Nothing Special   »   [go: up one dir, main page]

JP7406870B2 - Charging control circuit - Google Patents

Charging control circuit Download PDF

Info

Publication number
JP7406870B2
JP7406870B2 JP2023529347A JP2023529347A JP7406870B2 JP 7406870 B2 JP7406870 B2 JP 7406870B2 JP 2023529347 A JP2023529347 A JP 2023529347A JP 2023529347 A JP2023529347 A JP 2023529347A JP 7406870 B2 JP7406870 B2 JP 7406870B2
Authority
JP
Japan
Prior art keywords
charging
current
circuit
battery
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023529347A
Other languages
Japanese (ja)
Other versions
JPWO2022269834A1 (en
Inventor
和征 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2022269834A1 publication Critical patent/JPWO2022269834A1/ja
Application granted granted Critical
Publication of JP7406870B2 publication Critical patent/JP7406870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電制御回路に関する。 The present invention relates to a charging control circuit.

近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車に置き換わりつつある。特に、モータを駆動するための電池電源にエネルギー密度の高いリチウムイオン二次電池が多く使用されている。 In recent years, out of consideration for the global environment, engine-driven vehicles driven by internal combustion engines, ie, engines, are being replaced by electric vehicles driven by motors. In particular, lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors.

特開2017-225241号公報Japanese Patent Application Publication No. 2017-225241

多数のリチウムイオン二次電池セルを収容する複数個の電池モジュールを搭載する気自動車の充電制御回路において、過充電防止の対策を施すことが重要な課題である。 It is an important issue to take measures to prevent overcharging in charging control circuits for electric vehicles equipped with a plurality of battery modules that accommodate a large number of lithium ion secondary battery cells.

本発明はこのような背景を鑑みてなされたものであり、安全に充電することができる技術を提供することを目的とする。 The present invention has been made in view of this background, and an object of the present invention is to provide a technology that allows safe charging.

上記課題を解決するための本発明の主たる発明は、充電制御回路であって、充電回路と、上限電流を超えない定電流で放電する定電流放電回路と、前記充電回路及び前記定電流放電回路に並列接続される電池モジュールと、を備え、前記電池モジュールは、電池セル群と、前記電池セル群への充電電流を可逆的に通電または遮断する第1通電遮断素子と、前記電池セル群への前記充電電流を不可逆的に通電または遮断する第2通電遮断素子と、を備え、前記電池モジュールのうちの少なくとも1つが過充電になった場合に、過充電となった前記電池モジュールの前記第1通電遮断素子を用いて前記充電電流を遮断し、前記第1通電遮断素子による遮断に失敗した場合、全ての前記電池モジュールの前記第2通電遮断素子を用いて充電電流を遮断し、前記第2通電遮断素子による遮断に失敗した場合、前記定電流放電回路を用いて前記電池モジュール群を放電する。 The main invention of the present invention for solving the above problems is a charging control circuit, including a charging circuit, a constant current discharging circuit that discharges at a constant current that does not exceed an upper limit current, the charging circuit and the constant current discharging circuit. a battery module connected in parallel to the battery cell group; a second energization cutoff element that irreversibly energizes or cuts off the charging current, and when at least one of the battery modules is overcharged, the second energization cutoff element of the overcharged battery module The charging current is cut off using one current cutoff element, and if the first current cutoff element fails to cut off the charging current, the second current cutoff element of all the battery modules is used to cut off the charging current, and the second current cutoff element of all the battery modules is used to cut off the charging current. If the interruption by the second energization interruption element fails, the battery module group is discharged using the constant current discharge circuit.

その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed in the present application and methods for solving the problems will be made clear by the section of the embodiments of the invention and the drawings.

本発明によれば、安全に充電することができる。 According to the present invention, charging can be performed safely.

本実施形態に係る電池モジュール3の構成の概略を示す回路ブロック図である。1 is a circuit block diagram schematically showing the configuration of a battery module 3 according to the present embodiment. FIG. 本実施形態に係る充電制御回路103の構成の概略を示す回路ブロック図である。FIG. 2 is a circuit block diagram schematically showing the configuration of a charging control circuit 103 according to the present embodiment. 本実施形態に係る充電回路104の構成の概略を示す回路ブロック図である。FIG. 2 is a circuit block diagram schematically showing the configuration of a charging circuit 104 according to the present embodiment. 本実施形態に係る充電制御回路104のメインコントローラ9の制御の概略を示すフローチャート図である。2 is a flowchart diagram schematically showing control of the main controller 9 of the charging control circuit 104 according to the present embodiment. FIG.

リチウムイオン二次電池は、充電時には、前記リチウムイオン二次電池セル内の正極活物質からリチウムイオンが電解液中へ電気的に離脱する一方、放電時には、前記リチウムイオンが前記電解液中から前記正極活物質中へ電気的に挿入されることに伴う電子の移動により電流が流れる動作原理を有し、前記正極活物質内では前記リチウムイオンの前記電気的な離脱または挿入に伴い酸化還元反応が生じると言われている。 In a lithium ion secondary battery, during charging, lithium ions are electrically separated from the positive electrode active material in the lithium ion secondary battery cell into the electrolyte, while during discharging, the lithium ions are released from the electrolyte into the electrolyte. It has an operating principle in which a current flows due to the movement of electrons as they are electrically inserted into the positive electrode active material, and a redox reaction occurs within the positive electrode active material as the lithium ions are electrically removed or inserted. is said to occur.

また、前記リチウムイオン二次電池の過充電時の発火のプロセスは、リチウムオン二次電池セルに過電圧が印加される過充電時に、前記リチウムイオン二次電池セル内の正極活物質からリチウムイオンが大量に引き抜かれ前記正極活物質の結晶格子構造が崩壊した際に前記正極活物質から電気的に不安定な活性酸素が電解液中へ放出され前記活性酸素が可燃性の前記電解液に触れて着火し連鎖的に発火に及ぶと言われている。 In addition, the process of ignition during overcharging of the lithium ion secondary battery is such that lithium ions are released from the positive electrode active material in the lithium ion secondary battery cell during overcharging when an overvoltage is applied to the lithium ion secondary battery cell. When a large amount of active oxygen is extracted and the crystal lattice structure of the positive electrode active material collapses, electrically unstable active oxygen is released from the positive electrode active material into the electrolyte, and the active oxygen comes into contact with the flammable electrolyte. It is said to ignite and cause a chain reaction.

リチウムイオン二次電池の正極活物質は、コバルト酸リチウム、マンガン酸リチウム、または、ニッケル酸リチウムを代表的な材料として構成され、前記正極活物質内における酸化還元反応に従い充電時には、リチウムイオンが正極活物質内から電解液中へ電気的に離脱する現象、および、特に、過充電時には前記リチウムイオンが前記正極活物質内から電解中へ大量に離脱し結果的に前記活性酸素を放出する現象であることに着目すると、充電時は酸化還元反応における実質的な還元反応に類似すると言え、特に、前記過充電状態は実質的に過度な還元反応に類似すると言える。逆に、放電時は、前記実質的な酸化反応に類似、すなわち、正極活物質がその内部に実質的に酸素を取り込む現象に類似すると言える。 The positive electrode active material of a lithium ion secondary battery is typically composed of lithium cobalt oxide, lithium manganate, or lithium nickel oxide. During charging, lithium ions are transferred to the positive electrode according to the redox reaction within the positive electrode active material. A phenomenon in which lithium ions are electrically desorbed from the active material into the electrolytic solution, and a phenomenon in which a large amount of lithium ions are desorbed from the positive electrode active material into the electrolysis during overcharging, resulting in the release of active oxygen. Focusing on one thing, it can be said that charging is similar to a substantial reduction reaction in an oxidation-reduction reaction, and in particular, it can be said that the overcharged state is substantially similar to an excessive reduction reaction. On the contrary, during discharge, it can be said that the phenomenon is similar to the above-mentioned substantial oxidation reaction, that is, the phenomenon in which the positive electrode active material substantially takes in oxygen.

したがって、過充電における安全性を高める目的において、過充電時に正極活物質が活性酸素を放出する反応、すなわち、前記実質的な過度の還元反応を抑えることが求められる。また、充電制御回路において過充電に対する二重保護の安全機構を備えても、万一に二重保護に失敗した場合、例えば、リチウムイオン二次電池セル内部に備えるCID、すなわち、充電電流を通電する溶接点を過電圧に伴う電解液の電気分解で生じたガスによる内圧上昇を利用して引き剥し充電電流を遮断する安全機構の存在を三重保護としての安全保護手段に位置づけても、前記CIDは浸水時にその封止部が電蝕し、前記内圧上昇した高圧の前記ガスが前記電蝕した封止部から電池セル外部に抜けて溶接点を引き剥すことに失敗し過充電が継続し発火することがある。また、CIDを内蔵できないラミネート式のリチウムイオン二次電池セルを用いる場合は、前記過充電二重保護の失敗によって必然的に発火に至り、前記過充電二重保護の失敗の確率が低くても発火の際の損害が甚大である。したがって、リスクアセスメント観点より、二重保護の失敗時も配慮した安全性を確保することが求められる。 Therefore, for the purpose of increasing safety during overcharging, it is required to suppress the reaction in which the positive electrode active material releases active oxygen during overcharging, that is, the substantial excessive reduction reaction. In addition, even if the charging control circuit is equipped with a safety mechanism for double protection against overcharging, if the double protection fails, for example, the CID provided inside the lithium ion secondary battery cell Even if the existence of a safety mechanism that cuts off the charging current by stripping the welding point using the increase in internal pressure due to the gas generated by electrolysis of the electrolytic solution due to overvoltage is positioned as a safety protection measure as triple protection, the above CID is When flooded, the sealing part is electrolytically corroded, and the high-pressure gas that has increased internal pressure escapes from the electrolytically eroded sealing part to the outside of the battery cell, failing to strip the welding point, resulting in continued overcharging and ignition. Sometimes. Furthermore, when using a laminated lithium ion secondary battery cell that cannot incorporate a CID, the failure of the double overcharge protection will inevitably lead to ignition, even if the probability of failure of the double overcharge protection is low. The damage caused in the event of a fire is severe. Therefore, from a risk assessment perspective, it is necessary to ensure safety by taking into consideration even when double protection fails.

図1に示すように、電池モジュール3は、複数のリチウムイオン二次電池セルが直列接続された高電圧定格の電池セル群1Hを、その電池セル群1Hへの充電電流入力を可逆的に入力または停止する第1通電遮断素子としての半導体通電遮断素子FET6、および、不可逆的に入力または遮断する第2通電遮断素子としての自己溶断型ヒューズSCP7を直列に介して端子8に接続する。モジュールコントローラすなわち一次保護IC4は、前記電池セル群1Hの電圧、または、前記電池セル群1Hの電流、すなわち、シャント抵抗6の両端に現れる電圧を検知して、その検知結果に応じてFET6をオンまたはオフに操作し端子8らの充電電流入力の入力または停止を制御する。また、二次保護IC5は前記一次保護IC4と独立に駆動し、前記電池セル群1Hの電圧を検知して、その検知結果、または、前記一次保護IC4からの指示信号9に応じてFET10をオンに操作してSCP7内のヒータを通電加熱して前記SCP7内のヒューズエレメントを自己溶断し不可逆的に充電電流を遮断する。 As shown in FIG. 1, the battery module 3 reversibly inputs a charging current input to a high voltage rated battery cell group 1H in which a plurality of lithium ion secondary battery cells are connected in series. Alternatively, a semiconductor current cutoff element FET6 as a first current cutoff element to be stopped and a self-fusing fuse SCP7 as a second current cutoff element to irreversibly input or cut off are connected to the terminal 8 through series. The module controller, that is, the primary protection IC 4 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on the FET 6 according to the detection result. Or, it is turned off to control the input or stop of the charging current input to the terminals 8 and the like. Further, the secondary protection IC 5 is driven independently of the primary protection IC 4, detects the voltage of the battery cell group 1H, and turns on the FET 10 in accordance with the detection result or the instruction signal 9 from the primary protection IC 4. The heater in the SCP 7 is energized and heated to self-fuse the fuse element in the SCP 7, irreversibly cutting off the charging current.

図2に示すように、充電制御回路103は、複数の電池モジュール3を直列接続して電池モジュール3群を構成し、前記電池モジュール3群を充電回路11へ接続する。前記充電回路11は、電源入力ケーブル10を商用電源に接続して交流電圧を入力し所望の直流電圧へ変換し前記電池モジュール3群へ前記直流電圧を印加しその電池モジュール3群へ充電電流を入力して前記電池モジュール3内の電池セル群1Hを充電する。 As shown in FIG. 2, the charging control circuit 103 connects a plurality of battery modules 3 in series to form a battery module 3 group, and connects the battery module 3 group to the charging circuit 11. The charging circuit 11 connects the power input cable 10 to a commercial power source, inputs an AC voltage, converts it to a desired DC voltage, applies the DC voltage to the 3 groups of battery modules, and supplies a charging current to the 3 groups of battery modules. input, and the battery cell group 1H in the battery module 3 is charged.

図3に示すように、充電制御回路104は、前記充電制御回路103に定電流放電回路12を追加し電池モジュール3群に並列接続した構成した構成である。メインコントローラ9は、後述のフローチャート図に従い、制御信号13を用いて前記定電流放電回路12を制御する。 As shown in FIG. 3, the charging control circuit 104 has a configuration in which a constant current discharging circuit 12 is added to the charging control circuit 103 and connected in parallel to three groups of battery modules. The main controller 9 controls the constant current discharge circuit 12 using a control signal 13 according to a flow chart described later.

前記充電回路104のメインコントローラ9の制御について、次に、図4のフローチャート図を用いて説明する。 Next, the control of the main controller 9 of the charging circuit 104 will be explained using the flowchart shown in FIG.

充電制御回路104のメインコントローラ9は、Step1にて、絶縁性通信信号3を用いて電池モジュール3群と通信を行い前記電池モジュール3群の内、少なくとも1個の電池モジュール3内の電池セル群1Hの電圧が所定電圧1を超えたか否かを検知する。前記電池セル群1Hの電圧が所定電圧1を超えたと判定すると、Step2へ移行し、全ての前記電池モジュール3へFET6をオフに操作するように指示し全ての電池モジュール3の充電電流の通電を停止する。メインコントローラ9は、Step3にて、絶縁性通信信号3を用いて電池モジュール3群と通信を行い前記電池モジュール3群の内、少なくとも1個の電池モジュール3内の電池セル群1Hの電圧が前記所定電圧1よりも高い所定電圧2を超えたか否かを検知する。前記電池セル群1Hの電圧が前記所定電圧2を超えたと判定すると、Step4へ移行し、全ての前記電池モジュール3へ前記電池モジュール3内のFET10をオンに操作してSCP7を不可逆に遮断するように絶縁性通信信号3を用いて指示し全ての前記電池モジュール3の充電電流の通電を遮断する。 In Step 1, the main controller 9 of the charging control circuit 104 communicates with the 3 groups of battery modules using the insulating communication signal 3 to control the battery cell group in at least one battery module 3 among the 3 groups of battery modules. It is detected whether the voltage of 1H exceeds a predetermined voltage 1 or not. When it is determined that the voltage of the battery cell group 1H exceeds the predetermined voltage 1, the process moves to Step 2, instructs all the battery modules 3 to turn off the FETs 6, and turns off the charging current to all the battery modules 3. Stop. In Step 3, the main controller 9 communicates with the 3 groups of battery modules using the insulating communication signal 3 so that the voltage of the battery cell group 1H in at least one battery module 3 among the 3 groups of battery modules is It is detected whether or not a predetermined voltage 2 higher than the predetermined voltage 1 has been exceeded. When it is determined that the voltage of the battery cell group 1H exceeds the predetermined voltage 2, the process proceeds to Step 4, in which all the battery modules 3 are operated to turn on the FETs 10 in the battery modules 3 to irreversibly cut off the SCP 7. using the insulating communication signal 3 to cut off the charging current to all of the battery modules 3.

メインコントローラ9は、Step5にて、絶縁性通信信号3を用いて電池モジュール3群と通信を行い前記電池モジュール3群の内、少なくとも1個の電池モジュール3内の電池セル群1Hの電圧が前記所定電圧1および前記所定電圧2より高い所定電圧3を超えたか否かを検知する。前記電池セル群1Hの電圧が前記所定電圧3を超えたと判定するとStep6へ移行し、通信信号13を用いて定電流放電回路12をオンに操作し電池モジュール3群に対して上限電流を超えない所定の定電流にて放電を行う。 In Step 5, the main controller 9 communicates with the 3 groups of battery modules using the insulating communication signal 3 so that the voltage of the battery cell group 1H in at least one battery module 3 among the 3 groups of battery modules is It is detected whether or not a predetermined voltage 3 higher than the predetermined voltage 1 and the predetermined voltage 2 has been exceeded. When it is determined that the voltage of the battery cell group 1H exceeds the predetermined voltage 3, the process moves to Step 6, and uses the communication signal 13 to turn on the constant current discharge circuit 12 so that the upper limit current is not exceeded for the battery module 3 group. Discharge is performed at a predetermined constant current.

なお、前記定電流放電の電流上限値は、過電流放電によって発火に至らない電流値に対して十分なマージンを取って設定し、かつ、前記所定電圧3はリチウムイオン二次電池セル内の正極活物質から活性酸素が放出される電圧よりやや低く設定すると着実に安全性を確保することができる。 Note that the current upper limit value of the constant current discharge is set with a sufficient margin for the current value that does not lead to ignition due to overcurrent discharge, and the predetermined voltage 3 is set at the positive electrode in the lithium ion secondary battery cell. Safety can be steadily ensured by setting the voltage slightly lower than the voltage at which active oxygen is released from the active material.

上述のように、過充電時に正極の活物質の結晶格子構造が崩壊して前記正極活物質から電解液中へ前記活性酸素を放出する現象は、正極活物質内の酸化還元反応における実質的に過度な還元反応に類似すると言え、逆に、放電時は、前記還元反応と逆の酸化反応、すなわち、時差質的に正極活物質がその内部に酸素を取り込む現象に類似すると言える。 As mentioned above, the phenomenon in which the crystal lattice structure of the positive electrode active material collapses during overcharging and the active oxygen is released from the positive electrode active material into the electrolyte is essentially a phenomenon in the redox reaction within the positive electrode active material. It can be said that this is similar to an excessive reduction reaction, and conversely, during discharging, it can be said that it is similar to an oxidation reaction that is the opposite of the reduction reaction, that is, a phenomenon in which the positive electrode active material takes in oxygen into its interior in a temporal manner.

前述のStep4に至る状態とは、電池モジュール3群の内の少なくとも1個の電池モジュール3の一次保護IC4がStep1にて電池セル群1Hの過電圧の検知に失敗した状態、または、Step2にて電池モジュール3群の内の全ての電池モジュール3のFET6をオフに操作しても前記FET6のショート故障等により充電電流の遮断に失敗し充電が継続した状態のいずれかであり、前記Step3ないしStep4の制御は、前記Step1ないしStep2の過充電に対する一次保護の失敗を補う二重保護の役割を果たし、さらに、Step6に至る状態は、電池モジュール内の二次保護IC5が何等かの要因により正常に作動せずSCP7の遮断、すなわち、二重保護に失敗した状態であり、この段階ではリチウムイオン二次電池セル内の正極活物質からリチウムイオンが大量に引き抜かれ活性酸素が放出されようとする実質的に過度な還元反応に類似した状態にあると言え、前記定電流放電回路12による定電流放電が始まった瞬間に、前記正極活物質内の反応が前記還元反応から酸化反応に反転し、正極活物質から電解液中に電気的に離脱したリチウムイオンが前記正極活物質内に電気的に挿入され、正極活物質から放出され始めた活性酸素の放出量が電解液の着火条件に至る直前の段階では、電解液中に離脱したリチウムイオンが前記正極活物質に戻り挿入されると共に酸化反応に類似する状態、すなわち、前記活性酸素が正極活物質内に取り込まれ、前記正極活物質に前記活性酸素が実質的に吸収される状態となる一方、前記活性酸素が前記正極活物質から放出され始める前の段階では、前記放電により過電圧状態が持続することを防ぎ活性酸素の放出を予め抑制するに等しい状態になると言える。 The state leading to the above-mentioned Step 4 is a state in which the primary protection IC 4 of at least one battery module 3 among the 3 battery module groups fails to detect overvoltage of the battery cell group 1H in Step 1, or Even if the FETs 6 of all the battery modules 3 in the module 3 group are turned off, the charging current fails to cut off due to a short-circuit failure of the FET 6, etc., and charging continues. The control plays the role of double protection to compensate for the failure of the primary protection against overcharging in Steps 1 and 2, and furthermore, the state leading to Step 6 is caused by the secondary protection IC 5 in the battery module operating normally due to some factor. In other words, double protection has failed, and at this stage, a large amount of lithium ions are extracted from the positive electrode active material in the lithium ion secondary battery cell, and active oxygen is about to be released. It can be said that the state is similar to an excessive reduction reaction, and the moment the constant current discharge by the constant current discharge circuit 12 starts, the reaction within the positive electrode active material is reversed from the reduction reaction to the oxidation reaction, and the positive electrode activity is A stage immediately before the lithium ions electrically released from the substance into the electrolyte are electrically inserted into the positive electrode active material, and the amount of active oxygen that has begun to be released from the positive electrode active material reaches the ignition condition of the electrolyte. In this case, the lithium ions released into the electrolytic solution are inserted back into the positive electrode active material, and a state similar to an oxidation reaction occurs, that is, the active oxygen is taken into the positive electrode active material, and the active oxygen is absorbed into the positive electrode active material. is substantially absorbed, while at a stage before the active oxygen begins to be released from the positive electrode active material, the discharge is equivalent to preventing the overvoltage state from continuing and suppressing the release of active oxygen in advance. It can be said that it becomes a state.

前述の実質的に活性酸素を吸収するに類似する機構状態、または、実質的に活性酸素の放出を抑制するに類似する機構によって、万一、前記過充電の二重保護に失敗した場合の前記CIDを有しないラミネート式リチウムイオン二次電池セル、または、CIDが前記正常に作動しないリチウムイオン二次電池の発火を回避できる。 In the event that the double protection against overcharging fails due to the above-mentioned mechanism state substantially similar to absorbing active oxygen or the mechanism substantially similar to suppressing the release of active oxygen, Ignition of a laminated lithium ion secondary battery cell without a CID or a lithium ion secondary battery in which the CID does not operate normally can be avoided.

以上説明したように、多数のリチウムイオン二次電池セルを搭載する気自動車の充電において、リチウムイオン二次電池セルの過充電時に、発火の原因となる電池セル内において正極活物質から電解液へ放出される活性酸素を実質的に吸収または抑制し前記リチウムイオン二次電池セルの発火を回避し、リスクアセスメント観点より、過充電に対する二重保護の失敗をも想定した高い安全性を実現できる。 As explained above, when charging a car equipped with a large number of lithium-ion secondary battery cells, when the lithium-ion secondary battery cells are overcharged, the positive electrode active material is transferred to the electrolyte within the battery cell, which can cause a fire. It is possible to substantially absorb or suppress released active oxygen to avoid ignition of the lithium ion secondary battery cell, and from a risk assessment perspective, it is possible to achieve high safety even assuming the failure of double protection against overcharging.

以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is for facilitating understanding of the present invention, and is not for construing the present invention in a limited manner. The present invention may be modified and improved without departing from the spirit thereof, and the present invention also includes equivalents thereof.

3 電池モジュール
9 メインコントローラ
103 充電制御回路
104 充電回路
3 Battery module 9 Main controller 103 Charging control circuit 104 Charging circuit

Claims (2)

充電回路と、
上限電流を超えない定電流で放電する定電流放電回路と、
前記充電回路及び前記定電流放電回路に並列接続される電池モジュールと、
を備え、
前記電池モジュールは、
電池セル群と、
前記電池セル群への充電電流を可逆的に通電または遮断する第1通電遮断素子と、
前記電池セル群への前記充電電流を不可逆的に通電または遮断する第2通電遮断素子と、
を備え、
前記電池モジュールのうちの少なくとも1つが過充電になった場合に、過充電となった前記電池モジュールの前記第1通電遮断素子を用いて前記充電電流を遮断し、
前記第1通電遮断素子による遮断に失敗した場合、全ての前記電池モジュールの前記第2通電遮断素子を用いて充電電流を遮断し、
前記第2通電遮断素子による遮断に失敗した場合、前記定電流放電回路を用いて前記電池モジュール群を放電する、
充電制御回路。
charging circuit;
A constant current discharge circuit that discharges at a constant current that does not exceed the upper limit current,
a battery module connected in parallel to the charging circuit and the constant current discharging circuit;
Equipped with
The battery module includes:
A battery cell group,
a first energization interrupting element that reversibly supplies or interrupts charging current to the battery cell group;
a second energization interrupting element that irreversibly supplies or interrupts the charging current to the battery cell group;
Equipped with
When at least one of the battery modules becomes overcharged, the charging current is cut off using the first energization cutoff element of the overcharged battery module;
If the first current cutoff element fails to cut off the charging current, the second current cutoff element of all the battery modules is used to cut off the charging current;
discharging the battery module group using the constant current discharge circuit if the second current cutoff element fails to cut off the battery;
Charging control circuit.
前記定電流放電回路による放電開始の電圧閾値は、前記第1通電遮断素子による過充電遮断の電圧閾値および前記第2通電遮断素子による過充電遮断の電圧閾値よりも高い請求項1に記載の充電制御回路。 The charging according to claim 1, wherein a voltage threshold for starting discharge by the constant current discharging circuit is higher than a voltage threshold for overcharge cutoff by the first energization cutoff element and a voltage threshold for overcharge cutoff by the second energization cutoff element. control circuit.
JP2023529347A 2021-06-23 2021-06-23 Charging control circuit Active JP7406870B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023858 WO2022269834A1 (en) 2021-06-23 2021-06-23 Charge control circuit

Publications (2)

Publication Number Publication Date
JPWO2022269834A1 JPWO2022269834A1 (en) 2022-12-29
JP7406870B2 true JP7406870B2 (en) 2023-12-28

Family

ID=84545408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023529347A Active JP7406870B2 (en) 2021-06-23 2021-06-23 Charging control circuit

Country Status (2)

Country Link
JP (1) JP7406870B2 (en)
WO (1) WO2022269834A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142162A (en) 2001-10-31 2003-05-16 Sanyo Electric Co Ltd Battery pack
JP2007242448A (en) 2006-03-09 2007-09-20 Nec Tokin Corp Battery pack
JP2012231649A (en) 2011-04-27 2012-11-22 Sony Chemical & Information Device Corp Charge/discharge controller, battery pack, electric apparatus, and charge/discharge control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982078B2 (en) * 1998-08-26 2007-09-26 ソニー株式会社 Battery protection circuit and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142162A (en) 2001-10-31 2003-05-16 Sanyo Electric Co Ltd Battery pack
JP2007242448A (en) 2006-03-09 2007-09-20 Nec Tokin Corp Battery pack
JP2012231649A (en) 2011-04-27 2012-11-22 Sony Chemical & Information Device Corp Charge/discharge controller, battery pack, electric apparatus, and charge/discharge control method

Also Published As

Publication number Publication date
WO2022269834A1 (en) 2022-12-29
JPWO2022269834A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
EP2672548B1 (en) Battery pack having improved safety
CN109562698B (en) Vehicle system
EP2741391B1 (en) Battery pack with improved safety
EP2278677B1 (en) Safety switch for secondary battery for electric vehicle and charging/discharging system for secondary battery for electric vehicle using the same
US10026948B2 (en) Safety element for battery cell
JP4840154B2 (en) Power supply equipment
JP5192049B2 (en) Battery module with improved safety and medium or large battery pack including the same
US20140248523A1 (en) Battery pack of improved safety
CN1304559A (en) Protective circuit and device for protecting secondary battery
KR19990063342A (en) Power storage protector
JP2008234903A (en) Battery and battery system
KR20060116424A (en) Middle or large-sized battery pack having safety system
KR101608694B1 (en) A Safeguard Apparatus Preventing Overcharge for A Secondary Battery
JP7406870B2 (en) Charging control circuit
JP2010212166A (en) Lithium ion secondary battery system
JP7412055B2 (en) Charging control circuit
JP7461093B2 (en) Discharge Control Circuit
KR20150071251A (en) Electrode assembly comprising coating layer different kind of separators for improving safety and lithium secondary batteries comprising the same
WO2023073976A1 (en) Battery module and battery power supply circuit
US20230311675A1 (en) Power control apparatus for vehicle
WO2012014289A1 (en) Lithium ion secondary battery system
JP4929563B2 (en) Overcharge protection method for lithium ion secondary battery pack
CN116365077A (en) Energy storage battery cluster system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7406870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150