, special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 1 liter of distilled water, and a titanium sulfate solution (approximately 30% concentration by weight, manufactured by Wako Pure Chemical Industries, Ltd.) was added to the resulting aqueous solution. Reagent) 60g was added. This mixed solution contains 0.175 mol of Cu(II) and 0.075 mol of Ti(IV) ions. The pH of the mixture was about 1. When about 110 g of a 15% by weight phosphoric acid solution was added dropwise to the mixture at room temperature while stirring, a white precipitate was generated. The mixture containing the precipitate was stirred as it was all day and night. When 471 g of a solution containing the above precipitate (liquid A) and an aqueous solution containing sodium silicate (liquid B) were stirred in separate beakers, they were dropped in parallel into a container containing 500 ml of distilled water. A bluish-white mixed precipitate containing Cu(II)-Ti(IV) -SiO2 was formed. The amounts of liquids A and B to be dropped were adjusted so that the pH of liquids A and B was always about 7 when mixed. For liquid B, sodium silicate (reagent manufactured by Wako Pure Chemical Industries, Ltd.) is diluted to 30% by weight with distilled water (contains 0.86 mol of SiO 2 ), and 30ml of a 15% by weight sodium hydroxide aqueous solution is added. Adjusted by.
A液とB液の混合液を室温下、さらに2時間撹拌した後、青白色混合沈殿物を吸引ろ過し、加温した脱イオン水で十分洗浄した後、40℃で乾燥した。乾燥物を乳鉢で120μm以下に粉砕し、Cu(II)‐Ti(IV)‐SiO2 を含む青白色の粉末を得た。該粉末80重量部に対して酸化チタン粉末(石原産業(株)製、MC‐90)20重量部を混合し、ジェットミルで粉砕し消臭剤を調整した。 After the mixture of liquids A and B was further stirred at room temperature for 2 hours, the blue-white mixed precipitate was suction-filtered, thoroughly washed with heated deionized water, and then dried at 40°C. The dried product was ground in a mortar to a size of 120 μm or less to obtain a blue-white powder containing Cu(II)-Ti(IV)-SiO 2 . 20 parts by weight of titanium oxide powder (manufactured by Ishihara Sangyo Co., Ltd., MC-90) was mixed with 80 parts by weight of the powder, and the mixture was ground with a jet mill to prepare a deodorant.
次に、鞘部用のポリマー(A成分)として二軸押出機にて上記消臭剤5質量%添加したポリブチレンテレフタレート(PBT)用い、芯部用ポリマーとして極限粘度0.70(フェノール/テトラクロロエタン等重量混合溶液にて30℃で測定)のポリエチレンテレフタレートを用い、紡糸温度290℃、巻取速度1000m/分、芯:鞘=50:50(重量比)の複合比率、ノズル孔径0.25φ‐24ホールで紡糸し、その後ローラプレート方式により延伸を行い、丸断面の75デニール/24フィラメントの消臭繊維を得た。 Next, polybutylene terephthalate (PBT) to which 5% by mass of the above deodorant was added was used as a polymer for the sheath (component A) using a twin-screw extruder, and polybutylene terephthalate (PBT) with an intrinsic viscosity of 0.70 (phenol/tetra Using polyethylene terephthalate (measured at 30 °C with a mixed solution of equal weight of chloroethane), spinning temperature 290 °C, winding speed 1000 m/min, composite ratio of core:sheath = 50:50 (weight ratio), nozzle hole diameter 0.25φ - Spinning with 24 holes and then drawing with a roller plate method to obtain a deodorizing fiber with a round cross section of 75 denier/24 filaments.
得られた消臭繊維を合糸して40万デニールの繊維トウにして、押込捲縮機を用いて捲縮をかけて51mmにカットし、単糸繊度3デニールの消臭短繊維(捲縮数12.0個/インチ)を得た。
上記黒鉛珪石含有短繊維と上記消臭短繊維をカード(梳綿機)に通して15:85の割合で混紡し、20番手の混紡糸を得た。得られた混紡糸を用いて天竺編物を作成した。
The obtained deodorant fibers were combined to form a fiber tow of 400,000 deniers, which was crimped using a push crimper and cut into 51 mm pieces. 12.0 pieces/inch).
The graphite silica stone-containing short fibers and the deodorizing short fibers were passed through a card (carding machine) and blended at a ratio of 15:85 to obtain a 20 count blended yarn. A jersey knitted fabric was created using the obtained blended yarn.
得られた天笠編物について消臭性を下記基準で評価した。
[消臭性評価]
1.検知管による消臭性評価
得られた天笠編物を10×10cmの大きさに切り出し概ね3gの測定用試料とした。この測定用試料をサンプリングバッグ(容量5L)に入れ、所定濃度に調整したアンモニアガスを注入してアンモニア濃度が40ppm(初期濃度)の状態で封止した。その後、封止状態で2時間後および24時間後のアンモニアガス濃度を、ガス検知管を用いて測定し、24時間後のアンモニアガス濃度の減少率を下記基準で評価した。
◎:減少率90%以上
○:減少率70%以上
×:減少率50%以下
The obtained Amagasa knitted fabric was evaluated for deodorizing properties according to the following criteria.
[Deodorization evaluation]
1. Evaluation of deodorizing properties using a detection tube The obtained Amagasa knitted fabric was cut into a size of 10 x 10 cm and used as a sample for measurement weighing approximately 3 g. This measurement sample was placed in a sampling bag (capacity: 5 L), and ammonia gas adjusted to a predetermined concentration was injected, and the bag was sealed at an ammonia concentration of 40 ppm (initial concentration). Thereafter, the ammonia gas concentration after 2 hours and 24 hours in the sealed state was measured using a gas detection tube, and the rate of decrease in the ammonia gas concentration after 24 hours was evaluated based on the following criteria.
◎: Reduction rate of 90% or more ○: Reduction rate of 70% or more ×: Reduction rate of 50% or less
2.パネラーによる消臭性評価(判定)
得られた天笠編物を10×10cmの大きさに切り出し概ね3gの測定用試料とした。この測定用試料を三角フラスコに入れ、アンモニアガスを注入して100ppmとして封止した。24時間経過後、10人のパネラーで臭気の強弱を下記1~5の基準で評価した。
0:無臭
1:やっと検知できるにおい
2:何のにおいであるかわかる程度の弱いにおい
3:らくに感知できるにおい
4:強いにおい
5:強烈なにおい
そして、10人のパネラーの評価をもとに、下記基準で臭気性を判定した
◎:9名以上が、試験後の臭気が強度2相当と同等又はそれより弱いと判定
○:7~8名が、試験後の臭気が強度2相当と同等又はそれより弱いと判定
△:5~6名が、試験後の臭気が強度2相当と同等又はそれより弱いと判定
×:6名以上が、試験後の臭気が強度3以上と判定
2. Deodorizing performance evaluation (judgment) by panelists
The obtained Amagasa knitted fabric was cut into a size of 10×10 cm to prepare a measurement sample weighing approximately 3 g. This measurement sample was placed in an Erlenmeyer flask, and ammonia gas was injected to the flask to 100 ppm and the flask was sealed. After 24 hours, 10 panelists evaluated the strength of the odor using the
0: Odorless 1: Barely detectable odor 2: Weak odor that makes it easy to tell what kind of odor it is 3: Easily detectable odor 4: Strong odor 5: Intense odor And based on the evaluations of 10 panelists, Odor properties were judged according to the following criteria: ◎: 9 or more people judged that the odor after the test was equivalent to intensity 2 or weaker. ○: 7 to 8 people judged that the odor after the test was equivalent to intensity 2 or weaker. △: 5 to 6 people judged that the odor after the test was equivalent to intensity 2 or weaker ×: 6 or more people judged that the odor after the test was equivalent to intensity 3 or higher
また、得られた天笠編物について蓄熱性を下記基準で評価した。
[蓄熱性評価]
1.人工太陽による評価
上記天笠編物から概ね3cm角の試料C(図1参照)を二枚切り出し、得られた二枚の試料を重ね合わせてその間に熱電対15を配置して試料台(発泡スチロール製)に載置し、図示しない作業ホルダで固定した後、人工太陽光(使用ランプ12:セリック(株)製 人工太陽照明灯XC‐500EFSS9)を照射して15分後の試料温度を測定した。照射距離Lは35cm、室温は20±2℃とした。
Furthermore, the heat storage properties of the obtained Amagasa knitted fabrics were evaluated according to the following criteria.
[Heat storage evaluation]
1. Evaluation using artificial sun Cut out two approximately 3 cm square samples C (see Figure 1) from the Amagasa knitted fabric, overlap the two obtained samples, place a
蓄熱保温性能の評価は、ポリエステル天笠編物を用いた概ね3cm角の対照試料R(図1参照)を対照として、各実施例および比較例の手袋から作成した試料Cがどの程度高い温度を示すか温度差(ΔT℃)を測定し、下記基準で評価した。なお、試料(図1中のCとR)の位置を入れ替えて4回測定し、そのデータを平均した値を試験結果とした。
◎:温度差5℃以上
○:温度差2℃以上
△:温度差1℃以上~2℃未満
×:温度差1℃未満
2.パネラーによる評価
織物についてパネラー10名で実施し、下記の基準で評価した。
◎:9名以上が蓄熱性に優れていると判定
○:7~8名が蓄熱性に優れていると判定
△:5~6名が蓄熱性に優れていると判定
×:6名以上が蓄熱性に劣っていると判定
The heat storage and heat retention performance was evaluated by comparing the control sample R (see Figure 1) of approximately 3 cm square using polyester Amagasa knitted fabric with the sample C made from the gloves of each example and comparative example, and how high the temperature was. The temperature difference (ΔT°C) was measured and evaluated based on the following criteria. In addition, the position of the sample (C and R in FIG. 1) was changed and the measurement was performed four times, and the average value of the data was taken as the test result.
◎: Temperature difference of 5℃ or more
○: Temperature difference of 2°C or more △: Temperature difference of 1°C or more to less than 2°C ×: Temperature difference of less than 1°C2. Evaluation by panelists The fabrics were evaluated by 10 panelists according to the following criteria.
◎: 9 or more people judged it to have excellent heat storage properties ○: 7 to 8 people judged it to have excellent heat storage properties △: 5 to 6 people judged it to have excellent heat storage properties ×: 6 or more people judged it to have excellent heat storage properties Determined to have poor heat storage properties
評価結果を表1に示す。 The evaluation results are shown in Table 1.
評価の結果、得られた天竺編物は、消臭性および蓄熱性ともに大変優れていた。また、長時間の着用でも蒸れにくいとの評価であった。 As a result of the evaluation, the obtained cotton jersey knitted fabric was found to have excellent deodorizing properties and heat storage properties. It was also rated as not easily stuffy even when worn for long periods of time.
[実施例2]
実施例1の黒鉛珪石含有短繊維において、鞘/芯の比率を、2/1から1/1に変更した。それ以外は、実施例1と同様の材料および条件で、混紡糸および天笠編物を得た。なお、鞘/芯の比率を、2/1から1/1に変更することによって、繊維中の黒鉛珪石含有割合が3.3重量%から5.0重量%に増加している。
得られた天竺編物は、消臭性および蓄熱性ともに大変優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 2]
In the graphite silica stone-containing staple fiber of Example 1, the sheath/core ratio was changed from 2/1 to 1/1. Other than that, a blended yarn and Amagasa knitted fabric were obtained using the same materials and conditions as in Example 1. Note that by changing the sheath/core ratio from 2/1 to 1/1, the graphite silica stone content in the fiber increased from 3.3% by weight to 5.0% by weight.
The obtained jersey knitted fabric had excellent deodorizing properties and heat storage properties. It was also rated as not easily stuffy even when worn for long periods of time.
[実施例3]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から5重量%に変更した。さらに、その他の繊維としてアクリル短繊維(繊維長51mm)を用いた。黒鉛珪石含有短繊維を30重量%、消臭短繊維を30重量%、アクリル短繊維を40重量%の割合で混紡して混紡糸を得た。上記以外は、実施例2と同様の材料および条件で、天笠編物を得た。
得られた天竺編物は、消臭性に優れ、蓄熱性が大変優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 3]
In the graphite silica stone-containing short fiber of Example 2, the graphite silica stone content ratio (in the core component) was changed from 10% by weight to 5% by weight. Furthermore, short acrylic fibers (fiber length 51 mm) were used as other fibers. A blended yarn was obtained by blending 30% by weight of graphite silica stone-containing short fibers, 30% by weight of deodorizing short fibers, and 40% by weight of acrylic short fibers. Except for the above, an Amagasa knitted fabric was obtained using the same materials and conditions as in Example 2.
The obtained cotton jersey knitted fabric had excellent deodorizing properties and excellent heat storage properties. It was also rated as not easily stuffy even when worn for long periods of time.
[実施例4]
実施例1の黒鉛珪石含有短繊維において、芯成分を、ポリエチレンテレフタレートからナイロン6に変更した。また、その他の繊維としてアクリル短繊維(繊維長51mm)を用いた。黒鉛珪石含有短繊維を15重量%、消臭短繊維を30重量%、アクリル短繊維を55重量%の割合で混紡して混紡糸を得た。それ以外は、実施例1と同様の材料および条件で、天笠編物を得た。
得られた天竺編物は、消臭性に優れ、蓄熱性が大変優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 4]
In the graphite silica stone-containing short fiber of Example 1, the core component was changed from polyethylene terephthalate to nylon 6. In addition, short acrylic fibers (fiber length 51 mm) were used as other fibers. A blended yarn was obtained by blending 15% by weight of graphite silica stone-containing short fibers, 30% by weight of deodorizing short fibers, and 55% by weight of acrylic short fibers. Other than that, an Amagasa knitted fabric was obtained using the same materials and conditions as in Example 1.
The obtained cotton jersey knitted fabric had excellent deodorizing properties and excellent heat storage properties. It was also rated as not easily stuffy even when worn for long periods of time.
[実施例5]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から2重量%に変更した。上記以外は、実施例2と同様の材料および条件で、天笠編物を得た。
得られた天竺編物は、消臭性および蓄熱性ともに大変優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 5]
In the graphite silica stone-containing short fiber of Example 2, the graphite silica stone content ratio (in the core component) was changed from 10% by weight to 2% by weight. Except for the above, an Amagasa knitted fabric was obtained using the same materials and conditions as in Example 2.
The obtained jersey knitted fabric had excellent deodorizing properties and heat storage properties. It was also rated as not easily stuffy even when worn for long periods of time.
[比較例1]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から50重量%に変更した。この比較例1では繊維化工程で断線が多発した。そのため、サンプル評価を中止した。
[比較例2]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から0.5重量%に変更した。それ以外は、実施例2と同様の材料および条件で、混紡糸および天笠編物を得た。
得られた天竺編物は、消臭性に大変優れていたものの、蓄熱性が劣っていた。
[比較例3]
実施例1において、消臭短繊維のかわりにアクリル短繊維(繊維長51mm)を用いて混紡糸および天笠編物を得た。
得られた天竺編物は、蓄熱性に大変優れていたものの、消臭性が大きく劣っていた。しかし、長時間の着用でも蒸れにくいとの評価であった。
[Comparative example 1]
In the graphite silica stone-containing short fiber of Example 2, the graphite silica stone content ratio (in the core component) was changed from 10% by weight to 50% by weight. In Comparative Example 1, many wire breaks occurred during the fiberization process. Therefore, sample evaluation was discontinued.
[Comparative example 2]
In the graphite silica stone-containing short fiber of Example 2, the graphite silica stone content ratio (in the core component) was changed from 10% by weight to 0.5% by weight. Other than that, a blended yarn and Amagasa knitted fabric were obtained using the same materials and conditions as in Example 2.
Although the obtained cotton jersey knitted fabric had excellent deodorizing properties, it had poor heat storage properties.
[Comparative example 3]
In Example 1, a blended yarn and Tenkasa knitted fabric were obtained using acrylic short fibers (fiber length 51 mm) instead of deodorant short fibers.
Although the obtained cotton jersey knitted fabric had excellent heat storage properties, it was significantly inferior in deodorizing properties. However, it was rated as not easily stuffy even when worn for long periods of time.
[比較例4]
消臭短繊維70重量%とアクリル短繊維(繊維長51mm)30重量%を用いて混紡糸および天笠編物を得た。
得られた天竺編物は、消臭性に大変優れていたものの、蓄熱性が大きく劣っていた。
[Comparative example 4]
A blended yarn and Tenkasa knitted fabric were obtained using 70% by weight of deodorant short fibers and 30% by weight of acrylic short fibers (fiber length 51 mm).
Although the obtained jersey knitted fabric had very good deodorizing properties, it had very poor heat storage properties.
以上、特定の実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではなく、当該技術分野における熟練者等により、本出願の願書に添付された特許請求の範囲から逸脱することなく、種々の変更及び修正が可能である。 Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to the above embodiments. Various changes and modifications are possible without departing from the scope of the invention.
本発明の混紡糸は消臭性および蓄熱性に優れており、前述したように、種々の繊維構造物(繊維製品)に利用することができる。優れた消臭殺菌作用と蓄熱性を長期に亘り(半永久的に)持続することができる本発明の混紡糸および繊維構造物は、特に介護分野で好適に利用することができる。 The blended yarn of the present invention has excellent deodorizing properties and heat storage properties, and as described above, can be used for various fiber structures (textile products). The blended yarn and fiber structure of the present invention, which can maintain excellent deodorizing and sterilizing effects and heat storage properties over a long period of time (semi-permanently), can be particularly suitably used in the field of nursing care.
1 蓄熱性の評価装置
11 試料台
12 ランプ
15 熱電対
C 各実施例および各比較例
R 対照(ポリエステル天笠編物を使用)
1 Heat storage evaluation device
11 Sample stage
12 lamps
15 Thermocouple
C Examples and comparative examples
R Control (using polyester Amagasa knitted fabric)
Claims (4)
四価金属のリン酸塩、二価金属の水酸化物および光触媒を含有する熱可塑性ポリマーからなる消臭短繊維と、からなり、
前記消臭短繊維が、
芯部と鞘部からなる芯鞘型複合構造であり、
前記芯部は、融点が150℃以上の熱可塑性ポリマーからなり、
前記鞘部は、ポリブチレンテレフタレートからなり、
前記鞘部に、四価金属のリン酸塩、二価金属の水酸化物および光触媒ならびに酸化防止剤が含有されてなる、
混紡糸。Graphite silica-containing short fibers containing graphite silica fine powder;
Consisting of deodorizing short fibers made of a thermoplastic polymer containing a tetravalent metal phosphate, a divalent metal hydroxide, and a photocatalyst,
The deodorant short fiber is
It has a core-sheath type composite structure consisting of a core and a sheath.
The core portion is made of a thermoplastic polymer with a melting point of 150° C. or higher,
The sheath portion is made of polybutylene terephthalate,
The sheath contains a tetravalent metal phosphate, a divalent metal hydroxide, a photocatalyst, and an antioxidant.
Blended yarn.
芯部と鞘部からなる芯鞘型複合構造であり、前記芯部中にのみ黒鉛珪石の微粉末を含有しており、黒鉛珪石の含有量は、黒鉛珪石含有繊維の0.5~5重量%である、
請求項1に記載の混紡糸。
Graphite silica-containing short fibers are
It has a core-sheath type composite structure consisting of a core part and a sheath part, and contains fine powder of graphite silica stone only in the core part, and the content of graphite silica stone is 0.5 to 5% by weight of the graphite silica-containing fiber. %,
The blended yarn according to claim 1.
消臭短繊維が10~90重量%含まれている、
請求項1又は2に記載の混紡糸。Contains 10 to 30% by weight of short fibers containing graphite silica,
Contains 10-90% by weight of deodorant short fibers.
The blended yarn according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019182738A JP7412732B2 (en) | 2019-10-03 | 2019-10-03 | Blended yarns and fiber structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019182738A JP7412732B2 (en) | 2019-10-03 | 2019-10-03 | Blended yarns and fiber structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021059790A JP2021059790A (en) | 2021-04-15 |
JP7412732B2 true JP7412732B2 (en) | 2024-01-15 |
Family
ID=75379841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019182738A Active JP7412732B2 (en) | 2019-10-03 | 2019-10-03 | Blended yarns and fiber structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7412732B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327344A (en) | 2001-04-25 | 2002-11-15 | Kanemasu:Kk | Composite fiber structure |
JP2006022451A (en) | 2004-07-09 | 2006-01-26 | Kuraray Co Ltd | Fiber having excellent heat-storing and temperature-keeping properties |
JP2017020141A (en) | 2015-07-14 | 2017-01-26 | 加茂繊維株式会社 | fiber |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU692049B2 (en) * | 1995-02-15 | 1998-05-28 | Japan Envirochemicals, Ltd. | Deodorizable fibers and method of producing the same |
JP3301706B2 (en) * | 1997-01-17 | 2002-07-15 | 株式会社クラレ | Deodorant composite fiber and method for producing the same |
JP3301709B2 (en) * | 1997-02-06 | 2002-07-15 | 株式会社クラレ | Fiber with excellent deodorant performance |
-
2019
- 2019-10-03 JP JP2019182738A patent/JP7412732B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327344A (en) | 2001-04-25 | 2002-11-15 | Kanemasu:Kk | Composite fiber structure |
JP2006022451A (en) | 2004-07-09 | 2006-01-26 | Kuraray Co Ltd | Fiber having excellent heat-storing and temperature-keeping properties |
JP2017020141A (en) | 2015-07-14 | 2017-01-26 | 加茂繊維株式会社 | fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2021059790A (en) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3215318B2 (en) | Deodorant fiber and method for producing the same | |
CA2734872C (en) | Extra fine filament yarn containing deodorant functional agent and producing the same | |
EP0728855B1 (en) | Deodorizing fibers and method of producing the same | |
JP3301706B2 (en) | Deodorant composite fiber and method for producing the same | |
JP3713122B2 (en) | Deodorant fiber products | |
JP2010119970A (en) | Deodorizing fiber and manufacturing method therefor | |
JP7412732B2 (en) | Blended yarns and fiber structures | |
JP5385085B2 (en) | Deodorant functional agent-containing ultrafine fiber and method for producing the same | |
JP3720466B2 (en) | Deodorant fiber | |
JP3905823B2 (en) | Deodorant composite fiber | |
JP4115880B2 (en) | Special cross-section fiber | |
JP3342326B2 (en) | Wiping cloth | |
JP3301709B2 (en) | Fiber with excellent deodorant performance | |
JP2010031403A (en) | Photocatalyst-containing shath-core conjugate fiber and method for producing the same | |
JP2004169216A (en) | Deodorizing fiber | |
JP2010053471A (en) | Photocatalyst-containing ultrafine fiber | |
JP2016017245A (en) | Ethylene-vinyl alcohol-based fiber and yarn having deodorizing properties, and fiber product | |
JP5341673B2 (en) | Deodorant fiber and method for producing the same | |
JP2004169218A (en) | Deodorizing composite fiber | |
JP2004169220A (en) | Deodorizing composite fiber and method for producing the same | |
JP2011042908A (en) | Deodorant sheath-core conjugated fiber and method for producing the same | |
JP2010121245A (en) | Deodorizing sheath-core conjugate fiber and method for producing the same | |
JPH10183426A (en) | Fusing fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7412732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |