Nothing Special   »   [go: up one dir, main page]

JP7405640B2 - Wooden building materials and structures - Google Patents

Wooden building materials and structures Download PDF

Info

Publication number
JP7405640B2
JP7405640B2 JP2020026318A JP2020026318A JP7405640B2 JP 7405640 B2 JP7405640 B2 JP 7405640B2 JP 2020026318 A JP2020026318 A JP 2020026318A JP 2020026318 A JP2020026318 A JP 2020026318A JP 7405640 B2 JP7405640 B2 JP 7405640B2
Authority
JP
Japan
Prior art keywords
tubular body
laminated
building material
wooden building
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026318A
Other languages
Japanese (ja)
Other versions
JP2021130957A (en
Inventor
諭司 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2020026318A priority Critical patent/JP7405640B2/en
Publication of JP2021130957A publication Critical patent/JP2021130957A/en
Application granted granted Critical
Publication of JP7405640B2 publication Critical patent/JP7405640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

本発明は木質建材に関し、詳しくは、複数の集成材が接合されることで一体化した木質建材およびそれを含む木質構造体に関する。 TECHNICAL FIELD The present invention relates to a wooden building material, and more particularly to a wooden building material that is integrated by joining a plurality of laminated timbers together, and a wooden structure that includes the same.

従来、単一木材や、木材の繊維方向に長く切削加工した引き板(ラミナ)あるいは小角材をその繊維方向を互いに平行にして接着剤を用いて貼り合わせた集成材は、建築における柱や梁として使われ、あるいは木橋や大型ドームの骨組材として使われている。 Conventionally, laminated wood, which is made of a single piece of wood, a drawn board (lamina) cut long in the direction of the wood fibers, or small square lumber that is glued together with the fiber directions parallel to each other, has been used for pillars and beams in architecture. It is also used as a frame material for wooden bridges and large domes.

特に集成材は、ひき板や小角材を集成して作成するため、寸法や形状の自由度が高く、製品強度のばらつきや干割れ、狂いなどが小さいうえに、曲がり材を容易に製造することができるなど、優れた特性を持っている。 In particular, laminated timber is made by gluing together sawn boards and small square timbers, so it has a high degree of freedom in size and shape, and there is little variation in product strength, dry cracks, and irregularities, and it is easy to manufacture bent timbers. It has excellent properties such as being able to.

大型の建築物や構造物では、非常に長尺の梁や骨組材を用いる必要がある。戸建住宅で一般的に使用される集成材の長さは4,000~6,000mm程度であるが、建築物や構造物が大型になるほど梁や骨組材に必要な長さは増加する傾向にあり、6,000mm以上、長い場合には18,000mmやそれ以上の長さのものが必要となる。 Large buildings and structures require the use of very long beams and framing members. The length of laminated timber commonly used in single-family homes is about 4,000 to 6,000 mm, but the larger the building or structure becomes, the longer the beams and frame materials need to be. If the length is 6,000 mm or longer, 18,000 mm or more is required.

現状では、6,000mm以下の長さの集成材を長手方向に複数本接合して一体化することで長尺化した梁や骨組材が使用されている。この長尺化には、鉄板とボルト、ピンを用いた工法や接着剤を用いたグルーインロッド工法、またはこれらを組合せた工法(特開平9-177172号公報、特開2005-002751号公報)が適用されている。 Currently, beams and framework materials are used that are made longer by joining and integrating multiple pieces of laminated wood with a length of 6,000 mm or less in the longitudinal direction. This lengthening can be achieved by a construction method using iron plates, bolts, and pins, a glue-in rod construction method using adhesive, or a construction method that combines these methods (Japanese Unexamined Patent Publications No. 9-177172 and 2005-002751). is applied.

しかし、これらの工法は、非常に煩雑であることに加え、接合部について通常の集成材と同等以上の物性を得ることが困難であるため、接合部分の物性の低さが建物設計の自由度を下げる要因となることが多い。 However, these construction methods are extremely complicated, and it is difficult to obtain physical properties equivalent to or better than ordinary laminated wood at the joints, so the poor physical properties of the joints limit the degree of freedom in building design. It is often a factor that lowers

特開平9-177172号公報Japanese Patent Application Publication No. 9-177172 特開2005-002751号公報Japanese Patent Application Publication No. 2005-002751

本発明の課題は、複数本の集成材が接合された木質建材であって、容易に施工することができ、かつ剛性と強度に優れた木質建材を提供することにある。 An object of the present invention is to provide a wooden building material in which a plurality of laminated timbers are joined, which can be easily constructed and has excellent rigidity and strength.

すなわち本発明は、少なくとも二つの集成材が接合されてなる木質建材であって、各集成材は管状体を内包し、各集成材に内包された管状体は隣接する集成材に内包された管状体と連通し、連通した管状体の管内を貫通する少なくとも一本の緊張材に張力が掛けられることにより、各集成材が接合されていることを特徴する木質建材である。 In other words, the present invention is a wooden building material made by joining at least two pieces of laminated wood, each piece of laminated wood containing a tubular body, and the tubular body enclosed in each piece of laminated wood containing a tubular body enclosed in an adjacent piece of laminated wood. This wooden building material is characterized in that each piece of laminated timber is joined by applying tension to at least one tendon member that communicates with the body and passes through the inside of a tubular body that communicates with the body.

本発明によれば、複数本の集成材が接合された木質建材であって、容易に施工することができ、かつ剛性と強度に優れた木質建材を提供することができる。 According to the present invention, it is possible to provide a wooden building material in which a plurality of laminated timbers are joined together, which can be easily constructed and has excellent rigidity and strength.

実施例1の木質建材の模式図(接合部の断面図と長手方向側面の断面図)である。FIG. 2 is a schematic diagram (a cross-sectional view of a joint portion and a cross-sectional view of a longitudinal side surface) of the wooden building material of Example 1. 比較例1の木質建材の模式図(接合部の断面図と長手方向側面の断面図)である。FIG. 2 is a schematic diagram (a cross-sectional view of a joint portion and a cross-sectional view of a longitudinal side surface) of the wooden building material of Comparative Example 1. 実施例1の接合した木質建材および金具治具の模式図である。FIG. 2 is a schematic diagram of the joined wooden building materials and metal fittings jig of Example 1. 比較例2の接合した木質建材の模式図(接合部の断面図と長手方向側面の断面図)である。FIG. 2 is a schematic diagram (a cross-sectional view of a joint portion and a cross-sectional view of a longitudinal side surface) of a joined wooden building material of Comparative Example 2.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

〔集成材〕
集成材は、木質材料片(ラミナ)を相互に接着剤で貼り合わせて構成された木質の材料であり、単一木材や、木材の繊維方向に長く切削加工した引き板または小角材を木質材料片(ラミナ)として用い、それらの木質材料片の繊維方向を互いに平行にして接着剤を用いて貼り合わせたものである。
[Laminated wood]
Glulam is a wood material made by laminating wood material pieces (lamina) together with adhesive. These wood material pieces are used as lamina and are pasted together using an adhesive with the fiber directions parallel to each other.

本発明においては、内部に管状体が内包された集成材を用いる。管状体が内包された集成材は、集成材を製造する工程において、管状体を内包する位置に相当する木質材料片(ラミナ)に予め管状体を設置できるように溝または長孔を設けておき、木質材料片(ラミナ)を積層して貼り合わせる際にその溝または長孔に管状体を挟み込む方法で製造することができる。 In the present invention, a laminated wood with a tubular body enclosed inside is used. In the manufacturing process of laminated wood with a tubular body inside, grooves or long holes are prepared in advance so that the tubular body can be installed in the wood material piece (lamina) corresponding to the position where the tubular body is to be encapsulated. It can be manufactured by a method in which a tubular body is inserted into a groove or a long hole when wood material pieces (lamina) are laminated and bonded together.

集成材は、管状体を集成材の作成時に木質材料片(ラミナ)と接着することで内包させてもよい。しかし、この方法では、管状体または溝への接着剤の塗付や管状体と木材との接着性能を担保するために高い技術が必要である。そこで、管状体として外側にねじ切り加工を施されているものを用い、これを集成材の両端にねじ込み、集成材の内部に予め内包させておいた管状体を両端から挟み込み、管状体の管内を連通させて製造された集成材を用いることが好ましい。この場合、管状体は、集成材に接着剤を介して接着することはなく固着されることができる。 The laminated wood may be encapsulated by adhering the tubular body to a piece of wood material (lamina) during production of the laminated wood. However, this method requires advanced techniques to apply adhesive to the tubular body or groove and to ensure adhesive performance between the tubular body and wood. Therefore, we used a tubular body that was threaded on the outside, screwed this into both ends of the laminated wood, and sandwiched the tubular body that was previously enclosed inside the laminated wood from both ends to open the inside of the tubular body. It is preferable to use laminated wood manufactured in a continuous manner. In this case, the tubular body can be fixed to the laminated wood without using an adhesive.

集成材は、長尺の木質建材を効率的に作成する観点から、長手方向を有することが好ましい。この場合、それぞれの集成材は長手方向に接合されることが好ましい。そしてこの場合、管状体として外側にねじ切り加工を施されているものを用い、これを集成材の長手方向の両端にねじ込み、集成材の内部に長手方向に沿う向きに予め内包させておいた管状体を両端から挟み込こみ、管状体の管内を連通させて製造された集成材を用いることが好ましい。 It is preferable that the laminated wood has a longitudinal direction from the viewpoint of efficiently producing a long wooden building material. In this case, it is preferable that the respective laminated timbers be joined in the longitudinal direction. In this case, a tubular body that is threaded on the outside is used, and this is screwed into both ends of the laminated wood in the longitudinal direction. It is preferable to use a laminated wood manufactured by sandwiching the body from both ends and communicating the inside of the tubular body.

〔管状体〕
本発明では、複数の集成材を接合するために、管状体の管内に通された緊張材に張力が掛けられ、管状体の軸方向に圧縮力が掛けられる。このため、管状体はその圧縮力に抵抗できる強度を備える素材からなる必要がある。したがって、管状体の素材は、木質材料片(ラミナ)よりも圧縮に対する強度や剛性で優れた素材から選ばれる。例えば、鉄やアルミニウムなどの金属、補強繊維と樹脂からなる繊維強化樹脂を用いることができる。これまでの建築における実績や入手のしやすさ、コストなどの観点から、金属であることが好ましく、さらには物性の観点から鉄であることが好ましい。
[Tubular body]
In the present invention, in order to join a plurality of laminated timbers, tension is applied to the tension material passed through the tube of the tubular body, and compressive force is applied in the axial direction of the tubular body. For this reason, the tubular body needs to be made of a material with enough strength to resist the compressive force. Therefore, the material for the tubular body is selected from materials that have better compression strength and rigidity than wood material pieces (lamina). For example, metals such as iron and aluminum, and fiber-reinforced resins made of reinforcing fibers and resin can be used. From the viewpoint of past achievements in construction, ease of acquisition, cost, etc., metal is preferable, and from the viewpoint of physical properties, iron is more preferable.

管状体は、その外側にねじ切り加工が施されていることが好ましい。ねじ切り加工は、管状体の全長に及んでいてもよく一部であってもよい。円形中空で外側にねじ切り加工が施された管状体が特に好ましい形態である。ねじ切り加工は、管状体の全長に及んでいてもよく、一部に留まってもよい。外側にねじ切り加工を有する管状体を用いることにより、集成材に管状体をねじ込むことで、管状体を内包する集成材を比較的容易に製造することができる。 Preferably, the tubular body is threaded on the outside. The thread cutting process may extend over the entire length of the tubular body or may be performed on a portion thereof. A particularly preferred form is a circular, hollow, externally threaded tubular body. The threading process may extend over the entire length of the tubular body or may be limited to a portion thereof. By using a tubular body having a threaded outer surface and screwing the tubular body into the laminated timber, it is possible to relatively easily manufacture a laminated timber containing the tubular body.

長尺の木質建材を効率的に作成する観点から、集成材が長手方向をもち、管状体は集成材の長手方向を貫通して内包されていることが好ましい。この場合、一方の集成材の長手方向を貫通して内包された管状体と、その集成材に隣接する他方の集成材の長手方向を貫通して内包された管状体の管内が連通する態様で、隣接する集成材が接合される。 From the viewpoint of efficiently producing a long wooden building material, it is preferable that the laminated wood has a longitudinal direction and that the tubular body penetrates and is enclosed in the laminated wood in the longitudinal direction. In this case, the tubular body penetrating through the longitudinal direction of one of the laminated timbers and the inside of the tubular body penetrating through the longitudinal direction of the other laminated timber adjacent to the laminated timber communicate with each other. , adjacent glulam is joined.

隣接する集成材の間での管状体の連通の態様は任意である。管状体の連通の態様として、高い強度を得る観点から、隣接する管状体と管状体とは、管状体の壁面が相互に接していることが好ましく、嵌合やねじ込みにより接続していることが特に好ましい。管状体と管状体の間には、座金などの金具などが介在してもよい。 The manner in which the tubular bodies communicate between adjacent laminated timbers is arbitrary. As for the mode of communication between the tubular bodies, from the viewpoint of obtaining high strength, it is preferable that the wall surfaces of the adjacent tubular bodies are in contact with each other, and that they are connected by fitting or screwing. Particularly preferred. A metal fitting such as a washer may be interposed between the tubular bodies.

集成材に内包される管状体は複数に分割されていてもよい。管状体の管内を通した緊張材により圧縮力がかかるため、管状体が長手方向で複数に分割されている場合には、隣接する管状体の壁面が一致するように直列に管状体が接続されていることが好ましい。 The tubular body enclosed in the laminated wood may be divided into a plurality of parts. Compressive force is applied by the tension material passed through the inside of the tubular body, so if the tubular body is divided into multiple parts in the longitudinal direction, the tubular bodies are connected in series so that the wall surfaces of adjacent tubular bodies are aligned. It is preferable that

長手方向をもつ集成材において管状体を長手方向に3つに分割した態様で集成材を作成する場合、長手方向の真ん中に配置する管状体を集成材の作成時に集成材の内部に内包しておき、集成材の長手方向の両端(真ん中に位置する管状体を挟む位置)に配置する管状体を、真ん中に配置された管状体の両端に接続する態様で、集成材の両端の断面から挿入すればよい。 When creating glulam with a tubular body divided into three parts in the longitudinal direction, the tubular body to be placed in the middle of the longitudinal direction is enclosed inside the laminated lumber when creating the laminated wood. The tubular bodies placed at both ends of the longitudinal direction of the laminated wood (positions that sandwich the tubular body located in the middle) are inserted from the cross sections of both ends of the laminated wood in such a manner that they are connected to both ends of the tubular body placed in the middle. do it.

この場合、集成材の両端の断面から挿入する管状体は、その外側にねじ切り加工が施されていることが好ましい。ねじ切り加工は、管状体の全長に及んでいてもよく一部であってもよい。 In this case, it is preferable that the tubular body inserted from the cross sections of both ends of the laminated wood is threaded on the outside thereof. The thread cutting process may extend over the entire length of the tubular body or may be performed on a portion thereof.

管状体は、集成材にねじ込まれて固着されていることが好ましい。ねじ込みは、トルクレンチなどを用いて行うことができる。管状体にねじ切り加工が施され、集成材にねじ込まれて固着されている場合には、集成材に管状体がしっかり固定される。このため、本発明の木質建材を用いて建物を作る施工中に管状体が動いて集成材内から落下するといった事故を防ぐことができ好ましい。さらに、管状体に通した緊張材に張力がかけられた際に、集成材にねじ込まれた部分の抵抗力が管状体自体の耐圧縮力に加えて働くことにより、より高い張力に耐えられ、高い接合強度を得ることができ好ましい。 Preferably, the tubular body is screwed and fixed to the laminated wood. Screwing can be performed using a torque wrench or the like. When the tubular body is threaded and screwed into and fixed to the laminated wood, the tubular body is firmly fixed to the laminated wood. For this reason, it is possible to prevent an accident in which the tubular body moves and falls from within the laminated timber during construction of a building using the wooden building material of the present invention, which is preferable. Furthermore, when tension is applied to the tension material passed through the tubular body, the resistance force of the part screwed into the laminated wood acts in addition to the compression resistance of the tubular body itself, making it able to withstand higher tension. This is preferable because high bonding strength can be obtained.

管状体の少なくとも一つには緊張材が通される。このため管状体の管内には、緊張材の作用を阻害しない態様で充填剤が充填されていても構わないが、何も充填されず空洞となっていることが好ましい。 A tendon is threaded through at least one of the tubular bodies. For this reason, the inside of the tubular body may be filled with a filler in a manner that does not inhibit the action of the tension material, but it is preferable that no filler be filled therein to form a cavity.

〔管状体の断面形状〕
管状体に通した緊張材に張力がかけられた際に、管状体がその圧縮力をもって張力に抵抗する観点のみを考えるならば、管状体の形状は矩形であっても円形であってもよいが、管状体を集成材の断面からねじ込むためには、管状体の形状は円形であることが好ましく、特に円形中空であることが好ましい。
[Cross-sectional shape of tubular body]
If we consider only the aspect that the tubular body resists the tension with its compressive force when tension is applied to the tension material passed through the tubular body, the shape of the tubular body may be rectangular or circular. However, in order to screw the tubular body from the cross section of the laminated wood, the shape of the tubular body is preferably circular, and particularly preferably circular and hollow.

他方、管状体の管内の形状は任意である。例えば、円形断面の管状体の管内が矩形断面である場合、管状体の肉厚を多く設計することができ、管状体の圧縮強度を高くしたい場合には有効な手段となる。 On the other hand, the shape of the inside of the tubular body is arbitrary. For example, if the inside of a tubular body with a circular cross section has a rectangular cross section, the wall thickness of the tubular body can be designed to be large, which is an effective means when it is desired to increase the compressive strength of the tubular body.

また、管状体を複数に分割する場合には、全ての管状体が同じ断面形状であることが好ましい。これは、断面形状が異なるほど、管状体に通した緊張材に張力がかけられた際に、管状体の圧縮力が伝達されにくくなるためである。 Furthermore, when the tubular body is divided into a plurality of parts, it is preferable that all the tubular bodies have the same cross-sectional shape. This is because the more different the cross-sectional shapes are, the more difficult it is for the compressive force of the tubular body to be transmitted when tension is applied to the tension material passed through the tubular body.

管状体が円形中空であり、管内(中空部)も円形であり両者が同心円である場合、管状体の肉厚は、好ましくは1~10mm、さらに好ましくは2~5mmである。肉厚がこれより薄いと、管状体の管内に通した緊張材に張力がかけられた際に管状体が座屈破壊を起こしてしまう可能性もあり、管状体にかかる圧縮力に十分な抵抗力を発現できないことがあり、好ましくない。他方、これより厚いと管状体に通す緊張材の太さに制限を与えてしまうか、それを避けるために管状体自体を太くした場合には集成材の重量を著しく大きくしてしまう可能性があり、好ましくない。 When the tubular body is circular and hollow, and the inside of the tube (hollow part) is also circular and both are concentric circles, the wall thickness of the tubular body is preferably 1 to 10 mm, more preferably 2 to 5 mm. If the wall thickness is thinner than this, there is a possibility that the tubular body will buckle and fail when tension is applied to the tension material passed through the tube of the tubular body, so the tubular body may not have sufficient resistance to the compressive force applied to it. It may not be possible to express power, which is not desirable. On the other hand, if it is thicker than this, there will be a limit to the thickness of the tension material that can be passed through the tubular body, or if the tubular body itself is made thicker to avoid this, there is a possibility that the weight of the laminated timber will increase significantly. Yes, not desirable.

〔管状体の配置〕
長手方向を有する集成材における管状体の配置の態様は、管状体が集成材の断面(集成材の長手方向に直交する面、以下これを単に「断面」という)の中心から等距離の位置に複数本配置されている態様が好ましく、さらに断面の中心に対して点対称に管状体が複数本配置されている態様が好ましい。これらの場合、断面の中心を外れた位置を、緊張材が通ることになる。
[Placement of tubular body]
The manner in which the tubular bodies are arranged in laminated timber having a longitudinal direction is such that the tubular bodies are placed at a position equidistant from the center of the cross section of the laminated timber (a plane perpendicular to the longitudinal direction of the laminated timber, hereinafter simply referred to as the "cross section"). A mode in which a plurality of tubular bodies are arranged is preferred, and a mode in which a plurality of tubular bodies are arranged point-symmetrically with respect to the center of the cross section is further preferred. In these cases, the tendon passes through a position that is off the center of the cross section.

特に、断面の中心から等距離の位置に管状材料を2本または4本を配置した態様が好ましい。中心から等距離の位置に管状体を配置することより、管状体の管内に通した緊張材に張力がかけられた際に断面に対して、より均一に圧縮力を付与することができる。 In particular, an embodiment in which two or four tubular materials are arranged at positions equidistant from the center of the cross section is preferred. By arranging the tubular bodies at positions equidistant from the center, compressive force can be applied more uniformly to the cross section when tension is applied to the tendon passed through the tube of the tubular body.

管状体の本数は必要に応じ設計することができる。例えば、梁として用いる木質建材で断面が上下方向に長い場合には、断面の中心から上方に1本、下方に1本の合計2本であってもよく、上方の1本および下方の1本のそれぞれを左右または上下に並べた2本に置き換えて配置してもよい。集成材の断面積と管状体の断面積の兼ね合いで設計することができる。 The number of tubular bodies can be designed as required. For example, if the cross section of a wooden building material used as a beam is long in the vertical direction, there may be two pieces in total, one above and one below from the center of the cross section; one above and one below. Each of these may be replaced with two arranged horizontally or vertically. It can be designed by balancing the cross-sectional area of the laminated wood and the cross-sectional area of the tubular body.

集成材の大きさは、梁として用いる場合、幅方向が例えば100~240mm、厚さ方向が例えば120~1,000mm、長さ方向が例えば2,000~18,000mmである。 When used as a beam, the size of the laminated wood is, for example, 100 to 240 mm in the width direction, 120 to 1,000 mm in the thickness direction, and 2,000 to 18,000 mm in the length direction.

〔緊張材〕
本発明では、管状体を集成材の内部に内包させ、管状体の菅内を通した緊張材によって集成材にプレストレスをかけている。
[Tension material]
In the present invention, the tubular body is enclosed inside the laminated timber, and prestress is applied to the laminated timber by the tension material passed through the tube of the tubular body.

緊張材には、一般的なプレストレストコンクリートで使用されるPC鋼線やPC鋼より線、PC鋼棒などのPC鋼材を使用することができる。さらに、引張強度やクリープ性能の高い緊張材を使用してもよく、また、炭素繊維、芳香族ポリアミド繊維(アラミド繊維)、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、四フッ化エチレン繊維、ガラス繊維などの高性能繊維を用いたFRP(繊維強化プラスチックス)ロッドや繊維ロープ、繊維ケーブルであってもよい。 As the tendon material, PC steel materials such as PC steel wire, PC steel stranded wire, and PC steel rod used in general prestressed concrete can be used. Furthermore, tension materials with high tensile strength and creep performance may be used, and carbon fibers, aromatic polyamide fibers (aramid fibers), polyarylate fibers, polyparaphenylenebenzobisoxazal fibers, polyphenylene sulfide fibers, polyimide It may be an FRP (fiber-reinforced plastic) rod, fiber rope, or fiber cable using high-performance fibers such as fibers, tetrafluoroethylene fibers, and glass fibers.

緊張材は、集成材に内包されている管状体の管内に通す態様で使用される。例えば二つの集成材が接合される場合には、一方の集成材に内包される管状体と他方の集成材に内包される管状体のそれぞれの管内を直列に貫通する態様で使用される。 The tension material is used in such a manner that it is passed through the inside of a tubular body enclosed in the laminated wood. For example, when two pieces of laminated wood are joined, the tube is used in such a manner that it penetrates in series through the inside of each of the tubular bodies contained in one of the laminated pieces of wood and the tubular body contained in the other piece of laminated wood.

管状体に通された緊張材は、集成材の断面の中心から外れた位置に通されていることが好ましい。 Preferably, the tendon threaded through the tubular body is threaded at a position offset from the center of the cross section of the laminated timber.

本発明の木質建材は複数の集成材が接合された状態で、張力の掛かった緊張材により固定されている。例えば、断面の中心から等距離に2本の管状体を配置した場合において、集成材を梁として用いた場合には、2本すべての管状体に緊張材を通し、複数の集成材を接合することが好ましい。 In the wooden building material of the present invention, a plurality of laminated timbers are joined together and fixed by tension members under tension. For example, if two tubular bodies are placed equidistant from the center of the cross section, and laminated timber is used as a beam, tension material is passed through all two tubular bodies to join multiple laminated timbers. It is preferable.

緊張材に張力をかけた際に座金を介して集成材の両端部から圧縮力をかけ集成材同士を圧着することは好ましい態様である。高い圧着力での圧着を実現することで、複数の集成材が接合した部分をより一体化した状態に近づけることができ、接合部分の曲げ特性の向上を得ることができる。 It is a preferable embodiment that when tension is applied to the tendons, compressive force is applied from both ends of the laminated timber through washers to press the laminated timber together. By realizing crimping with a high crimping force, it is possible to bring the joined portion of a plurality of laminated timbers closer to an integrated state, and it is possible to improve the bending characteristics of the joined portion.

緊張材にかけられる張力は緊張材1本あたり例えば10~300kN、好ましくは30~250kNである。張力がこれより低いと集成材同士の圧着が不十分となり、集成材の接合部における剛性や強度が十分に発現しない可能性があり、他方、張力がこれより高いと圧縮を受ける管状材料が座屈破壊してしまうなど圧縮に対する抵抗力を失うこととなり、結果、本発明の木質建材の接合部における剛性や強度が十分発現しない恐れがある。 The tension applied to each tendon is, for example, 10 to 300 kN, preferably 30 to 250 kN. If the tension is lower than this, the crimping between the laminated timbers will be insufficient, and the joints of the laminated timbers may not have sufficient stiffness and strength. On the other hand, if the tension is higher than this, the tubular material subjected to compression may not sit properly. This results in a loss of resistance to compression, such as bending and fracture, and as a result, there is a risk that the joints of the wooden building material of the present invention will not exhibit sufficient rigidity and strength.

このように本発明の木質建材は、緊張材を管状体に通してプレストレスをかけるだけといった非常に簡易な方法により、複数の集成材を長手方向に繋げて長尺の木質建材を得ることができる。さらに、作業性を向上させるために、集成材の断面の中心部あたりにザグリ穴を開けて、金属ダボなどを使用してもよい。作業時の集成材同士のズレ防止や集成材の接合部における補助的なせん断補強に効果が得られる。 In this way, the wooden building material of the present invention can be used to obtain a long wooden building material by connecting a plurality of laminated timbers in the longitudinal direction by simply passing the tendon material through a tubular body and applying prestress. can. Furthermore, in order to improve workability, a counterbore hole may be made around the center of the cross section of the laminated wood and a metal dowel or the like may be used. It is effective in preventing slippage between laminated timbers during work and providing supplementary shear reinforcement at joints of laminated timbers.

この状態で集成材の端部に座金を介してボルトやナット、クサビ金物などを用いて、緊張材が緩まないように張力をかけたまま固定することで、本発明の木質建材となる。固定の方法は一般的なプレストレストコンクリートの工法で使用されている方法を用いることができる。 In this state, the wood building material of the present invention is obtained by fixing the end of the laminated timber with bolts, nuts, wedge hardware, etc. through washers while applying tension so that the tendon does not loosen. As for the fixing method, the method used in the general prestressed concrete construction method can be used.

本発明の好ましい態様は、少なくとも二つの集成材が接合されてなる木質建材であって、各集成材は管状体を内包し、各集成材に内包された管状体は隣接する集成材に内包された管状体と接続し、接続した管状体の管内を貫通する少なくとも一本の緊張材に張力が掛けられることにより、各集成材が接合されていることを特徴する木質建材であって、管状体は円形中空であり、すべての管状体に緊張材が通され、緊張材には1本あたり10~300kNの張力がかけられ、集成材同士が緊張材の張力によって圧着された状態で固定されている態様である。 A preferred embodiment of the present invention is a wooden building material formed by joining at least two pieces of laminated wood, each piece of laminated wood containing a tubular body, and the tubular body enclosed in each piece of laminated wood being enclosed in an adjacent piece of laminated wood. A wooden building material characterized in that each piece of laminated timber is joined by applying tension to at least one tendon material that passes through the pipe of the connected tubular body, the tubular body is circular and hollow, and tension members are passed through all the tubular bodies, and a tension of 10 to 300 kN is applied to each tension member, and the pieces of laminated wood are crimped and fixed together by the tension of the tension members. This is how it is.

〔木質構造体〕
本発明によれば、上記の木質建材を含む木質構造体も提供される。この木質構造体は、さらに柱、土台および基礎を含み、建築物の構造躯体として用いられる。
[Wood structure]
According to the present invention, a wooden structure including the above-mentioned wooden building material is also provided. This wooden structure further includes columns, foundations, and foundations, and is used as the structural frame of a building.

柱や土台としては木質材料を用い、木質材料は無垢材であっても集成材であってもよい。柱は、一般的に基礎の上に設置された土台の上に立てられ、土台と柱との接合は、例えば接合金物で行われる。 A wooden material is used for the pillars and the base, and the wooden material may be solid wood or laminated wood. Columns are generally erected on a foundation installed on a foundation, and the foundation and the column are joined using, for example, metal fittings.

基礎は、直接基礎、杭基礎のいずれであってもよい。直接基礎の場合、例えば布基礎、独立基礎、ベタ基礎を採用することができる。基礎のコンクリートは無筋コンクリート、鉄筋コンクリートのいずれでもよく、鉄筋コンクリートが耐震性の観点から好ましい。 The foundation may be either a direct foundation or a pile foundation. In the case of a direct foundation, for example, a cloth foundation, an independent foundation, or a solid foundation can be adopted. The concrete for the foundation may be either unreinforced concrete or reinforced concrete, with reinforced concrete being preferred from the standpoint of earthquake resistance.

本発明の木質建材を梁として用いる場合の梁と梁との接合および梁と柱との接合は、接合金物を用いて行うことができる。接合される対象と金物は、ボルトやビス、釘等で固着される。 When the wooden building material of the present invention is used as a beam, the beams can be joined together and the beams can be joined to the columns using joining hardware. The object to be joined and the hardware are fixed with bolts, screws, nails, etc.

以下に、実施例により本発明を具体的に説明する。各種物性は下記方法にて測定した。
(1)プレストレスの張力
緊張材を固定する座金とナットの間に、圧縮センサーを配置し、座金-ナット間の圧力を測定することで緊張材の張力とした。
(2)集成材同士の接合部の強度
集成材を直列に二つ接合した供試体について、集成材同士の接合部を試験体中央に配置し、支点間距離を1,590mmとした。集成材同士の接合部から左右に150mmの箇所それぞれに荷重を印加する繰返し曲げ試験を実施した。繰返しは、曲げモーメント距離に相当する加力点と支点の距離1,440mmに対して、1/300、1/250、1/200、1/150、1/100、1/50、1/30、1/15、1/10radの順に繰り返し毎にたわみ量が増加するように試験した。
The present invention will be specifically explained below using Examples. Various physical properties were measured by the following methods.
(1) Prestress tension A compression sensor was placed between the washer and nut that fixes the tension material, and the pressure between the washer and the nut was measured to determine the tension of the tension material.
(2) Strength of the joint between laminated timbers For a specimen made by joining two laminated timbers in series, the joint between the laminated timbers was placed at the center of the specimen, and the distance between the fulcrums was 1,590 mm. A repeated bending test was conducted in which a load was applied to each location 150 mm left and right from the joint between the laminated timbers. The repetitions are 1/300, 1/250, 1/200, 1/150, 1/100, 1/50, 1/30, for a distance of 1,440 mm between the stress point and the fulcrum, which corresponds to the bending moment distance. The test was conducted so that the amount of deflection increased with each repetition in the order of 1/15 and 1/10 rad.

<強度の算出>
1/10radまでの繰り返し曲げ試験において、破壊した場合はその点を最大荷重(p)とした。1/10までの繰り返し曲げ試験にて破壊しない場合は、試験最後に破壊するまで荷重を印加し、破壊点=最大荷重(p)を得た。得られた最大荷重(p)を用いて下記の式にて曲げモーメントを算出した。最大荷重の単位はkN、支店間距離の単位はmである。
<Calculation of strength>
In the repeated bending test up to 1/10 rad, if the specimen broke, that point was taken as the maximum load (p). If it did not break in the repeated bending test up to 1/10, a load was applied at the end of the test until it broke, and the breaking point = maximum load (p) was obtained. Using the obtained maximum load (p), the bending moment was calculated using the following formula. The unit of maximum load is kN, and the unit of distance between branches is m.

Figure 0007405640000001
Figure 0007405640000001

〔実施例1〕
集成材に内包される管状体(1)として、鉄製(S45C)のパイプを使用した。この管状体(1)の断面形状は円形中空であって、外径25.4mm/内径18.4mmであり、肉厚は全周均一で3.5mm、長さは910mmである。
[Example 1]
A pipe made of iron (S45C) was used as the tubular body (1) enclosed in the laminated wood. The cross-sectional shape of this tubular body (1) is circular and hollow, with an outer diameter of 25.4 mm and an inner diameter of 18.4 mm, a uniform wall thickness of 3.5 mm all around, and a length of 910 mm.

管状体(1)を内包させる集成材には、木質ラミナ(スギ)を用い、断面120mm×240mm、長さ1,890mmとなるように、水溶性高分子-イソシアネート系接着剤(株式会社オーシカ製、ピーアイボンド5300L)を250g/mの塗付量で塗付して積層接着した。 Wood lamina (cedar) was used as the laminated wood for enclosing the tubular body (1), and water-soluble polymer-isocyanate adhesive (manufactured by Osica Co., Ltd.) was used to make the cross section 120 mm x 240 mm and length 1,890 mm. , P.I. Bond 5300L) was applied at a coating amount of 250 g/m 2 for lamination and adhesion.

接着は常温プレスとし、プレス圧は0.8MPa、プレス時間は30分とした。管状体(1)を内包させる部分には予め直径27.5mmの半円溝を掘った2枚の木質ラミナ(スギ)を用い、これらの間に管状体(1)を内包した。溝内には接着剤を塗付せず、木質ラミナ同士を積層接着することで、管状体(1)が内包された集成材を得た。 Adhesion was performed by room temperature pressing, the pressing pressure was 0.8 MPa, and the pressing time was 30 minutes. Two wood lamina (cedar) in which semicircular grooves with a diameter of 27.5 mm were previously dug were used for the part in which the tubular body (1) was to be enclosed, and the tubular body (1) was enclosed between them. A laminated timber containing the tubular body (1) was obtained by laminating and bonding the wooden laminas together without applying any adhesive into the grooves.

管状体(1)の位置は、集成材の断面(横120mm縦240mmの長方形)において上から60mmかつ横方向の中央の位置と、下から60mmかつ横方向の中央の位置である。この二つの位置に管状体(1)の断面中心が位置するようにそれぞれの管状体(1)を配置した。 The positions of the tubular body (1) are 60 mm from the top and at the center in the lateral direction, and 60 mm from the bottom and at the center in the lateral direction in the cross section of the laminated wood (a rectangle with a width of 120 mm and a length of 240 mm). The respective tubular bodies (1) were arranged so that the cross-sectional centers of the tubular bodies (1) were located at these two positions.

得られた集成材の長手方向の両端の断面から、管状体(2)として円形中空のラグスクリューボルトをねじ込んだ。ねじ込んだ位置は、両端の断面において管状体(1)の位置に対応する位置(横120mm×縦240mmの長方形において上から60mmかつ横方向の中央の位置と下から60mmかつ横方向の中央の位置)である。ラグスクリューボルトは、山径35mm/谷径26.9mmで肉厚が4.2mm、長さ490mmものを用いた。この集成材の模式図を図1に示す。 A circular hollow lag screw bolt was screwed into the cross section of both ends of the obtained laminated wood in the longitudinal direction as a tubular body (2). The screwed in position is the position corresponding to the position of the tubular body (1) in the cross section of both ends (60 mm from the top and the center position in the horizontal direction in a rectangle of 120 mm width x 240 mm length, and the position 60 mm from the bottom and the center position in the horizontal direction) ). The lag screw bolt used had a crest diameter of 35 mm/trough diameter of 26.9 mm, a wall thickness of 4.2 mm, and a length of 490 mm. A schematic diagram of this laminated wood is shown in Figure 1.

得られた集成材の2本を長手方向に直列するように、それらの断面同士を相互に接触させる形でプレストレスによる接合を実施した。プレストレスは、集成材の端部にある2本の管状体(2)を覆うように50mm×50mm、厚さ20mmの鉄製座金を介して直径17mmのPC鋼棒を1本ずつ、それぞれの管状材料に通した(図3)。PC鋼棒1本につき、110kNの張力をかけ、ナットで緩まないように固定して、木質建材を得た。この木質建材の繰返し曲げ試験の結果、曲げモーメントは40kNmであり、既存集成材(E65-F225)の曲げモーメント30kNmを大きく上回っていた。 Two pieces of the obtained laminated wood were joined by prestressing so that they were arranged in series in the longitudinal direction and their cross sections were brought into contact with each other. Prestressing is performed by inserting one PC steel rod with a diameter of 17 mm through a 50 mm x 50 mm, 20 mm thick iron washer so as to cover the two tubular bodies (2) at the ends of the laminated wood. The material was passed through (Figure 3). A tension of 110 kN was applied to each PC steel bar, and it was fixed with a nut so as not to loosen, thereby obtaining a wooden building material. As a result of the repeated bending test of this wooden building material, the bending moment was 40kNm, which was much higher than the bending moment of the existing laminated timber (E65-F225), which was 30kNm.

Figure 0007405640000002
Figure 0007405640000002

〔比較例1〕
実施例1で管状体(1)および管状体(2)を用いなかったこと以外は実施例1と同様とした。この木質集成材の断面の模式図を図2に示す。24kNの張力をかけたところで木質集成材の端部にめり込みによる割裂が発生したため、繰返し曲げ試験は実施できなかった。
[Comparative example 1]
The procedure was the same as in Example 1 except that the tubular body (1) and tubular body (2) were not used in Example 1. A schematic cross-sectional view of this wood laminated timber is shown in FIG. When a tension of 24 kN was applied, splitting occurred at the end of the wood laminated timber due to sinking, so a cyclic bending test could not be performed.

〔比較例2〕
実施例1と同じ断面サイズ120mm×240mmで長さ1,890mmの既存集成材(E65-F225)を用いた。実施例1と同様に、集成材の断面同士を接する形で接合を実施した。接合方法として既存のグルーインロッド工法を用いた。接合する断面の4つの角において、集成材の側面からそれぞれ40mmの位置に、4本の直径16mmおよび長さ600mmの全ネジボルトを、集成材の長手方向に差し込んだ(図4参照)。このとき左右とも深さ300mmとなるように差し込み、エポキシ樹脂を充填した。養生期間を経て、試験開始までに2週間の時間を要した。得られた既存集成材のグルーインロッド工法による接合試験体の断面の模式図を図4に示す。繰返し曲げ試験の結果、曲げモーメントは27kNmであり、既存集成材(E65-F225)の曲げモーメント30kNmに満たなかった。
[Comparative example 2]
Existing laminated wood (E65-F225) with the same cross-sectional size of 120 mm x 240 mm and length of 1,890 mm as in Example 1 was used. As in Example 1, joining was carried out in such a way that the cross sections of the laminated wood were in contact with each other. The existing glue-in rod method was used as the joining method. At the four corners of the cross sections to be joined, four fully threaded bolts with a diameter of 16 mm and a length of 600 mm were inserted in the longitudinal direction of the laminated timber at positions 40 mm from the sides of the laminated timber (see FIG. 4). At this time, the left and right sides were inserted to a depth of 300 mm and filled with epoxy resin. After the curing period, it took two weeks to start the test. Figure 4 shows a schematic cross-sectional view of the obtained test piece of existing laminated wood joined using the glue-in rod construction method. As a result of the repeated bending test, the bending moment was 27kNm, which was less than the bending moment of the existing laminated wood (E65-F225), 30kNm.

〔実施例2〕
実施例1の木質建材を梁として含む木質構造体を作成する。木質構造体は、間口および奥行が約2間(両端の柱と柱との間の空隙が3,600mm、両端の柱の中心の距離が3,720mm)とする。まず地面に砕石を敷き、その上に高さ方向および縦横方向ともにD10@200で鉄筋を配筋してコンクリートを流し込むことで、鉄筋コンクリート製のベタ基礎を設置する。このベタ基礎は、基礎の立上りの高さを450mm、幅を120mmとし、底板の厚みを120mmとする。
[Example 2]
A wooden structure including the wooden building material of Example 1 as a beam is created. The wooden structure has a frontage and a depth of approximately 2 ken (the gap between the pillars at both ends is 3,600 mm, and the distance between the centers of the pillars at both ends is 3,720 mm). First, crushed stone is laid on the ground, reinforcing bars are placed on top of it at D10@200 in both the vertical and horizontal directions, and concrete is poured to install a solid foundation made of reinforced concrete. This solid foundation has a rising height of 450 mm, a width of 120 mm, and a bottom plate thickness of 120 mm.

土台として120mm角の長さ3,840mmのヒノキ材を2本と長さ3,600mmのヒノキ材を2本とを、それらが正方形を形成するように基礎の立上りの上に配置して、アンカーボルトで基礎の立上りと緊結し、柱芯の距離が間口および奥行とも3,720mmの正方形の土台を作成する。この土台の四隅の上に120mm角の長さ3,560mmのヒノキ材の柱の4本を、隣接する柱と柱との間の空隙が3,600mmとなるように立て、土台と柱とを接合金物で固定する。この4本の柱について、すべての隣接する2本の柱の上端に上述の梁(長さ1,780mmの集成材を2本長手方向に接合し両端に厚み20mmの鉄製座金を有する、全長3,600mmの梁)を挟み込み、接合金物で柱と梁とを接合する。接合金物と土台、柱および梁との固定はボルトで行う。このようにして4本の梁を柱と接合して木質構造体を作成する。 As a base, two 120 mm square cypress pieces with a length of 3,840 mm and two cypress pieces with a length of 3,600 mm are placed on the rising edge of the foundation so that they form a square, and anchors are placed. It is connected to the rising edge of the foundation with bolts to create a square base with a distance of 3,720 mm between the pillar cores in both frontage and depth. On the four corners of this foundation, erect four cypress pillars measuring 120 mm square and 3,560 mm in length, with a gap of 3,600 mm between adjacent pillars, and connect the foundation and pillars. Fix with metal fittings. Regarding these four pillars, the above-mentioned beam (two pieces of 1,780 mm long laminated wood joined in the longitudinal direction and having iron washers with a thickness of 20 mm at both ends, with a total length of 3 , 600mm beam) are sandwiched between them, and the column and beam are joined using joining hardware. Bolts are used to secure the joint hardware to the foundation, columns, and beams. In this way, the four beams are connected to the columns to create a wooden structure.

本発明の木質建材は、木材が使用される木質構造体に梁や長尺の骨組み材として適用することができる。なかでも、学校や体育館、講堂、各種室内球技場やドームといった大型建築物の長尺の骨組み材として、また共同住宅や戸建て住宅などの建築物の梁として好適に用いることができる。 The wooden building material of the present invention can be applied as a beam or long frame material to a wooden structure in which wood is used. Among these, it can be suitably used as a long frame material for large buildings such as schools, gymnasiums, auditoriums, various indoor baseball stadiums, and domes, and as beams for buildings such as apartment complexes and detached houses.

本発明の木質建材は、これらの建築物において容易に施工ができ、剛性と強度に優れる長尺の木質建材として建築物の構造躯体に用いることができる。 The wooden building material of the present invention can be easily constructed in these buildings, and can be used as a long wooden building material with excellent rigidity and strength in the structural frame of the building.

11 集成材
12 円形中空の管状体
13 円形中空のラグスクリューボルト
14 鉄製パイプ
21 集成材
22 中空部分(補強材無し)
31 集成材
32 円形中空の管状体
33 座金
34 ナット
35 PC鋼棒
41 集成材
42 全ネジボルト
11 Glued laminated wood 12 Circular hollow tubular body 13 Circular hollow lag screw bolt 14 Iron pipe 21 Glued laminated wood 22 Hollow part (no reinforcing material)
31 Laminated wood 32 Round hollow tubular body 33 Washer 34 Nut 35 PC steel bar 41 Glued laminated wood 42 Fully threaded bolt

Claims (11)

少なくとも二つの集成材が接合されてなる木質建材であって、各集成材は管状体を内包し、内包される管状体は長手方向に3つに分割した態様で集成材に内包され、集成材の両端の管状体はその外側にねじ切り加工が施され、各集成材に内包された管状体は隣接する集成材に内包された管状体と連通し、連通した管状体の管内を貫通する少なくとも一本の緊張材に張力が掛けられることにより、各集成材が接合されていることを特徴する木質建材。 A wooden building material made by joining at least two pieces of laminated wood, each piece of laminated wood containing a tubular body, and the tubular body to be enclosed being divided into three pieces in the longitudinal direction and enclosed within the laminated wood. The tubular bodies at both ends are threaded on the outside, and the tubular body enclosed in each laminated timber communicates with the tubular body enclosed in the adjacent laminated timber, with at least one tube passing through the inside of the communicating tubular body. A wooden construction material characterized by the fact that each piece of laminated timber is joined by applying tension to the tensioned timber. 集成材が長手方向をもち、管状体は集成材の長手方向を貫通して内包される、請求項1に記載の木質建材。 2. The wooden building material according to claim 1, wherein the laminated timber has a longitudinal direction, and the tubular body is encapsulated by penetrating the laminated timber in the longitudinal direction. 管状体が円形中空の断面をもつ、請求項1または2に記載の木質建材。 The wooden building material according to claim 1 or 2, wherein the tubular body has a circular hollow cross section. 管状体が金属からなる、請求項3に記載の木質建材。 The wooden building material according to claim 3, wherein the tubular body is made of metal. 管状体が内包された集成材において、外側にねじ切り加工を施された管状体が集成材にねじ込まれて固着されている、請求項に記載の木質建材。 2. The wooden building material according to claim 1 , wherein the tubular body is threaded on the outside and is screwed into and fixed to the laminated timber in which the tubular body is enclosed. 建築物の梁として用いられる、請求項1乃至のいずれかに記載の木質建材。 The wooden building material according to any one of claims 1 to 5 , which is used as a beam in a building. 管状体に通された緊張材が、集成材の長手方向に直交する面の中心から外れた位置に通されている、請求項1乃至のいずれかに記載の木質建材。 The wooden building material according to any one of claims 1 to 6 , wherein the tendon threaded through the tubular body is threaded at a position offset from the center of a plane perpendicular to the longitudinal direction of the laminated timber. 管状体が集成材の長手方向に直交する面の中心から等距離の位置に複数本内包されている、請求項1乃至のいずれかに記載の木質建材。 The wooden building material according to any one of claims 1 to 7 , wherein a plurality of tubular bodies are included at positions equidistant from the center of a plane perpendicular to the longitudinal direction of the laminated timber. 緊張材に掛けられた張力が10~300kNである、請求項1乃至のいずれかに記載の木質建材。 The wooden building material according to any one of claims 1 to 8 , wherein the tension applied to the tendon material is 10 to 300 kN. 請求項1乃至に記載のいずれかの木質建材を含む木質構造体。 A wooden structure comprising the wooden building material according to any one of claims 1 to 9 . 請求項10記載の木質構造体を含む建築物。 A building comprising the wooden structure according to claim 10 .
JP2020026318A 2020-02-19 2020-02-19 Wooden building materials and structures Active JP7405640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026318A JP7405640B2 (en) 2020-02-19 2020-02-19 Wooden building materials and structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026318A JP7405640B2 (en) 2020-02-19 2020-02-19 Wooden building materials and structures

Publications (2)

Publication Number Publication Date
JP2021130957A JP2021130957A (en) 2021-09-09
JP7405640B2 true JP7405640B2 (en) 2023-12-26

Family

ID=77550621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026318A Active JP7405640B2 (en) 2020-02-19 2020-02-19 Wooden building materials and structures

Country Status (1)

Country Link
JP (1) JP7405640B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087556A (en) 2010-10-21 2012-05-10 Ps Mitsubishi Construction Co Ltd Prestressed structure using wooden member
JP2013189763A (en) 2012-03-12 2013-09-26 Sumitomo Forestry Co Ltd Wooden component
JP2020125652A (en) 2019-02-06 2020-08-20 帝人株式会社 Woody building material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162612U (en) * 1984-04-06 1985-10-29 貝本 冨作 Glulam for prestressed structures
JPH0192412U (en) * 1987-12-11 1989-06-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087556A (en) 2010-10-21 2012-05-10 Ps Mitsubishi Construction Co Ltd Prestressed structure using wooden member
JP2013189763A (en) 2012-03-12 2013-09-26 Sumitomo Forestry Co Ltd Wooden component
JP2020125652A (en) 2019-02-06 2020-08-20 帝人株式会社 Woody building material

Also Published As

Publication number Publication date
JP2021130957A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US10125493B2 (en) Pre-stressed beams or panels
Loss et al. Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms
Xiao et al. Development of a new type Glulam—GluBam
Wu et al. Steel and glubam hybrid space truss
Stieb et al. Solutions for edge connections to build two-way spanning cross laminated timber slabs
Strzelecka et al. Theoretical and numerical analyses of steel-timber composite beams with LVL slabs
JP2001107473A (en) Joining section of woody member and woody member for joining
JP7405640B2 (en) Wooden building materials and structures
JP2020007798A (en) Joining structure of wooden column and wooden beam
Manaridis Evaluation of timber-concrete composite floors
JP2021059901A (en) Wall structure, and construction method of wall structure
JP2014201870A (en) Cwood
KR102370555B1 (en) Deck plate using glass fiber reinforced composite materials
JPH01287354A (en) Reinforced laminated wood
CN116940463A (en) Bamboo building element
JP7239339B2 (en) wooden building material
JP2022015390A (en) Composite beam
JP2023139372A (en) Woody building material, ligneous unit for building, building and production method thereof
JP7204519B2 (en) wooden building material
JP2023170142A (en) Woody member concrete member composite structure
JP2022121887A (en) Woody beam-column structure
JP7267167B2 (en) Column-beam frame with wooden beams
EP4074912A1 (en) Floor beam for buildings and bridges
JP7097560B2 (en) Reinforcement structure of joints of wooden structures
Chen et al. Research progress and engineering practice of glulam space frame structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7405640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150